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ABSTRACT

REAL-TIME CROWD SIMULATION IN VIRTUAL
URBAN ENVIRONMENTS USING ADAPTIVE GRIDS

Ateş Akaydın

M.S.in Computer Engineering

Supervisor: Assoc. Prof. Dr. Uğur Güdükbay

July, 2010

Crowd simulation is a relatively new research area, attracting increasing at-

tention from both academia and industry. This thesis proposes Adaptive Grids, a

novel hybrid approach for controlling the behavior of agents in a virtual crowd. In

this approach, the motion of each agent within the crowd is planned considering

both global and local path planning strategies. For global path planning, a cel-

lular adaptive grid is constructed from a regular navigation map that represents

the 2-D topology of the simulation terrain. A navigation graph with efficient

size is then pre-computed from the adaptive grid for each possible agent goal.

Finally, the navigation graph is used to generate a potential field on the adaptive

grid by using the connectivity information of the irregular cells. Global path

planning per agent has constant time complexity. For local path planning, Hel-

bing Traffic-Flow model is used to avoid obstacles and agents. Potential forces

are then applied on each agent considering the local and global decisions of the

agent, while providing each agent the freedom to act independently.

Keywords: Crowd Simulation, Real-Time Animation, Motion Planning, Urban

Visualization.
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ÖZET

UYARLANABİLİR IZGARALARDAN
YARARLANARAK SANAL KENTSEL ORTAMLARDA

GERÇEK-ZAMANLI KALABALIK SİMÜLASYONU

Ateş Akaydın

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Uğur Güdükbay

Temmuz, 2010

Kalabalık simülasyonları, akademik ve endüstriyel çevrelerden gördüğü ilgi

giderek artmakta olan nispeten yeni bir araştırma alanıdır. Bu tez, sanal in-

san kalabalıkları içinde bulunan bireylerin davranışlarının modellenmesi ve kon-

trolü için özgün ve hibrid bir yaklaşım olan Uyarlanabilir Izgaralar yaklaşımını

önermektedir. Bu yaklaşımda kalabalığa dahil olan her bireyin hareketi yerel

ve genel yol planlaması stratejileri kullanılarak planlanır. Genel yol planla-

ması için simülasyonun gerçekleştiği arazinin 2-boyutlu topoloji bilgisinden yarar-

lanılarak düzenli bir navigasyon haritası çıkartılır. Bu düzenli navigasyon haritası

düzensiz, uyarlanabilir hücrelerden oluşacak şekilde parsellenir ve bu hücreleri

barındıran uyarlanabilir bir ızgara elde edilir. Uyarlanabilir hücrelerin topoloji

bilgisi kullanılarak bir navigasyon grafiği hazırlanır. Bu grafik üzerinden kalabalık

içerisindeki bireylerin olası her hedef noktası için bir potansiyel alan oluşturulur.

Oluşturulan potansiyel alanlar sabit zamanlı erişim için kaydedilir ve bireylerin

genel hareket planlamasında kullanılır. Yerel hareket planlaması için ise Hel-

bing Trafik-Akış modelinden yararlanılmıştır. Yerel hareket planlaması sayesinde

bireyler komşuluklarındaki engellerden ve diğer bireylerden kaçınabilirler. Yerel

ve genel hareket modeli sonucu oluşan potansiyel kuvvetler toplanarak bireylerin

hareketi sağlanır. Bu yaklaşım bireylerin herhangi bir sınırlamadan bağımsız

olarak davranış sergilemesine imkan verir.

Anahtar sözcükler : Kalabalık Simülasyonu, Gerçek Zamanlı Animasyon, Hareket

Planlaması, Kentsel Alanların Görüntülenmesi.
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Chapter 1

Introduction

1.1 Motivation and Scope

Real-time path planning for virtual crowds in dynamic environments is a chal-

lenging problem that has many applications. Virtual crowd simulation has appli-

cations in emergency evacuation, architecture design, urban planning, personnel

training, education and entertainment. In robotics, the same problem occurs

in multiple-robot coordination and planning in dynamically changing physical

environments.

In both video gaming and film industry there is an increasing demand for

massive crowd simulations. For interactive systems such as video games compu-

tational complexity of such crowd simulation systems still form the main bottle-

neck. For non-real time systems it is still important to reduce production times

of off-line animations including massive crowds.

Traditionally, in existing crowd simulation systems, the path planning behav-

ior of the agents are realized with two complementary approaches: (i) local path

planning and (ii) global path planning. Local path planning refers to the im-

mediate decisions made by virtual agents to avoid contact with the neighboring

entities such as other agents and obstacles. The second approach is the global

1



CHAPTER 1. INTRODUCTION 2

path planning, which represents the global, long-term decisions agents make to

satisfy their goals. This long term goal usually includes reaching to a specific

position in the simulation space.

In the current literature, both global and local path planning are usually

costly. Often, global path planning either entails the calculation of some form

of potential field to guide the agents towards their goals (local minima) or the

implementation of graph-based search methods (e.g., A∗ Search) over a graph

which captures the connectivity of the underlying simulation space.

This thesis proposes Adaptive Grids; a novel approach to simulate large

crowds. The approach focuses on crowd simulation in virtual urban environ-

ments; especially aiming to address the challenges centered primarily around the

trade-offs between physical correctness, realism and computational complexity.

The main idea behind this work is to reduce complexity of global path planning

to constant time.

1.2 Contributions

The main contributions of this thesis can be summarized as follows:

• The concept of per-region adaptive grids is introduced and a grid adaptation

algorithm is proposed to perform traditionally-costly global path planning

in O(1) time, while achieving real-time performance.

• Unlike many potential field approaches the proposed approach is not unre-

alistically perfect. An agent is not expected to know everything and does

not have a priori information about static and/or dynamic obstacles it will

encounter along its path.

• Unlike many common systems, the proposed approach does not restrict the

behaviors of the agents. Agents are not bound by crowd group decisions

and they are allowed to make individual path planning.
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1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 briefly reviews previously

proposed approaches for crowd simulation along with their strengths and weak-

nesses. Chapter 3 explains the proposed approach to path planning for crowd

simulation. Chapter 4 describes the evaluation metrics and parameters that are

used to generate different types of adaptive grids. These metrics and parameters

are then discussed in further detail in order to find a suitable, optimized configu-

ration for the adaptive grid generation algorithm. Chapter 5 provides statistical

and empirical results obtained by simulations with different configurations and

interprets the results. Chapter 6 concludes by discussing key results and future

work.



