

NOUN PHRASE CHUNKER FOR TURKISH

USING DEPENDENCY PARSER

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCES

OF BILKENT UNIVERSITY

IN PARTIAL FULLFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Mücahid Kutlu

July, 2010

ii

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Özgür Ulusoy (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Dr. Ġlyas Çiçekli(Co-Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Ferda Nur Alpaslan

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Fazlı Can

iii

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Halil Altay Güvenir

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Levent Onural

Director of Institute of Engineering and Sciences

iv

ABSTRACT

NOUN PHRASE CHUNKER FOR TURKISH USING

DEPENDENCY PARSER

Mücahid Kutlu
M.S. in Computer Engineering

Supervisors

Prof. Dr. Özgür Ulusoy
Dr. Ġlyas Çiçekli

July, 2010

Noun phrase chunking is a sub-category of shallow parsing that can be used for

many natural language processing tasks. In this thesis, we propose a noun phrase

chunker system for Turkish texts. We use a weighted constraint dependency

parser to represent the relationship between sentence components and to

determine noun phrases.

The dependency parser uses a set of hand-crafted rules which can combine

morphological and semantic information for constraints. The rules are suitable

for handling complex noun phrase structures because of their flexibility. The

developed dependency parser can be easily used for shallow parsing of all

phrase types by changing the employed rule set.

The lack of reliable human tagged datasets is a significant problem for

natural language studies about Turkish. Therefore, we constructed the first noun

phrase dataset for Turkish. According to our evaluation results, our noun phrase

chunker gives promising results on this dataset.

The correct morphological disambiguation of words is required for the

correctness of the dependency parser. Therefore, in this thesis, we propose a

hybrid morphological disambiguation technique which combines statistical

information, hand-crafted grammar rules, and transformation based learning

v

rules. We have also constructed a dataset for testing the performance of our

disambiguation system. According to tests, the disambiguation system is highly

effective.

Keywords: Natural Language Processing, Noun Phrase Chunker, Turkish,

Shallow Parsing, Morphological Disambiguation.

vi

ÖZET

TÜRKÇE ĠÇĠN BAĞIMLI ÇÖZÜMLEYĠCĠ

KULLANARAK ĠSĠM TAMLAMASI ÇIKARIMI

Mucahid Kutlu
Bilgisayar Mühendisliği Bölümü, Yüksek Lisans

Tez Yöneticileri
Prof. Dr. Özgür Ulusoy

Dr. Ġlyas Çiçekli

Temmuz, 2010

Ġsim tamlaması çıkarımı bir çok doğal dil iĢleme konusunda kullanılabilen

yüzeysel çözümlemenin alt kategorisidir. Bu tezde, biz Türkçe metinler için bir

isim tamlaması çıkarımı sistemi öneriyoruz. Cümle bileĢkenleri arasındaki

iliĢkiyi göstermek ve isim tamlamalarını bulmak için ağırlıklı bir kısıtlayıcı

bağımlı çözümleyici kullanıyoruz.

Bağımlı çözümleyici kısıtlamaları belirlemek için, manual olarak

oluĢturulan ve biçimbirimsel ve anlamsal bilgileri birleĢtirebilen etkili kurallar

kullanır. Kurallar esnek yapıları gereği karmaĢık isim tamlamaları yapılarını

çözmek için uygundur. Kural dizisi değiĢtirilerek bağımlı çözümleyici diğer tüm

cümle parçacığı çeĢitlerini içeren bir yüzeysel çözümleyici olarak da kolaylıkla

kullanılabilir.

Türkçe için insanlar tarafından oluĢturulmuĢ güvenilir bir veri grubunun

olmaması Türkçe ile ilgili olan doğal dil iĢleme çalıĢmalarını için önemli bir

problemdir. Bu yüzden, Türkçe için ilk isim tamlaması veri gruplarını

oluĢturduk. Bu veri grupları üzerinde yaptığımız testlere göre, bizim

önerdiğimiz isim tamlaması çıkarımı sistemimiz, umut verici sonuçlar

vermektedir.

Kelimelerin biçimbirimsel bilgisini bilmek bağımlı çözümleyicinin doğru

çalıĢması için önemlidir. Bu yüzden, bu tezde, istatistiksel bilgi ile, elle

vii

oluĢturulmuĢ gramer kuralları ile dönüĢüm bazlı öğrenilmiĢ kuralları bir arada

kullanan hibrit bir biçimbirimsel belirsizliği giderme tekniği önerdik. Ayrıca

bizim belirsizlik giderici sistemimizin performansını ölçmek için bir veri grubu

oluĢturduk. Yaptığımız testlere göre, bizim önerdiğimiz sistem umut verici

sonuçlar vermektedir.

Anahtar Kelimeler: Doğal Dil ĠĢleme, Ġsim Tamlaması Çıkarımı, Türkçe,

Yüzeysel Çözümleme, Dilbilimsel Belirsizliği Giderme.

viii

Acknowledgement

I would like to express my deep gratitude to Dr. Ġlyas Çiçekli for his guidance,

encouragement, and suggestions throughout the development of this thesis. I

would like to thank Prof. Dr. Özgür Ulusoy for his support about the thesis.

I would like to thank Prof. Dr. Fazlı Can, Prof. Dr. Halil Altay Güvenir and

Assoc. Prof. Dr. Ferda Nur Alpaslan for reading and commenting on the thesis.

I would like to thank all members of my family for their great moral support

and patience especially during the development of my thesis. I also have to

mention the help of my little nephew, Mehmet Emin Kara, because of his games

that make me to have breaks during my studies and not allowing me to work too

hard.

I would like to thank all of my friends who have helped during my master

study. Especially, I would like to thank my friend Ibrahim Aydin for his help in

writing the thesis and sharing his knowledge about the linguistics and Turkish

grammar which was crucial for the development of the study. I also would like

to thank my friend and neighbor living in “next”, Abdullah Bulbul, for his

support and patience to my linguistic jokes. In addition, I would like to thank my

friend Cem Aksoy for his help in writing the thesis and for his hospitality. I also

would like to thank my officemates, especially Enver Kayaaslan and Fahreddin

ġükrü Torun.

I also would like to thank TUBITAK-BIDEB because of their financial

support during my MS study.

ix

Contents

1. Introduction ...1

1.1 Contribution ...3

1.2 Linguistic background ...4

1.3 Overview of the Thesis ..5

2. Related Work ...7

2.1 Shallow Parsers..7

2.2 Dependency Parsers ...9

3. Turkish Morphology and Noun Phrase Structures....................................12

3.1 Distinctive Features of Turkish ...12

3.2 Turkish Morphology and Morphotactics ...14

3.2.1 Inflectional Morphotactics ..14

3.2.2 Derivational Morphotactics ...18

3.3 Noun Phrase Structure in Turkish..20

3.3 Scope of the Study ...25

4. System Architecture ..30

5. Morphological Disambiguation ..34

5.1 Related Work ...34

5.2 Disambiguation System ...35

5.2.1 Generation of Tables ...36

5.2.2 Learning of Disambiguation Rules ...38

5.3 Morphological Disambiguation ...40

5.3.1 Selection of the Most Likely Tag of Word (MW)40

5.3.2 SupervisedTagger Disambiguation (ST) ...41

x

5.3.3 Selection of the Most Likely Tag of Suffix (MS)41

5.3.4 Application of the Learned Rules (LR)...41

5.3.5 Selection with Fall-Back Heuristics (SH) ...42

5.4 Evaluation ..43

6. Dependency Parser ..49

6.1 Link Structure ..49

6.2 Rule Structure ..52

6.2.1 Link Name ...53

6.2.2 Priority...54

6.2.3 Source & Target ..54

6.2.4 Constraints...58

6.3 Dependency Parser Algorithm for Connecting Links66

6.3.1 Sample Link Construction...69

6.4 Algorithm for Obtaining Noun Phrases from Links70

6.5 Sample Noun Phrase Extraction ..73

7. Evaluation ..76

7.1 Experimental Setup..76

7.2 Results..77

7.3 Effect of Morphological Disambiguation ..84

8. Conclusion ..87

BIBLIOGRAPHY..89

APPENDIX A...98

APPENDIX B ...102

xi

 List of Figures

Figure 1. General Flow of the System. ..31

Figure 2. General Flow of Disambiguation System. ...37

Figure 3. Rule Constraint Template. ...59

Figure 4. Morphological Parses of Words of Sample Sentence. 73

Figure 5. Tokenized Sentence According to Selected MPs. 74

Figure 6. Sample Sentence with Links. ...74

xii

List of Tables

Table 1. Statistics of Data Corpus ...44

Table 2. Results of Techniques for the First Step ...45

Table 3. Results of Techniques for the Second Step ...45

Table 4. Results for Fall-Back Heuristics..46

Table 5. The Distribution of Wrong Disambiguation ...47

Table 6. Abstract Rule Set for the Sample Link Construction69

Table 7. Trace of the Algorithm for the Sample Sentence and the Rule Set70

Table 8. Statistical Information about Datasets: D1, D2 and D377

Table 9. Results of D1 According to NP Length...78

Table 10. Exact Match Results for D1 ..79

Table 11. Ratios of Mistakes in D1 According to Reasons We Observed 82

Table 12. Results of D2 According to NP Length...82

Table 13. Exact Match Results for D2 ..83

Table 14. Ratios of Mistakes in D2 According to Reasons We Observed 83

Table 15. F-Measure Values for D1 and D2 According to Correctness of Main

NPs ..84

Table 16. Results of D3 According to NP Length...85

Table 17. Exact Match Results for D3 ..85

Table 18. Ratios of Mistakes in D3 According to Reasons We Observed 86

xiii

List of Abbreviations

SOV Subject object verb

POS Part of speech tag

NP Noun Phrase

VP Verb Phrase

MP Morphological Parse

SVM Support Vector Machine

FSM Finite State Machine

IR Information Retrieval

NLP Natural Language Processing

TBL Transformation Based Learning

PCFG Probabilistic Context Free Grammar

CDG Constraint Dependency Grammar

1

Chapter 1

Introduction

The amount of digital resources increases every day and people can reach them

easily via internet. Today, many people use news portals and read articles via

Internet, instead of buying news papers. In addition, by the development of

information retrieval (IR) technologies, people obtain information about almost

anything via web sites like Wikipedia. By the developments in mobile

technologies, people are also able to read books with their mobile devices.

