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ABSTRACT

FROM AUDIENCES TO MOBS: CROWD SIMULATION
WITH PSYCHOLOGICAL FACTORS

Funda Durupınar

Ph.D. in Computer Engineering

Supervisor: Assoc. Prof. Dr. Uğur Güdükbay

July, 2010

Crowd simulation has a wide range of application areas such as biological

and social modeling, military simulations, computer games and movies. Simulat-

ing the behavior of animated virtual crowds has been a challenging task for the

computer graphics community. As well as the physical and the geometrical as-

pects, the semantics underlying the motion of real crowds inspire the design and

implementation of virtual crowds. Psychology helps us understand the motiva-

tions of the individuals constituting a crowd. There has been extensive research

on incorporating psychological models into the simulation of autonomous agents.

However, in our study, instead of the psychological state of an individual agent as

such, we are interested in the overall behavior of the crowd that consists of virtual

humans with various psychological states. For this purpose, we incorporate the

three basic constituents of affect: personality, emotion and mood. Each of these

elements contribute variably to the emergence of different aspects of behavior.

We thus examine, by changing the parameters, how groups of people with dif-

ferent characteristics interact with each other, and accordingly, how the global

crowd behavior is influenced.

In the social psychology literature, crowds are classified as mobs and audi-

ences. Audiences are passive crowds whereas mobs are active crowds with emo-

tional, irrational and seemingly homogeneous behavior. In this thesis, we examine

how audiences turn into mobs and simulate the common properties of mobs to

create collective misbehavior. So far, crowd simulation research has focused on

panicking crowds among all types of mobs. We extend the state of the art to sim-

ulate different types of mobs based on the taxonomy. We demonstrate various

scenarios that realize the behavior of distinct mob types.

Our model is built on top of an existing crowd simulation system, HiDAC
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(High-Density Autonomous Crowds). HiDAC provides us with the physical and

low-level psychological features of crowds. The user normally sets these param-

eters to model the non-uniformity and diversity of the crowd. In our work, we

free the user of the tedious task of low-level parameter tuning, and combine all

these behaviors in distinct psychological factors. We present the results of our

experiments on whether the incorporation of a personality model into HiDAC

was perceived as intended.

Keywords: Crowd simulation, autonomous agents, simulation of affect, crowd

taxonomy, mob behavior.



ÖZET

KİTLELERDEN GÜRUHLARA: PSİKOLOJİK
FAKTÖRLERLE KALABALIK SİMÜLASYONU

Funda Durupınar

Bilgisayar Mühendisliği, Doktora

Tez Yöneticisi: Doçent Dr. Uğur Güdükbay

Temmuz, 2010

Kalabalık simülasyonu, biyolojik ve sosyal modelleme, askeri simülasyonlar,

bilgisayar oyunları ve filmler gibi geniş uygulama alanlarına sahiptir. Can-

landırılmış sanal kalabalıkların simülasyonu bilgisayar grafikleri camiası için zorlu

bir görevdir. Fiziksel ve geometrik özelliklerinin yanısıra, gerçek kalabalıkların

hareketlerinin anlamları, sanal kalabalıkların tasarım ve gerçekleştirilmesinde

önemlidir. Psikoloji, bizim kalabalıkları oluşturan bireylerin motivasyonlarını

anlamamıza yardımcı olur. Özerk etmenlerin simülasyonuna psikolojik modelleri

dahil etmek üzerine yoğun araştırma yapılmıştır. Buna rağmen, biz, çalışmamızda

bireysel bir etmenin kendisinden ziyade çeşitli psikolojik özelliklere sahip bireyler-

den oluşan bir kalabalığın genel davranışıyla ilgilenmekteyiz. Bu amaçla, duygu-

lanımın üç temel bileşenini dahil ettik: kişilik, duygu ve mizaç. Bu etkenlerden

her biri farklı davranış sekillerinin ortaya çıkmasına farklı derecelerde katkıda bu-

lunur. Böylece, parametreleri degiştirerek, farklı özelliklere sahip grupların bir-

birleriyle nasıl etkileştiklerini, ve buna bağlı olarak genel kalabalık davranışının

nasıl etkilendiğini inceliyoruz.

Sosyal psikoloji literatüründe kalabalıklar, kitleler ve güruhlar olarak

sınıflandırılmıştır. Kitleler pasif kalabalıklar, güruhlar ise, duygusal, mantıksız

ve görünürde homojen davranışlarda bulunan aktif kalabalıklardır. Bu tezde

kitlelerin güruhlara dönüşümünü ve güruhların kolektif olarak uygun ol-

mayan davranışlarda bulunuşunu inceliyoruz. Mevcut kalabalık simülasyonu

araştırmaları, tüm güruh çeşitleri içinde sadece panik davranışı gösteren

güruhlara odaklanmıştır. Biz, en son gelişmeleri kalabalıkların sınıflandırılmasına

göre değişik çeşit güruhların simülasyonunu yaparak genişletiyoruz. Farklı güruh

tiplerinin davranışını gerçekleştiren çeşitli senaryolar gösteriyoruz.
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Modelimiz, mevcut bir kalabalık simülasyonu sistemi olan HiDAC (Yüksek

Yoğunluklu Özerk Kalabalıklar) üzerine kurulmuştur. HiDAC, bize kalabalıkların

fiziksel ve alt duzeydeki psikolojik özelliklerini sağlar. Biz çalışmamızda, kul-

lanıcıyı meşakkatli olan alt düzey parametre ayarlama işinden kurtararak bütün

bu davranışları farklı psikolojik faktorlerde birleştiriyoruz. Bir kişilik mod-

elinin HiDAC sistemine dahil edilmesi işleminin niyetlendiğimiz şekilde algılanıp

algılanmadığına dair yaptığımız deneylerin sonuçlarını sunuyoruz.

Anahtar sözcükler : Kalabalık simülasyonu, özerk etmenler, duygulanım

simülasyonu, kalabalıkların sınıflandırılması, güruh davranışı.
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Chapter 1

Introduction

1.1 Motivation

Crowd simulation has a wide range of application areas from computer games to

evacuation planning for building security. The topic has drawn the attention of

computer graphics and visualization community as well as cognitive science and

artificial intelligence researchers. Since a human being is a complex structure,

masses of human beings should be even more complicated to study. When humans

form groups, interaction becomes an essential part of the overall group behavior.

In some cases, individuality gets lost and collective behavior comes on the scene.

The semantics underlying the motion of real crowds should be studied extensively

in order to achieve realistic behavior in virtual ones. Therefore, crowd simulation

research also benefits from social psychology literature.

Our main purpose is to understand the basics of crowd psychology and build

our model on scientific grounds. There has been extensive research on incorporat-

ing psychological models into the simulation of autonomous agents. Most of the

emphasis in this field is put on individual agents, usually conversational, inter-

acting with a human user. However, we are not interested in the behavior of an

individual per se but the incorporation of a psychological model into large groups

1



CHAPTER 1. INTRODUCTION 2

of people. We thus examine, by changing the parameters, how subgroups of peo-

ple with different psychological traits interact with each other, and accordingly,

how the global crowd behavior is influenced.

Sometimes, regular crowds start to act collectively, showing highly emotional

and illogical behaviors. Crowd psychology has been widely investigated by social

psychologists. Researchers have come up with different theories to explain the

collective craze. These theories range from formulating this phenomenon by the

loss of individuality through contagion to predisposition hypotheses. Crowd sim-

ulation community, on the other hand, has not focused on this aspect of crowds

except panic situations and egress scenarios. However, regular crowds can turn

into various types of mobs, showing different emotions such as anger or even

euphoria. Classification of mobs can also be found in the social psychology liter-

ature.

1.2 Contributions

This thesis study contributes to the literature in two parts. The first part is the

incorporation of a psychological model into the virtual agents in the crowd.

The components making up the psychological state are personality, emotion

and mood. Research so far has focused on incorporating an affect model into

conversational or interactive virtual agents. We have integrated the psychological

components into an existing crowd simulation system, HiDAC [93].

For instance, for the personality module, we have collected adjectives identify-

ing each personality factor and defined a direct mapping between the parameters

in HiDAC and the personality traits. In contrast to the low-level parameter

tuning process in previous work, we now let the user choose from higher-level

concepts related to human psychology. Thus, the user is freed from understand-

ing the underlying methodologies used in HiDAC. Our mapping also decreases

the number of parameters that need to be set from 13 to 5. Using a personality

model enabled us to move a user’s focus to the character of the agents instead
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of behavioral parameters while providing us with a somewhat widely accepted

structure for describing character. We have evaluated how people perceive the

differences of personality through user studies. The results are promising as they

indicate high correlation between our parameters and the participants’ perception

of these parameters.

The second part of our contribution is the simulation of different types of

crowds. These crowd types range from audience to mobs. We enable the animator

to create various scenarios, giving each agent different roles and personality traits.

The agents then act according to the scenario, showing different behaviors based

on their personalities, emotions and moods. As well as high level behaviors, they

respond with facial and bodily gestures such as changing their posture depending

on their current emotional state.

1.3 System Overview

The mind of a virtual agent consists of several components that determine cogni-

tive, perceptual and psychological characteristics. The agent behaves according

to the interaction of these features with environmental stimuli. All these compo-

nents will be detailed in the following chapters. In this chapter, we overview the

elements that comprise an agent as shown in Figure 1.1.

The cognitive unit of an agent’s mind is the appraisal component. Appraisal

determines how agents assess events, other agents, themselves and objects. Their

assessment is processed according to decision making strategies and produces

emotional outcome. Emotions and intrinsic personality traits affect the mood

state. All these psychological components determine the agent’s behavior ex-

plicitly or implicitly. For instance, facial gestures and postures depend on the

emotional state, whereas local motion choices depend on all three components of

psychology as well as goals, standards and attitudes.
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Figure 1.1: System Overview

1.4 Outline of Thesis

The organization of the thesis is as follows: Chapter 2 gives a literature survey

on crowd simulation and related fields. Chapter 3 formulates the underlying psy-

chological model. Chapter 4 defines the behavior of virtual crowds based on the

classification of crowds. Chapter 5 explains our experiments on validating per-

sonality to behavior mapping and presents some visual and runtime performance
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results. Chapter 6 gives conclusions with possible future work implications.

Navigation is performed by discretizing the environment and computing a cell

portal graph. We explain the cell portal graph computation in Appendix A. Fi-

nally, we discuss functionality and the user interface of the system in Appendix B.



Chapter 2

Related Work

Computational models are categorized into a hierarchy in the order of their ap-

pearance in computer graphics [44, 45, 46]. The earliest models were the geo-

metric models. Then, forward and inverse kinematics became widely used, and

thus kinematic models emerged. The next step was the physical models. They

are used for animating the physical properties of particles, fluids, solids, gases

and deformable solids. However, as a result of the desire to further automate

the animation process, behavioral models emerged. Behavioral modeling involves

self-animating characters that perceive environmental stimuli and give appropri-

ate responses. The highest step in the hierarchy is cognitive models, through

which autonomous characters can be given goals and react deliberatively as well

as reactively. The modeling hierarchy can be seen in Figure 2.1. In this chap-

ter, we explain the current state-of-the-art in behavioral and cognitive models

for crowd simulation after giving some definitions about behavioral animation

systems.

2.1 Definitions about Behavioral Animation

There are four aspects of behavioral animation techniques [103]:

6
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Figure 2.1: Computer graphics modeling hierarchy [46]

1. Specification and control methods: Specification can be performed either

declaratively or procedurally. Control can be performed either by scripting

or sensing the environment.

2. Generality of the method : This refers to the type of animations that the

technique can generate. For instance, some animation techniques are spe-

cific to certain types of behaviors such as flocking.

3. Directability : Directability is the degree to which an autonomous character

can be externally controlled, which can also be considered the level of au-

tonomy. Considering directability, crowd behavior can be classified as [111]:

• Guided crowds: Behaviors are explicitly defined by the users

• Programmed crowds: Behaviors are programmed in a script language

• Autonomous crowds : Behaviors are specified using rules or complex

models

4. Ease of authoring : This refers to the types of primitives provided by the

system, the user interface and extensibility mechanisms.
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In order to realistically simulate virtual characters, we must first understand

the basic properties that comprise the characteristics of these agents. A full

behavioral animation system should address these issues. These properties can

be summarized as follows [111]:

• Behavior: Response of an individual, group or species to the environment.

• Intelligence: The ability to learn and understand new situations.

• Autonomy: The quality or state of self governing.

• Adaptation: The ability to survive in unpredictable or dangerous environ-

ments.

• Perception: Awareness of the elements of the environment through physical

sensation.

• Memory: The power or process of reproducing or recalling what has been

learned and retained especially through associative mechanisms.

• Emotion: An affective aspect of consciousness; state of feeling.

• Consciousness: The quality or state of being aware especially of something

within oneself or the state of being characterized by sensation, emotion,

volition, and thought.

• Freedom: The extent that the virtual character’s future behavior is unpre-

dictable.

Autonomous agents in behavioral animation systems are classified as situated,

reactive, embodied and virtual [100]. Situated agents are located in a virtual world

shared by other entities as opposed to isolated agents. An agent is reactive if it is

driven by stimulus and instinctive. On the other hand, an agent is deliberative if

it is intellectual in the classical artificial intelligence (AI) sense. Embodied agents

are animated in a physical manifestation such as an autonomous vehicle or a

bird. Finally, the term virtual is used to discriminate the agents from mechanical

robots, which can also be defined as situated, embodied autonomous agents.



CHAPTER 2. RELATED WORK 9

Millar et al. classify the components of a behavioral animation system in a

generic framework as perception system, behavioral system and motor movement

system [83]:

Perception System: Perception techniques determine how an agent perceives its

environment and can be classified into three as:

1. Zonal approach: This approach involves surrounding the character

with perception regions so that any object in this zone can be perceived

by the character. The size of the detection zone is important because

too small a zone will weaken the collision avoidance and path planning

abilities whereas too large a zone will increase the computation time.

2. Sensory approach: This approach involves placing synthetic sensors on

the character. Different types of sensors for smelling, hearing, seeing

etc. can be implemented. The type, location and orientation of each

sensor is important for perceiving stimuli from the environment.

3. Synthetic vision approach: This approach gives the character a vision

of its virtual world. This approach is only useful for vision, no other

stimuli will be detected. The advantage of using this method is to

learn from research on human vision.

Behavioral System: This system comprises the behavioral basis of animation

and it is responsible for the decision making process. Behavior can be either

solely reactive as a reflexive response to a stimulus or it can be an intelligent

response driven by internal desires and experience of the character. The

form of the response is also various. It can be a movement vector as well

as a change in the internal attributes. In a fully-implemented system, the

behavioral component includes four important modules:

1. state variables including perception variables and mental state,

2. the rule base,

3. the memory module, and
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4. the movement module that performs collision handling and path plan-

ning.

Different approaches used in behavioral techniques can be classified as:

1. Behavioral (rule-based) approach: This approach gives each character

a set of rules defining how to react to the environment. It can provide

reasonable behaviors in a dynamic environment and it is relatively

easy to modify the rules to produce different behaviors. On the other

hand, it results in less freedom, i.e., more predictability, it is specific

to a particular environment and the number of rules can increase in

complex environments.

2. Network-based approach: This approach involves creating a series of

interconnecting nodes each of which describe the type of behavioral re-

sponse and these nodes are created as mathematics-based procedures.

3. Cognitive approach (Artificial intelligence): This method uses artificial

intelligence techniques such as reasoning engines and neural networks

to the definition of the behavioral aspects of the animated character.

These techniques provide more freedom; however, they are more diffi-

cult to control by the animator.

4. Mathematical approach: This approach defines the behavior of the

characters in mathematical terms. It provides a means of specifying

behavioral responses in a precise manner; however, it is not very intu-

itive for animators.