Chapter 2

Background and Related Work

In this chapter, we first qualitatively evaluate the Continuum Crowds approach

proposed by Treuille et al. [26] along with its key points, advantages and disad-

vantages. Continuum Crowds is discussed in detail as it is the work that inspired

us to propose our Adaptive Grid technique. The rest of the section provides a

brief survey of other crowd simulation related proposals available in the current

literature.

2.1 Evaluation of Continuum Crowds

Continuum crowds approach performs crowd simulation using potential fields cal-

culated over regular grids covering the whole terrain of the virtual city environ-

ment. In this approach, the local path planning (i.e., the interactions of vir-

tual agents with the surrounding environment and other neighboring agents) and

global path planning (i.e., making progress towards long-term goal points) are

entangled together. The calculation of potential fields encompasses the crowd

density in unit area, the length of a chosen path as well as the time it would take

a virtual agent to follow that path. An agent moves on an optimal path following

the negative gradient vector located at its current point. In this way, the agent

not only does get closer to the ultimate destination (goal) point of its group but

4



CHAPTER 2. BACKGROUND AND RELATED WORK 5

also dodges its neighboring agents.

Continuum crowds approach has a couple of note-worthy advantages; it is easy

to implement and suitable for large crowd simulations while providing optimal

paths. However, these advantages come at the cost of the following disadvantages,

which we try to address in this thesis:

1. The algorithmic complexity per group is quite high. In continuum crowds

approach, the complexity of generating a path for agents on a per-group

basis is O(n2logn), where N is the total number of cells in the grid. While

continuum crowds approach can provide real-time performance for simu-

lations using low-resolution grids and a small number of groups, using a

finer-grained resolution for the grid or an increase in the number of simu-

lated crowd groups lead to an exponential increase in the processing time,

which might result in the loss of real-time performance guarantees. It can

be concluded that continuum crowds approach becomes extremely costly

for a realistic simulation of large human crowds.

2. The agents are not allowed to have individual goal points. Since the po-

tential field calculation is computationally intensive, to ensure real-time

performance, the potential fields can only be calculated on a per-group ba-

sis, forcing the individual agents in a group to share a common goal point.

In this case, it is not possible for individual agents to have independent goal

points and decisions. All agents in a group end up following similar paths,

resulting in piling of agents at narrow/crowded exits, which in turn causes

loss of naturalness.

3. Congestions may disturb the behavior of the crowd. While the groups are

on their way to their goal points congestion can occur at local maxima in

the potential fields. Congestions are typically observed around narrow exits

when the number of agents close to that exit is high. Since global and local

calculations are entangled in continuum crowds, this congestion situation

affects the behaviors of all agents in the system. This is an undesired

situation as it would have been more realistic when only the agents close

to the congested point were affected. At a congestion, instant agents whose
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goal points are located within the congested area, got permanently trapped

and start trembling. An intuitive solution to this problem would be to

increase the number of cells in the grid. However, since the complexity of

potential field calculation is proportional to the square of the number of

cells in the grid, the complexity grows drastically, leading this solution to

be infeasible.

4. Although the obtained path is optimal, it is not natural. Another major

drawback of continuum crowds approach is the calculation of optimal path

for each agent on the potential field. Although this might appear as an

advantage at a first glance, it is a problem in terms of the reality of the

simulation. The virtual agents, which are expected not to know all possible

paths and their current states in reality, happen to know all optimal paths.

In other words, while calculating the optimal path it should follow, an agents

can account for the actions of all other agents in the system whether or not

those other agents are within its field of vision. The solution to this problem

is twofold: (i) the local path planning should be handled separately from

global path planning, and (ii) in local path planning, only the interaction

between the agent and the close-by agents/objects should be considered.

2.2 Other Related Work

A great majority of crowd simulation approaches derive from Helbing’s Social

Force Model [8] which applies tangential, repulsion and attraction forces to sim-

ulate interactions between individuals and other obstacles. Social Force Model is

quite similar to a particle system behaving under the influence of physical forces.

Beginning with Helbing’s Model, particle systems and dynamics approaches are

widely adopted to simulate motion of virtual crowds. Hodgins and Brogan have

used a dynamics approach to simulate behavior of synthetic animal flocks with

significant physics [10]. Braun and Musse have generalized Helbing’s model to

account for individual behaviors of the agents during an evacuation scenario [3].
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There have been numerous extensions of the Helbing’s model like Helbing-Molnar-

Farkas-Vicsek social force model [11] and self-organized pedestrian crowd dynam-

ics model [7]. A more recent and popular approach based on continuum dynamics,

Continuum Crowds, is proposed by Treuile and Cooper [26]. Their approach ba-

sically evaluates a potential field over the simulation grid at each frame to direct

the agents. This approach has significant impact on the motivation and devel-

opment of this thesis. Thalmann et al. further extended Continuum Crowds

by integrating a navigation graph that is composed of circular search nodes for

global path planning [16]. In this approach, potential fields of Continuum Crowds

model are used for computing within node paths only.

One other alternative approach is cellular automata. These models discretize

the underlying simulation space as a flow grid. Meta-data which can be used

for decision making or routing for the agents is associated with each cell on the

flow grid. Graph search algorithms may be used to search for paths towards

goal points on the flow grid. Cellular Automata approach does not involve agent

interactions. A flow on a particular grid cell is only available if the target cell it

leads to is not occupied by other agents. The work of Chenney [4] and Loscos et

al. [13] are good examples of approaches using cellular automata.

Another, conceptually different but similar approach to crowd simulation is to

use behavioral (rule-based) models which are derived first by Reynolds [22, 23].

Behavior models are more individual centric and they define a set of rules to steer

the individuals with the crowd they belong to. In this approach individuals are

considered as simple state machines which transitions in between different rules

depending on different environmental conditions. It is common practice in behav-

ior models that collisions are either ignored; or detected and avoided completely.

Most rule-based approaches do not model physical interactions due to collisions

but rather they apply simple wait rules to avoid collisions all together. Rule-based

models can be very realistic for low density crowds but they are not physically

accurate. It is also much easier to use a rule-based approach in combination with

cognitive models. Terzopoulos and Shao proposed such an extended rule-based

model, which includes motor, perceptual, cognitive and behavioral aspects of the

individuals altogether [25]
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Finally there are some hybrid studies which incorporate the best parts of the

above three approaches. Pelechano et al. proposed High Density Autonomous

Crowds (HiDAC) [20] which uses a social force model to plan local behavior

of the pedestrians via tangential, repulsion and attraction forces. Social Force

approaches in general suffer from shaking especially for high density crowds due

to large numbers of interaction forces. To address this problem HiDAC also uses

a behavioral model to set stop/wait behavior for pedestrians in crowded narrow

passes.