Furthermore, e-mails, chat programs play an important role for the

communication among people.

Dealing with so many digital resources brings new problems, too. New

solutions are required to handle these problems. For example, when people use a

news portal, they want to read the news that they are interested, not the

irrelevant ones. However, In IR technologies, finding related information

becomes harder because of huge amount of resources. Detection of the

information that the user really is looking for requires more complex operations.

Many researchers have been working on different natural language

processing (NLP) tasks in order to efficiently process the digital resources easily

for decades. Categorization, summarization, machine translation, information

extraction, etc. are only a few of the topics that researchers work on. Since most

of the resources are texts which are written in many different natural languages,

understanding the meaning and having morphological analysis of texts are

crucial for deeper analysis and performing further NLP tasks on them.

2

Most of the researchers made their studies based on a specific natural

language since every natural language has many distinctive features. Most of the

studies in the literature are based on commonly spoken languages such as

English. On the other hand, a lot of studies have to be done for the languages

which have relatively small amount of speakers. Turkish is one of these

languages that require more research. In the literature, there are studies about

morphological disambiguation (Daybelge and Cicekli, 2007; Oflazer and Tur,

1997), keyword extraction (Ozdemir and Cicekli, 2009), automatic text

summarization (Kutlu et al. 2010; Altan, 2004) and sentence parsing (Istek,

2006; Oflazer, 2003) for Turkish. However, to the best of our knowledge, there

is no previous study for Noun Phrase Chunking for Turkish. Therefore, in this

thesis, we propose a Noun Phrase Chunker system which uses a dependency

parser for Turkish.

Noun phrase chunking is a subset of shallow parsing (or text chunking).

Shallow parsing consists of dividing sentences into non-overlapping phrases in

such a way that syntactically related words are grouped in the same phrase. It

can be considered as an intermediate step for full parsing. Each phrase has a

name such as noun phrase (NP), verb phrase (VP), etc.

There are many motivations for shallow parsing. By an intuition, when we

read a sentence, we read it chunk by chunk (Abney, 1991). In addition, as it is

discussed in (Hammerton et al. 2002), some natural language tasks do not need

full parsing. Furthermore, full parsing often provides too much information and

sometimes does not provide enough information. For example, finding noun

phrases and verb phrases may be enough for IR technologies. For question-

answering, information extraction, text mining and automatic summarization,

phrases that give us information about time, places, objects, etc. are more

significant than the complete analysis of a sentence.

In this thesis, we concentrate on noun phrase chunking rather than handling

all chunk types. As discussed in (Kuang-hua Chen et al., 1994), knowing noun

phrases of a text makes us to understand the text to some extent. Therefore,

3

finding noun phrases is a significant step for further operations. In addition,

being lack of reliable human tagged datasets for Turkish leaded us to

concentrate only on noun phrases.

In this thesis, we propose a noun phrase chunker system for Turkish that

consists of a morphological disambiguator and a dependency parser that uses

hand-crafted constraining. The system takes a Turkish text as an input. The

morphological analyses of words in the text are obtained by using

SupervisedTagger tool (Daybelge and Cicekli, 2007). In order to find the correct

morphological parse (MP) of the word, we propose a novel approach for

morphological disambiguation for Turkish which is a hybrid system that

combines statistical information and hand-crafted grammatical rules and

transformation based learning rules. After disambiguation of the words, we use a

dependency parser which uses hand-crafted rules in order to determine noun

phrases. The dependency parser creates links between sentence components to

represent the relationships between them. After creating links, we obtain noun

phrases by processing them. The dependency parser we propose can be easily

converted to a shallow parser that includes all types of phrases because of its

generic structure.

1.1 Contribution

The contributions of this thesis are listed below:

- We propose a novel approach for morphological disambiguation for

Turkish. According to our evaluation results, it gives promising results.

- The lack of reliable human tagged datasets is a significant problem for

NLP studies about Turkish. We constructed a reliable manually tagged

dataset which contains correct morphological analysis of 25098 words.

The dataset can be used for researchers who want to work on Turkish in

future.

4

- We used a dependency parser for noun phrase chunking of Turkish texts.

This is the first noun phrase chunker system for Turkish which can be

used in various NLP tasks such as summarization systems, machine

translation, etc. The system we propose gives promising results

according to our tests.

- In dependency parser, we use handcrafted rules which use constraints

that allow rule designers to define specific situations. We defined many

generic functions to be used in the creation of constraints. The system we

propose can be easily converted into another shallow parsing system

containing all phrase types by changing the rule set. The rule structure

allows us to use semantic information and morphological information

together.

- We have implemented a noun phrase tagger tool for constructing ground

truth datasets. The tool eases the tagging process and will be helpful for

overcoming being lack of dataset problem of Turkish in future. In

addition, it can be used for other phrases.

- By using our noun phrase tagger tool, we have manually tagged noun

phrases in three datasets which have different properties. The total

number of main noun phrases in these datasets is 3941.

1.2 Linguistic background

In this section, some linguistics terminologies which are used in the rest of the

thesis are given. Morphology is the study of the way that words are built up

from morphemes. A word is the minimal free form in a language and a

morpheme is often defined as minimal meaning-bearing unit in a language. For

example, the word school consists of a single morpheme and the word schools

consists of two morphemes: “school” and “–s”.

5

The morphemes can be divided into two categories: stems and affixes. The

stem is the main morpheme of the word and contains the main meaning of the

word. Affixes are attached to the stem in order to add additional meaning. The

new meaning after attaching an affix is still related with the stem. In the

example given above, school is the stem and –s is the affix which gives plural

meaning to the word.

Attaching affixes to the words cause inflection or derivation. The difference

between inflection and derivation is that the Part-Of-Speech (POS) tag of the

new word remains the same with old one after inflection whereas POS tag can

change after derivation. POS tag shows the main class of the word such as noun,

verb, etc.

Words can have more than one affix. The number of affixes to be attached

does not exceed 4 or 5 in English. However, in agglutinative languages, such as

Turkish, 9 or more affixes can be attached to a word. In agglutinative languages,

each affix represents a morpheme and affixes are stringed together. The

restrictions for orderings of the morphemes are called Morphotactics.

1.3 Overview of the Thesis

The organization of the thesis is as follows:

- Chapter 2 summarizes previous studies on noun phrase chunking,

shallow parsing and dependency parsers.

- Chapter 3 gives background information about Turkish and the scope of

the study.

- Chapter 4 gives an overview of the system and explains the relationship

between its components.

6

- Chapter 5 explains the morphological disambiguation system that we

propose. The related work and test results for morphological

disambiguation are also discussed in this chapter.

- Chapter 6 explains the dependency parser in detail. The link and rule

structures and algorithms for constructing links and extracting noun

phrases by using links are given in this chapter.

- Chapter 7 explains the experimental environment and discusses the

evaluation results of the system.

- Chapter 8 gives the conclusion together with the future work for

development of the noun phrase chunker system.

7

Chapter 2

Related Work

In this chapter, we explain previous studies on noun phrase chunkers, shallow

parsers and dependency parsers.

2.1 Shallow Parsers

Shallow parsing has been attracting the researchers for decades. Church (1988)

proposes a POS tagger and NP extractor using a stochastic model. However,

noun phrases which are connected with conjunctions (i.e. and, or) are not within

the scope of that study. That is to say, the scope of the study consisted of simple

NPs.

Bourigault (1992) presents LEXTER which is a tool for extracting

terminologies in French texts. LEXTER uses a cascaded approach. First,

maximal length NP is extracted by using some heuristics. Then terminologies

which are embedded to NPs are parsed by using grammar rules. An expert

evaluates the results of LEXTER and reports that the recall is 95%. But the

precision is not given. It is to be mentioned that Bourigault‟s goal is extracting

terminological parses which is simpler than NP chunking.

Voutilainen (1993) presents NPTool for finding maximal length NP. The

tool uses a lexicon combined with a constraint grammar. Although the reported

recall is 98.5-100% and the precision is 95-98%, Chen et al. (1994) mention the

existence of some inconsistencies in the sample output given in his Appendix

8

and claim that the recall is about 85%. Ramshaw and Marcus (1995) also point

out the unreliable results and give some wrong outputs of NPTool.

Ramshaw and Marcus (1995) introduce NP chunking as a machine learning

problem. They apply transformation based learning (TBL) by using lexical

information. They use Wall Street Journal texts in Penn Treebank, F-Measure

that they obtained in their evaluation is 92.0. However, the target NPs to be

found are not recursively embedded (nested) NPs. That is to say, NPs in dataset

are only base NPs.

Several groups worked with the same dataset and the same NP definition of

Ramshaw and Marcus‟s pioneering study (1995). Argamon et al. (1998) use

memory based sequence learning in order to determine NPs and VPs without

using any lexical information (F-Measure = 91.6). Cardie and Pierce (1998)

learn POS tag sequences that form a complete NP to find NPs that are not found

in training set (F-Measure = 90.9). Veenstra (1998) uses a cascaded chunking

that uses lexical information (F-Measure = 91.6). Daelemans et al. (1999) use

memory based system and evaluates the system with a different dataset and

reports a good performance. Tjong Kim Sang and Veenstra (1999) use a

memory based system (F-Measure = 92.37), XTAG Research Group (1998)

applies tree-adjoining grammar (F-Measure = 92.4) and Munoz et al. (1999) use

a network of linear units for recognizing NP and SV phrases (F-Measure =

92.8). Although these three systems have better performance than Ramshaw and

Marcus‟s study (1995), they are not feasible for implementing in an active

learning framework, or are significantly most costly (Ngai and Yarowsky,2000).