Motor Movement System: The main functionality of this system is to propel the

animated character through its virtual world. Motor movement techniques

handle only the movement of the character; path planning is handled by the

behavioral component. These techniques actually comprise the animation

module of the behavioral animation system. The animated character will

receive a movement request from its behavioral component and execute this

request by using a specific motor movement approach that will be based on

some sort of motion description.
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2.2 Behavioral Models

Behavioral models can be categorized into three by considering the possible num-

ber of individuals to be simulated, their intelligence level, control mechanisms

and collision handling methods. These approaches are particle systems, flocking

systems and behavioral systems [91]. Musse et al. extend these categories by

adding hierarchical systems [88], which is actually a hybrid of particle, flocking

and reactive behaviors. We also include chaos systems, which is a relatively recent

approach in behavioral animation techniques.

2.2.1 Particle Systems

Agent-based approaches offer several advantages such as capturing the variability

of different individual characteristics and providing heterogeneity to the motion.

However, agent-based methods are costly in that each agent must be handled

separately, comparing its state with every other agent, thus resulting in O(n2)

time complexity. Several simplifications on agent-based methods have been of-

fered such as local methods, precomputed static plans, global planning on coarse

environments and leader-follower models. However, an alternative to agent-based

approaches has emerged from the fluid dynamics studies by making an analogy

between the crowds and natural phenomena such as the behavior of fluids and

gases. Particle systems are composed of many participants with significant dy-

namics. These systems are physically-based and the control is handled by force

fields and global tendency [19, 22, 23]. Although these systems are used to present

group and crowd simulations, the individuals in the groups do not have autonomy

and heterogeneity.

Hughes introduces a model representing pedestrians as a continuous density

field [54]. The model includes an evolving potential function that guides the

density field optimally towards its goal. Chenney [26] presents a technique called

flow tiles, for representing and designing velocity fields, and gives application

examples of crowd simulation on city streets. The most recent work, “continuum
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crowds”, is proposed by Treuille et al. [113], introducing a real-time crowd model

based on continuum dynamics. The system is only applicable to large groups

with common goals, so individual differences in each group are not handled.

The study of continuum crowds is inspired by Hughes, extending it from pure

analytical derivations to the simulation of crowds. The authors use a similar

potential function to guide pedestrians towards their goal. In addition, it is

possible to combine pedestrians into groups and introduce dynamic discomfort

fields to handle geographic preferences and obstacles. The continuous equations

in the mathematical model are converted into discretizations in time and space.

For this purpose, the space is discretized into a regular grid and the physical

variables are defined at various locations within each grid cell. The simulation

examples demonstrate smooth flow under different conditions and they run at

interactive rates.

2.2.2 Flocking Systems

Flocking systems specify animation as distributed global motion with a local

tendency. Individuals in flocking systems can seek a goal, move together and avoid

collisions. The intelligence level of the individuals of flocks are higher compared

to the members of particle systems. Some examples of flocking systems are given

in [74, 87].

The principles of behavioral animation are based on the seminal work of Craig

Reynolds, who did research on the animation of flocks of birds and schools of

fish [98]. Reynolds introduces the term “boid” to refer to bird-like entities, i.e.,

bird-oids. These entities represent creatures like birds and fish that have flocking

or schooling behavior. Each boid acts as an independent actor that maintains

proper position and orientation by perceiving the local dynamic environment.

The motion of each actor is defined by the laws of simulated physics and a set

of programmed behaviors. The main aspect of the system is that the boids have

only local information, without knowing the global environment, thus simulating

the real-world perception. Each boid perceives its nearby flockmates and the

obstacles within its view. The behavior of each individual in the flock is controlled
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by three simple rules as:

• collision avoidance: Avoiding collisions with neighbors,

• velocity matching : Tendency to match velocity with neighbors, and

• flock centering : Tendency to stay close to neighbors and to be near the

center of the flock.

These rules are sorted in the order of decreasing precedence, i.e., collision

avoidance has the highest precedence and flock centering has the lowest prece-

dence. Thus, conflicting behaviors are resolved by defining static priorities.

Reynolds extends the technique for flocking to include autonomous reactive

behavior. He presents steering behaviors for obstacle avoidance [99] and path

determination [100] by introducing constraints. The modeling of autonomous

agents is performed in a hierarchical manner and specific emphasis is put on the

middle layer of steering. The layers are:

• action selection: Strategy, goals and planning,

• steering : path determination, and

• locomotion: Animation and articulation.

2.2.3 Behavioral Systems

Agents in behavioral systems are more clever compared to the agents in flocking

systems. The virtual agents are equipped with synthetic vision and perception

of the environment and they are controlled by rules rather than local or global

tendencies.

One important study in this field is the simulation of artificial fishes by Ter-

zopoulos et al. [110]. An artificial fish is an autonomous agent that has a three-

dimensional, deformable and muscle-based body that conforms with biomechanic



CHAPTER 2. RELATED WORK 14

and hydrodynamic principles. A fish also has sensors and a brain with motor

perception, behavior and learning centers. There are two types of sensors, a tem-

perature sensor that measures the water temperature and a vision sensor that

has access to the geometry, material property and illumination information in

the rendering pipeline and can identify nearby objects.

The behavior system of an artificial fish is based on intentions. The system

runs continuously in a simulation loop, and at each timestep, the intention gen-

erator issues an intention based on the habits, mental state and incoming sensory

information. The habits are associated with the preferences of the fish on bright-

ness, darkness, cold, warmth, schooling and the gender of the fish. The mental

state depends on three variables, which are hunger, libido and fear. The range of

each variable determines the urge to eat, mate or avoid danger. The intention gen-

erator first checks whether there is an immediate collision. Then, it checks these

state variables in the order of fear, hunger and libido and generates a suitable

intention at each timestep. If all the state variables are below a certain thresh-

old, the generated intention will be to wander about. The intentions generated

influence the behavior routines. There are eight behavior routines: avoiding-

static-obstacle, avoiding-fish, eating-food, mating, leaving, wandering, escaping,

and schooling. Dithering is avoided by modeling a short-term memory and per-

sistence is ensured in order to ensure robustness in long duration behaviors such

as mating or schooling. Three types of fish are modeled: predators, preys and

pacifists.

Blumberg and Galyean [17] combine autonomy with directability. Sometimes

it might be necessary to control the animated creature to some extent. In that

sense, the study makes three contributions:

1. A control approach that allows an external entity to direct a virtual char-

acter at a number of different levels.

2. A general behavioral model for perception and action selection in au-

tonomous animated creatures which also supports external control.

3. A layered architecture that supports extensibility, reusability and multiple
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levels of direction.

The modeling of autonomous creatures is performed in a hierarchical manner.

The levels in the hierarchy are similar to those of Reynold’s [100] and organized

in a top-down fashion as follows:

1. Behavior system

2. Motor system

• Controller

• Motor skills

• Degrees-of-freedom

3. Geometric system

Geometric layer portrays the physical attributes of the character, giving its

form and appearance. The more complex this layer is, the more sophisticated

and expressive characters we can obtain. The second layer, motor system, ex-

ecutes the actions necessary to perform the goals without any knowledge from

the environment. This layer acts as an interface between the geometric layer and

the behavior layer, supports and provides imperative commands and minimizes

the burden on the behavior layer or an external user. Degrees-of-freedom are

used to modify the underlying geometry. Motor skills are used to produce more

complicated motion such as “walking”. Finally, the controller is used as an ab-

straction barrier between the behavior system and the underlying motor skills.

It maps commands such as “forward”, “turn” or “halt” into calls to turn on or

turn off the appropriate motor skill. For instance, “forward” may result in the

“walk” motor skill in a dog, or the “move” motor skill in a car. The top level is

the behavior layer, which performs the decision making process given the goals

and environmental information. It senses the environmental stimuli, chooses the

best set of actions for the current state and sends out the necessary signals to the

motor control layer.
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Behaviors may range from very general to very specific and are organized into

groups. External control can be added to the system by changing the motivation

or sensor variables of the character or by directly scheduling tasks for execution.

All constituent parts of a behavior are accessible during run-time; thus any part

can be modified.

External control, i.e., directability, is a feature that has been accepted by many

other researchers as well [5, 86, 88, 108]. For instance, Anderson et al. introduce

constraints on the individual agents and the entire group [5]. They introduce

three types of constraints as: specific agents constrained to pass through a loca-

tion, the center of mass of the group constrained to a point and the members of

the flock constrained to lie within a given shape at a given time. Moreover, Sung

et al. define a system where users can dynamically specify the group behaviors

at a certain part of the environment by attaching information to the environ-

ment [108]. They adopt a two-level scalable approach for the crowd simulation.

The higher level uses a situation-based distributed control mechanism that gives

each agent the rules about how to react to a specific condition based on the local

environment. The lower level uses a probability scheme that computes probabil-

ities over state transitions and then samples to move the simulation forward.

Perlin and Goldberg define a system, Improv, based on scripts, which are

sets of author-defined rules [97]. The difference of Improv from other systems is

that it focuses on author’s view; it provides tools to create actors that respond

to users and other actors in real-time. Improv consists of two subsystems: an

animation engine and a behavior engine. The animation engine uses procedural

techniques to create layered, continuous, non-repetitive motions and smooth tran-

sitions between them. The behavior engine, on the other hand, enables authors

to create sophisticated rules to govern the way actors communicate, change and

make decisions. The animation engine represents the body of the actor whereas

the behavior engine represents the mind. The behavior model of Improv is similar

to that of [17] as it consists of a layered architecture. Information about an ac-

tor and his relationship to the environment are stored in actor properties, which

describe the aspects of an actor’s personality. These properties are specified ei-

ther when the actor is created or within a clause or script whenever a change is
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necessary.

2.2.4 Hybrid Systems

Hybrid systems mix particle, flocking and reactive behaviors [111]. The intelli-

gence levels of the agents can vary from none to high in these systems. Musse

and Thalmann describe a system called ViCrowd that is composed of a hierarchy

of virtual crowds, groups and individuals, which constitute the entities of the

simulation [88]. Individuals are virtual human agents that mimic the behaviors

of real humans. Groups refer to a group of agents and crowds refer to a set of

groups. Some important concepts about the simulation are intentions, beliefs

and knowledge, which are the goals, internal status and the information about

the virtual environment of the entities, respectively. Intentions, beliefs, knowl-

edge and perception determine the crowd behavior. The system addresses three

specific problems:

1. modeling of crowd information and hierarchical structure, also concerning

its distribution among groups,

2. different levels of realism, in order to provide simple crowd behaviors, as

well as complex ones, and

3. the required structure to provide interaction with groups of agents during

the simulation in real-time.

These problems are solved by considering crowd structure and crowd behavior.

Crowd structure is a hierarchy composed of crowd, groups and agents, where the

groups’ information is distributed among the individuals. Crowd behavior deals

with different levels of autonomy for the individuals. The agents can either act

according to specific rules, react to specific events, or can be guided by an interac-

tive process during simulation. Different levels of autonomy has been addressed

in [111], as well. This control mechanism also distinguishes hierarchical models

from behavioral models.
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2.2.5 Chaos Models

Modeling virtual crowds by making use of their chaotic behavior is another

method in behavioral approach [53, 101, 107]. As crowds include independently

moving individuals, yet exhibit general motion patterns, they can be represented

by chaos models. Although these models have only a few parameters, due to the

sensitivity of the system to initial conditions and non-regularity, various behav-

iors can be observed. These methods are superior to using random numbers to

achieve variation as these methods are deterministic and it is difficult to create

and control general patterns with random numbers. The representation of crowds

is at the macro level, contrary to the other micro-level approaches where the fo-

cus is on the individuals. Saiwaki et al. [101] state that there are few studies on

the behavior of virtual humans with few parameters in contrast to the studies

on the behavior of animal groups, because humans demonstrate more complex

behaviors.

2.3 Cognitive Models

The techniques introduced up to now are limited in the sense that they do not

present any learning ability and confined to pre-specified behaviors. Moreover,

they have only behavioral control, which is restricted to decision making. How-

ever, cognitive control, which involves reasoning and planning to accomplish long-

term tasks is also required in order to achieve full autonomy. Behavioral learning

and cognitive models have begun to be explored in computer graphics only re-

cently [16, 25, 28, 29, 30, 46, 84, 112].

Funge introduces cognitive modeling as a further step to behavioral mod-

eling [44, 45, 46]. He defines Cognitive Modeling Language, CML, to specify

domain knowledge with terms of actions, their preconditions and their effects,

and to direct the character’s behavior in terms of goals. Then, the animator

only specifies the sketch plan of the animation and the characters take deliberate

actions through reasoning to satisfy the plan. Cognitive modeling is decomposed
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into two subtasks of domain knowledge specification and character direction. Do-

main knowledge specification is about informing the character about the environ-

ment and character direction is about instructing the character to behave in a

certain way in order to achieve specific goals. CML provides a high-level inter-

face for description of the desired goals. On the other hand, it can also serve

as a traditional programming language, allowing the precise specification of how

the character should act. In order to provide simple and powerful semantics for

cognitive modeling, situation calculus is used. The syntax of CML employs de-

scriptive keywords with precise mappings to the underlying formal semantics of

the situation calculus.

Recently, pedestrian simulation has emerged as a new direction of research

in crowd simulation [8, 15]. As well as examining crowd behavior, pedestrian

simulation is also important for urban planning [43, 102]. A complex pedes-

trian animation system, which incorporates perceptual, behavioral and cognitive

control components, is introduced as a combination of rule-based and cognitive

models [104]. The study treats the crowd from a decentralized point of view,

modeling the individuals separately. Individuals are fully autonomous and they

perform a rich variety of actions within an urban environment.

2.3.1 Models with Psychological States

Some studies integrate emotions and psychological models and roles into crowd

simulation systems and autonomous agents [2, 36, 37, 95, 93, 105, 112]. Silverman

et al. describe the PMFServ system that makes use of the psychological elements

that affect human behavior [106]. PMFServ is a highly flexible software system

that can be utilized in various simulation domains. Although it provides an

interface for other cognitive architectures, it is as well a fully functional standalone

system to simulate human decision making based on emotions.

Allbeck and Badler give a representational basis for character believability,

personality and affect [2]. For this purpose, they describe a Parameterized Ac-

tion Representation (PAR) that is a representation for the actions as instructions
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for an agent. PAR allows an agent to act, plan and reason about its behaviors

and enables the control of the agent’s personality, mood and affect. PAR param-

eterizes the agent, relevant objects, information about paths, locations, manners

and purposes. In order to perform an action, the conditions that specify the ac-

tion must be satisfied. The agents that execute the action are treated as special

objects with their properties stored in a hierarchical database.

Pelechano et al. incorporate psychological models into crowd simulation [95].

Their crowd simulation system deals with the wayfinding process that allows the

individuals to explore and learn the internal structure of a building as well as

the low-level local motion based on social forces. Thus, the agents can generate

a cognitive map for navigation and find their way around an environment about

which they have no prior information. The psychological component is included

by using PMFServ. Communication and roles are added to achieve individual-

istic behaviors and spread information about the environment. Individuals have

different roles and thus show heterogeneous behavior. The roles depend on two

attributes of leadership and training in the existing crowd simulation system.

There are trained leaders that have complete knowledge about the environment,

untrained leaders and untrained non-leaders, i.e., followers. The agents are thus

restricted to only three distinct roles. At this point, the psychological model

provides variation through physiology, stress, perception and emotion.

HiDAC [93] is a high density crowd simulation system, which addresses the

simulation of local behaviors and global way-finding of crowds in a dynamically

changing environment. The behaviors of autonomous agents in HIDAC are gov-

erned by the combination of geometrical and psychological rules. Psychological

attributes include impatience, panic, and leadership behaviors. Physiological at-

tributes are determined by traits, such as locomotion, energy levels, maximum

speed. Agents are provided with skills such as navigation in complex environ-

ments, communication, learning, and certain kinds of decision-making. Further-

more, they have perception so that they can react to obstacles, other agents, and

dynamic changes in the environment. In order to achieve realistic behavior, col-

lisions are handled both by avoidance and response forces. Over long distances,
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collision avoidance is applied so that agents can steer around obstacles. Colli-

sion response is utilized over shorter distances to prevent agents overlapping with

each other and with the environment. In addition to the usual crowd behavior,

agents might show pushing behavior or can wait for other agents to pass first de-

pending on their politeness and patience. Pushing behavior arises from varying

the personal space threshold of each individual. Impatient agents do not respect

others’ personal space and they appear to push their way through the crowd. Re-

laxed agents temporarily stop when another agent moves into their path, while

impatient agents do not respond to this feedback and tend to “push”.