For global path planning, in almost all cases, some sort of high level representa-

tion of the simulation environment is required to support interactive simulations.

Most common techniques are portal graphs [12, 21], roadmaps [2] and potential

fields [4].



Chapter 3

The Proposed Approach:

Adaptive Grids

In this chapter, we explain the details of the proposed approach, Adaptive Grids.

The motivation of the proposed approach is to reduce global path planning cost

per agent to O(1) time complexity. Constant time per agent local planning ap-

proaches are already available in the current literature [4]. Therefore, the primary

purpose of this thesis is to achieve linear time complexity for path planning of

the entire virtual crowd.

In most crowd simulation approaches, a regular grid is defined on a sampled

2-D terrain space that includes information about agent neighborhood, terrain

topology and meta-data (e.g. slopes, heights, and speeds) on a per-cell basis.

This regular cell grid is commonly used to compute both global and local paths

of agents. Different appraoches, such as cellular automata and social force models

(e.g., [26]) use this regular grid directly. Some recent approaches, such as [16],

attempt to create a hierarchical navigation graph from the regular grid to further

reduce the global path planning costs for large regions.

Theoretically, constant time complexity for global path planning is easily

achievable if the optimal paths from each cell to every other cell are pre-computed

before beginning the simulation. This basically means that for each cell-pair, the

9
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optimal paths (and perhaps alternative paths) are known and stored. Practically,

such an approach would be infeasible as the space complexity would be exces-

sive. For large grids that are composed of thousands of cells at each dimension,

the memory requirements would easily exceed even the amount that the current

high-end hardware provides. Moreover, since the size of the domain computed

by the preprocessing algorithm is very large, the preprocessing time becomes

impractically large with the growing number of cells.

A potential method of improving such an approach would be to reduce search

domain by grouping the regular cells with respect to their common properties. A

navigation graph can then be imposed on the cell groups and the edge costs can

be approximated. If these groups are convex and the regular cells included in a

group are topologically connected then it is guaranteed that the linear paths from

any point to some other point in such groups are free of obstacles. Therefore,

global path vectors within convex groups are nothing more than the normalized

Euclidean distance vectors for any taken subject point pairs. Such vectors can

easily be generated in constant time, which also implies that path planning within

a group can always be achieved in constant time. Hence, the problem boils down

to performing constant time path planning between points defined in separate

group pairs. A smart, optimized grouping algorithm maximizes convex group

size, minimizes group count, best approximates path costs and covers the entire

domain, would enable us to pre-compute paths for all pairs of groups.

The proposed Adaptive Grids approach is such a way of grouping the under-

lying regular grid in an attempt to make constant time path planning possible.

The approach consists of five steps. In the first step we generate a boolean nav-

igable grid from the city model. In step two, an adaptive grid is formed and

its respective navigation graph is created. In the third step Dijkstra or Floyd

Warshall algorithm is applied on the navigation grid to find shortest paths and

to store them. Forth step includes the generation of the vector field to direct

agents towards their global goals at constant time. In the last step, agents query

the vector field at their position to determine their global paths. Steps 1-3 are

explained in detail in Section 3.1.3.2. Step 4 is discussed in Section 3.1.3.3. Final

step also incorporates local path planning and hence is described in Section 3.1.1.
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Figure 3.1: The flow diagram of the proposed approach.

Figure 3.1 depicts the flow of these steps in the proposed approach.

In the rest of this chapter, we explain local and global path planning in detail

along with the integration of global and local path planning and the underlying

social force model. The algorithms for the adaptation of the regular grid and the

generation of the corresponding navigation graph are also provided.

3.1 Adaptive Grids

The proposed adaptive grids approach considers both global and local path plan-

ning methods. Social force model [9] is used as the base dynamics model that

integrates both global and local path planning concepts.

To clarify, global path planning is used to plan paths to an individual’s long

term goals. For the sake of generality, these goals are always meant to be the
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Table 3.1: Social force model parameters.
v0
i (t) Scalar value of desired velocity

e0
i (t) Desired direction vector, calculated via global path planning.

vi(t) Agent’s current speed vector
τi Unit time
mi Agent’s mass∑

j(�=i) fij Sum of avoidance forces other agents apply on agent i∑
w fiw Sum of non-agent based avoidance forces applied on agent i

positions in the 3-D space at terrain level. On the other hand, local path planning

is considered to be the short-term goals and maneuvers of the individuals due to

immediate factors such as possible collisions. Immediate decisions can be made

to avoid neighboring agent and obstacle collisions.

3.1.1 Social Force Model

Social force model describes the movements of pedestrians based on the concept

of social forces. Social forces are not the forces that are directly enforced on the

individuals (agents 1). They rather stand for the motivational forces that motivate

individuals to take certain actions. Social forces idea is built on an analogy

between the particles in gas/fluid materials and the agents in crowds. The social

forces model accounts for social and physical forces among neighboring agents

as well as the direction the agent would like to go given its ultimate destination

(i.e., goal vector). It is based on Equation (3.1) (cf. Table 3.1):

mi
dvi

dt
= mi

v0
i (t)e

0
i (t) − vi(t)

τi

+
∑

j(�=i)

fij +
∑

w

fiw (3.1)

The physical and social forces applied on an individual agent due to its in-

teraction with (i) neighboring agents and (ii) the surrounding environment is

handled in the local path planning part of our proposed mechanism while the de-

sired direction vector of the agent is calculated via global path planning part of

1From this point onwards the terms individual and agent are used interchangeably.
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Table 3.2: Parameters for local path planning.
Aiexp[(rij − dij)/Bi]nij Psychological repulsion force applied by

agent j on agent i
rij Sum of radius of agents i and j
dij Distance between the centers of agents i and j
nij Unit direction vector from j to i
Ai and Bi Constants for psychological forces
kg(rij − dij)nij Reaction force on collision instant
κg(rij − dij)Δvt

jitij Friction force on collision instant
g(x) Constants for psychological forces
tij Unit tangent vector between agents i and j
vt
ji The difference between the velocities of

agents i and j in tangent vector direction
k Friction constant
κ Collision constant

our mechanism. Since the velocities of the agents are differentiable, sharp direc-

tion and speed changes are not allowed, resulting in smoother and more realistic

movements.

Performing real-time simulation of large crowds requires the complexities of

local and global path planning to be kept at minimum. Using Equation (3.1)

as the basis, global path planning (i.e., calculation of e0
i (t)) can be performed

independently from local path planning.