Wojciech Skut and Brants (1998) propose a stochastic model for finding

more complex phrases. NP, PP, AP and adverbials are in the scope and they try

to recognize internal structure of them.

Most of the studies are performed on English texts. However, there are also

some studies for other languages, too. Sobha et al. (2006) uses TBL for Tamil

texts and obtain precision value of 97.4. Pattabhi et al. (2007) applies TBL for

9

three Indian languages: Hindi (73.80), Bengali (65.28), and Telugu (50.38)

where accuracies are given in parenthesizes. Ravi Sastry et al. (2007) uses

dynamic programming algorithm for finding best possible chunk sequences for

the same three Indian languages: Hindi (F-Measure = 78.35), Bengali (F-

Measure = 67.52), Telugu (F-Measure = 68.32). It is to be noted that, in their

paper, there is an inconsistency with the result of Hindi language. In the abstract

part of the paper, the F-Measure value is given as 69.98.

To the best of our knowledge, there is no previous study about shallow

parsing or noun phrase chunking of Turkish texts.

2.2 Dependency Parsers

We use a dependency parser for noun phrase chunking. Therefore, looking at

previous studies about dependency parsers is necessary. Dependency parsing is

a technique that researchers are working on since 1960s for syntactic parsing. A

theoretical discussion about dependency grammars can be found in (Nivre,

2005). The previous studies about dependency parsing can be categorized into

two groups: Grammar-Driven and Data-Driven.

In grammar-driven approaches, very early studies use formalization

technique which is very similar to context free grammars (Hays (1964);

Gaifman (1965)). Another common technique is based on elimination of

representations which are invalid according to constraints. That is to say, a

dependency representation must satisfy all constraints in order to be accepted.

Karlson (1990), Maruyama (1990), Harper and Helzerman (1995) Jarvinen and

Tapanainen (1998) are some studies that use constraint grammars. Menzel and

Schroder (1998) extend the framework of Maruyama (1990) by assigning a

grade (between 0.0 and 1.0) to each constraint for representing the power of the

constraint where 0.0 is the most powerful. Schroder (2002) also uses weighted

constraint dependency grammar (WCDG) and applies a grading technique for

10

deciding the best analysis. The analysis having minimum total grade is

considered as the best analysis.

Although link grammars are not considered as a dependency parser by its

first developers (Sleator and Temperley, 1991), they can be classified under the

dependency parsers because of having similar representations. Sleator and

Temperley (1991, 1993) used dynamic programming algorithm with

memorization in their link grammar.

The second approach for dependency parsers is data-driven approach.

Carroll and Charniak (1992) use a probabilistic context free grammar (PCFG)

model and test their system with an artificially created corpus. Eisner (1999a,

1999b) defines many several probabilistic approaches and tests them using

supervised learning with Wall Street Journal section of Penn TreeBank. Collins

et al. (1999) apply generative probabilistic models using Prague Dependency

Tree as training data. Wang and Harper (2004) apply stochastic constraint

dependency grammar (CDG) parser which is an extension of the CDG model

with a generative probabilistic approach. Kudo and Matsumoto (2000, 2002)

propose the deterministic discriminative approach which uses support vector

machines (SVM) for Japanese dependency analysis.

A more detailed discussion about dependency parsers can be found in

(Nivre, 2005) There are also studies for dependency parsing of Turkish

sentences. Istek (2006) applies link grammar for parsing Turkish sentences.

Oflazer (2003) uses extended finite-state approach. Oflazer uses violable

constraints in order to prevent robustness problem and uses total link length for

ranking the alternative analyses in case of ambiguity.

Our study is in the category of constraint dependency grammars. We

manually define rules that are used by the dependency parser. The rules act as

finite state machine and when all constraints of a rule are satisfied, we construct

a link for representing relationship between corresponding sentence component.

Therefore, our study can be considered as an FSM approach. We connect links

11

between sentence components called Token which are same with inflectional

groups in (Oflazer, 2003). We also use a grading mechanism for eliminating

alternative analyses. Therefore, our study can be considered as a weighted

constraint dependency grammar.

12

Chapter 3

Turkish Morphology and Noun

Phrase Structures

In this chapter, some important features of Turkish syntax and morphology are

explained in order to get familiar with the natural language that we work on.

Later on, noun phrase structures in Turkish are discussed in detail and the

boundaries of our study are given.

3.1 Distinctive Features of Turkish

Turkish is a member of the Altaic branch of the Ural-Altaic language family. It

has many distinctive features than generally known languages (i.e. English). The

features that are related to our study are listed as follows:

- Turkish is an agglutinative language which generates words by joining

affixes together and each affix represents one unit of meaning, such as

“single”, ”future tense”, etc. This agglutinative property of Turkish loads

many meanings to a single Turkish word. For example, the word:

“uygarlaĢtıramadıklarımızdanmıĢsınızcasına” means “as if you are

among those whom we could not civilize” and this single Turkish word

has the semantic function of 11 words in English. In addition, the

number of word forms that can be generated from a nominal or verbal

root is theoretically infinite (Eryiğit and Oflazer, 2006). This feature

makes morphological analysis of words harder in Turkish. Furthermore,

suffixes can increase ambiguity by generating totally different words.

13

For example, when we add “m” suffix to word “ada” (island) we obtain

word adam which means “my island” and also “man”.

- Basic word order of Turkish sentences is Subject-Object-Verb (SOV).

However, Turkish grammar allows all constituent orders. Therefore, all 6

combinations of the order can be used. Changing order only changes the

stress, not the meaning. For example, the sentence `I went to school` can

be written as follows:

1. Ben okula gittim.

(I) (to school) (went)

2. Okula ben gittim.

(to school) (I) (went)

3. Gittim ben okula.

(went) (I) (to school)

4. Ben gittim okula.

(I) (went) (to school)

5. Okula gittim ben.

(to school) (went) (I)

6. Gittim okula ben.

(went) (to school) (I)

Although constituents at the sentence level can freely change, the parts of

the constituents (such as noun phrases) do not change freely. For

example, while Kırmızı elma (red apple) is legal, elma kırmızı (apple red)

is not.

- Turkish has no grammatical gender. Nominal nouns do not have a gender

as in German or Arabic, etc. For example, “die blume” (the flowers) and

14

“der tabelle” (the table) in German. “Die” is a determiner used for single

female nouns and “der” is used for male nouns in German.

- In Turkish, the vowels of suffixes should have an agreement with the last

vowel of that word. In the following example, suffix that gives the

meaning of “my” is attached to different words and at each of them the

vowel of the suffix is changed according to the last vowel of the word.

The suffix is separated with „+‟ character from the word.

o Kalem+im (My pencil)

o Okul+um (My school)

o Müdür+üm (My director)

There are some suffixes that does not obey this rule such as “-yor”.

3.2 Turkish Morphology and Morphotactics

Morphemes can be categorized as derivational morphemes and inflectional

morphemes. Derivational morphemes are used to generate new words from

another word with new meanings while inflectional morphemes are used to

specify grammatical information (e.g. number, case, etc.). Derivational

morphemes can change POS tag of the word while inflectional morphemes

cannot. In the following subsections, we will explain the morphotactics for both

morpheme groups in detail.

3.2.1 Inflectional Morphotactics

In this section, we give details inflectional morphotactics about nouns, and

pronouns. Since the scope of our study is only noun phrases, morphotactics for

verbal inflectional are not discussed.

15

Inflectional Morphotactics of Nouns

Nouns can take singular-plural suffixes, possessive markers and case markers in

the order. Now let‟s see each suffix with an example. The sample root is okul

(school) in the following examples and we add suffixes to this root word. The

corresponding morpheme for that suffix is written in bold. The suffixes are also

shown by separating them with „+‟ character, if needed.

1. Plural Suffixes: A noun can take a plural suffix as a first

inflection suffix. If it does not take a plural suffix, it means that

the word is singular.

a. Singular: okul (school)

Okul+Noun+A3sg+Pnon+Nom

b. Plural: okul+lar (schools)

Okul+Noun+A3pl+Pnon+Nom

2. Possessive Marker: The second inflectional morpheme is a

possessive marker. A noun may not take a possessive marker or

its possessive marker can be one of the six possessive markers.

a. No Possessive marker: okul (school)

Okul+Noun+A3sg+Pnon+Nom

b. First Person-Singular: okul+um (my school)

Okul+Noun+A3sg+P1sg+Nom

c. Second Person-Singular: okul+un (your school)

Okul+Noun+A3sg+P2sg+Nom

d. Third Person-Singular: okul+u (his/her school)

Okul+Noun+A3sg+P3sg+Nom

16

e. First Person-Plural: okul+umuz (our school)

Okul+Noun+A3sg+P1pl+Nom

f. Second Person-Plural: okul+unuz (your school)

Okul+Noun+A3sg+P2pl+Nom

g. Third Person-Plural: okul+ları (their school)

Okul+Noun+A3sg+P3pl+Nom

3. Case Marker: Last inflectional morpheme is one of case markers

which have functions of prepositions in English. There are seven

case markers.

a. Nominative: okul (school)

Okul+Noun+A3sg+Pnon+Nom

b. Locative: okul+da (at the school)

Okul+Noun+A3sg+Pnon+Loc

c. Dative: okul+a (to the school)

Okul+Noun+A3sg+Pnon+Dat

d. Ablative: okul+dan (from the school)

Okul+Noun+A3sg+Pnon+Abl

e. Accusative: okul+u (the school)

Okul+Noun+A3sg+Pnon+Acc

f. Instrumental: okul+la (with the school)

Okul+Noun+A3sg+Pnon+Ins

17

g. Genitive: okul+un (the school‟s)

Okul+Noun+A3sg+Pnon+Gen

Inflectional Morphotactics of Pronouns

The morphemes for pronouns are more complicated than nouns. First and

second person pronouns do not take singular-plural suffixes since the stem gives

us that information, while third-person pronouns can take singular-plural

suffixes. In addition, pronouns can take possessive markers and case markers in

the order. However, a pronoun cannot have both of them together. There are two

types of pronouns: Personal and demonstrative pronouns.