Another system that involves emotions of virtual agents is presented by Tom-

linson and Blumberg [112]. The study is based on social learning for interactive

virtual characters, which are wild wolves. Wolves are preferred because of their so-

cial similarity to humans and their clear yet complex behaviors in a social group.

The system provides a computational model that provides models of learning,

emotion and development. Social learning involves the ability to have emotions,

to express these emotional states and to remember an association between envi-

ronmental stimuli and emotional states.

In order to represent individual differences through psychological states, some

studies focus on single agents as opposed to crowds. Research on Embodied Con-

versational Agents (ECAs) introduce agents within different contexts that can

communicate with the user through various means. As well as the recognition of

social cues, these agents have to present different expressions. Ball and Breese

introduce an early work on the modeling of emotions and personality in conversa-

tional agents [9]. Virtual characters recognize the user’s emotions and personality

and give appropriate responses accordingly. Egges et al. study the simulation

of the personality, emotions and mood for conversational virtual humans [38].

In addition, Egges et al. present a system that incorporates bodily gestures to

virtual humans according to their emotional states [39]. Another system that

focuses on conversational agents is introduced by Breitfuss et al. [21]. The sys-

tem offers methods for using dialogues in text format to simulate conversational

agents with eye-gazing behavior and non-verbal gestures. Conversational agents

with emotion dynamics are also studied in [12]. The system is composed of three
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orthogonal axes, which are emotion, mood and boredom.

Gratch and Marsella study how psychological theories of emotion can help the

design of autonomous agents by clarifying the interaction between emotion and

cognition [51]. Later, they introduce a computational model of emotions, i.e.,

the EMA model, which stands for Emotion and Appraisal [72, 73]. The model

focuses on the dynamics of emotional processes and illustrates how a single-level

appraisal model facilitates emotion modeling. Appraisal theories state that emo-

tions are activated through our evaluations of the environment. FLAME is a

computational model of emotions, which uses fuzzy logic to map events and ex-

pectations to emotions [42]. The model also incorporates machine learning in

order for the agents to learn the impacts of events on their goals. Gebhard intro-

duces ALMA - A Layered Model of Affect [47]. ALMA represents three distinct

types of affect, i.e., personality, moods and emotions, each of which is related

to different human tasks. A later study presents a model that visualizes the af-

fective state of virtual agents by their personality and emotions [6]. Kessler et

al. introduce a system called SIMPLEX, which stands for Simulation of Personal

Emotion Experience [60]. SIMPLEX is based on the appraisal theory of emotions

and it enables the control of multiple virtual agents.

Li et al. propose a framework that uses the OCEAN model of personality to

define and formulate a pedagogical agent in a social learning environment [71].

An architecture that combines the bodily emotion dynamics with cognitive ap-

praisal is the WASABI system [13], in which primary and secondary emotions

are simulated. Primary emotions are the basic emotions that determine facial ex-

pressions, whereas secondary emotions result from reasoning about events based

on experiences.

Kasap and Thalmann present a survey about the features that make up in-

telligent virtual agents [59]. Perception, decision making and personification are

among the many characteristics that are mentioned in the survey.
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2.3.2 Learning

Learning abilities allow the virtual agents to make decisions according to their

experiences by creating a cognitive map of the environment. Most of the systems

in the literature use reinforcement learning; thus we will briefly overview the

terms and definitions related with this type of learning.

Reinforcement learning is an unsupervised learning technique that can be

defined as learning from experience in the absence of a teacher [16]. In this

learning technique, the world is taken to be in one of a set of perceivable states.

The goal of reinforcement learning is to learn an optimal sequence of actions to

take the agent from an arbitrary state to the goal state. The main approach is

to probabilistically explore states, actions and their outcomes to learn how to act

in a given situation. State refers to a specific configuration of the world. The

set of all represented configurations of the world is called the state space. An

agent can change the state of the world by performing an action. Each agent is

assumed to have a finite set of actions and it can perform only one at a time. A

state-action pair, < S/A >, is a relationship between a state S and an action A.

It is typically related with a numerical value like future expected reward, which

gives the value of performing an action A in a given state S. A policy represents

the probability with which the agent selects an action at a specific state. When

the agent reaches a goal state, it receives a reward or reinforcement.

The most popular reinforcement learning technique is Q-Learning [115]. In

Q-Learning, state-action space is stored in a lookup table. Each row represents

a state and each column represents an action in the table. An entry in the table

represents the Q-value of a given state-action pair with respect to getting a re-

ward. The optimal value for each state-action pair can be learned by exhaustive

search of the state-action pairs and by a local update rule to reflect the conse-

quences of taking a given action in a given state with respect to achieving the

goal state.

An important learning example is given by Blumberg et al. [16], where an

autonomous virtual dog is interactively taught to perform a desired behavior.



CHAPTER 2. RELATED WORK 24

The system employs reinforcement learning along with learning inspired from

animal training, i.e., clicker training. The virtual dog mimics the behavior of a

real dog by performing the best action in a given context, assessing the relative

reliability of its actions in producing a reward and altering its choice of action

accordingly.

Another system that uses reinforcement learning is described by Conde et

al. [28]. The system is interesting as it does not use reinforcement learning in its

classical approach but as a behavioral engine for exploration, learning and visiting

the virtual environment. Thus, the interest is in the learning process itself rather

than the optimization of learning. The system makes use of situated AI, which

involves adaptive artificial systems evolving in an environment that is not entirely

predictable. The autonomous and intelligent agents react to their environment

by making decisions based on their perception, memory and logic. Intelligence

accounts for the ability to make plans and carry out tasks based on the actual

state of the virtual environment. Autonomy refers to the agent’s capacity to visit

and memorize the given virtual environment without any external intervention.

Conde and Thalmann introduce a new low-level learning technique as an al-

ternative to classical Q-learning [30]. The proposed method uses a tree search

algorithm with inverse reinforcement learning. The system’s objective is to al-

low the virtual agent to explore an unknown virtual environment and to build

structures in the form of cognitive models or maps. Then, the virtual agent can

dissipate this information to other agents. Learning through observation of an

expert agent is similar to imitation and called apprenticeship learning. The steps

of the learning process are as follows:

1. First, a tree search algorithm A* is used to observe the state sequences

generated by the user (expert).

2. Q-decomposition approach that uses all pseudo value function components

(vision, avoidance and navigation) is integrated.

3. Apprenticeship learning via inverse reinforcement learning is adapted to the

behavioral animation.
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2.3.3 Motion and Path Planning for Crowds

In artificial intelligence, planning is related with searching for a sequence of logical

operators or actions that transform an initial world state into a desired goal

state [66]. Motion planning and path planning problems arise in fields such as

robotics, assembly analysis, virtual prototyping, manufacturing and computer

animation, but the origin of the problem is in robotics. The main purpose for

the object is to plan its own motion. In order to plan a motion, the object must

have some knowledge about the environment and find a collision-free path among

the obstacles in the environment [1, 32]. The path should be preferably short. A

classical motion planning problem is known as the Piano Mover’s Problem, which

is about moving a piano from one room of a house to another without hitting the

static obstacles [66].

Detailed surveys on motion planning can be found in Latombe [65], Over-

mars [90] and Baños et al. [49]. Motion planning for crowd simulation has been

studied by many researchers [7, 10, 11, 22, 57, 58, 63, 64, 92]. Motion plan-

ning approaches can be classified in three groups as [90, 92] potential fields, cell

decomposition methods and roadmap methods.

2.3.3.1 Potential Fields

Potential fields put repulsive powers on the obstacles in the environment and

attractive powers on the agent’s destination. Thus, the object tries to move in

the direction of the goal while being pushed away by obstacles. Due to the use

of local properties only, the object may move in the wrong direction, resulting in

a deadlock situation; getting trapped in local minima. This approach was first

introduced by Khatib [61].
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2.3.3.2 Cell Decomposition Methods

Cell decomposition methods divide the free space into a number of discrete cells.

These methods either use approximate decomposition [62], in the form of grids or

quadtrees, or exact decomposition, in the form of convex cells to cover the entire

free space. Convex cells provide constant time to compute a path between any

two configurations within a cell.

These algorithms are easy to implement; however, they are ineffective if the

resolution is low. Moreover, when the dimension of the configuration space gets

higher or when the complexity of the scene is very large, the number of cells

required increases too much to be practical.

2.3.3.3 Roadmap Methods

Roadmaps discretize the navigation space in a network of paths made up of lines

and curves along which the object can move free of collisions [109]. The roadmap

can be considered a graph and thus the problem is reduced to graph searching.

The difficulty of these methods is to compute an effective roadmap.

2.4 Evaluation of Crowds

Crowd simulations are normally evaluated subjectively regarding the realism of

the simulation. It was not until recently that have more objective methods for

evaluation been published. A current study evaluating the perception of pedes-

trian orientations is conducted by Peters et al. [27]. The work aims at determining

the effect of the orientation and context rules for characters in static scenes on

perceived plausibility. McDonnell et al. analyze the perceptual impact of the

cloning of virtual characters for simulating large crowds [75]. Clones of appear-

ance are found to be easier to recognize than clones of motion; however, clones

can be disguised by random orientation and color modulation. The study works
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as a guide for developers to create realistic looking crowds. Pelechano et al. eval-

uate how people perceive crowds in virtual environments by means of presence

studies [96]. The authors conclude that interaction with the crowd members in-

creases the human subject’s sense of presence. Lerner et al. introduce the data

driven evaluation of crowds [70]. Their motivation underlies the argument that

even though crowd simulations look realistic from a distance, individual behaviors

may look odd when examined closely. Therefore, they compare the simulation

results with video footage of real crowds using similarity metrics.

2.5 Theories of Crowd Psychology

Since this thesis study is multidisciplinary and aims to combine different aspects

of crowd behavior, we need to understand the fundamentals of crowd behav-

ior in order to create realistic simulations. This section reviews the psychology

literature on collective behavior.

The very first theory that analyzes collective behavior is the transformation

or contagion theory, which is introduced by LeBon [67]. The theory suggests

that crowds show mental homogeneity as a result of social contagion. Also,

responsibility through anonymity is one of the reasons that causes the crowd

to act illogically. Blumer [18] supports the contagion theory by systematizing

it. He explains five steps to collective behavior. First an exciting event occurs,

drawing the attention of some people. Then, milling behavior emerges as a result

of circular reaction. After that, a common object of attention emerges due to

milling. Next, social contagion and a common attention object lead to fostering

of common impulses. Finally, elementary collective behavior is observed.

Convergence theory states that crowd is made up of individuals having simi-

lar behaviors, as opposed to the contagion theory, which states that individuals’

behaviors change after the crowd is formed. Allport [3] discusses that individuals

make up the crowd and therefore their characteristics determine crowd behav-

ior. For instance, more ignorant people would change their behaviors first in
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an emergent event. Thus, Allport introduces the predisposition or convergence

theory. Milgram [82] and Dollard [35] support the predisposition theory and ar-

gue that reward-based learning is applied to crowds and individual responses are

intensified in the crowd.

Turner and Killian introduce the emergent-norms theory [114]. According

to this theory, unusual collective behavior comes out of new behavioral norms

in case of a precipitating event. The theory suggests that collective behavior is

not irrational. Turner and Killian indicate that there are five kinds of people

involving in a crowd, who are either ego-involved, concerned, insecure, curious or

exploiter.

Berk [14] states that crowd behavior derives from game theory and decision

theory, where crowd members anticipate reward and support or payoffs. Last

but not least, Clark McPhail, in his book “The Myth of the Madding Crowd”,

reviews theories of crowds from past to present [76] and introduces his own theory

composed of individual behavior and control systems theories. He suggests that

an individual is composed of thousands of control systems arranged hierarchically.



Chapter 3

Simulation of the Psychological

State

In order to simulate human behavior we should first examine the psychological

foundations. In this chapter, we explain our computational psychology model

and formulate “affect”.

Personality, mood and emotion are the three basic aspects of affect. They

differ according to their temporal characteristics. Personality is the long term

affect. It is intrinsic and it usually does not change over time. Emotions are

short-term and they are elicited due to events, other agents or objects [89]. They

influence memory, decision making and other cognitive capabilities [20, 41, 55].

Finally, mood is the medium-term affect. Moods last longer than emotions; how-

ever they are not as stable as personality. Research shows that moods also have

major impact on cognitive functioning [85].

29
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3.1 Personality

Personality is a pattern of behavioral, temperamental, emotional, and mental

traits that define an individual. There is still considerable controversy in person-

ality research over how many personality traits there are, but the Five Factor or

OCEAN model is popular and it is the one we have chosen for our work [116].

The five factors, which are orthogonal dimensions of the personality space, are

openness, conscientiousness, extroversion, agreeableness and neuroticism.

• Openness describes a dimension of personality that portrays the imaginative

and creative aspect of human character. Appreciation of art, inclination

towards going through new experiences and curiosity are characteristics of

an open individual.

• Conscientiousness determines the extent to which an individual is orga-

nized, tidy and careful.

• Extroversion is related to how outgoing and sociable a person is.

• Agreeableness is a measure of friendliness, generosity and the tendency to

get along with other people.

• Neuroticism refers to emotional instability and the tendency to experience

negative emotions. Neurotic people tend to be too sensitive and they are

prone to mood swings.

Each factor is bipolar and composed of several traits, which are essentially the

adjectives that are used to describe people [48]. Some of the relevant adjectives

describing each of the personality factors for each pole are given in Table 3.1.

The crowd is composed of subgroups with different personalities. Variations in

the characteristics of the subgroups influence the emergent crowd behavior. The

user can add any number of groups with shared personality traits and can edit

these characteristics during the course of the animation. An agent’s personality π

is a five-dimensional vector, where each dimension is represented by a personality
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O+ Curious, alert, informed, perceptive
O- Simple, narrow, ignorant
C+ Persistent, orderly, predictable, dependable, prompt
C- Messy, careless, rude, changeable
E+ Social, active, assertive, dominant, energetic
E- Distant, unsocial, lethargic, vigorless, shy
A+ Cooperative, tolerant, patient, kind
A- Bossy, negative, contrary, stubborn, harsh
N+ Oversensitive, fearful, dependent, submissive, unconfident
N- Calm, independent, confident

Table 3.1: Trait-descriptive adjectives

factor, ψi. The distribution of the personality factors in a group of individuals

is modeled by a Gaussian distribution function N with mean μi and standard

deviation σi:

π = < ψO, ψC , ψE , ψA, ψN > (3.1)

ψi = N(μi, σ
2
i ), for i ∈ {O, C, E, A, N}, (3.2)

where μ ∈ [0, 1] and σ ∈ [−0.1, 0.1].