3.1.2 Local Path Planning

Local path planning encompasses the instant short term decisions made by the

agent such as the manoeuvring to avoid collisions with other agents or surrounding

objects. In social forces model [9], the local force applied on the agent due to its

interaction with the other agents in the system is defined as in Equation (3.2)

(cf. Table 3.2):

fij = {Aiexp[(rij − dij)/Bi] + kg(rij − dij)}nij + κg(rij − dij)Δvt
jitij (3.2)
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Similar to the agent’s interaction with other agents, its interaction with the

objects in the surrounding environment is also defined as a part of local path

planning (Equation (3.3)). Note that Equation (3.3) is the same as Equation 3.2);

except that the force is now being applied by an object in the environment, rather

than another agent in the system.

fiw = {Aiexp[(riw − diw)/Bi] + kg(riw − diw)}niw + κg(riw − diw)Δvt
witiw (3.3)

3.1.3 Global Path Planning via Adaptive Grids

We next discuss the ideas and notions that motivate us to devise Adaptive Grids

followed by the details of navigable space extraction and adaptive grid formation.

3.1.3.1 Motivation for Adaptive Grids

Being able to perform global planning in O(1) time is the key to achieve real-

time crowd simulations. If a static potential field for each individual grid cell is

calculated in advance and the gradient vectors associated with these grid cells

are saved in the memory through pre-processing, then global path planning could

easily be achieved in O(1) time. However, the memory-cost of this naive technique

is unacceptable as the number of cells is extremely high for a regular grid with

enough resolution. Without loss of generality, assume that the resolution of a

regular grid G is n×n. The complexity of calculating all possible potential fields

on G and saving them in the memory is as high as O(n4). Handling the problem

within this perspective, at a first glance, it seems like performing O(1) time global

path planning with acceptable performance could only be achieved by reducing

the number of cells in a grid.

In this thesis, adaptive grids is proposed as an alternative solution to this

problem. In the preprocessing stage, rather than sampling the global path plan-

ning space using regular cells, we advocate the use of irregular and adjustable
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(i.e. adaptive) cells which reduces the number of cells significantly. In this case,

performing global path planning on these preprocessed, static and adaptive grids

significantly reduces the required O(n4) complexity.

3.1.3.2 Adaptive Grid Formation

To be able to perform global path planning, first of all, a grid composed of

adaptive cells should be constructed. Such a grid can be constructed considering

the topology of the virtual urban environment. The formation of adaptive grids

involves two main steps:

1. The navigable space for the virtual environment should be extracted.

2. An adaptive grid should be built based on the extracted navigable space

and the navigation graph should be constructed.

Step-1: Navigable Space Extraction

Z-buffer image (Figure 3.2) is taken from an axis-aligned top-view of the city. This

image represents the height map of the out-door city environment. Objects that

may obstruct this height map (e.g., trees, traffic lights, and banks) are excluded,

leaving only the buildings and terrain.

In order to prevent noise, the z-buffer image is filtered by median-filter. Then,

the values are normalized to [0,1] range, and passed through Sobel filters[6] in each

direction (e.g., North, South, East, and West) as seen in Figure 3.3. Sobel-filtered

images in each direction are converted to boolean images considering whether

they are less than a certain threshold or not. These four Boolean images are then

merged (using ‘or’ operator) into a single image, so that the non-navigable spaces

in the city are bounded by rectangles (see Figure 3.4).
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Figure 3.2: Z-Buffer image of the city model.
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(a) (b)

(c) (d)

Figure 3.3: Sobel filtering of the Z-buffer image; (a) North derivative; (b) East
derivative; (b) South derivative; (d) West derivative.
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Figure 3.4: Merging of Sobel filtered images with an ‘or’ operator.

Performing connected component analysis[6] on this boolean image leads to

segmentation of each separate rectangle. The segmented image is then converted

to a Boolean image where the unnavigable rectangles are set to true and others

are set to false. Finally the desired navigable space is extracted along with the

topology information. In order to prevent the agents from getting too close to the

buildings, morphological dilation process is applied on the navigable-space image

using a small kernel. The final navigable-space image is given in Figure 3.5.

Step-2: Formation of the Adaptive Grid and Navigation Graph Construction

As seen in Figure 3.5, the navigable-space image includes detailed information

regarding the topology of the virtual urban environment. Using this topology

information, it is possible to construct the adaptive grid structure. Using one

of the most well known 2D-space partitioning methods, quadtree, the number of

cells for the navigable space presented in Figure 3.5 is 5953. Figure 3.6 depicts

the image obtained using quadtree partitioning.
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Figure 3.5: Connected component analysis and the formation of final navigable
space image.

Figure 3.6: Quadtree partitioning of the navigable space.
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For a navigable space of 512x512 resolution, the quadtree partitioning algo-

rithm significantly reduces the number of seeds. However, to achieve O(1) time

access, all of the cells should be indexed and the relevant direction vectors should

be stored on each cell. For the quadtree case, there are around 35 million pairs

and the space cost is close to 300 MB memory. Therefore, the quadtree approach

is not feasible and the total number of seeds should be decreased more in order

achieve feasible space complexity. Hence, an adaptive grid formation algorithm

is proposed, which will further reduce the amount of seeds generated by the grid

partitioning process.

Algorithm 1 describes the adaptive grid formation and navigation graph con-

struction. In line-2 of the algorithm, genInitialSeeds function is used to select a

subset of adaptive cells from the navigable grid (NavGrid) and add them to Init-

Seeds data structure. The initial seeds act as starting points for the algorithm

and they form the first set of seeds to be expanded. Initial seed selection can

determine the end result of the algorithm in terms of seed size and seed count.

Therefore, different initial seed selection methods are proposed and evaluated.

These methods are described below:

1. Single seed initialization: A single initial seed is generated at the first avail-

able (navigable) cell on the regular grid. Tracing this regular cell is row-wise

and starts at the top left cell of the regular grid.

2. Random seed initialization: A number of initial seeds are automatically

generated at the navigable cells on the regular grid. The number of such

seeds can be provided as a parameter.

3. Sampled seed initialization: The regular grid is sampled with the desired

period. For each sample if the cell is navigable then a seed is initialized at

this cell. The sampling period can be provided as a parameter.

In line-9 of the algorithm, expand function is used to expand a single given

seed. A seed can only expand to navigable and unoccupied cells. Expand func-

tion returns false if the given seed cannot be expanded possibly because it is
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Algorithm 1: Adaptive Grid Formation and Navigation Graph Construc-
tion

Input: A regular boolean grid NavGrid that stores connectivity of the space.
Data: Queue object that stores seeds that are being evaluated. It can be

configured to be a stack, queue, min heap or max heap (with respect to
the seed size).