Personal Pronouns: A personal pronoun refers to a specific person or a thing. A

list of personal pronouns is given below. Since the order of morphemes and

suffixes are same as in nouns, we will give only singular-plural pronouns.

- Ben (I) : Ben+Pron+A1sg+Pnon+Nom

- Sen (You) : Sen+Pron+A2sg+Pnon+Nom

- O (He/She) : O+Pron+A3sg+Pnon+Nom

- Biz (We) : Biz+Pron+A1pl+Pnon+Nom

- Siz (You) : Ben+Pron+A2pl+Pnon+Nom

- O+nlar (They) : Ben+Pron+A3pl+Pnon+Nom

Demonstrative Pronouns: A demonstrative pronoun refers to a person or a thing

by considering its distance in terms of time and space. A list of nominative

demonstrative pronouns is given below.

- Bu (This) : Bu+Pron+A3sg+Pnon+Nom

- ġu (That) : ġu+Pron+A3sg+Pnon+Nom

- O(That): O+Pron+A3sg+Pnon+Nom

18

- Bu+nlar (These) : Bu+Pron+A3pl+Pnon+Nom

- ġu+nlar (Those) : ġu+Pron+A3pl+Pnon+Nom

We use bu (this) and bunlar (these) for the things that are near in terms of

time or space and we use şu (that) and şunlar (those) for the further ones. We

use O pronoun for the furthest objects. Single demonstrative pronouns can also

be used as an adjective. Some examples are as follows: Bu adam (This man), o

gemi (that ship).

3.2.2 Derivational Morphotactics

In Turkish, a word can take derivational suffixes that can change the POS tag of

the word. Since there are many types of derivational suffixes we give only

examples for some of them. A derivation morpheme in a morphological parse is

represented as “̂ DB+POS+MorphName” where POS is the part of speech tag of

the word after derivation and MorphName is the name of the derivational

morpheme. The derivational suffixes are shown by separating them with „+‟

character when needed.

- A noun can be derived into a verb. For example, let‟s consider the

following sentence: “Türkiye güzel bir ülkedir” (Turkey is a beautiful

country). The word ülkedir (is a country) is a verb which is derived from

the noun ülke (country) by taking -dir suffix. The morphemes and

suffixes of the word ülkedir are represented as follows.

Ülke+dir:

Ülke+Noun+A3sg+Pnon+Nom^DB+Verb+Zero+Pres+Cop+A3sg

- Every adjective in Turkish can be derived into a noun with a null

morpheme. For example, let‟s consider the following sentence:

“Galeridekilerin en ucuzunu aldı.” (He bought the cheapest one in the

gallery.) The word ucuzunu (the cheap one) is a noun having accusative

19

case marker which is derived from the adjective ucuz (cheap). The

morphemes of the word ucuzunu are represented as follows:

Ucuz+u+nu: Ucuz+Adj^DB+Noun+Zero+A3sg+P3sg+Acc

- A number can also be derived into a noun with a null morpheme. For

example, let‟s consider the following sentence: “30 Nisan 1986‟da

doğdu.” (He was born in 30th April 1986.) The word 1986’da (in 1986) is

a noun having locative case marker is derived from the word 1986 which

is a cardinal number. The morphemes of the word 1986’da are

represented as follows:

1986+da: 1986+Num+Card^DB+Noun+Zero+A3sg+Pnon+Loc

- A verb can be derived into a noun. For example, let‟s consider the

following sentence: “Okumayı seviyor” (He loves reading). The word

Okumayı (reading) is a noun having accusative case marker which is

derived from the verb oku (read) using -ma derivation suffix. The

morphemes of the word okumayı are represented as follows:

Oku+ma+yı: Oku+Verb+Pos^DB+Noun+Inf2+A3sg+Pnon+Acc

- Some derivational suffixes do not change the POS tag of the word. For

example, the word kitapçıdan (from the book store) is a noun which is

derived from the noun kitap (book) using -çı derivational morpheme.

The morphemes of the word are represented as follows:

Kitap+çı+dan:

Kitap+Noun+A3sg+Pnon+Nom^DB+Noun+Agt+A3sg+Pnon+Abl

- The number of derivational suffixes that a word can have can be more

than one. For example, in the noun phrase kitapçıdaki adam (the man in

the book store), the word kitapçıdaki (the one in the book store) is an

adjective which is derived from the word kitapçıda (in the book store)

20

which is also derived from the noun kitap (book). The suffixes and

morphemes of the word are represented as follows:

Kitap+çı+da+ki:

Kitap+Noun+A3sg+Pnon+Nom^DB+Noun+Agt+A3sg+Pnon+Loc^DB

+Adj+Rel

3.3 Noun Phrase Structure in Turkish

Noun phrases are phrases that have pronoun or noun head word modified with a

group of modifiers. Turkish is predominantly head-final, that is to say, modifiers

precede the head. The phrases in which head precedes modifiers is out of the

scope of this study. According to modifiers and number of head words, we can

list the noun phrases as follows:

- A single noun, pronoun or proper noun can be a noun phrase without any

modifier. For example, let‟s consider the following sentence: “Ben

Ankara‟ya otobüsle gittim” (I went to Ankara by bus.) The noun phrases

are as follows: Ben (I) which is a pronoun, Ankara’ya (to Ankara) which

is a proper noun and otobüsle (by bus) which is a noun.

- Modifiers can be adjectives when the head word is a noun.

red book:

Kırmızı kitap

Kırmızı+Adj kitap+Noun+A3sg+Pnon+Nom

(Red) (book)

- Modifiers can be a number showing quantity of the head. In Turkish, the

noun does not have to be plural when the number is bigger than one.

21

Three books:

Üç kitap

Üç+Num+Card kitap+Noun+A3sg+Pnon+Nom

(Three) (book)

- The modifier can be also a pronoun with a genitive case marker. In this

case, there should be an agreement between the possessive markers of

the modifier and head word.

My book:

Benim kitabım

(Ben+Pron+A3sg+P1sg+Gen) (kitap+Noun+A3sg+P1sg+Nom)

(My) (book+P1sg)

Your book:

Senin kitabın

(Sen+Pron+A3sg+P2sg+Gen) (kitap+Noun+A3sg+P2sg+Nom)

(Your) (book+P2sg)

his book:

Onun kitabı

(O+Pron+A3sg+P3sg+Gen) (kitap+Noun+A3sg+P3sg+Nom)

His/her (book+P3sg)

An incorrect example having no agreement on possessive markers is

given below:

Benim kitabın

(Ben+Pron+A3sg+P1sg+Gen) (kitap+Noun+A3sg+P2sg+Nom)

(My) (Book+P2sg)

22

- The modifier can be a noun with a genitive case marker. In this case, the

head word should be a noun with third-person possessive marker.

friend’s book:

ArkadaĢın kitabı

(ArkadaĢ+Noun+A3sg+Pnon+Gen) (kitap+Noun+A3sg+P3sg+Nom)

(Friend‟s) (book+P3sg)

- When the modifier is a noun, it does not have to be in genitive form. The

modifier can also have nominative case marker and the head word can be

a noun in any person possessive marker except non-person possessive

marker (Pnon).

School book:

Okul kitabı

(Okul+Noun+A3sg+Pnon+Nom) (kitap+Noun+A3sg+P3sg+Nom)

(School) (book+P3sg)

My school book:

Okul kitabım

(Okul+Noun+A3sg+Pnon+Nom) (kitap+Noun+A3sg+P1sg+Nom)

(School) (my book)

Your school book:

Okul kitabın

(Okul+Noun+A3sg+Pnon+Nom) (kitab+Noun+A3sg+P2sg+Nom)

(School) (your book)

- Modifiers can give information about what the head word is made of. In

this type of NPs, modifier is a nominative noun with certain meanings

and the head word is a noun with any possessive and case marker.

23

Gold watch:

Altın saat

(altın+Noun+A3sg+Pnon+Nom) (saat+Noun+A3sg+Pnon+Nom)

(gold) (watch)

Wooden door:

Tahta kapı

(tahta+Noun+A3sg+Pnon+Nom) (kapı+Noun+A3sg+Pnon+Nom)

(Wooden) (door)

- NPs can consist of more than one noun phrases. They are called as

nested NP. A head can be modified with more than one modifiers or a

modifier can also be modified by another word.

The friend of the man’s son:

Adamın oğlunun arkadaĢı

Morphological Parses:

o Adamın: Adam+Noun+A3sg+Pnon+Gen (man‟s)

o Oğlunun: Oğul+Noun+A3sg+P3sg+Gen (his son‟s)

o ArkadaĢı: ArkadaĢ+Noun+A3sg+P3sg+Nom (his friend)

In this example, Adamın modifies oğlunun while oğlunun modifies

arkadaşı. There is a sub-NP which is Adamın oğlu (the man’s son) in

main NP. Another sample nested NP is as follows:

Ten good students:

On iyi öğrenci

On+Num+Card iyi+Adj öğrenci+Noun+A3sg+Pnon+Nom

(Ten) (good) (student)

24

In the second example, the head word öğrenci has two modifiers which

are on and iyi. So, iyi öğrenci (good student) is a sub-NP of the main NP.