The overall behavior by personality for an individual is a combination of

different behaviors. Each behavior is a function of personality as:

β = (β1, β2, . . . , βn) (3.3)

βj = f(n), for j = 1, . . . , n (3.4)

(3.5)

Since each factor is bipolar, ψ can take both positive and negative values. For

instance, a value of 1 for extroversion means that the individual has extroverted

character; whereas a value of -1 means that the individual is highly introverted.
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3.1.1 Personality-to-Behavior Mapping

The agents’ personality factors (adjectives) are mapped into low-level parameters

and the built-in behaviors in the HiDAC model, as shown in Table 3.2. A positive

factor takes values in the range [0.5, 1], whereas a negative factor takes values in

the range [0, 0.5). A factor given without any sign indicates that both poles apply

to that behavior. For instance E+ for a behavior means that only extroversion is

related to that behavior; introversion is not applicable. As indicated in Table 3.2,

a behavior can be defined by more than one personality dimension. The more

adjectives of a certain factor defined for a behavior, the stronger is the impact of

that factor on that behavior. Thus, we assign a weight to the factor’s impact on

a specific behavior. For instance, ωEL is the weight of extroversion on leadership

and it takes a value in the range [0, 1]. The sum of the weights for a specific type of

behavior is 1. Now, we can see how the mapping from a personality dimension to

a specific type of behavior is performed. We have defined the behavior parameters

for an agent i as follows:

Leadership: Leaders tend to have more confidence in themselves and they

help others find their way through a building. They remain calm under

emergency situations. Each agent has a leadership percentage determined

by its extroversion, and stability. The leadership behavior is computed by:

βLeadership
i = ωEL ψE

i + ωNL (1 − ψE
i ), (3.6)

where βLeadership
i ∝ E and βLeadership

i ∝−1 N , and βLeadership
i ∈ [0, 1].

Trained: Trained agents have complete knowledge about the environment.

Since being trained requires curiosity and trained people are informed, this

parameter is associated with openness. Being trained is a Boolean parame-

ter, and therefore, it is represented by a probability function. As openness

increases, the probability that the agent is trained increases as:
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Leadership Dominant, assertive, bossy,
dependable, confident, un-
confident, submissive, de-
pendent, social, unsocial

E, A-, C+, N

Trained/not trained Informed, ignorant O
Communication Social, unsocial E
Panic Oversensitive, fearful, calm,

orderly, predictable
N, C+

Impatience Rude, assertive, patient,
stubborn, tolerant, orderly

E+, C, A

Pushing Rude, kind, harsh, as-
sertive, shy

A, E

Right preference Cooperative, predictable,
negative, contrary, change-
able

A, C

Avoidance /personal space Social, distant E
Waiting radius Tolerant, patient, negative A
Waiting timer Kind, patient, negative A
Exploring environment Curious, narrow O
Walking speed Energetic, lethargic, vigor-

less
E

Gesturing Social, unsocial, shy, ener-
getic, lethargic

E

Table 3.2: Low-level parameters vs. trait-descriptive adjectives
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Pi(Trained) = ωO
i (3.7)

βTrained
i =

{
0 if Pi(Trained) ≥ 0.5

1 otherwise
(3.8)

where Pi(Trained) ∝ O and βTrained
i ∈ {0, 1}.

Communication: This parameter determines whether the agents communi-

cate with each other to give information about the explored areas during a

building evacuation. Similar to being trained, communication depends on

the probability of agent behavior. As extroversion increases, the probability

that the agent communicates increases as:

Pi(Communication) = ψE
i (3.9)

βCommunication
i =

{
0 if Pi(Communication) ≥ 0.5

1 otherwise
(3.10)

where Pi(Communication) ∝ E and βCommunication
i ∈ {0, 1}.

Panic: Under emergency situations, agents show panic behavior depending on

their stability and conscientiousness traits. When they panic, their walking

speed increases and they do not respect waiting rules.

βPanic
i = ωNP ψN

i + ωCP f(ψC
i ) (3.11)

f(ψC
i ) =

{
−2ψC

i + 2 if ψC
i ≥ 0

0 otherwise
(3.12)

where βPanic
i ∝ N and βPanic

i ∝−1 C+ , and βPanic
i ∈ [0, 1].

Impatience: The impatience parameter is implemented by dynamically mod-

ifying the route selection based on environmental changes. It depends on

the politeness and assertiveness of an agent.
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βImpatience
i = ωEI f(ψE

i ) + ωAI (1 − ψA
i ) + ωCI (1 − ψC

i ) (3.13)

f(ψE
i ) =

{
−2ψE

i − 1 if ψE
i ≥ 0

0 otherwise
(3.14)

where βImpatience
i ∝ E+ and βImpatience

i ∝−1 A, C , and βImpatience
i ∈ [0, 1].

Pushing: HiDAC can realistically simulate an individual’s respect for others:

an agent can try to force its way through a crowd by pushing others, exhibit

more respectful behavior when desired, make decisions about letting others

walk first, and queuing when necessary. Disagreeable agents tend to push

others more as they are harsh and impolite. Similarly, extroverted agents

show pushing behavior as they tend to be assertive.

Pi(Pushing) = ωEP ψE
i + ωAP (1 − ψA

i ) (3.15)

βPushing
i =

{
1 if Pi(Pushing) ≥ 0.5

0 otherwise
(3.16)

where Pi(Pushing) ∝ E, Pi(Pushing) ∝−1 A and βPushing
i ∈ {0, 1}.

Right preference: When the crowd is dispersed, individuals tend to look

for avoidance from far away and they prefer to move towards the right

hand side of the obstacle they are about to face. This behavior shows the

individual’s level of conformity to the rules. The right preference behavior

is a probability function. If an agent is disagreeable or non-conscientious,

then that agent can make right or left preference with equal probability.

On the other hand, an agent prefers the right side by increasing probability

proportional to its agreeableness and conscientiousness values if these are

positive.
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Pi(Right) =

{
0.5 if ψA

i < 0 or ψC
i < 0

ωARψA
i + ωCRψC

i otherwise
(3.17)

βRight
i =

{
1 if Pi(Right) ≥ 0.5

0 otherwise
(3.18)

where Pi(Right) ∝ A, C and βRight
i ∈ {0, 1}.

Personal space: Personal space determines the territory in which an individual

feels comfortable. Agents try to preserve their personal space when they

approach other agents and when other agents are approaching from behind.

However, these two values are not the same. According to the research on

Western cultures, the average personal space of an individual is found to

be 0.7 meters in front and 0.4 meters behind [52]. The personal space of an

agent i with respect to another agent j is thus:

βPersonalSpace
i,j =

⎧⎪⎪⎨
⎪⎪⎩

0.8 f(i, j) if ψE
i ∈ [0, 1

3
)

0.7 f(i, j) if ψE
i ∈ [1

3
, 2

3
]

0.5 f(i, j) if ψE
i ∈ (2

3
, 1]

(3.19)

f(i, j) =

{
1 if i is behind j
0.4
0.7

otherwise
(3.20)

where βPersonalSpace
i ∝−1 E and βPersonalSpace

i ∈ {0.5, 0.7, 0.8}.

Waiting radius: In an organized situation, individuals tend to wait for space

available before moving. This waiting space is called the waiting radius

and it depends on the kindness and consideration of an individual, i.e., the

agreeableness dimension.

βWaitingRadius
i,j =

⎧⎪⎪⎨
⎪⎪⎩

0.25 if ψA
i ∈ [0, 1

3
)

0.45 if ψA
i ∈ [1

3
, 2

3
]

0.65 if ψA
i ∈ (2

3
, 1]

(3.21)
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where βWaitingRadius
i ∝ A and βWaitingRadius

i ∈ {0.25, 0.45, 0.65}.

Waiting timer: If two individuals are heading to the same direction, they wait

for the other to move first. The time they wait, i.e. the duration that they

show patience towards the other, depends on their agreeableness.

βWaitingT imer
i,j =

⎧⎪⎪⎨
⎪⎪⎩

1 if ψA
i ∈ [0, 1

3
)

5 if ψA
i ∈ [1

3
, 2

3
]

50 if ψA
i ∈ (2

3
, 1]

(3.22)

where βWaitingT imer
i ∝ A and βWaitingT imer

i ∈ {1, 5, 50} .

Exploring the environment: Individuals are assigned specific behaviors to

perform. The number of actions they complete depends on their curiosity.

Open people are more likely to explore different experiences, and hence,

perform more actions. The openness factor determines the time an individ-

ual spends on exploring the environment. Thus, the number of actions that

an individual completes increases by the degree of openness.

βExploring
i = 10ψO

i , (3.23)

where βExploring
i ∝ O and βExploring

i ∈ [0, 10].

Walking speed: The maximum walking speed is determined by an individual’s

energy level. As extroverts tend to be more energetic while introverts are

more lethargic, this parameter is controlled by the extroversion trait.

βWalkingSpeed
i = ψE

i + 1, (3.24)

where βWalkingSpeed
i ∝ E and βWalkingSpeed

i ∈ [1, 2].

Gesturing: The amount of gestures used during a conversation is a sign of how

sociable a person is. Outgoing people use more gestures than shy people,

which is an indication of extroversion.

βGesturing
i = 10ψE

i , (3.25)
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where βGesturing
i ∝ E and βGesturing

i ∈ [0, 10].

3.2 Emotion

Since the effect of mood and emotion on behavior is not as straightforward as the

personality-to-behavior mapping, we postpone the explanation of our mapping to

the next chapter. Mood and emotion combined with external stimuli determine

the type of bodily gestures and certain navigational preferences since humans

generally act based on the context.

Figure 3.1: The OCC Model (Reprinted from [89])

Emotions take values between 0 and 1. An emotion is active if it has a value

different from 0. As the OCC Model suggests, activation of an emotion depends

on the context. In the next chapter, after describing different scenarios, we explain

how each emotion is activated by environmental stimuli.

Empathy is another factor that affects the emotional state in addition to goals,
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standards and attitudes. The emotional state is computed as:

et = f(goals, standards, attitudes) + λ(ε), (3.26)

where λ is a function of empathy ε. Before we explain the computation of empathy

and λ, we should elaborate on the emotional state. An emotion is not forever

active; it decays over time. At each timestep, the emotion value is decreased as:

et = et−1 − βet−1, (3.27)

The variable β determines the speed of emotional decay and it is proportional

to neuroticism as in the case of mood decay.

When an emotion is activated, it affects certain behaviors. Humans’ emotions

and attitudes can be inferred from their nonverbal behaviors [40, 50] such as their

postures, gestures and facial expressions. Although the OCC model highly cov-

ers the emotion space, finding a mapping between the OCC emotions and facial

expressions is not straightforward. Ekman studied the facial expressions of emo-

tions [41] and defined six types of emotions, which are happiness, sadness, anger,

fear, disgust and surprise. Since we basically implement the OCC emotions, we

define a correspondence between Ekman emotions and OCC emotions as follows:

• Happiness: HappyFor, Gloating, Gratification, Joy, Pride, Admiration,

Love, Satisfaction, Relief.

• Sadness: Disappointment, Distress, Pity, Remorse, Resentment, Shame.

• Anger: Anger, Hate, Reproach.

• Fear: Fear, FearsConfirmed.

• Disgust: Hate, Reproach.

• Surprise: -.
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There is no correlating emotion for surprise since it is not considered to have

a cognitive basis. In addition, hate and reproach are mapped to both anger and

disgust. Thus, the mapping is not straightforward; we need to make an inference

from the context.

In addition to facial expressions, body postures depend on the emotional state

as well [31]. We attribute the same six Ekman emotions to static body postures.

For instance, happy people tend to have a straight posture with high shoulders,

looking more confident. In contrast, sad people have collapsed upper bodies with

low shoulders, looking downwards. We constructed the meshes for these postures

and facial expressions offline. Moreover, we designed 10 different gestures to visu-

alize the reactions of agents. Figure 3.2 shows these bodily gestures incorporated

to our system.

Figure 3.2: Gestures from left to right and top down: Standing, walking, running,
sitting, jumping, waving, applauding, punching, kicking, throwing

3.2.1 Emotion Contagion

In its general sense, contagion means the communication of any influence be-

tween individuals. It can refer to biological contagion, such as contracting in-

fectious diseases or social contagion, which spans a wide range of areas from

economic trends to rumor spreading and thereby resulting in collective behavior.

We incorporate a social contagion model into our system in order to simulate
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the spread of emotions. For this purpose, we follow the approach proposed by

Dodds and Watts [33, 34]. The model is a threshold model as opposed to inde-

pendent interaction models, in which successive contacts may result in contagion

with independent probability. Threshold models, on the other hand, suggest that

the probability of contracting infection increases as individuals get exposed to

infected individuals.

The model states that, in a population, individuals can be in one of the two

states: susceptible or infected. These terms are derived from biological contagion;

however, they are also meaningful in a social context. A susceptible individual

can be “uninformed” about rumors, or a “non-adopter”, in terms of emotional

responses. Similarly, an infected individual relates to an “informed” individual,

or an “adopter”, who adopts the emotional states of other individuals. When

susceptible individuals come into contact with the infected ones, they can become

infected with some probability. The formal definition is as follows:

When an infected individual i makes contact with a susceptible individual

j, j becomes exposed and may get infected with some probability. Exposure

means receiving a random dose dj from a specified probability distribution. All

individuals keep a memory of their previous k doses as:

Dj(t) =

t∑
t′=t−k+1

di(t
′) (3.28)

If the cumulative dose Dj(t) extends a specified threshold Tj at any time of

the simulation, then the individual j becomes infected.

Both the dose and the threshold distributions are log-normal distributions

Log −N with means μdj , μT j and standard deviations σdj, σT j , respectively:

dj = log−N (μdj, σdj
2) (3.29)

Tj = log−N (μT j , σT j
2) (3.30)
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The experience of another’s emotions through emotional contagion is the ba-

sis of empathy and it leads to imitation of behavior. Empathy is found to be

positively correlated with all the five factors of personality [56]. Based on the

research done by Jolliffe and Farrington, the correlation values between basic

empathy scale (BES) and personality factors are shown in Table 3.3.

Personality Male Female
O 0.34 0.15
C 0.17 0.01
E 0.13 0.09
A 0.3 0.24
N 0.02 0.16

Table 3.3: Correlation of the BES to OCEAN factors

Empathy ε takes a value between 0 and 1 and it is computed for a male agent

i as follows:

εi = ψO
i 0.34 + ψC

i 0.17 + ψE
i 0.13 + ψA

i 0.3 + ψN
i 0.02; (3.31)

λ(ε) function, which determines how emotions are contracted among humans,

is computed as:

Ti(t) = log−N (
1

εi

, σT i
2) (3.32)

λi(t) =

{
1 if Di(t) > Ti(t)

0 otherwise
(3.33)

The dose threshold is a function of 1
εi

, because the more empathetic a person

is, the more susceptible s—he becomes to the emotions of other people. In order

to provide heterogeneity within the crowd, each individual should be susceptible

in different levels. These correlation values show us a way to determine the dose

and threshold distribution values.
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3.3 Mood

We utilize the PAD temperament model in our system [77, 79, 80, 81]. PAD stands

for Pleasure-Arousal-Dominance and refers to the three orthogonal scales used to

assess emotional predispositions. Mehrabian defines temperament or mood as

the average emotional state across a representative sample of life situations [79].

The three traits of mood are found to be nearly orthogonal to each other. Three

orthogonal axes ranging from -1 to 1 describe each mood state. Pleasure defines

the relative predominance of negative versus positive affective states. Arousal

is a measure of how easily a person can be aroused by complex, changing or

unexpected information. Finally, dominance determines a person’s inclination of

controlling and influencing his/her own life versus feelings of being controlled by

others. Table 3.4 shows the trait names for all the eight P, A, D quadrants. In

that sense, mood is continuous in a three-dimensional space.

+P +A +D Exuberant -P +A +D Hostile
+P +A D Dependent -P +A -D Anxious
+P A +D Relaxed -P -A +D Disdainful
+P A D Docile -P -A -D Bored

Table 3.4: Mood quadrants

Mood is represented as a three-dimensional vector mt where the three dimen-

sions refer to P, A and D, respectively. Mood is updated according to emotional

state. We follow the ALMA [47] approach for human-like mood changes. Ta-

ble 3.5 shows the mapping between OCC emotions and mood traits. According

to the table, Cij, for i = 1, . . . , 22 and j = 1, . . . , 3 gives the emotion constants

for all the 22 OCC emotions with respect to P, A and D values, respectively.