Data: InitSeeds is a set of initial seeds
Output: A directed seed graph SGraph=(V,E) where V is the set of vertices or

seeds on adaptive grid and E is the set of edges connecting the
vertices in V .

Output: A regular grid SGrid to store adaptive Seed-ID on the regular grid.
Result: Adapts the given regular connectivity grid NavGrid and stores

adaptive seed information on regular grid SGrid and the relevant
navigation graph in SGraph.

1 begin
2 InitSeeds ← genInitialSeeds(NavGrid); /* Choose initial seeds */
3 foreach Seed s ∈ InitSeeds do
4 Queue.push(s); /* Push seeds to the queue */
5 SGrid.set(s.row, s.col, s.id);
6 SGraph.addVertex(s); /* Add seeds to the graph */

7 while Queue �= ∅ do
8 s ← Queue.pop();
9 if expand(s, SGrid, NavGrid) then /* Expand the seed */

10 Queue.push(s);

11 else /* If cannot be expanded, generate new seeds */
12 genSeedsFromSeed(s, SGrid, NavGrid, SGraph, Queue);

13 foreach s ∈ SGraph.V do /* Construct navigation graph */
14 connectSeedToNeighbors(s, SGrid, SGraph);

surrounded by non-navigable cells or all cells towards the expansion direction are

already occupied by other seeds. If a given seed cannot be expanded it is popped

out of the Queue as it does not require any further processing. Otherwise, the

seed is pushed back into the queue as it can be expanded further. The behavior

of the expansion method can significantly affect the end-result of the algorithm

again in terms of seed size, shape and count. Several different characteristics of

the seed expansion methods are identified and provided below.

1. Operating dimensions: At a single call, a seed expansion method may ex-

pand along one or multiple dimensions. For example, a one dimensional
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algorithm expand at each iteration in a single direction (east, west, north,

or south), whereas a multi dimensional algorithm may expand towards all

directions at once or towards intermediate directions.

2. Expansion ordering: Expansion ordering specifies direction priorities. For

instance, a clock-wise ordering may cause the algorithm to expand the seed

along east, south, west, and north directions, respectively. The ordering

may change the end-result and different orderings may lead to better results

for different navigable grids.

3. Memory property: A seed expansion method may remember the last direc-

tion it expanded to and continue from the successive directions in a breadth

first manner. A memoryless method on the other hand will attempt to ex-

pand towards the same direction first at each try. Once that direction is

unnavigable it will try the other directions in a depth first fashion with

successive calls.

4. Restrictiveness: Seed size can be restricted, and hence, a seed expansion

method can be forced to return false whenever the subject seed achieves

a certain size. This property ensures that the seeds are restricted by a

maximum size. Although larger seeds lead to less seed count it also increases

the error made for the path costs on the navigation graph. Restricting seed

size may keep that error in an acceptable threshold.

Figure 3.7 shows the behavior of three different expansion methods. The

results are collected for running the algorithm for 5 iterations starting from the

seed with Seed-ID=5.

For each seed that cannot be expanded further, new seed generation is neces-

sary to continue the adaptive grid formation process. New seeds are generated on

neighboring unoccupied and navigable cells on the adaptive grid (SGrid). The

default algorithm (genSeedsFromSeed) takes a fully expanded seed and operates

in clock-wise order, evaluating all cells within one cell proximity of the expanded

seed excluding corners. Each unoccupied navigable cell, following a series of oc-

cupied or unnavigable cells, is marked. New seeds are generated on the marked
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(a) Clock-wise memoryless 1D expansion

(b) Clock-wise memoryless 2D expansion

(c) Clock-wise breadth-first (with memory) 2D expansion

Figure 3.7: Seed expansions for five consecutive calls using different methods.
Expansion starts from the seed with Seed-ID=5.

cells and added as a vertex to the seed graph and pushed to the seed queue as

well to continue the adaptive grid formation process. The seed generation process

is illustrated in Figures 3.8 and 3.7 (b).

When all of the seeds within the Queue are evaluated and all expansions

are done, graph construction step begins (connectSeedToNeighbors in line-14

of Algorithm 1). For each seed, a sweep is performed within one-cell proximity

on the adaptive seed grid (SGrid) to determine neighboring seeds. For each

neighboring pair, an edge is introduced with an attached cost.

The final part of the proposed algorithm (1) constructs the navigation graph.

Edges are created between connected seeds and assigned a cost. Edge costs can

be calculated using different methods as described below:
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Figure 3.8: Seed generation starting from a fully expanded seed with seed id=5.
Only the initially encountered free cells are marked during the clock-wise sweep.

1. Manhattan distance: The block distance, which is the sum of the absolute

differences between x and y coordinates of the two seed centers, respectively.

2. Euclidean distance: The length of the line connecting two neighboring seed

centers.

3. Shortest Navigable Distance (SND): Shortest navigable distance is the

shortest distance connecting two seed centers which does not intersect with

unnavigable cells. If the seed centers are in line of sight of each other

then it is equal to euclidian distance. Otherwise, it is the sum of separate

Euclidean distances between the seed centers and the shared unnavigable

neighbor corners.

Figure 3.9 shows the Manhattan, Euclidean and Shortest Navigable Distance

(SND) metrics for evaluating edge costs on the seed grid. Using one of these

methods, edge costs are calculated for each seed pair by the adaptive grid forma-

tion algorithm and a navigation graph is formed. Examples of navigation graphs
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Figure 3.9: Different distance metrics for evaluating edge costs visualized on seed
graph.

for a simple, restricted seed grid (Figure 3.10) are provided in Figure 3.11.

3.1.3.3 Extraction of the Vector Field

Having formed the navigation graph, it is necessary to find and store paths from

each seed to every other seed on the seed grid. To this end, Floyd-Warshall

Algorithm or Dijkstra Algorithm can be applied on the navigation graph for all

seeds to compute all-pair shortest paths [5]. Seed-IDs are given in consecutive

order starting from ‘1’ on the grid; ‘0’ denotes unnavigable cells. An array indexed

by target Seed-IDs can store the immediate links lying on the shortest path from

the current seed towards the target seed. At any time, a query for a particular

target seed from a root seed can be answered with O(1) time.
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Figure 3.10: A simple seed grid instance.

With a careful selection of adaptive grid formation parameters (i.e., queue

type, seed expansion method), it is possible to achieve acceptable error on path

costs without wasting memory. In Sections 4 and 5, the error made on path costs

is defined and comparable results are provided that are obtained with different

parameters. The targets picked by the agents may not necessarily be seeds.