But we do not consider on öğrenci (ten student) as a sub-NP since it will

destroy the linearity of the NP.

- NPs can contain more than one NP and each are connected with a

conjunction words like and, or, etc. They are called as conjunctive NP.

An example is as follows:

Ali and Veli went to school:

Ali ve Veli okula gitti.

 (Ali) (and) (Veli) (to school) (went)

In this example, since both Ali and Veli are subjects of the sentence, Ali

ve Veli can be considered as one whole NP. Ali and Veli are both sub-

NPs of the main NP. Noun phrases can be connected with “le/la” suffix

which is an instrumental case marker suffix. Same sentence can be

written as follows: “Ali‟yle Veli okula gitti.” In this sentence the word Ali’yle

is a proper noun having instrumental case marker and connected to the word

Veli. Another example is as follows:

Red book or blue pencil:

Kırmızı kitap veya mavi kalem

(Red) (book) (or) (blue) (pencil)

In this example, there are two noun phrases which are kırmızı kitap (red

book) and mavi kalem (blue pencil) and they are connected each other

with a veya (or) conjuction.

Modifiers can also be connected with conjunctions and modify the same head.

An example is as follows:

25

Red or blue pencil:

Kırmızı veya mavi kalem

(Red) (or) (blue) (pencil)

In this example, the words Kırmızı and mavi are connected with veya

conjunction and modify the word pencil (kalem).

3.3 Scope of the Study

In this study, our aim is to find NPs which will be useful in information

extraction studies and provide a better platform for fully parsing of sentences.

All NP types mentioned above are in the scope of this study. However, in order

to make fewer mistakes in this step, we do not want to work on sentence

structure. Therefore, we ignored all noun phrases having a relative clause. In

Turkish, there are no special words used for relative clause structures. But we

can recognize them with words derived from verbs. Therefore, in our study,

noun phrases containing a verb POS is ignored. For example, the following NP

is out of the study:

Man who came from Ankara

Ankara‟dan gelen adam

Ankara+Noun+Prop+A3sg+Pnon+Abl gel+Verb^DB+Adj adam+Noun

(From Ankara) (who came) (man)

The word gelen is an adjective which is derived from verb gel (come) and the

verb is related to previous word Ankara’dan.

The words derived from a verb but are not related to sentence structure is

exception of this concern. For example, in the following example, the word

yönetici (manager) is a noun derived from the verb yönet (manage). Since it is

26

not directly related with the sentence structure, this NP is in the scope of the

study.

Company’s manager

ġirketin yöneticisi

ġirket+Noun+A3sg+Pnon+Gen yönet+Verb...^DB+Adj...^ DB+Noun+Zero+A3sg+P3sg+Nom

(Company‟s) (manager)

In addition to noun phrases that are mentioned above, we also added the

following phrases into the scope of the study.

- Person Name: A person can have more than one name or in a text,

his/her name can be given with surname. Since all of those names belong

to one person, finding person names is one of our aims. An example is

given below. The noun phrases in English sentences are underlined.

Mucahid Kutlu started to write his thesis:

Mucahid Kutlu tezini yazmaya baĢladı.

In addition, person names can contain the title or the word modifying the

person. In the following sentences, two examples are given. In second

example, Teknik direktör (Technique director) modifies the person name

Ertuğrul Sağlam.

Technique director Ertuğrul Sağlam went to Ankara

Teknik direktör Ertuğrul Sağlam Ankara‟ya gitti.

NP NP

NP

NP

27

- Institution Name: Institutions can have long names and we consider all

words of an institution name as an NP which can also have NPs in it. An

example is as follows:

Where is the Ankara City Health Center?

Ankara Ġl Sağlık Merkezi nerede?

- Date: Expressions of dates and times are also in the scope of this study

although generally they are not acting as a noun phrase in a sentence. An

example is given below.

on Thursday 20 January 2008

20 Ocak 2008 PerĢembe günü

- Noun Phrases with Quotation Marks: Quotation marks can be used for

giving stress to some words. They can also be used in noun phrases, too.

There are some NP samples below. In the first example, the NP is a

single word, Patron (The boss) which is surrounded by quotation marks.

In second example, the NP is “Dur” ihtarını (the “stop” warning) where

the word Dur (stop) modifies the word ihtarını(warning)

“The boss” cannot manage the company well.

“Patron” Ģirketi iyi yönetemiyor.

The driver didn’t hear the “Stop”warning.

Sürücü “Dur” ihtarını duymadı.

NP

NP

NP NP

NP

NP

28

A noun phrase with more than one word can also be between two

quotation marks. An example is given below. The main NP has a sub-NP

which is “Robin Hood”.

The boy watched the movie of “Robin Hood”.

Çocuk “Robin Hood” filmini izledi.

However, it is to be mentioned that words between quotation marks and

having no relationship does not form an NP. In the following sentence,

“Burada bekleme” (“Don‟t wait here”) is not an NP since Burada

bekleme is not an NP.

The man said “Don’t wait here”.

Adam “Burada bekleme” dedi.

As we mentioned, Turkish is an agglutinative language and with the

derivational suffixes, meaning and POS tag of the words can change with

derivational suffixes. For this reason, we are going to construct token-based

noun phrases. We split the word from the derivational boundaries and create a

token for each derivation with its POS tag. A tokenization is given in the

following example. The derivational suffixes are shown in bold.

Kitapçıdaki (the one in the book store)

Kitap+çı+da+ki

kitap+Noun+A3sg+Pnon+Nom^DB+Noun+Agt+A3sg+Pnon+Loc^DB+Adj+Rel

Token1 Token2 Token3

NP

NP

29

In this example, the word has three tokens. The last token is called head-

token of the word. An example NP which does not end with a head-token is

given in the following sentence.

Ceza mahkemelerince adam suçlu bulundu. (Man is found guilty by the Penalty

Courts).

mahkemelerince (by the Courts) is an adverb which is derived from a noun

mahkemeleri (courts) that is connected to the previous word ceza (Penalty).

Therefore, we have to find the NP of ceza mahkemeleri (the Penalty Courts). In

Turkish, modifiers should be a head-token. However, the modified token does

not have to be, as seen in the example.

30

Chapter 4

System Architecture

In this chapter, we explain our system architecture. We propose a rule based

dependency parser for extracting noun phrases in Turkish texts. General flow of

the system can be seen in Figure 1.

Our system is composed of three main components which are

Morphological Analyzer, Morphological Disambiguator and Dependency Parser

which uses a set of hand-crafted constraining rules. As we get a Turkish text to

extract its noun phrases, we first morphologically analyze the given Turkish

text. In the morphological analysis, SupervisedTagger software (Daybelge and

Cicekli, 2007) which uses a PC-Kimmo based morphological analyzer (Istek

and Cicekli, 2007) is used. SupervisedTagger is consisted of a morphological

analyzer, a collocation recognizer and a rule-based morphological

disambiguation tool. We have updated some parts of SupervisedTagger. First,

we corrected some wrong analysis of morphological analyzer that we observed.

We also extended the morphological analyzer in SupervisedTagger using the

official dictionary of the Turkish Language Council which contains nearly

33000 root words. Although this extension caused more ambiguity, it decreased

number of unknown words that are morphologically analyzed with some

heuristics. In addition, the morphological parsing capability of

SupervisedTagger was improved by using an updated unknown word recognizer

and new heuristics. Heuristics we added are as follows.

31

Figure 1. General Flow of the System.

- If a word begins with a capital letter and it is not the first word of the

sentence, it is assumed that it has also a proper noun morphological parse

even though it is not in the proper noun list.

- The words which are not in the dictionary and not correct according to

the Turkish grammatical rules are assumed to be foreign words that have

a proper noun morphological parse.

By enlarging dictionary and adding new heuristics, the average number of

morphological parse per word increased from 1.8 to 2.0 which made

morphological disambiguation task more difficult. After the morphological

Turkish

Morphological

Analyzer

Turkish

Morphological

Disambiguator

Rule Set for

Constructing

Links

Dependency Parser

Ambiguous Analysis of the Text

Disambiguated Analysis of the Text

Noun Phrases

Turkish Text

32

analysis of words, the collocation recognizer of SupervisedTagger was also used

to determine the collocations.

SupervisedTagger returns ambiguous results for most of the word. For

example, the word yakın has 6 morphological parses which are:

- yakı+Noun+A3sg+P2sg+Nom (your plaster)

- yakın+Noun+A3sg+Pnon+Nom (near)

- yakın+Verb+Pos+Imp+A2sg (moan)

- yak+Verb+Pos+Imp+A2pl (burn)

- yakın+Adverb (near)

- yakın+Adj (near)

It is hard to perform correct calculations with ambiguous results since

finding semantic meaning of the words and their grammatical functions in the

sentence is crucial for our dependency parser. Therefore, we apply a

morphological disambiguation technique that we propose in this study. We use a

hybrid method which combines statistical information with hand-crafted

grammar rules and transformation based learned rules. Five different steps are

applied for disambiguation. In the first step, the most likely tags of words are

selected. In the second step, we use hand crafted grammar rules to constrain

possible parses or select the correct parse if we can. Next, the most likely

morphological parses are selected according to the suffixes of the words that are

unseen in the training corpus and still ambiguous. Then, we use transformation

based rules that are learned by a variation of Brill tagger. If the word is still

ambiguous, we use some heuristics for the disambiguation that strictly chooses a

morphological parse. Detailed information and discussion of the morphological

disambiguation is given in Chapter 5.