CHAPTER 3. SIMULATION OF THE PSYCHOLOGICAL STATE 44

Emotion P A D
Admiration 0.5 0.3 -0.2
Hope 0.2 0.2 -0.1
Anger -0.51 0.59 0.25
Joy 0.4 0.2 0.1
Disappointment -0.3 0.1 -0.4
Love 0.3 0.1 0.2
Distress -0.4 -0.2 -0.5
Pity -0.4 -0.2 -0.5
Fear -0.64 0.60 -0.43
Pride 0.4 0.3 0.3
FearsConfirmed -0.5 -0.3 -0.7
Relief 0.2 -0.3 0.4
Gloating 0.3 -0.3 -0.1
Remorse -0.3 0.1 -0.6
Gratification 0.6 0.5 0.4
Reproach -0.3 -0.1 0.4
Gratitude 0.4 0.2 -0.3
Resentment -0.2 -0.3 -0.2
HappyFor 0.4 0.2 0.2
Satisfaction 0.3 -0.2 0.4
Hate -0.6 0.6 0.3
Shame -0.3 0.1 -0.6

Table 3.5: Mapping between OCC emotions and PAD space

We first compute the mood values that correspond to the emotions as the

emotion center, ec by following Table 3.5 as:

ect =
et • C

||et|| , (3.34)

where et is a 22 dimensional vector corresponding to the OCC emotions.

In order to update the mood, we first find where the current mood mt stands

considering the default mood m0 and the emotion center ect. If it is between m0

and ect, it is pulled towards ect. On the other hand, if it is beyond ect, it is pushed

further from ect, meaning that the current mood is boosted by the experienced

emotions.
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mt =

{
−c ect−mt

||ect−mt|| if |ect − mt| • |m0 − mt| > 0 ∧ |mt − ect| • |m0 − ect| < 0

c ect−mt

||ect−mt|| otherwise

(3.35)

where the constant c determines the speed of mood update. We compute the

default mood m0 according to personality, for which we use the mapping between

the big five factors of personality and mood as given by Mehrabian [78].

m0 = M π, (3.36)

where π is the personality vector < ψO, ψC , ψE , ψA, ψN > and M is a constant

matrix as:

M =

⎡
⎢⎢⎣

0.00 0.00 0.21 0.59 0.19

0.15 0.00 0.00 0.30 −0.57

0.25 0.17 0.00 −0.32 0.00

⎤
⎥⎥⎦ (3.37)

Unlike emotions, moods are more stable in a humans life. However, they

decay over time as well; only it takes much longer time than emotional decay.

Mood decay is computed as:

mt = mt−1 − α(m0 − mt−1), (3.38)

where α is a mood decay variable proportional to neuroticism, since neurotic

people tend to experience frequent mood swings. Figure 3.3 shows how the current

mood is updated by push and pull phases.
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(a) (b)

Figure 3.3: Mood update by (a) pulling towards ect and (b) pushing away from ect

Since the effect of mood and emotion on behavior is not as straightforward as

the personality-to-behavior mapping, we postpone the explanation of our map-

ping to the next chapter. Mood and emotion combined with external stimuli

determine the type of bodily gestures and certain navigational preferences since

humans generally act based on the context.



Chapter 4

Crowd Types

In his prominent article, R. W. Brown uses the term collectivity for two or more

people who can be discussed as a category [24]. He defines crowds as collectivities

that congregate on a temporary basis. Since the reasons that bring crowd mem-

bers together are various, Brown classifies them in terms of the dominant crowd

behavior. He gives a detailed taxonomy of crowds, but basically, he classifies

them into two: mobs and audiences. Audiences are passive crowds, who congre-

gate in order to be affected or directed, not to act. Mobs, on the other hand, are

active crowds. In fact, the word mob is derived from the word “mobile”. There

are different tendencies among mobs and audiences. Figure 4.1 shows Brown’s

taxonomy of crowds.

47
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Figure 4.1: Brown’s taxonomy of crowd types [24]

According to the classification, mobs are further divided into four groups.

They can be aggressive, escape, acquisitive or expressive crowds. It is not always

clear into which category a disturbance falls. Aggressive mobs are defined by

anger. Lynchings are directed against individuals, whereas terrorizations are

directed against groups. Riots are directed against a collectivity and they are

urban as opposed to lynchings and terrorizations, which are rural disturbances.

Escape crowds are defined by fear. They are panicking crowds, which can be

unorganized or organized as in armies. Acquisitive mobs are centripetal and they

converge upon a desired object. For example, hunger riots, looting shops and

houses are all performed by acquisitive mobs. Finally, expressive mobs congregate

for expressing a purpose, such as strikes, rallies, festivals or parades. Similar

to mobs, audiences are also classified further. Casual audiences are groups of

people who temporarily become polarized through their interest in an event.

People gathering around an interest point out of curiosity is an example of casual

audiences. Intentional audiences can be either recreational or information seeking.

People in a movie theater are examples of recreational audiences whereas people

attending classes are examples of information seeking audiences.

We build our system based on a simplified version of this taxonomy. The
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author can create a scenario and observe the formation of different types of crowds

depending on external stimuli and agent roles. External stimuli consist of different

types of events, which are:

• attacking → Leading to aggressive mobs,

• explosions → Leading to escape mobs,

• festival → Leading to expressive mobs,

• protest → Leading to expressive mobs, and

• sales → Leading to acquisitive mobs.

As well as emergent events, agents can also have different roles that lead to

the formation of different crowd types. These roles are:

• attacker → Leading to aggressive mobs,

• victim → Leading to aggressive mobs,

• provocateur → Leading to aggressive mobs,

• protester → Leading to expressive mobs,

• leader → Leading to expressive mobs,

• audience → Corresponding to casual audiences and may be leading to ag-

gressive, expressive or escape mobs,

• singer → Part of expressive mobs, and

• security → Part of any type of mobs.

Events have both physical and psychological implications on agents. For in-

stance, a virtual human runs away from an explosion and expresses fearful ges-

tures at the same time. In this chapter we will explain different scenarios in

detail. These scenarios are explosions, festival, sales and protest.
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4.1 State Update

At each time step, the psychological state of the agent is updated first, followed

by the computation of physical and cognitive responses. Algorithm 1 shows the

state update of an agent.

Algorithm 1: UpdateStep: state update of an agent

ComputeEffectsOfEvents();
appraisal.ComputeEventFactor();
ComputeEmotionContagion();
emotionModel.ComputeEmotionalState(appraisal.GetEventFactor());
emotionModel.ComputeMoodState(appraisal.GetEventFactor());
fNextStep ⇐ PlanNextStep(otherHumans);
//Computed as part of HiDAC, modified slightly

ComputeNextStep(fNextStep);

The procedure “ComputeEffectsOfEvents()” depends on the event type and

is explained in the sequel. The procedure computes the effect of the event on the

agent depending on its type, location and the agent’s role in the event. “Com-

puteEventFactor()” procedure simply walks down the branches of the OCC deci-

sion tree for emotions and updates the corresponding emotion value according to

the active goals, standards and attitudes. This procedure and the computation

of emotion contagion, emotional and mood states are explained in Chapter 3.

“ComputeNextStep()” is a procedure defined within the scope of HiDAC. It

normally computes and sums up all the forces acting on the agent as:

fTotal = fAttracωAttrac +fWallsωWalls +fObstsωObsts +fOtherAgentsωOtherAgents, (4.1)

where fAttrac is the force towards the attractor position, fWalls is the avoidance

force from walls, fObsts is the avoidance force from obstacles, and fOtherAgents is

the avoidance force from other agents. ωs are the corresponding weights for each

force. We extend this equation by including forces from attractive and repulsive
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events (Equation 4.2).

fTotal = fAttracωAttrac + fWallsωWalls+

fObstsωObsts + fOtherAgentsωOtherAgents+

fAttracToEventsωAttracToEvents + fRepulsionFromEventsωRepulsionFromEvents+

fNextStepωNextStep

(4.2)

Attractive events are discriminated by their pleasant nature. Agents tend

to move towards the location of the attractive event. On the other hand, an

explosion, for example, is considered a repulsive event. Agents run away from the

explosion region. In addition, agents may have different motivations and therefore

different attraction points. For instance, a hostile agent with an intention to

attack a victim will be attracted towards the victim. In contrast, the victim will

try to elude the attacker. In such cases, fNextStep determines the different forces

acting on agents. The procedures for computing the attraction and repulsion

forces for events are given in Algorithms 2 and 3.

Algorithm 2: AttractionToEvents: computing the attraction forces for
events

Output: fAttracToEvents
Priority p ⇐ 0;
fAttracToEvents ⇐ 0;
foreach g ∈ Goals do

if ConseqForSelf(g) ∧ ProspectRelevant(g) ∧ Unconfirmed(g) ∧ Pleased(g) ∧
GetPriority(p) > p then

p ⇐ GetPriority(g);
if GetCell(pos) = GetCell(g.pos) then

//If agent is in the same cell as goal

dir ⇐ g.pos − pos;
else

dir ⇐ NextAttractorTo(g.pos) − pos;

fAttracToEvents ⇐ dir
‖dir‖ ;

if ‖dir‖ < ε then
//Stop there

speed ⇐ 0;
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If the agent and its goal are in the same cell, then the agent can go directly

towards the goal. However, if they are in different cells, the “NextAttractorTo”

method performs path planning to find which portal the agent needs to cross first

in order to get to the attraction point.

Algorithm 3: RepulsionFromEvents: computing the repulsion forces for events

Output: fRepulsionFromEvents
fRepulsionFromEvents ⇐ 0;
dir ⇐ 0;
cnt ⇐ 0;
foreach g ∈ Goals do

if ConseqForSelf(g) ∧ Displeased(g) then
dir ⇐ dir + g.pos;
cnt ⇐ cnt + 1;

foreach a ∈ Attitudes do

if Disliking(a) then
dir ⇐ dir + a.pos;
cnt ⇐ cnt + 1;

if cnt > 0 then
dir ⇐ pos − dir

cnt ;

fRepulsionFromEvents ⇐ dir
‖dir‖ ;

Repulsion force is computed by finding a vector oriented away from the center

of repulsive events’ locations. For convenience, each repulsive event is considered

equally strong.

4.2 Expressive Mobs

We examine two types of expressive mobs. The first one is a festival scenario,

where agents have fun and the dominant emotion is joy. The second one is a

protest scenario with angry agents rallying and conflicting with the security staff.
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4.2.1 Festival

The festival event consists of a street concert, where audiences become polarized

towards the singer on stage. As well as the audience, there are also provocateurs,

who have the purpose of starting fights with audiences. In case of a festival, as

we walk down the branches of the decision tree for OCC emotions, the following

emotions are triggered for each agent role:

Role: Audience

Goal: Find a place to listen to the singer.

State: Walking

Goals → Consequences for self → Prospect relevant →
Unconfirmed → Pleased → Hope

State: Found a place

Goals → Consequences for self → Prospect relevant →
Confirmed → Pleased → Satisfaction

State: Found no place

Goals → Consequences for self → Prospect relevant →
Disconfirmed → Pleased → Disappointment

Goal: Enjoy the concert

State: Waving ∨ Jumping ∨ Applauding

Goals → Consequences for self → Prospect irrelevant →
Pleased → Joy

Goal: Defend against an attacking provocateur

State: Fighting

Goals → Consequences for self → Prospect irrelevant →
Displeased → Distress

Goals → Consequences for other → Desirable for other →
Displeased → Resentment

Standard: Provocateurs

State: Fighting

Standards → Focusing on other → Disapproving → Reproach

Compound Emotion: Distress + Reproach = Anger

Standard: Singer

State: Any

Standards → Focusing on other → Approving → Admiration
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Role: Provocateur

Goal: Provoke fight

State: Fighting

Goals → Consequences for other → Prospect relevant →
Undesirable for other → Pleased → Gloating

Standard: Audiences

State: Any

Standards → Focusing on other → Disapproving → Reproach

Algorithm 4 shows how the state transitions are applied in a festival. This

procedure is part of the aforementioned method “ComputeEffectsOfEvents”.

Algorithm 4: ComputeFestivalEffect: application of state transitions in a festival

Input: Festival f
if GetAgentRole() 
= AUDIENCE ∨ behavior.IsFighting() then

//They do not care about the festival

return ;
if GetMoodType() = BORED then

//Distress and resentment can cause boredom

RemoveEventEffect(f);
return ;

eventExists ⇐ FALSE;
eventConfirmed ⇐ FALSE;
foreach g ∈ appraisal.Goals do

if g.RelatedEvent = f then
eventExists ⇐ TRUE;
if ConseqForSelf(g)∧ProspectRelevant(g)∧Unconfirmed(g)∧Pleased(g) then

if Within concert area ∧ ‖vel‖ < ε then
//Agents already slow down if there are others in front

g.Confirmed ⇐ CONFIRMED;
eventConfirmed = TRUE;
break;

if eventConfirmed then
//Leading to joy

appraisal.AddGoal(f, ConseqForSelf, ProspectIrrelevant, Pleased);
//Standard about the singer

appraisal.AddStandard(f, FocusingOnOther, Approving);
else

if ¬eventExists then
appraisal.AddGoal(f, ConseqForSelf, ProspectRelevant, Unconfirmed, Pleased);
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Algorithm 5 describes the appraisal states of an agent from the audience in

case there is a fight.

Algorithm 5: ComputeFightEffect: appraisal states of an agent in a fight

Input: Fight f
eventExists ⇐ FALSE;
//Agents witnessing a fight get distressed

if ¬IsFighting() ∧ GetAgentRole() 
= PROVOCATEUR then
foreach g ∈ appraisal.Goals do

if g.RelatedEvent = f then
dist = ‖pos − f.pos‖;
eventExists ⇐ TRUE;

if ¬eventExists ∧ dist < threshold then
appraisal.AddGoal(f, ConseqForSelf, ProspectIrrelevant, Displeased);

if IsFighting() then
AddDamage();
opponent ⇐ GetOpponent();
if IsWounded() ∨ opponent.IsWounded() then

SetFighting(FALSE);
opponent.SetFighting(FALSE);

It’s always a provocateur who triggers a fight. In addition, the provocateur

determines the start time and duration of the fight, taking control. Algorithm 6

shows the steps of fight for a provocateur. Algorithm 7 demonstrates the appraisal

states for a provocateur.
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Algorithm 6: PlanNextStep: steps of fight for a provocateur

if GetFighting() then
if IsWounded then

SetFighting(FALSE);
opponent.SetFighting(FALSE);
posattractor ⇐ posattractorInitial;

else
posattractor ⇐ opponent.GetPos();

else
//Find someone to attack if not already fighting

minDist ⇐ ∞;
foreach Agent a ∈ GetVisibleAgents() do

if a.GetAgentRole() 
= PROVOCATEUR ∧ a.GetAgentRole() 
=
SECURITY ∧ a.GetAgentRole() 
= SINGER then

dist ⇐ ‖pos − a.pos‖;
if dist < minDist then

opponent ⇐ a;
minDist ⇐ dist;

if minDist < catchDist then
StartFighting(opponent);

if minDist < ∞ then
//Follow the victim to fight

posattractor ⇐ opponent.GetPos();

Algorithm 7: StartFighting: appraisal states for a provocateur

Input: Opponent o
f ⇐ new Fight(o);
//Leading to gloating

appraisal.AddGoal(f, ConseqForOther, Undesirable, Pleased);
appraisal.AddStandard(f, FocusingOnOther, Disapproving);
SetFighting(TRUE);
//Opponent’s appraisal status

//Leading to distress

o.appraisal.AddGoal(f, ConseqForSelf, ProspectIrrelevant, Displeased);
//Leading to resentment

o.appraisal.AddGoal(f, ConseqForOther, Desirable, Displeased);
o.appraisal.AddStandard(f, FocusingOnOther, Disapproving);
o.SetFighting(TRUE);

Figure 4.2 shows the state diagram of gesture updates according to moods for

crowds in a festival.
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Figure 4.2: State diagram for gesture updates by mood in a festival
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4.2.2 Protest

The protest scenario consists of mobs of angry agents marching down the streets,

following a leader. The agent roles playing part in this scenario are protesters,

their leaders and security officers. The following emotions are triggered in case

of a protest:

Role: Protester

Goal: March with peers in order to protest something

State: Any

Goals → Consequences for self → Prospect irrelevant →
Displeased→ Distress

Standard: People subject to the protest

State: Any

Standards → Focusing on other → Disapproving → Reproach

Standard: Security

State: When intervened by security

Standards → Focusing on other → Disapproving → Reproach

Compound Emotion: Distress + Reproach = Anger

Standard: Self

State: Any

Standards → Focusing on self → Approving → Pride

Standard: Other protesters

State: Any

Standards → Focusing on other → Approving → Admiration

Protesters have initial assessments about the protested situation and they

have emerging standards about the security officials intervening. Algorithms 8

and 9 show the appraisal update for protesters.
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Algorithm 8: InitProtest: initiating the protest

Input: Protest p
//For the subjects of the protest

appraisal.AddStandard(p, FocusingOnOther, Disapproving);
//For other protesters

appraisal.AddStandard(p, FocusingOnOther, Approving);
//For themselves

appraisal.AddStandard(p, FocusingOnSelf, Approving);
//Leading to distress

appraisal.AddGoal(p, ConseqForSelf, ProspectIrrelevant, Displeased);

Algorithm 9: PlanNextStep: appraisal update for protesters

Input: Protest p
foreach s ∈ SecurityAgents do

dir ⇐ s.pos − pos;
//Check if security and protester are facing each other

α ⇐ arccos(− dir • orientation
‖dir‖∗‖orientation‖ );

if α < π
2 ∧ ‖dir‖ < threshold then

//Means agent got intervened by security

appraisal.AddStandard(p, FocusingOnOther, Disapproving);

//Follow the leader

posattractor ⇐ leader.GetPos();

Figure 4.3 shows the state diagram of gesture updates for protesters accord-

ing to moods. Please note that walking or standing states are concurrent with

protesting or fighting. For instance, an agent can both applaud and walk or stand

still at the same time. Therefore, we omitted these in the state diagram.
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Figure 4.3: State diagram for gesture updates by mood in a protest
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4.3 Escape Mobs

Escape mobs are simulated by creating an explosion scenario. The following

emotions are triggered in case of an explosion:

Role: Any

Goal: Run away from danger

State: Running

Goals → Consequences for self → Prospect relevant →
Unconfirmed → Displeased → Fear

State: Managed to escape

Goals → Consequences for self → Prospect relevant →
Disconfirmed → Displeased→ Relief

State: Caught by fire

Goals → Consequences for self → Prospect relevant →
Confirmed → Displeased→ FearsConfirmed

Algorithm 10 shows how state transitions are applied in case of an explosion.

Agents get some damage depending on their distance to the center of explosion.

Damage rules are applied according to the contagion equations given in Chapter 3.

Getting infected means getting killed in the explosion. Of course, emotions have

no meaning for a dead agent; however, we still apply the rules for confirmed fear,

which is the last emotion that the agent experiences. Also, all the other events

lose their meanings in case of a dangerous situation. Therefore, we remove all

the events and their effects on the agents but explosion.
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Algorithm 10: ComputeExplosionEffect: application of state transitions in an
explosion

Input: Explosion e
dist = ‖pos − e.pos‖;
if dist > affectingDist then

foreach g ∈ appraisal.Goals do
if g.RelatedEvent = e ∧ Unconfirmed(g) then

g.Confirmed ⇐ DISCONFIRMED;
break;

else
//Add damage negatively correlated with the distance to explosion

AddDamage(dist);
eventExists ⇐ FALSE;
foreach g ∈ appraisal.Goals do

if g.RelatedEvent = e ∧ UnConfirmed(g) ∧ IsInfected() then
eventExists ⇐ TRUE;
g.Confirmed ⇐ CONFIRMED;

if ¬eventExists then
//Leading to fear

appraisal.AddGoal(e, ConseqForSelf, ProspectRelevant, Unconfirmed, Displeased);
RemoveAllEventsButExplosion();

The physical computations of running away from the danger zone are given in

RepulsionFromEvents procedure. Figure 4.4 shows the state diagram of gesture

updates for escape mobs.

Figure 4.4: State diagram for gesture updates by mood in an explosion
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4.4 Acquisitive Mobs

Acquisitive mobs are simulated in scenario that includes a sales event. Agents

rush to a store to get an item for free. The following emotions are triggered in

such a scenario:

Role: Any

Goal: Get into the store

State: Waiting

Goals → Consequences for self → Prospect relevant →
Unconfirmed → Pleased → Hope

Goals → Consequences for self → Prospect irrelevant →
Displeased → Distress

State: All resources consumed

Goals → Consequences for self → Prospect relevant →
Disconfirmed → Pleased → Disappointment

Goals → Consequences for other → Desirable for other →
Displeased → Resentment

Goals → Consequences for self → Prospect irrelevant →
Displeased → Distress

State: Managed to get some items

Goals → Consequences for self → Prospect relevant →
Confirmed → Pleased → Satisfaction

Standard: Others

State: Too crowded, there is a stampede

Standards → Focusing on other → Disapproving → Reproach

Attitude: Items in the store

State: Any

Attitudes → Liking → Love

Compound Emotion: Distress + Reproach = Anger

Algorithm 11 shows how state transitions are applied in case of a sales event.
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Algorithm 11: ComputeSalesEffect: application of state transitions in a sales
event

Input: Sales s
dist = ‖ pos − positem‖;
eventExists ⇐ FALSE;
eventConfirmed ⇐ FALSE;
foreach g ∈ appraisal.Goals do

if g.RelatedEvent = s then
eventExists ⇐ TRUE;
if ConseqForSelf(g) ∧ UnConfirmed(g) ∧ dist < ε ∧ GetItemCnt() > 0
then

s.DecreaseItemCnt();
g.Confirmed ⇐ CONFIRMED;
eventConfirmed ⇐ TRUE;
//Update goals of other agents

foreach Agent a ∈ OtherAgents do
foreach go ∈ a.appraisal.Goals do

if go.RelatedEvent = s ∧ a.ConseqForSelf(go) then
//Leading to resentment

appraisal.AddGoal(s, ConseqForOther, Desirable, Displeased);

//Remove goals about others if an item is achieved

if eventConfirmed then
appraisal.RemoveGoal(s, ConseqForOther);

if ¬eventExists then
//Leading to hope

appraisal.AddGoal(s, ConseqForSelf, ProspectRelevant, Pleased, Unconfirmed);
appraisal.AddAttitude(s, Liking);

ComputeCrowdingEffect();

The method ComputeCrowdingEffect (Algorithm 12) updates the standards

and goals of an agent in case the environment gets too crowded. Since crowding

effect is considered an implicit event, when we add a goal, standard or attitude

about the crowding effect, we do not need to specify the id of the event.
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Algorithm 12: ComputeCrowdingEffect: update the standards and goals of an
agent in case the environment gets too crowded

if GetDensityAhead() > threshold then
goalExists ⇐ FALSE;
foreach g ∈ appraisal.Goals do

if GetEventType(g) = CROWDING then
goalExists ⇐ TRUE;
break;

if ¬goalExists then
appraisal.AddGoal(CROWDING,
ConseqForSelf, ProspectIrrelevant, Displeased);

standardExists ⇐ FALSE;
foreach s ∈ appraisal.Standards do

if GetEventType(s) = CROWDING then
standardExists ⇐ TRUE;
break;

if ¬standardExists then
appraisal.AddStandard(CROWDING,FocusingOnOther, Disapproving);

else
//If not so dense, remove related goals and standards

foreach g ∈ appraisal.Goals do
if GetEventType(g) = CROWDING then

appraisal.RemoveGoal(g);

foreach s ∈ appraisal.Standards do
if GetEventType(s) = CROWDING then

appraisal.RemoveStandard(s);

Figure 4.5 shows the state diagram of gesture updates for audiences according

to moods.
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Figure 4.5: State diagram for gesture updates by mood in a sales event

4.5 Aggressive Mobs

The physical aspect of aggressive mobs is simulated by imitating predator-prey

behavior. Here, attackers act like predators and victims act like preys [69]. Let V

be the set of victims and A be the set of attackers. Given an attacker att ∈ A with

a position of posa and a victim vic ∈ V with a position of posvic, the avoidance

force fav of victim vic from the attacker a is computed as follows:

fav = cav
posvic − posatt

1 + exp(ω(‖posvic − posatt‖ − r))
, (4.3)

where r is the visibility radius of the victim. The model ensures that victims

run away from an attacker when the attacker is visible to them. The constant ω

determines the degree of fall-of for the avoidance force.

Attacker behavior is handled differently. Attackers (or predators) do not tend
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to work in groups; their only tendency is to catch victims (or preys). The gov-

erning equations for the control of the movement of an attacker a are:

targetPosatt = argmin(posatt − posvic), vic = 1, . . . , ‖V ‖

desV att = targetPosatt−posatt

‖targetPosatt−posatt‖

fatt = catt
desVatt−vatt

‖desVatt−vatt‖

(4.4)

where targetPosatt is the target position, which is the closest victim visible to

the attacker, desVatt is the desired velocity and fatt is the attack force.

Damage conforms to the contagion rules. The victim is in one of two states:

susceptible or infected. Getting infected means getting caught and killed. When

the victim is killed, it falls down and becomes an obstacle for other agents.

Role: Attacker

Goal: Catch a victim

State: Chasing

Goals → Consequences for self → Prospect relevant →
Unconfirmed → Pleased → Hope

State: Caught someone

Goals → Consequences for self → Prospect relevant →
Confirmed → Pleased → Satisfaction

Goals → Consequences for other → Undesirable for other →
Pleased → Gloating

State: Missed all

Goals → Consequences for self → Prospect relevant →
Disconfirmed → Pleased → Disappointment

Goals → Consequences for other → Undesirable for other →
Displeased → Resentment

Standard: Victims

State: Any

Standards → Focusing on other → Disapproving → Reproach
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Role: Victim

Goal: Escape

State: Running

Goals → Consequences for self → Prospect relevant →
Unconfirmed → Displeased → Fear

State: Got caught

Goals → Consequences for self → Prospect relevant →
Confirmed → Displeased → FearsConfirmed

Goals → Consequences for other → Desirable for other →
Displeased → Resentment

State: Managed to escape

Goals → Consequences for self → Prospect relevant →
Disconfirmed → Displeased → Relief

Goals → Consequences for other → Undesirable for other →
Pleased → Gloating

Standard: Attackers

State: Any

Standards → Focusing on other → Disapproving → Reproach

Algorithms 13 and 14 present how an attacker constructs his/her attacking

plan.

Algorithm 13: InitAttack: initiating an attacker’s attacking plan

a ⇐ new Attack();
//Hope to catch a victim

appraisal.AddGoal(a, ConseqForSelf, ProspectRelevant, Unconfirmed, Pleased);
appraisal.AddStandard(a, FocusingOnOther, Disapproving);
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Algorithm 14: PlanNextStepAttack: planning the next steps of an attacker’s
attacking plan

Input: Attack a
minDist ⇐ ∞;
foreach v ∈ GetVisibleVictims() do

dist = ‖v.pos − pos‖;
if dist < minDist then

victim ⇐ v;
minDist ⇐ dist;

//If caught a victim

if minDist < catchDist then
foreach g ∈ appraisal.Goals do

if g.RelatedEvent = a ∧ Unconfirmed(a) then
//Leading to satisfaction

g.Confirmed ⇐ CONFIRMED;
//Leading to gloating

appraisal.AddGoal(a, ConseqForOther, Undesirable, Pleased);

if minDist = ∞ then
return ;

←−
dir ⇐ v.pos − pos;

veldesired ⇐
←−−
dir

‖
←−−
dir‖

maxSpeed;

Algorithms 15 and 16 show the steps of the victim’s escape plan.

Algorithm 15: InitEscape: initializing the victim’s escape plan

Input: Attack a
//Leading to fear

appraisal.AddGoal(a, ConseqForSelf, ProspectRelevant, Unconfirmed, Displeased);
appraisal.AddStandard(a, FocusingOnOther, Disapproving);
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Algorithm 16: PlanNextStepEscape: planning the next step for the victim’s
escape plan

Input: Attack a
//Run away from the center of visible attackers

centerAtt ⇐ 0;
countAtt ⇐ 0;
foreach a ∈ GetVisibleAttackers() do

centerAtt = centerAtt + a.pos;
countAtt = countAtt + 1;

centerAtt = centerAtt
countAtt ;

//If caught

if ‖centerAtt− pos‖ < catchDist then
AddDamage();
if IsInfected() then

GetKilled();
foreach g ∈ appraisal.Goals do

if g.RelatedEvent = a ∧ Unconfirmed(a) then
//Leading to fearsConfirmed

g.Confirmed ⇐ CONFIRMED;

return ;
else

diravoid = pos − centerAtt;

shelter ⇐ FindClosestShelter();
if ‖centerAtt− pos‖ > ‖shelter.pos − pos‖ then

//Go to the closest shelter

favoid = shelter.pos − pos;

else
//Avoid attackers

diravoid = pos − centerAtt;

Figure 4.6 shows the state diagram of gesture updates for attackers according

to moods. Figure 4.7 shows the state diagram of gesture updates for victims

according to moods.
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Figure 4.6: State diagram for gesture updates by mood by an attacker

Figure 4.7: State diagram for gesture updates by mood by a victim



Chapter 5

Experiments and Results

5.1 User Studies on Personality

We analyze the overall emergent crowd behaviors considering personality-to-

behavior mapping. We validate our hypotheses by user studies that assess the

perception of the traits in the animations illustrating such behaviors. We created

several animations to see how global crowd behavior is affected by modifying the

personality parameters of subgroups.

5.1.1 Design of the Experiment

We created 15 videos presenting the emergent behaviors of people in various

scenarios where the crowds’ behavior is driven by the settings assigned through

the OCEAN model. The scenarios range from evacuation drills to cocktail parties

or museum galleries.

The mapping from HiDAC parameters to OCEAN factors is done through

trait-descriptive adjectives. We find the correspondence between our mapping

and the users’ perception of these trait terms in the videos in order to validate
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our system. 70 subjects (21 female, 49 male, ages 18-30) participated in the ex-

periment. We showed the videos to the participants through a projected display

and asked them to fill out a questionnaire consisting of 123 questions– about 8

questions per video. The videos were shown one by one; after each video, partic-

ipants were given some time to answer the questions related to the video. The

participants did not have any prior knowledge about the experiment. Questions

assess how much a person agrees with statements such as “I think the people in

this video are kind.” or “I think the people with green suits are calm.” We have

used questions containing the adjectives that describe each of the OCEAN factors

instead of asking directly about the OCEAN factors, since we consider that the

general public, not being familiar with the OCEAN model could have difficulties

answering questions such as “Do the people exhibit openness?” Although the

participants are proficient in English, in order to prevent any misconceptions,

definitions of the adjectives were attached to the questionnaires. Definitions were

taken from the Merriam-Webster dictionary. The answers were selected from a

scale between 0 and 10, increasing by 1, where 0 = totally disagree, 5 = neither

agree nor disagree, 10 = totally agree. We omitted the antonyms from the list of

adjectives for the sake of conciseness. Thus, the remaining adjectives were: as-

sertive,calm, changeable, contrary, cooperative, curious, distant, energetic, harsh,

ignorant, kind, orderly, patient, predictable, rude, shy, social, stubborn, and toler-

ant.

5.1.2 Sample Scenarios

The simulated scenarios help us observe how the suggested parameters affect

the global behavior of a crowd. In the implemented settings, novel, emergent

formations are realized and behavior timings are also affected. We explain a

selection of scenarios that have been shown to the participants in our experiments.

A sample scenario testing the impact of openness takes place in a museum

setting as one of the key factors determining openness is the belief in the impor-

tance of art. A screenshot from the sample animation can be seen in Figure 5.1.