They can be points contained by the seeds as well. Since all seeds are convex

(rectangular) it is guaranteed that the internal paths within seeds are free of

obstacles.

It should also be noted that the majority of people in real crowds choose from

a very limited number global targets, such as important building entrances; thus,

computing paths for all seed pairs is not necessary. If such target points within

interest can be marked, the Dijkstra Algorithm can be run only for these interest

points, generating all paths to these points. In this way, it is possible to further

reduce memory requirements of the algorithm.

Having computed and stored all shortest paths, a vector field should be gen-

erated on all points within the seed grid in order to smoothly direct the agents
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towards their global goals. Such a kind of vector field may be generated with

many different methods. The simplest one is to direct each agent towards the

center of the common edge that is shared by the agent’s current seed and the

next seed, which leads to the agent’s global target. For the sake of generality,

such edges may be named as gates (or portals), which connect two neighboring

seeds together.

A visualization of such a vector field is provided in Figure 3.12. This image is a

two-channel image that contains only the red and green components. Hence, pure

red values represents an upward vector and pure green represents a left vector.

All vectors are normalized. The adaptive grid for this example is performed

using a min-heap priority queue, border seed initialization and Shortest Navigable

Distance (SND) metric for edge costs. A memoryless, one dimensional clock-wise

seed expander is used. However, this approach would lead to lining of all agents

who share a common goal as they progress through their path since they all aim

for a single point at each seed.

A better approach would be to direct all agents that reside inside the gate’s

coverage towards gate’s direction. Gate coverage defines the rectangular zone

within the seed where moving towards the gate direction would be enough to

exit the seed on the desired path. Agents that are out of the gate’s coverage can

pick the closest end-point of the gate as their primary target and move towards

these points before exiting the gate. An example that shows the behavior of

the gate coverage approach is shown in Figure 3.13. The corresponding vector

field visualization is shown in Figure 3.14, which is generated with min-heap

priority queue, single seed initialization and Shortest Navigable Distance (SND).

A memoryless, one-dimensional clock-wise seed expander is used. Even though

the vector flows are not evenly distributed with this technique, it is much better

compared to the simple approach presented in Figure 3.12.



CHAPTER 3. THE PROPOSED APPROACH: ADAPTIVE GRIDS 28

Figure 3.11: An example navigation graph generated with the Shortest Navigable
Distance (SND) metric (based on seed grid in Figure 3.10).
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Figure 3.12: A simple two-dimensional vector field that samples directions to-
wards the gate centers. The target point is the image center.
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Figure 3.13: An example to show vector field formation by considering gate
coverage.
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Figure 3.14: A two-dimensional vector field that samples directions within gate
coverage. Points out of gate coverages are directed towards the closest point on
the respective gate. The objective point is again the image center.



Chapter 4

Evaluation of the Adaptive Grid

Formation

In this chapter, we first discuss a number of parameters that affect the outcome of

the adaptive grid formation algorithm in detail. Then, the performance metrics

that are used to evaluate the results of the algorithm are introduced.

4.1 Adaptive Grid Parameters

Adaptive grid formation parameters are summarized below:

Distance metric: This parameter determines the criterion that is used to mea-

sure the distance between two cells in an adaptive grid. Possible values

of this parameter are (i) Manhattan distance, (ii) Euclidean distance, and

(iii) Shortest navigable distance. Shortest navigable distance considers the

navigable/non-navigable distance due to the buildings.

Data structure: This parameter determines the order in which the cells are con-

sidered during the adaptive grid formation process. We consider (i) queue,

(ii) stack, (iii) min-heap, and (iv) max-heap as possible data structures.

32
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For min-heap and max-heap data structures, the multiplication of the num-

ber of rows by the number of columns in a cell is used as the key associated

with that cell.

Initial seed generation method: This method is invoked before the adaptive grid

formation algorithm (see Algorithm 1). It determines the seeds (i.e., the

initial set of cells the adaptive grid formation algorithm visits when it is

first initialized) and adds them to the Queue object, which is an input to

the adaptive grid formation algorithm. Possible seed generation methods

are as follows:

• Single: Starting from the top left corner, the navigable grid is swept

in a row-first manner. A new seed covering a single cell is initialized

every time a new navigable cell is encountered and added to the Queue.

• Border: On each non-initialized, navigable cell on the borders of the

navigable grid (in each direction: east, west, south, north), a new seed

is initialized and added to the queue.

• Random: The seeds that are added to the Queue are selected randomly

from non-initialized, navigable cells. The terminating condition (i.e.,

the number of seeds to be generated) is given as a parameter.

• Sampled: This method requires the sampling period to be given as

a parameter. Given the sampling period, the cells whose locations

(either row-wise or column-wise) are multiples of the sampling period

are initialized as seeds and added to the Queue.

• Seed expansion method: This parameter determines the behavior of

the seed expander which is explained in detail in Chapter 3. The

seed expander may choose to expand towards one or two dimensions

at a time. It can restrict the seed size and also it may choose to

expand using a depth-first strategy (i.e., memoryless) or a breadth-

first strategy.
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4.2 Evaluation Metrics

The grids obtained via using different values of the parameters discussed in Sec-

tion 4.1 are evaluated using these metrics:

Seed count: The total number of seeds in the constructed adaptive grid. Using

higher number of seeds reduces the accumulated error on path costs at the

cost of exponentially-increasing memory and preprocessing time.

Average cell size: The size of a cell is calculated as the number of rows times the

number of columns in that cell. This metric considers the average size of

all cells in the constructed adaptive grid. Smaller average cell sizes usually

indicate high number of seeds as well as reduced error on path costs.

Average aspect ratio: The aspect ratio of a cell i is calculated as max(row i,

column i)/min(row i, column i) where row i and columni represent the number

of rows and columns in cell i, respectively. The average aspect ratio is

calculated as the arithmetic mean of the aspect ratios of all cells. It is

desired that this number is as close to 1 as possible since highly varying

aspect ratios in general have a negative effect on the error introduced.

Mean Square Error (MSE): For a particular adaptive grid, MSE is approximated

with respect to the difference in distances to the same location on both

regular grid and adaptive grid. The MSE is calculated as follows:

MSE(X, R) =
1

rowsize × colsize
A (4.1)

A =

rowsize∑

row=1

colsize∑

col=1

(X(row, col)− R(row, col))2, (4.2)

In Eq (4.1), R represents the shortest distance of each pixel to the center of

the adaptive grid (using the navigable area) while X represents the distances

based on the navigation graph constructed on the adaptive grid. Figure 4.1

shows the pixel distances to the center of the navigation grid and Figure 4.2

presents the corresponding distances in an adaptive grid.
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(a)

(b)

Figure 4.1: Pixel distances on the regular navigation grid. (a) Pixel distance
contours; (b) Pixel distances using a gray scale image.
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(a)

(b)

Figure 4.2: Pixel distances on the adaptive grid. (a) An adaptive grid formation
with max-heap priority queue, 100 random initial seeds and shortest navigable
distance (SND) distance metric. A memoryless 1d clock-wise seed expander is
used. (b) Distances of each pixel to the center of the adaptive grid. Colors turn
from green to red as the distance increases. Blue color denotes buildings.