 As we disambiguated the analysis results, we used hand-crafted rule based

dependency parser to extract the noun phrases. The dependency parser

constructs modifier links between tokens. The links have two important features

which are type of the link and its score. The type of the link gives the

33

information about modification type; whether the modifier gives information

about quantity of the modified token or its quality, etc. Score of the link shows

the power of the link which is used in selection of rules when there is an

ambiguity. That is to say, scores of the links represents how much it is the

correct link when it is compared to others. Detailed information about link

structures is given in Section 6.1.

Dependency parser connects links according to a rule set which consists of

rules that determine the restrictions for constructing links between tokens. The

rules also define scores and type of the link to be connected and put extra

constraints when needed. Putting restrictions only to tokens that will be

connected is not enough for handling complex structures since we need more

information in analysis of a text, such as context or background information.

Therefore, in our rule structure, we defined generic functions that can define

constraints which use morphological and semantic information or even sentence

structure. To the best of our knowledge, giving these type constraints to the rules

that ease the job of rule designers and allow us to handle complex structures is

the first study in the literature. Detailed information about rule structures is

given in Section 6.2 and algorithm for constructing links is explained in Section

6.3. As we construct links between tokens, we extract noun phrases accord ing to

the links. Detailed information about algorithm for extracting noun phrases from

constructed links is given in Section 6.4.

34

Chapter 5

Morphological Disambiguation

Morphological information of words is crucial for extracting noun phrases since

we can obtain semantic information and grammatical function of the word in the

sentence by using morphological information. However, ambiguity is the main

problem of natural languages and a word can have many different meanings and

morphological analyses. Reducing ambiguity is crucial for performing easy and

correct operations on words. In this part, we propose a morphological

disambiguation technique for Turkish words which we use in our dependency

parser.

The rest of the chapter consists of three sections. Section 5.1 describes the

related work in morphological disambiguation. Section 5.2 explains the

proposed system. Section 5.3 describes the corpus and presents the performance

results of the system.

5.1 Related Work

The related works about morphological disambiguation can be divided into three

categories: statistical, rule based and hybrid which is the combination of the two

approaches. Statistical approaches select the morphological parses using a

probabilistic model that is built with the training set consisting of

unambiguously tagged texts. There are various models described in the

literature, such as, maximum entropy models (Ratnaparkhi, 1996; Toutanova

and Manning, 2000), Markov Model (Church, 1988) and hidden Markov Model

(Cutting et al, 1992). In rule based methods, hand crafted rules are applied in

35

order to eliminate some incorrect morphological parses or select correct parses

(Daybelge and Cicekli, 2007; Oflazer and Tür, 1997; Voutilainen, 1995; Oflazer

and Kuruöz, 1994). These rules can also be learned from a training set using a

transformation based (Brill, 1995) or memory based (Daelemans, 1996) learning

approaches. There are also studies that combine statistical knowledge and rule

based approaches (Leech et al., 1994; Tapanainen and Voutilainen, 1994;

Oflazer and Tür, 1997).

The disambiguation studies can also be divided according to the languages

they are applied. Levinger et al. (1995) used morpho- lexical probabilities

learned from an untagged corpus for morphological disambiguation of Hebrew

texts. Hajic and Hladká (1998) used maximum entropy modeling for Czech

which is an inflectional language. Morphological disambiguation of

agglutinative languages, such as Turkish, Hungarian, Basque, etc., is harder than

others because they have more morphological parses of words. Megyesi (1999)

has used Brill‟s POS tagger with extended lexical templates to Hungarian. Hajic

(2000) extended his work for Czech to five other languages including

Hungarian. Ezeiza et al. (1998) combined statistical and rule based

disambiguation methods for Basque. Rule based methods (Oflazer and Tür,

1997; Daybelge and Cicekli, 2007) and trigram-based statistical model (Hakkani

Tür et al., 2002) are used for the disambiguation of Turkish words. Yüret and

Türe (2006) propose a decision list induction algorithm for learning

morphological disambiguation rules for Turkish. Sak et al. (2007) apply

perception algorithm in disambiguation of Turkish Texts.

5.2 Disambiguation System

A Turkish word can have many morphological parses containing many

morphemes that give us morphological information about the word. For

example, the word çiçekçi(florist) has the following morphological parse (MP):

çiçek+Noun+A3sg+Pnon+Nom^DB+Noun +Agt+A3sg+Pnon+Nom. (1)

36

The first part gives us the stem which is çiçek(flower). Derivational

boundaries are marked with ^DB. We define the part after the stem as the whole

tag of the word. In parse, “̂ DB” shows that the word is derived from one type to

another and its meaning has changed rather than its inflection. We define the

final morphemes after the last derivation as the final tag of the word. For this

example, the whole tag is:

Noun+A3sg+Pnon+Nom^DB+Noun+Agt+ A3sg+Pnon+Nom (2)

and the final tag is “Noun+A3sg+Pnon+Nom” where the type of derivation

“Agt” is ignored. The rules that are learned by our system depend on the

morphological parses, the whole tags or the final tags of words.

The general architecture of the system is given in Figure 2. Our

disambiguation system consists of two main parts: training and disambiguation.

The training corpus is used for the generation of the tables Most Likely Tag of

Word Table (WordTbl) and Most Likely Tag of Suffix Table (SuffixTbl).

WordTbl is used to retag the corpus by our Brill tagger in order to learn rules.

WordTbl, SuffixTbl and the learned rules are used in the disambiguation

process.

5.2.1 Generation of Tables

Two tables which contain statistical information about words and suffixes are

generated using the training corpus. The first table (WordTbl) holds the

frequencies of all morphological parses of words, and the second one

(SuffixTbl) holds the frequencies of all possible morphological parses for

suffixes.

Some morphological parses of words are rarely the correct parses of those

words. For example, the word kırmızı has two meanings, one is “red” and the

other one is the accusative form of word kırmız which is a bug name. However,

most people do not know its second meaning because of its rare usage in daily

life. In other words, a possible parse of a word can occur more than another

37

Figure 2. General Flow of Disambiguation System.

possible parse as the correct parse for that word in the corpus. For this reason,

we generate WordTbl to contain the frequencies of all morphological parses for

all words in our training corpus.

Since all possible Turkish words cannot be seen in a training corpus, WordTbl

will not hold most likely parses for all words. In order to make an intelligent

guess for the most likely parse of an unseen word, we use its suffix. For this

purpose, we create SuffixTbl. In order to create SuffixTbl, we find suffixes of

words according to their correct morphological parse and calculate the

frequencies for tags corresponding to suffixes. For example, the suffix of the

word çiçekçi(florist) whose morphological parse is given in (1) is “çi” and its

corresponding whole tag is given in (2). We find frequencies of all

corresponding whole tags for suffixes to store them in SuffixTbl.

38

5.2.2 Learning of Disambiguation Rules

In order to learn the disambiguation rules, we use a variation of Brill tagger.

After all words in the corpus are initially tagged with their most likely parses

using WordTbl, the disambiguation rules are learned by our Brill tagger.

The learned disambiguation rules are based on the morphological parses, the

whole tags, or the final tags of the words. The general format of a

disambiguation rule is as follows:

if conditions then

 select MPs containing TAG for wordi

The conditions of a rule depend on the possible MPs of the target word wordi,

and the current selected MPs of the previous (or following) one or two words.

Thus, the conditions of a rule can be one of the following:

- wordCi and wordCi-1

- wordCi and wordCi-1 and wordCi-2

- wordCi and wordCi+1

- wordCi and wordCi+1 and wordCi+2

If the condition of a rule ri depends on more words than the condition of

another rule rj, we say that ri is more specific than rj. Each word condition

wordCk is in the following form:

TAG of wordk = TAGa

The TAGs appearing in the conditions or MP selection part of a rule can be

MPs, whole tags, or final tags. Thus, we call the rules based on MPs as MP

Based (MPB) rules, the rules based on whole tags as Whole Tag Based (WTB)

rules, and the rules based on final tags as Final Tag Based (FTB) rules. If two

rules have the same number of condition words, the specificity relation among

them depends on first the TAG in the selection part, then the tags appearing in

39

condition words in the order. MPB rules are more specific, WTB rules are more

general than MPB rules, and FTB rules are the most general rules.

In the learning of disambiguation rules, we have used a variation of Brill

tagger (Brill, 1995). We try all possible rules and select the rule which gives the

best improvement. After applying the selected rule, we repeat the process in

order to infer the other rules. These iterations end until there is no progress or

the improvement is below a threshold. In the selection of the best rule, we differ

from the original Brill tagger. We select the rule with the highest precision as

the best rule in iterations. For example, if rule A causes 100 correct tags and 1

wrong tag and rule B causes only 10 correct tags without any wrong tags, the

original Brill tagger may choose the rule A for that iteration. However, we select

rule B because it has higher precision. The reason for this approach is that we

want to increase the correctness of the condition words in the rule applications.

The rules are learned by using the dataset of 25098 hand-tagged words. After

tagging all words in the training set with their most likely tags, we infer the best

rule at each iteration of the algorithm. We generate all possible rules from all the

words in the dataset. After generating all rules, we select the rule with the

highest precision as the best rule. If there is more than one rule with the highest

precision, we select the one which affects more words. When there is more than

one rule with the highest precision and they affect the same number of words,

we have the option to select the most specific one or the most general one, and

we select the most specific one. We made this decision as a result of our

empirical tests. In our empirical tests, when the most specific rules are selected

0.999 accuracy is obtained in training set by learning 395 rules. When the most

general rules are selected, 0.995 accuracy obtained by learning 345 rules. As a

result, we observed that using the specific rules is more preferable than using

general rules.

40

5.3 Morphological Disambiguation

In the morphological disambiguation of Turkish words, we have used a hybrid

disambiguation system which uses statistical techniques, rule based techniques

and some heuristics. After the given Turkish text is morphologically analyzed by

a Turkish morphological analyzer, the hybrid disambiguation steps are applied.