Curiosity and ignorance are the tested adjectives for this setting. There are three
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groups of people, with openness values 0, 0.5 and 1. Here, the number of tasks

that each agent must perform is mapped to openness, where a task means look-

ing at a painting. The least open agents (with blue hair) leave the museum first,

followed by the agents with openness values of 0.5 (with black hair). The most

open agents (with red hair) stay the longest. Participants are asked how they

perceive each of these groups.

Figure 5.1: Openness tested in a museum. The most open people (red-heads)
stay the longest, whereas the least open people (blue-heads) leave the earliest.

Another one of our videos assesses how extroverts and introverts are perceived

according to their distribution around a point of attraction. Figure 5.2 shows a

screenshot from our test video where the agents in blue suits are extroverted with

μ = 0.9 and σ = 0.1 and the agents in grey suits are introverted with μ = 0.1

and σ = 0.1 . The ratio of introverts to extroverts in a society is found to be

25%, according to which we assigned the initial number of agents [68]. At the

end of the animation, introverts are left out of the ring structure around the ob-

ject of attraction. As extroverts are faster, they approach the attraction point

in a shorter time. In addition, when there are other agents blocking their way,
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they tend to push them to reach their goal. The figure also shows the difference

between the personal spaces of individuals with introverted and extroverted per-

sonality. Thus, being social, distant, assertive, energetic, and shy is questioned

for this animation.

In order to test whether the personalities of people creating congestion are

distinguished, we showed the participants two videos of same duration and asked

them to compare the characteristics of the agents in each video. Each video

consists of two groups of people moving through each other. The first video shows

people with high agreeableness and conscientiousness values (μ = 0.9 and σ = 0.1

for both traits), whereas the second video displays people with low agreeableness

and conscientiousness values (μ = 0.1 and σ = 0.1 for both traits). In the first

video, groups manage to cross each other while in the second video congestion

occurs after a fixed period of time. Such behaviors emerge as agreeable and

conscientious individuals are more patient; they do not push each other and are

always predictable as they prefer the right side to move on. Figure 5.3 shows how

congestion occurs due to low conscientiousness and agreeableness values. People

are stuck at the center, and they refuse to let other people move, thus they are

also stubborn, negative, and not cooperative.

Figure 5.2: Ring formation where extroverts (blue suits) are inside and introverts
are outside
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Figure 5.3: People with low conscientiousness and agreeableness value cause con-
gestion.

Figure 5.4 shows a screenshot from the animation demonstrating the effect

of neuroticism, non-conscientiousness and disagreeableness on panic behavior. A

total of 13 agents are simulated. Five of the agents have neuroticism values of

μ = 0.9 and σ = 0.1, conscientiousness values of μ = 0.1 and σ = 0.1 and

agreeableness values of μ = 0.1 and σ = 0.1. The remaining agents, which are

stable, have neuroticism values of μ = 0.1 and σ = 0.1, conscientiousness values

of μ = 0.9 and σ = 0.1 and agreeableness values of μ = 0.9 and σ = 0.1. The

agents in green suits are neurotic, less conscientious, and disagreeable. It can

be seen in the figure that these agents tend to panic more, push other agents,

force their way through the crowd, and rush to the door. These agents are not

predictable, cooperative, patient, or calm but they are rude, changeable, negative,

and stubborn.
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Figure 5.4: Neurotic, non-conscientious and disagreeable agents (in green suits)
show panic behavior.

5.1.3 Analysis

After collecting the participants’ answers for all the videos, we first organized the

data for the adjectives. Each adjective is classified by its question number, the

actual simulation parameter and the participants’ answers for the corresponding

question. We calculated the Pearson correlation (r) between the simulation pa-

rameters and the average of the subjects’ answers for each question. For instance

the adjective assertive is asked 8 times, which indicates a sample size of 8. Thus,

the correlation coefficient between the actual parameters and the means of the

participants’ answers is calculated between these 16 values, 8 for each group.

Furthermore, we grouped the relevant adjectives for each OCEAN factor in
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order to assess the perception of personality traits, which is the actual purpose

of our experiment. The evaluation process is similar to the evaluation of adjec-

tives; this time considering the questions for all the adjectives corresponding to an

OCEAN factor. For instance, as openness is related to curiosity and ignorance,

the answers for both of these adjectives is taken into account. Again, we aver-

aged the subjects’ answers for each question; then, we computed the correlation

with the actual parameters and the mean throughout all the questions asking for

curious and ignorant.

In order to estimate the probability of having obtained the correlation coef-

ficients by chance, we computed the significance of the correlation coefficients.

Significance is taken as 1 − p, where p is the two-tailed probability that is cal-

culated considering the sample size and the correlation value. Higher correlation

and significance values suggest more accurate user perception.

5.1.4 Results and Discussion

The correlation coefficients and significance values for the adjectives are depicted

in Figure 5.5 along with the data table showing the exact results. Correlation val-

ues are sorted in ascending order. The pink data points indicate the significance

of the correlation coefficients. As can be seen from the data table, significance

is low (< 0.95) for the adjectives changeable, orderly, ignorant, predictable, so-

cial and cooperative. Low significance is caused by low correlation values for

changeable and orderly. However, although the correlation coefficients are found

to be high for predictable, ignorant, social and cooperative, low significance can

be explained due to small sample size.

From the participants’ comments, we figured out that the term changeable is

especially confusing. In order to understand the reason, we can consider the afore-

mentioned setting where two groups of agents cross each other. Non-conscientious

agents are identified as rude, however; they are perceived as persistent in their

rudeness, causing the participants to mark lower values for the question asking
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changeability. The same problem holds for predictable as well. One of the par-

ticipants’ comments suggest that if a person is in a rush, you can predict that

person to push others. However, predictable has higher correlation despite these

comments and although it implies an opposite meaning to changeable. This could

be due to the relatively low significance for predictable. Non-conscientious agents

that cause congestion are perceived as less predictable, which indicates that chang-

ing right preference and rude behavior decreases the perceived predictability.

Orderly is another weakly correlated adjective. Analyzing the results for each

video separately, we found out that agents in evacuation drill scenarios are found

to be orderly, although they show panic behavior. In these videos, even if the

agents push each other and move fast, still some kind of order can be observed.

This is due to the smooth flow of the crowd during building evacuation. The crowd

shows collective synchrony, where individuality is lost. Although individuals are

impatient and rude, the overall crowd behavior appears orderly. We assigned

the same goal to the entire crowd in evacuation simulations, because our aim

was to observe disorganization locally. For instance, disorderly agents look in a

rush; they push other agents and they do not have solid preferences for direction

choosing when crossing an agent in an evacuation scenario. Nevertheless, they still

move to the same goal, which is the exit of the building. The crowd would appear

more disorderly if everyone were running in different directions and changing

directions for no apparent reason. Participants’ answers suggest that they do not

recognize orderliness where the goal is the same for the whole crowd. On the

other hand, in another scenario, which shows the queuing behavior of a crowd

in front of a water dispenser, participants can easily distinguish orderly versus

disorderly individuals. Orderly agents wait at the end of the queue, whereas

disorderly agents rush to the front. In this setting, although the main goal is

the same for all the agents (drinking water), there are two distinguishable groups

who act differently.

Figure 5.6 shows the correlation coefficients and their significance for the

OCEAN parameters. These values are computed by taking into account all the

relevant adjectives for each OCEAN factor. The correlations are sorted in ascend-

ing order. As can be seen from the figure, the significance of all the coefficients
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is high, with a probability of less than 0.5% of being by chance (p < 0.005).

Significance is high because all the adjectives describing a personality factor are

taken into account, achieving sufficiently large sample size.

Correlation coefficient for conscientiousness is comparatively low among all

personality factors, showing that only about 44% of the traits are perceived cor-

rectly (r2 ≈ 0.44). In order to understand the underlying reason, we should

consider the relevant adjectives, which are orderly, predictable, rude and change-

able. Low correlation values for orderly and changeable reduce the overall corre-

lation. If we consider only rude and predictable for conscientiousness, correlation

increases by 18.6%. Thus, the results suggest that, people can observe the po-

liteness aspect of personality in short-term crowd behavior settings more easily

than the organizational aspects. This also explains why the perception of agree-

ableness is highly correlated with the actual parameters. Figure 5.6 also shows

that neuroticism is perceived the best. In this study, we have only considered

the calmness aspect of neuroticism, which is tested in emergency settings and

building evacuation scenarios.
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(a)

(b)

Figure 5.5: (a) The graph depicts the correlation coefficients between actual pa-
rameters and subjects’ answers for the descriptive adjectives (blue); significance
values for the corresponding correlation coefficients (pink). (b) Data table show-
ing the correlation coefficients and significance values for descriptive adjectives.
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(a)

(b)

Figure 5.6: (a) The graph depicts the correlation coefficients between actual pa-
rameters and subjects’ answers for the OCEAN factors (blue); two-tailed proba-
bility values for the corresponding correlation coefficients (pink). (b) Data table
showing the correlation coefficients and the significance values for the OCEAN
factors.

5.2 Runtime Performance

The simulations are run on a personal computer (Intel Core Duo Processor E8400,

3.00GHz) with 3.24GB of RAM. The graphics card is ATI Radeon HD 3800
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with 512 MB memory size. We use Cal3D Character Animation Library for

rendering and animating the 3D human characters. The average frame rates for

the simulation of crowds of different sizes is given in Figure 5.7

Figure 5.7: Frames rates (frames per second) for different sizes of crowds

We found similar frame rates for different scenarios. Therefore, we give the

average time performance for all types of events. The results indicate that Cal3D

rendering is the bottleneck of simulations. Even with 50 agents, time performance

is below interactive rates. When rendering cost is excluded, we achieve real

time simulation results with 200 agents and near-interactive frame rates with 400

agents. The results indicate that the psychological component does not bring

much overhead to the actual HiDAC implementation.

5.3 Visual Results for Different Events

In this section, we present still frames from the simulations performed using our

system. Figure 5.8 shows an explosion and a close-up view of a scared agent
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Figure 5.8: Explosion scenario

running. Figure 5.9 shows a street concert with 400 attenders. Figure 5.10 shows

a sales event with 200 people rushing into a store and their view inside the store.

Figure 5.11 presents a protest scenario with 500 protesters and 60 security officers

standing side-by-side, watching them.
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(a)

(b)

Figure 5.9: Festival scenario with (a) distant and (b) close-up views
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(a)

(b)

Figure 5.10: Sales scenario (a) outside (b) inside a store
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(a)

(b)

Figure 5.11: Protest scenario with (a) distant and (b) close-up views



Chapter 6

Conclusion

We propose a crowd simulation system that incorporates a complex psychological

component into the agents. So far, autonomous agents research has focused on

enhancing the believability of individual agents. In order to create a believable

virtual human, different components comprising a real human must be considered.

Intelligence by itself, for example, is not enough to represent the complexity of

a human’s interaction with the environment. Especially, conversational agents

show human-like behavior by expressing their emotions. We integrated these

facilities to a crowd simulation system. In our case, since there is a large number

of virtual humans interacting with each other, psychological features of these

humans become more significant. Furthermore, runtime results indicate that

increasing the psychological complexity of agents does not bring much overhead

to the simulation performance, which is promising for our purposes.

The psychological module is composed of three components: personality,

mood and emotion. Personality is intrinsic; therefore, it is up to the user to

determine which agents will have which personality traits. In that sense, we use

the OCEAN personality model, which is well a respected and complete model to

simulate personality traits [116]. Emotions and moods are then computed based

on personality and how the agent perceives external events. We use the OCC

model of emotions, which states that emotions are based on cognitive appraisal

of events [89]. As for the moods, we use the PAD (Pleasure, Arousal, Dominance)
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model, which serves a connection between personality and emotions [78].

Crowd behavior has always drawn the attention of social psychologists. The

reasons underlying why some crowds act temperamentally, losing sensibility, act-

ing aggressively or panicking are still not fully understood. Theoreticians attempt

to explain such phenomena by classifying crowds and developing theories about

mass behavior. We utilize some of these theories to set a foundation for our sys-

tem. In doing so, we incorporate predisposition theories with contagion theories,

exploiting the most beneficial aspects of both sides for the sake of our design.

We design and simulate various scenarios, each corresponding to a different

crowd type. More specifically, we are interested in mob behavior, and how regular

crowds, i.e. audiences, turn into mobs. However, it is not the individual scenar-

ios that is important here, but the functionality that our system provides. For

instance, another programmer might have designed the scenarios in a different

way. It is only a matter of defining your own rules for different situations. As

a future work, we plan to enable the integration of different scenarios as plug-in

programs.

Our future plans include creating a setting, in which an actual human user

interacts with the system by being a part of the crowd through virtual reality

equipment. We already have the functionality to include the user into the simula-

tion and see the simulations through first person view from the screen. However,

we plan to increase the sense of presence through head-mounted displays and

motion capture equipment and validate our system in this way.
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[49] H. H. González-Baños, D. Hsu, and J. Latombe. Motion planning: recent

developments. In Autonomous Mobile Robots: Sensing, Control, Decision-

Making and Applications. CRC Press, 2006.



BIBLIOGRAPHY 95

[50] J. Gratch and S. Marsella. Tears and fears: Modeling emotions and emo-

tional behaviors in synthetic agents. In Proceedings of the fifth international

conference on Autonomous agents, pages 278–285, 2001.

[51] J. Gratch and S. Marsella. A domain-independent framework for modeling

emotion. Cognitive Systems Research, 5(4):269–306, 2004.

[52] E. T. Hall. The Hidden Dimension. Anchor Books, 1966.

[53] Y. Hijikata, T. Komatsu, N. Saiwaki, and S. Nishida. Automatic generation

of moving crowd using chaos and electric charge model. In Proceedings

of the IEEE International Conference on Systems, Man and Cybernetics,

volume 2, pages 342–347, 2002.

[54] R. L. Hughes. The flow of human crowds. Annual Review of Fluid Mechan-

ics, 35:169–182, 2003.

[55] C. E. Izard. Human Emotions. New York & London: Plenum Press, 1977.

[56] D. Jolliffe and D. P. Farrington. Development and validation of the basic

empathy scale. Journal of Adolescence, 29(4):589–611, 2006.

[57] A. Kamphuis and M. H. Overmars. Finding paths for coherent groups using

clearance. In Proceedings of Eurographics/ACM SIGGRAPH Symposium on

Computer Animation, pages 19–28, 2004.

[58] A. Kamphuis, M. Rook, and M. H. Overmars. Tactical path finding in

urban environments. In Proceedings of First International Workshop on

Crowd Simulation (V-CROWDS’05), Lausanne, Switzerland, 2005.

[59] Z. Kasap and N.-M. Thalmann. Intelligent virtual humans with autonomy

and personality: State-of-the-art. In Intelligent Decision Technologies. IOS

Press, 2007.

[60] H. Kessler, A. Festini, H. C. Traue, S. Filipic, M. Weber, and H. Hoff-

mann. SIMPLEX – Simulation of Personal Emotion Experience, J. Or

(ed.), chapter 13, pages 255–270. InTech Education and Publishing, 2008.



BIBLIOGRAPHY 96

[61] O. Khatib. Real-time obstacle avoidance for manipulators and mobile

robots. The International Journal of Robotics Research, 5(1):90–98, 1986.

[62] J. J. Kuffner, Jr. Goal-directed navigation for animated characters using

real-time path planning and control. In Lecture Notes In Computer Science

(Proceedings of the International Workshop on Modelling and Motion Cap-

ture Techniques for Virtual Environments - CAPTECH’98), volume 1537,

pages 171–186, November 1998.

[63] Y.-C. Lai, S. Chenney, and S. Fan. Group motion graphs. In Proceedings

of Eurographics/ACM SIGGRAPH Symposium on Computer Animation,

pages 281–290, 2005.

[64] M. S. A. Latif and S. Widyarto. The crowd simulation for interactive

virtual environments. In ACM SIGGRAPH International Conference on

Virtual Reality Continuum and its Appications in Industry (VRCAI’04),

pages 278–281, Singapore, 2004.