Chapter 5

Results

This chapter summarizes the results of the proposed approach. In Section 5.1, we

report statistics regarding the behavior of the proposed adaptive grid formation

algorithm for a number of different parameter-value combinations. These statis-

tics are presented along with a brief discussion about their impacts. In Section 5.2,

results obtained from the realized crowd simulation application for different sce-

narios are given. Section 5.4 provides detailed information about the hardware

configuration that is used to collect the final simulation results along with the

development environment. Finally, in Section 5.3, some optimization techniques

to support real-time simulation are briefly explained.

5.1 Forming Adaptive Grids

Figures 5.1, . . ., 5.6 present statistics for 132 different adaptive grids that are

constructed with different combinations of parameters. These statistics compare

the results obtained using different evaluation metrics given in Chapter 4.

37
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Figure 5.1: Seed counts for adaptive grids with different parameters. Seed initial-
ization methods are Single (Sng); Border (Bor); Random 10 (R10), 50 (R50), 100
(R100), 500 (R500); Sampled 8 (S8), 16 (S16), 32 (S32), 64 (S64), 128 (S128),
respectively.
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Figure 5.2: Seed sizes for adaptive grids with different parameters. Seed initial-
ization methods are the same as those in Figure 5.1.
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Figure 5.3: Seed aspect ratios for adaptive grids with different parameters. Seed
initialization methods are the same as those in Figure 5.1.
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Figure 5.4: MSE for Manhattan distance metric for adaptive grids with different
parameters. Seed initialization methods are the same as those in Figure 5.1.
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Figure 5.5: MSE for Euclidean distance metric for adaptive grids with different
parameters. Seed initialization methods are the same as those in Figure 5.1.
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Figure 5.6: MSE for shortest navigable distance (SND) metric. Seed initialization
methods are the same as those in Figure 5.1.
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As it can be observed from Figures 5.1, . . ., 5.6, although an increase in the

seed count notably reduces mean square error (i.e., S8 and S16), it significantly

increases the overhead in memory requirements and preprocessing time as well.

For grid adaptations which has few amounts of seeds (i.e., those with Single (Sng)

and Border (Bor) initialization) and for those adaptations which has high amounts

of seeds (like those Sampled 8 (S8) and Random 500 (R500) initialization) the

mean square error (MSE) values are obtained lower than those which has medium

amount of seeds (such as R100 and S128 initialization). Especially for the cells

that have high and varying aspect ratios, the accumulated error on the paths

grows as the number of seeds on the paths increase. However, an increase in seed

count generally causes a decrease in seed size and restricts the aspect ratio; after

some point, the accumulated error starts to decrease. Hence, the most successful

grid adaptations are achieved with Random 100 (R100) and Sampled 128 (S128)

grid initialization schemes and by using a common, round-robin queue.

5.2 Crowd Simulation Application

This section presents the results for the execution of simulation scenarios which

include 500, 1000, 2000 and 4000 agents respectively. Agents are periodically

created on the pre-specified entry points within the virtual city and are assigned

global tasks to reach a random entry/exit point. These enty/exit points are

assigned to the actual building entrances(doors) and street exits. Snapshots from

2000-agent scenario are illustrated in Figures 5.7, 5.8 and 5.9 for visualization

purposes.
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Figure 5.7: A snapshot from the 2000-agent scenario showing the top view of the
park area.
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Five different character models (three male and two female) with varying

numbers of polygonal complexity (between 2000-4000) are randomly assigned to

agents upon instantiation. All agents have a wide set of skeletal animations

including idle, walking, running, talking, etc. for realization of more interactive

scenarios. During animation switches, all animations are linearly blended together

to support smooth transitions. Agents are removed from the simulation once they

achieve their goals. As the successful agents get removed, the system maintains

the maximum count of agents in the scene by injecting new agents periodically.

The instances of removed agents do not get destroyed completely but rather

inserted into a pool (queue) so that they can be reused for newer injections. This

agent-pooling approach significantly reduces the computational overhead of the

new agent instantiation process. In this way, all agents within the system are

instantiated only once.
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Figure 5.8: A snapshot from the 2000-agent scenario showing a view of the main
street.
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The virtual city block is composed of 33 buildings and a number of other en-

vironmental objects, such as city lights, traffic signs, trees, banks. These objects

are also recognized as obstacles by the crowd. Hence, they are also taken into ac-

count during local path planning for collision avoidance. The complete geometric

model of the virtual city includes 18342 polygons. To have a lively illustration

of the city, a number of special effects such as particle systems for the fountain

within the pool and camera lens flare effects are added. Stencil shadows are also

applied with respect to the light position to increase realism.

Figure 5.9: A snapshot from the 2000-agent scenario showing the ground level
view of the main street.
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Simulation statistics are evaluated for four different scenarios which are 500-

agent, 1000-agent, 2000-agent and 4000-agent scenarios. These scenarios are

defined with respect to the maximum crowd size they permit. These statistics

include (i) the amount of polygons rendered, (ii) average frames per second (fps),

and (iii) crowd size with respect to simulation time. All statistics are collected

within a time period of 200 seconds. In Figure 5.10, these results are illustrated.

(a) (b)

(c)

Figure 5.10: Visualization statistics for different simulation scenarios; (a) frames
per second (fps) vs time; (b) crowd size vs. time; (c) polygon count vs. time.



CHAPTER 5. RESULTS 50

Table 5.1: Average frames per second (fps) for different scenarios.
500-Agent 1000-Agent 2000-Agent 4000-Agent

56.08 23.68 20.01 7.59

The average frames-per-second (fps) values for these scenarios are provided

in Table 5.1. As seen in Table 5.1, the system operates at near real-time rates

for up to 2000 agents. However, it should be noted that in the presented results,

optimizations such as crowd based occlusion culling [19] are not applied and the

polygonal complexity of the agents is very high for visual quality purposes. For

the 4000-agent scenario, as seen in 5.10(c), the peak polygon count for render-

ing hits up to 3.5 million polygons. Optimizations to reduce polygon count for

achieving real-time performance are discussed further in Section 5.3.