In our hybrid disambiguation tool, we use the statistical information in tables

WordTbl and SuffixTbl, hand-crafted rules of SupervisedTagger, rules learned

by our Brill tagger and some heuristics. The disambiguation algorithm consists

of five major components:

- Selection of the Most Likely Tag of Word

- SupervisedTagger Disambiguation

- Selection of the Most Likely Tag of Suffix

- Application of the Learned Rules

- Selection with Fall-Back Heuristics.

The system tries to find the correct morphological parses step by step using

the components in the given order. After the last step Selection with Fall-Back

Heuristics, a single morphological parse will be selected for each word.

5.3.1 Selection of the Most Likely Tag of Word (MW)

The statistical information in the table WordTbl helps us to find the most likely

parses of words appearing in the training set. If the word exists in WordTbl, the

most frequent parse of that word is selected. Since not all words appear in the

training set, some words will be still ambiguous at the end of this step. WordTbl

may not contain all words because our training data set is small, and the number

of unique Turkish words is huge. In one of our experiments, we determined that

the number of unique words is 870.000 in a 6 billion word Turkish corpus. In

41

fact, this is one of the reasons that we decided to use a hybrid approach for the

morphological disambiguation.

5.3.2 SupervisedTagger Disambiguation (ST)

In this step, the words are tried to be disambiguated by the SupervisedTagger

software. SupervisedTagger uses 342 hand-coded disambiguation rules of two

types: selection and elimination rules. The selection rules select a morphological

parse directly. The elimination rules eliminate the wrong ones as much as it can.

In other words the selection rules completely disambiguate words, and the

elimination rules reduce the ambiguity levels of words. SupervisedTagger is

applied only to ambiguous words. At the end of this step, there can still be

ambiguous words.

5.3.3 Selection of the Most Likely Tag of Suffix (MS)

If the word is not disambiguated by the first two steps, we try to disambiguate

using the statistical information in the table SuffixTbl. The possible suffixes of a

word are determined according to its morphological parses, and the most likely

morphological parse corresponding to those suffixes is selected if the suffixes

appear in SuffixTbl. The word may not be disambiguated at this step because of

the huge number of possible suffixes. In one of our experiments, we also

determined that the number of unique suffixes is 40.000 in a 6 billion word

Turkish corpus.

5.3.4 Application of the Learned Rules (LR)

The rules that are learned by our Brill tagger are applied in this step. The order

of rule application is the order of learning. The conditions part of a rule contain

a condition depending on the target word of the rule, and one or two more

42

conditions depending on other condition words. A rule can be applicable to a

target word if all of the following are satisfied:

- Its condition words are completely disambiguated and satisfy their

conditions.

- The target word is disambiguated and satisfies its condition or the target

word is ambiguous and one of its still possible parses satisfies its

condition.

- At least one of the possible parses of the target word contains the correct

tag given in the selection part of the rule.

When a rule is applied, the target word can be completely disambiguated, or

some of its parses are selected as its possible parses. If the target word contains

only one morphological parse satisfying the correct tag, it is disambiguated;

otherwise its parses satisfying the correct tag are selected as possible parses for

the next step. For example, the following rule is applicable under the given

conditions:

if final TAG of wordi = Adverb and

 whole TAG of wordi-1=Noun+A3sg+P3sg+Nom

then select MP containing whole tag Adjective for wordi

If the whole tag of the selected MP of wordi-1 is Noun+A3sg+P3sg+Nom, the

final tag of at least one of possible MPs for wordi is Adverb and wordi contains

at least one possible MP having the whole tag Adjective, those MPs are selected

by this rule for wordi.

5.3.5 Selection with Fall-Back Heuristics (SH)

At this last step, a small number of words can still be ambiguous. In this step,

we perform the selection with fall-back heuristics in order to disambiguate the

remaining ambiguous words. We have determined the following four heuristics

43

and applied them in the given order. The application order is determined

empirically.

5.3.5.1 Selection of Non-Derived (SND)

 Since Turkish is an agglutinative language, we can change the part of speech

tags or the inflections of words by adding suffixes. SND heuristic selects the

parses containing no derivation suffixes since non-derived words are more

common than derived words.

5.3.5.2 Selection of Proper Noun (SP)

SP heuristics selects the proper noun senses of the words if their possible parses

contain proper noun senses.

5.3.5.3 Selection of Noun (SN)

Nouns exist in texts more than other part of speech tags. SN heuristic selects the

parses that their part of speech tags are noun.

5.3.5.4 Selection of Shortest (SS)

After applying all techniques and heuristics, if the word is still not

disambiguated, we select the shortest parse in terms of the character length.

Since this is selecting randomly, we hope that the number of words remains at

this step will be a small amount.

5.4 Evaluation

We have constructed a data corpus consisting of 25098 tagged words. In the

preparation of the corpus, we used Turkish texts from different news portals.

The texts are analyzed by SupervisedTagger and ten graduate students tagged

words with correct morphological parses. The statistical information about our

dataset is given in Table 1. There are 12 different part of speech tags which are

noun, proper noun, conjunction, pronoun, adjective, question, interjection, verb,

44

adverb, post-position, number and punctuation. The 47.7% of the corpus is

unambiguous. The most ambiguous word has 16 different parses. There are

2063 distinct whole tags which show the ambiguity problem of Turkish.

Our disambiguation system uses five different techniques (MW, ST, MS, LR,

and SH) step by step. It is obvious that the order of the techniques is crucial for

the performance of the system. In order to see which order gives the best

accuracy, we have applied each technique separately and obtained the average

accuracies by using 10 fold cross validation. In Table 2, the second column

shows the average number of words having more than one parse and they are

processed by the corresponding technique. The accuracy of the technique for the

applied words is given in the third column. The fourth column shows the

accuracy for disambiguated words so far (disambiguated words by the technique

plus unambiguous words (UW)).

Table 1. Statistics of Data Corpus

Number of words 25098

Number of distinct words 8493

Average number of parses per word 2.007

Number of words with one parse 11979

Maximum number of parses in one word 16

Number of distinct parses 18203

Number of distinct whole tags 2063

Number of distinct final tags 373

Number of proper nouns 3305

Number of non-proper nouns 9670

Number of derived words 4772

Since MW gives the highest accuracy, it is reasonable to choose MW for the

first step. Applying the learned rules at the first step is not reasonable since there

are not enough disambiguated words yet. The reason for having high accuracy

so far is that we have few words that are disambiguated in the first step, and

unambiguous words in the corpus increase the accuracy.

45

Table 2. Results of Techniques for the First Step

Technique # of words applied Acc. of Tech. Acc. of (UW+Tech.)

MW 822.8 0.918 0.966

ST 802.4 0.798 0.919

MS 872.4 0.700 0.874

LR 31.3 0.690 0.992

For the second step, we tried MS, ST, and LR. The results are given in Table

3. As we compare Table 2 and Table 3, we can see that the accuracy of

techniques increased, meaning that using more reliable techniques in the early

steps causes an increase in the accuracy of other techniques by eliminating

words that they cannot disambiguate correctly. Applying the learned rules (LR)

at this step is again the worst technique. Using ST in the second step gives a

higher accuracy than using MS. Disambiguating more words in earlier steps

with higher accuracy is better since the ambiguous words will be disambiguated

with less reliable heuristics unless we disambiguate them at earlier steps. Thus,

Table 3. Results of Techniques for the Second Step

Technique # of words applied Acc. of Tech. Acc. of (UW+MW+ Tech)

LR 24.9 0.687 0.967

ST 260.3 0.874 0.961

MS 369.4 0.761 0.927

we select ST as the second, and MS as the third. Since ST and MS are better

than LR, LR is chosen as the 4th component. The accuracy at the end of the 4th

step is 0.942.

After the applications of the first four components, there still exist some

ambiguous words, and the number of ambiguous words after applying MW, ST,

MS and LR is 71.3 on average (2.4%). In order to disambiguate the remaining

ambiguous words, we use fall-back heuristics. The order of heuristics can also

46

be important for the correct disambiguation of the rest. Therefore, we tr ied

heuristics in different order to see their effects.

Table 4. Results for Fall-Back Heuristics

Heuristic
of words

applied
Acc. of

Technique
Acc. of

(UW+MW+SW+ST+LR+Tech.)

SP 27.1 0.679 0.9379

SND 6.8 0.809 0.9404

SN 9.4 0.787 0.9401

SS 71.3 0.497 0.9280

We first tried all of them separately in the first order to determine the most

reliable one. In Table 4, the results for heuristics are given. From Table 4, we

see that SND performs better than others but disambiguate less words while SN

is the second in terms of accuracy. SS is the worst heuristic which is actually

like selecting randomly. In addition, after SS, there are no words to be

disambiguated anymore. Therefore, we tried all combinations where the first one

can be SN or SND and the last one is SS to get the best accuracy. Since SND-

SP-SN-SS order produced the best accuracy, we use that order for heuristics.

Finally, we disambiguated all words having the accuracy of 0.935 by using the

order of MW-ST-MS-LR-SH.

SupervisedTagger uses hand-coded disambiguation rules. In order to measure

the performance of the statistical components of our system, we removed

SupervisedTagger component from the system. The accuracy of the overall

system is dropped to 0.924 from 0.935. This means that hand-coded rules help to

improve the performance of the system. We believe that the importance of hand-

coded rules would reduce significantly if we would train our system with a huge

tagged corpus.