[65] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,

Boston, 1991.

[66] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[67] G. Le Bon. The Crowd: A Study of the Popular Mind. Dover Publications,

2002.

[68] K. M. Lean and M. Pasupathi. Collaborative narration of the past and

extroversion. Journal of Research in Personality, 40:1219–1231, 2006.

[69] S.-H. Lee, H. Pak, and T.-S. Chon. Dynamics of prey-flock escaping be-

havior in response to predator’s attack. Journal of Theoretical Biology,

240(2):250–259, 2006.

[70] A. Lerner, E. Fitusi, Y. Chrysanthou, and D. Cohen-Or. Fitting be-

haviors to pedestrian simulations. In Proceedings of the ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation (SCA’09),

pages 199–208, New York, NY, USA, 2009. ACM.



BIBLIOGRAPHY 97

[71] T. Li, Y. Ma, Y. Qiu, and P. Yue. Modelling personality, emotion and mood

for a pedagogical agent. In Proceedings of the 25th IASTED International

Multi-Conference: Artificial intelligence and Applications (AIAP’07), pages

272–277, Innsbruck, Austria, 2007. ACTA Press.

[72] S. Marsella and J. Gratch. EMA: A computational model of appraisal

dynamics. In European Meeting on Cybernetics and Systems Research, 2006.

[73] S. Marsella and J. Gratch. EMA: A process model of appraisal dynamics.

Journal of Cognitive Systems Research, 10(1):70–90, 2009.

[74] M. J. Mataric. Learning to behave socially. In D. Cliff, P. Husbands,

J. Meyer, and S. Wilson, editors, From Animals to Animats: International

Conference on Simulation of Adaptive Behavior, pages 453–462, 1994.

[75] R. McDonnell, M. Larkin, S. Dobbyn, S. Collins, and C. O’Sullivan. Clone

attack! perception of crowd variety. ACM Transactions on Graphics (Pro-

ceedings of SIGGRAPH’08), 27(3):Article no. 26, 8 pages, 2008.

[76] C. McPhail. The Myth of the Madding Crowd. Aldine de Gruyter, 1991.

[77] A. Mehrabian. Framework for a comprehensive description and measure-

ment of emotional states. Genetic, Social and General Psychology Mono-

graphs, 121:339–361, 1995.

[78] A. Mehrabian. Analysis of the big-five personality factors in terms of the

pad temperament model. Australian Journal of Psychology, 48:86–92, 1996.

[79] A. Mehrabian. Pleasure-arousal-dominance: A general framework for de-

scribing and measuring individual differences in temperament. Current

Psychology, 14(4):261–292, 1996.

[80] A. Mehrabian. Comparison of the PAD and PANAS as models for describ-

ing emotions and for differentiating anxiety from depression. Journal of

Psychopathology and Behavioral Assessment, 19(4):331–357, 1997.

[81] A. Mehrabian and J. A. Russell. An approach to environmental psychology.

Cambridge, MA: MIT Press, 1974.



BIBLIOGRAPHY 98

[82] S. Milgram and H. Toch. The Handbook of Social Psychology, 2nd ed. (G.

Lindzey, E. Aronson, eds), chapter Collective Behavior: Crowds and Social

Movements. Addison-Wesley, Reading, MA, 1968.

[83] R. Millar, J. Hanna, and S. Kealy. A review of behavioural animation.

Computers and Graphics, 23(1):127–143, 1999.

[84] J.-S. Monzani, A. Caicedo, and D. Thalmann. Integrating behavioural

animation techniques. In A. Chalmers and T. Rhyne, editors, Proceedings

of Eurographics/ACM SIGGRAPH Symposium on Computer Animation,

2001.

[85] W. Morris. Mood: The Frame of Mind. Springer-Verlag, New York, 1989.

[86] S. R. Musse, C. Babski, T. Capin, and D. Thalmann. Crowd modelling in

collaborative virtual environments. In Proceedings of the ACM Symposium

on Virtual Reality Software and Technology (VRST’98), pages 115–124,

Taipei, Taiwan, 1998.

[87] S. R. Musse and D. Thalmann. A model of human crowd behavior: Group

inter-relationship and collision detection analysis. In Proceedings of the

Eurographics Workshop of Computer Animation and Simulation, pages 39–

51, Budapest, Hungary, 1997.

[88] S. R. Musse and D. Thalmann. Hierarchical model for real time simula-

tion of virtual human crowds. IEEE Transactions on Visualization and

Computer Graphics, 7(2):152–164, 2001.

[89] A. Ortony, G. Clore, and A. Collins. The Cognitive Structure of Emotions.

Cambridge University Press, Cambridge, 1988.

[90] M. H. Overmars. Recent developments in motion planning. In International

Conference on Computational Science, volume 3, pages 3–13, 2002.

[91] R. Parent. Computer Animation: Algorithms and Techniques. Morgan

Kaufmann, 2001.



BIBLIOGRAPHY 99

[92] S. Paris, S. Donikian, and N. Bonvalet. Environmental abstraction and path

planning techniques for realistic crowd simulation. Computer Animation

and Virtual Worlds, 17:325–335, 2006.

[93] N. Pelechano, J. Allbeck, and N. Badler. Controlling individual agents in

high-density crowd simulation. In Proceedings of the Eurographics/ACM

SIGGRAPH Symposium on Computer Animation, pages 99–108, 2007.

[94] N. Pelechano, J. Allbeck, and N. Badler. Virtual Crowds: Methods, Simu-

lation, and Control. Morgan & Claypool, 2008.

[95] N. Pelechano, K. O’Brien, B. Silverman, and N. Badler. Crowd simula-

tion incorporating agent psychological models, roles and communication.

In Proceedings of First International Workshop on Crowd Simulation (V-

CROWDS’05), Lausanne, Switzerland, 2005.

[96] N. Pelechano, C. Stocker, J. Allbeck, and N. Badler. Being a part of the

crowd: Toward validating vr crowds using presence. In Proceedings of Au-

tonomous Agents and Multi-Agent Systems, pages 136–142, 2008.

[97] K. Perlin and A. Goldberg. Improv: A system for scripting interactive

actors in virtual worlds. Computer Graphics, 29(3), 1996.

[98] C. W. Reynolds. Flocks, herds and schools: A distributed behavioral model.

Computer Graphics, 21(4), 1987.

[99] C. W. Reynolds. Not bumping into things. ACM SIGGRAPH’88 Course

Notes, #27, Developments in Physically-based Modeling, pages G1–G13,

1988.

[100] C. W. Reynolds. Steering behaviors for autonomos characters. In Proceed-

ings of Game Developers Conference, pages 763–782, San Jose, California,

1999.

[101] N. Saiwaki, T. Komatsu, T. Yoshida, S., and Nishida. Automatic genera-

tion of moving crowd using chaos model. In Proceedings of the IEEE In-

ternational Conference on System, Man and Cybernetics, volume 4, pages

3715–3721, 1997.



BIBLIOGRAPHY 100

[102] M. Schreckenber. Pedestrian and Evacuation Dynamics. Springer-Verlag,

2001.

[103] S. Shanbhag. Behavioral animation: A report. In Proceedings of the Inter

Research Institute Student Seminar in Computer Science (IRISS’02), 2002.

[104] W. Shao and D. Terzopoulos. Autonomous pedestrians. Graphical Models,

69(5-6):246–274, 2007.

[105] B. G. Silverman. More realistic human behavior models for agents in virtual

worlds: Emotion, stress and value ontologies. Technical report, Systems

Engineering Department, University of Pennsylvania, 2001.

[106] B. G. Silverman, G. Bharathy, K. O’Brien, and J. Cornwell. Human be-

havior models for agents in simulators and games: Part I-enabling science

with PMFserv. Presence: Teleoperators. and Virtual Environments, 15(2),

2006.

[107] C. Soh, P. Raveendran, and Z. Taha. Automatic generation of self-organized

virtual crowd using chaotic perturbation. In Proceedings of IEEE Region

10 Conference (TENCON’04), volume 2, pages 124–127, 2004.

[108] M. Sung, M. Gleicher, and S. Chenney. Scalable behaviors for crowd simu-

lation. Computer Graphics Forum, 23(3):519–528, 2004.

[109] M. Sung, L. Kovar, and M. Gleicher. Fast and accurate goal-directed motion

synthesis for crowds. In Proceedings of Eurographics/ACM SIGGRAPH

Symposium on Computer Animation, pages 291–300, 2005.

[110] D. Terzopoulos, X. Tu, and R. Grzeszczuk. Artificial fishes: Autonomous lo-

comotion, perception, behavior, and learning in a simulated physical world.

Artificial Life, 1(4):327–351, 1994.

[111] D. Thalmann, S. R. Musse, and M. Kallmann. Virtual humans’ behaviour:

Individuals, groups, and crowds. In Proceedings of the International Con-

ference Digital Media Futures, Bradford, UK, April 1999.



BIBLIOGRAPHY 101

[112] B. Tomlinson and B. Blumberg. Alphawolf: Social learning, emotion

and development in autonomous virtual agents. In Proceedings of First

GSFC/JPL Workshop on Radical Agent Concepts, pages 35–45, 2002.

[113] A. Treuille, S. Cooper, and Z. Popovic. Continuum crowds. ACM Transac-

tions on Graphics (Proceedings of SIGGRAPH’06), 25(3):1160–1168, 2006.

[114] R. Turner and L. M. Killian. Collective Behavior. Prentice Hall, 1993.

[115] C. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279–292, 1992.

[116] J. G. Wiggins. The Five-Factor Model of Personality: Theoretical Perspec-

tives. The Guilford Press, New York, 1996.



Appendix A

Navigation

Navigation of virtual humans within an environment requires an abstract repre-

sentation of the navigational space. Computing local motion is not sufficient since

agents can get stuck in local minima. Therefore, a more complex path planning

methodology is required. HiDAC performs this by creating cell portal graphs

(CPG) of the navigation space [94]. HiDAC uses CPGs in indoor environments

by extracting a cell portal graph from a special building file. In HiDAC, cells

are the rooms and portals are the doors. On the other hand, CPGs can also be

used for outdoor environments [4], where cells and portals need to be abstract

definitions. We follow the same methodology in our system. Since our scenarios

take place outdoors, we create the graphs from the environment model itself. The

environment is an .obj file and it just represents the geometry. It does not include

any special tagging. Therefore, we need to create the CPG from the model itself.

Since HiDAC uses a special purpose building file, instead of creating the CPG

from scratch, we first convert our model to the HiDAC building file and then

create the CPG using HiDAC’s techniques. The floor plan in HiDAC includes

horizontal and vertical walls, doors, stairs and obstacles. We also include weak

walls. Normally, these are for people falling down and becoming obstacles. How-

ever, in our case, we use weak walls to define boundaries of roads. In general,

pedestrians only cross the streets through crosswalks. Yet, in case of emergencies,

they can cross the streets across the road. Collision rules for weak walls are not
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as strict as regular walls; agents can just walk through them. Figure A shows the

creation of a navigation graph from an environment model of .obj type.

(a) (b)

(c) (d)

Figure A.1: Creating a navigation graph from an environment model, (a) 2D
navigation map, (b) 2D navigation map on the projected environment model, (c)
2D navigation map on the environment model, (d) 3D environment model

A building file represents the environment as a grid, showing the discretized

locations of walls and portals. The building file is created semi-automatically.

It cannot be fully automatic since the model we use for the environment is not

tagged and it is not special in any way. Any model file of type .obj can be loaded

into the system. Therefore, the program cannot discriminate roads, buildings and

entrances of buildings. The program first takes a projection of the environment
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onto the xz plane. Then, it saves the projected environment to an image file.

Next, we run a script that automatically detects the horizontal and vertical lines

in the image by edge detection algorithms. These constitute the walls of the

building file. The building file is loaded into the system and CPG is automatically

generated. Then the user can interact with the program to make certain changes

such as adding weak walls, portals or removing unnecessary walls.

In HiDAC, portals are fixed size. We modified the structure to include portals

of variable sizes. Normally, the center of a portal is computed as the attractor

location when agents need to move from one cell to another. However, we have

changed attractor geometry from a point to a line segment. In this case, each

agent is attracted to the closest point on the portal. This is performed by taking

the agent’s projection onto the line segment, which represents the portal (Fig-

ure A.2).

Figure A.2: Agents moving through a linear portal
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The System At Work

Our system is is a Single Document Interface (SDI) application implemented

using Microsoft Visual C++ 2005 and Microsoft Foundation Classes (MFC). The

graphics display API OpenGL is used. The top level user interface of the system

is seen in Figure B.1. The elements on the interface can be mainly divided into

three parts:

1. Main Menu: This consists of menu bar and toolbar. It basically allows the

user to control the application.

2. Control Toolbox : This toolbox allows the user to create crowds in vari-

ous scenarios, change the underlying psychological parameters of crowds,

modify drawing settings and create and modify the navigation map of the

environment. It consists of four panels: Crowd, Psych, Control and Envi-

ronment.

3. Viewing Area: The viewing area shows the perspective or orthogonal view

of the 3D environment.
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Figure B.1: Top level user interface of the system

The main menu part of the program consists of the menu bar and the other

toolbars. The menu bar includes “File”, “View” and “Help” subitems and pro-

vides the general functionalities like loading an environment model or an object

model, changing the user interface options, and giving information about the pro-

gram. The user also can start, stop, pause and step by step run the animation by

using the toolbar. The toolbar gives user the opportunity to record the animation

or take a snapshot of it. The VR mode allows the user to see the environment

through the eyes of an agent in the simulation.

Control toolbox includes four panels. The main control of the simulation is

handled through the crowd panel. The user can create groups of people with

different characteristics and purposes, load 3D models for the virtual humans’
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rendering and animation. Group size is also determined by the user. As well

as the characteristics of the individuals in the crowd, the user can select from

various scenarios such as festival or explosion. The system also enables the user

to save the current scenario or load an existing one. Psych panel, as the name

suggests, enables the control of the psychological traits of the selected groups.

The user can set the means and standard deviations of any of the personality,

mood or emotion parameters. Control panel lets the user enable or disable some

underlying simulation variables such as the 2D view of the environment, cell portal

graphs, shadows, or task locations. Finally, environment panel facilitates the user

to create the navigation graph for the existing environment file. In addition, the

user can add several objects to the scene through this panel. Figure B.2 shows

each of these panels. The keyboard and mouse controls are presented in Table B.

Figure B.2: The control toolbox
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Buttons Controls
Up Moves forward in VR mode
Up Translates the selected object in +y direction in 3rd person mode
Down Moves backward in VR mode
Down Translates the selected object in -y direction in 3rd person mode
Left Moves right in VR mode
Left Translates the selected object in -x direction in 3rd person mode
Right Moves left in VR mode
Right Translates the selected object in +x direction in 3rd person mode
Home Translates the selected object in +z direction in 3rd person mode
End Translates the selected object in -z direction in 3rd person mode
Page Up Rotates the head up in VR mode
Page Down Rotates the head down in VR mode
+ Increases speed in VR mode
- Decreases speed in VR mode
1 Scales down the selected object
2 Scales up the selected object
W Rotates the selected object clockwise around the x axis.
S Rotates the selected object counterclockwise around the x axis
A Rotates the selected object clockwise around the y axis
D Rotates the selected object counterclockwise around the y axis
Z Rotates the selected object counterclockwise around the z axis
X Rotates the selected object counterclockwise around the z axis
R Resets the viewpoint
Left Mouse Click Selects a point on the ground or selects an obstacle
Left Mouse Drag Selects a region on the ground
Left Mouse Applies user force
Right Mouse Click Deselects the point or region
Right Mouse Drag Zooms the camera in/out
CTRL + Rotates the camera
Left Mouse Drag
CTRL + Translates the camera
Right Mouse Drag
Shift + Translates selected object
Left Mouse Drag
SPACE Toggles between perspective and orthogonal top views

Table B.1: Keyboard and mouse controls in the system