To be able to observe the constant time behavior of per agent updates for

global path planning, performance measured at every agent update is logged.

For each frame, the accumulated computational cost for all agent updates are

calculated with respect to varying crowd sizes. These values are expected to

follow linear scaling as the simulated crowd size is increased. In Figure 5.11 the

accumulated performance of all crowd updates is illustrated and a line is fit to

the graph. Computational costs which fall below floating point precision may be

rounded to zero especially for crowds which are very small in size.

5.3 Optimizations for Real-Time Performance

There are several methods which are used to lower the count of polygons to

be rendered at GPU side. Most common methods in computer graphics are

View Frustum and Occlusion Culling methods. View Frustum Culling is the

elimination of any polygonal mesh which reside outside of the camera’s current

view frustum. Similarly Occlusion Culling is the elimination of objects which

are not visible as they are occluded by some other objects that are closer to the

camera. Some form of spatial partitioning is necessary to calculate both occluded

and out of view frustum objects. Common approaches include Octrees and Binary
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Figure 5.11: Accumulated performance (ms) vs. crowd size for 5000-agent sce-
nario

Space Partitioning methods (BSPs) to partition the space for view frustum and

occlusion queries. The underlying application uses BSP tree approach which

eliminates out of frustum and occluded objects before a rendering request. The

underlying OGRE framework [18] uses axis aligned bounding boxes to speed up

view frustum queries [1].

Another approach to lower polygon count is to use Level Of Detail (LOD) [14].

This approach is based on progressively lowering the polygonal detail of an object

with respect to the distance from the viewport. LOD technique may both be dis-

crete and continuous. For the continuous case simplification of the original model

is computed at run-time. Discrete LOD on the other hand simply replaces the

high detail geometric meshes of an object with simplified ones at the set threshold

distances. Adaptive Grids application uses four levels of discrete Level Of Detail.

For each consecutive level a simpler mesh is replaced which has approximately

30 % less polygons with respect to the previous (high detail) one.

Smaller or thin objects usually fade out of the view faster as they get far away

from the viewer’s viewpoint. Therefore just by looking at the distance from the
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camera, small objects can be culled independent of frustum and occlusion. In

Adaptive Grids Application each detail object has a distance culling attribute

associated with it to fulfill this purpose. This attribute is usually determined

with respect to the relative dimensions of the object.

One relatively obvious way of increasing performance is to make crowd updates

run in parallel in multiple cores. Crowd update routines input only read-only data

which is updated only once at the start and at the end of the simulation frame.

Therefore parallelizing the routines is relatively easy. Adaptive grids application

benefits from such parallelization via the Open Multi Processing (OMP) library.

5.4 System and Development Environment

Configuration

The application is developed with the C++ programming language. Microsoft

Visual Studio 2005(SP1) is used as the Integrated Developments Environment.

Along with the C++ Standard Template Library, several other libraries and

frameworks are used. The most important one was the Ogre 3D Rendering En-

gine Framework (1.6.4) [18]. In addition Open Multi Processing library (OMP) is

used for parallelization support. The tools provided by The Mathworks MatLab

R2010A application[17] is used for performing image processing on the Z-Buffer

image to obtain the navigation (occlusion) map. MatLab is also used for process-

ing the application data to generate the graphs and figures which are provided in

this thesis.

Characters and city geometry, including all the detail objects are hand mod-

eled with Autodesk 3d Studio Max application [15]. Character animations and

city Z-Buffer pictures are also obtained with 3d Studio Max. All tests and exe-

cutions of the application are done on a machine with Intel i7 920 (8Mb Cache,

2.67Ghz Clock) Processor, 6Gb Ram, ATI Radeon HD4790 Graphics Processing

Unit (GPU).
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Conclusion

This thesis proposes Adaptive Grids, an approach to perform constant time global

path planning for simulated virtual crowds. Adaptive Grids addresses shortcom-

ings of the previously proposed crowd simulation approaches in terms of scalabil-

ity, performance, and realism. The proposed approach is easy to implement and

can be adapted to any application where path planning is of primary concern.

Considering our simulation results, constant time path planning is feasible in

terms of realism, performance and scalability. Many approaches in the literature

restrict the behaviors of the agents either by performing path planning for only

agent groups (instead of individuals) or by enforcing the agents to follow strict

navigation paths. Our approach provides complete freedom to agents in selecting

destination points. Hence, Adaptive Grids is more appropriate for crowd simu-

lation applications that spend most of the execution time on extensive Artificial

Intelligence(AI) routines per agent.

There are several drawbacks of Adaptive Grids as well. However, most of

them can be considered negligible. For instance, memory requirements of the

application totally depends on the size of the navigation graph. Therefore, for

different map topologies different space costs may be achieved and it is hard to

estimate the cost for a given map topology. Several seed expansion approaches

may need to be evaluated to determine the one that fits the underlying topology
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the best. In addition, the adaptive grid is not uniform and therefore generated

paths will most likely to be not optimized in terms of distance and travel times.

However, path costs in between irregular cells on the graph still approximate the

actual path costs to a great degree. The lowest estimated cost value Manhattan

Distance and Shortest Navigable Distance metrics can provide for the distance

between two consecutive cell centers corresponds to the actual distance in between

these cells (i.e. the Euclidean distance between two consecutive cell centers).

This also implies that the path costs Manhattan Distance and Shortest Navigable

Distance metrics provide never underestimate the actual costs between irregular

cells, satisfying the heuristic selection requirements. Therefore, the path costs

between irregular cells act as a good heuristic in searching the actual target.

Increasing the number of seeds usually leads to better path approximations, while

significantly increasing the preprocessing times and the memory costs.

As one last point, there are several potential extensions/future work this ap-

proach may benefit from. Firstly, the restriction of rectangular based irregular

cells may prevent size of the navigation graph from being reduced to its minimum.

A potential extension for Adaptive Grids could be partitioning the regular grid

in a way which ensures that all cells are convex and maximized in size (with the

least number of cells) would be a good.

Secondly, the potential fields generated for adaptive grids are not continuous

on cell borders. This leads to stacking of the agents which share the same path

for a common goal over time. To be able to address this problem and to provide

smoother movement behavior without stacking, the potential field connecting a

pair of irregular cells may be defined as a deformed vector field which has control

points on the consecutive cell intersections and cell corners. By deforming a

uniform vector field (similar to Free Form Deformations (FFD) [24]) to match

the shape of the neighboring cell pairs, it may be possible to derive a deformed

vector which would point towards a particular goal position on the grid.
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