In the calculation of the accuracy, we consider the whole morphological

parse. However, in some words, all parses have same inflections after their last

47

derivations so that they have the same grammatical function in the sentence. For

example, the word “kaldır” has the following parses:

- kal+Verb^DB+Verb+Caus+Pos+Aor+A3sg (to make stay)

- kaldır+Verb+Pos+Aor+A3sg (to lift)

Although they have different meanings, they have the same final tag

(Verb+Pos+Aor+A3sg), and they have the same grammatical function in the

sentence. Therefore, choosing one of them does not make a difference unless the

Table 5. The Distribution of Wrong Disambiguation

 Our
 Selection

True

Prop Adj Adverb Noun Verb Sum

Prop 51 55 10 126 24 266

Adj 10 42 16 58 15 141

Adverb 1 32 14 26 1 74

Noun 187 92 15 583 42 919

Verb 9 14 0 22 51 96

Sum 258 235 55 815 133 1496

meanings are important. In the calculation of the accuracy, if we consider only

the final inflections (the final tags), the accuracy of the overall system becomes

0.940. When only the final part of speech tags are considered, the accuracy

becomes 0.976.

When we examined the mistakes of our system, we observed that most of the

mistakes are in nouns, proper nouns and adjectives, verbs and adverbs. Since the

rest of the mistakes are 7.7% of all mistakes, we will focus on only the mistakes

of these 5 POS tags. In Table 5, the distribution of wrong disambiguation is

given. In the calculation, the sum of mistakes in every fold is used. The left

column shows the true POS while the above row shows our selection for the

corresponding POS. We can see that adjectives are mostly confused with nouns.

This is reasonable, since every adjective can also be used as noun in Turkish.

48

Adverbs are also mostly confused with adjectives. Nouns are mostly confused

with nouns. This is an expected result since Turkish is an agglutinative language

and there can be many different inflections from a stem. Verbs are most

confused with verbs with different inflections. In addition, we can say that nouns

are the POS tags mostly confused while adverbs are the least.

49

Chapter 6

Dependency Parser

In this chapter, we explain our proposed dependency parser approach for

extracting noun phrases. After we get the results from morphological

disambiguator, our dependency parser uses hand-crafted rules for constructing

links between tokens in order to determine modifiers and modified tokens. Once

we constructed links, we extract noun phrases by using them. In the following

sections, we explain our link and rule structures, and algorithms for constructing

links and extracting noun phrases from constructed links, respectively.

6.1 Link Structure

We use links to represent relationship between tokens. In order to understand the

structure, features of links and specifications for constructing links are listed as

below.

- A token can modify only one token however, a token can be modified by

more than one tokens.

- A link can be constructed between only two tokens.

- There can be at most one link between two tokens.

- The modifier token is called Source of the Link and the modified token

is called Target.

- The links have one direction which is from Source to Target. Since

Turkish is head-final, the links are normally from left to right.

- Only head tokens of words can modify a token.

50

- Each link has a name representing the relation type between tokens (See

Appendix A for the list of all link names).

- The non-head tokens are connected to the tokens at their right with a DB

link.

A link example between two tokens is given below. The token Yeşil (green)

modifies the token Elma (apple) and the link name is A which shows that the

modifier is an adjective.

A

YeĢil+Adj Elma+Noun+A3sg+Pnon+Nom
 (Green) (Apple)

Ambiguity is the main problem in natural language processing studies. This

fact is also true in determining the modifiers and modified token. A modifier

must modify only one token as mentioned above, however, in some cases; we

have to decide which link is the true one since there may be more than one

possible link that can be constructed. In order to overcome this problem, we give

every link a priority score showing which link is more likely to be. In the

following example, the token Bir (An) can modify two tokens which are elma

(apple) and çekirdeği (seed) with same link name Dn. Dn means that modifier

gives quantity of the modified token. By giving different priority scores, we can

determine the correct link by selecting the link with higher score. In the

example, we select the upper link and so Bir (An) modifies çekirdeği (seed).

Bir+Num+Card elma+Noun+A3sg+Pnon+Nom çekirdek+Noun+A3sg+P3sg+Nom

 (An) (apple) (seed)

In addition, we do not allow crossing links to occur. There are two link

examples, one is forbidden in our design and the other one is its correct form

Dn, score = 0.9

Dn, score =0.8 Bsiz, score =0.7

51

below. In the first example, L1 is not constructed since it causes crossing with

L2.

Wrong Example (3)

Kırmızı+Adj Bir+Num+Card elma+Noun+A3sg+Pnon+Nom çekirdek+Noun+A3sg+P3sg+Nom

(Red) (an) (apple) (seed)

Correct Example (4)

Kırmızı+Adj Bir+Num+Card elma+Noun+A3sg+Pnon+Nom çekirdek+Noun+A3sg+P3sg+Nom

(Red) (an) (apple) (seed)

There is a list of example link structures that we represent for certain noun

phrase types to understand our structure better:

- Person Names: Computer Engineer Ali Kaya

Bilgisayar Mühendisi Ali Kaya

Computer (Engineer) (Ali) (Kaya)

Morphological Parses:

-Bilgisayar+Noun+A3sg+Pnon+Nom

-Mühendis+Noun+A3sg+P3sg+Nom

L2: Dn, score = 0.9

L1: A, score = 0.8

A, score = 0.8

Dn, score = 0.9

Bsiz, score = 0.35 Title, score = 0.5 Prop, score = 0.5

Bsiz, score = 0.7

52

-Ali+Noun+Prop+A3sg+Pnon+Nom

-Kaya+Noun+Prop+A3sg+Pnon+Nom

- Conjunctive Noun Phrases: Ali and his friend

Ali ve onun arkadaĢı
(Ali) (and) (his) (friend+P3sg)

Morphological Parses:

-Ali+Noun+Prop+A3sg+Pnon+Nom

-ve+Conj

-o+Pron+A3sg+Pnon+Gen

-arkadaĢ+Noun+A3sg+P3sg+Nom

6.2 Rule Structure

In our system, we use hand-crafted rules for connecting links between two

tokens. A rule consisted of 5 parts which are Source, Target, Constraints,

Priority and Link Name. These parts specify beginning and end tokens of links,

constraints for rule application, priority of the link and its name. A template of a

rule is as follows:

CONSTRUCT a link between Tokeni and Tokenj with name of Link Name with

a Priority IF Tokeni can be a Source and Tokenj can be a Target and all

Constraints are satisfied.

For a sample rule structure, let‟s consider the following sentence:

connector, score = 0.5 connector, score = 0.5

Bli, score = 0.6

53

“Bir öğrenci bu yaz üç yüz kitap okudu.”(A student read three hundred books in

this summer)

In order to connect the words üç(three) and yüz(hundred), we can handle it

by using the following rule.

CONSTRUCT a link between Tokeni and Tokenj with name of NN with a 1.0 IF

Tokeni is a Number and Tokenj is a Number and there is no another token

between them.

In this example, the rule can be applied only when Tokeni is üç and Tokenj

is yüz. When Tokeni is Bir(One) and Tokenj is üç (three), although both of them

can be a Source and Target tokens, the rule will not be applied since the

constraint (there is no another token between them) does not satisfy. Now, let‟s

see each part of the rule in detail.

6.2.1 Link Name

The name of the link is given in this part of the rule. By defining names to links,

we can distinguish the types of modification. For example, if the modifier gives

a quantity information about the modified token, we use the Dn link name and if

the modifier gives information about quality or color of the modified token, we

use the A link name. By naming links that helps us to distinguish them, we can

use links names in writing constraints of rules which is explained in Section

6.2.5.

Some links can de directly used for noun phrases, such as, A or Dn.

However, some links like NN do not define a noun phrase (See the example

above, üç bin (three thousand) is not an NP). Therefore, another advantage of

naming links is that it helps us to group them.

It should be noted that more than one rule can use same link name.

54

6.2.2 Priority

The priority of the link that is constructed should be a positive number where a

bigger number means a higher priority. It should be noted that two rules with

same link names can have different priorities.

The priorities of the rules are determined manually by the rule designer. As

we have a large dataset, this property of our system allows us to have learning

for determining real priorities of rules. This is left as future work because of lack

of a large dataset.

6.2.3 Source & Target

In this section, we discuss Source and Target token properties. We have

discussed both of them at once, since their specifications are same. Before

applying a rule to a token, we first check whether that token satisfies the

source/target properties of the rule. We can check many different properties of a

token in this process which can vary in each rule. Therefore, we have defined

two components for specifying Source/Target, one of them is Source/Target

type that specifies which parts of the token are taken account and the other one

gives the value to be checked. The types can be categorized in four groups:

Token Based, Word Based, Context Based and Special Types. Now, let‟s see the

types which are used in our system.

6.2.3.1 Token Based

We consider only the properties of the corresponding tokens in token-based

types. There are 4 types in this category:

Part of Speech (POS): In this type, we consider only the POS tag of the token

and ignore all other inflectional morphemes.

Part of Speech & Partial Inflections (POSPI): We consider POS tag of the

token and look for existence of inflections defined in the rule.

55

Part of Speech & All Inflections (POSFI): We consider POS tag and all

inflections of the token. Only stems can vary in this type.

Full Token (FT): We check exact match with the token‟s morphological parse.

For example, if the value in the rule is “̂ DB+Adj+Rel”, we will select the

tokens which is not the first token of the word and having those morphemes.

6.2.3.2 Word Based

In this category, if the corresponding token belongs to a word which has more

than one token, we consider also the other tokens of the word which are at the

left side of the corresponding token. In the following example, if Token2 is

considered as a Source/Target token by a rule with this type of specification, we

also consider the values of Token1.

Kitapçıdaki (the one in the book store) (5)

Kitap+çı+da+ki

kitap+Noun+A3sg+Pnon+Nom^DB+Noun+Agt+A3sg+Pnon+Loc^DB+Adj+Rel

 There are 6 types in this category:

Surface Form (SF): In this type, we look for exact match with the surface form

of the token and value defined in rule. Let‟s consider the example (5). If the

value in the rule is kitapçıda (in the bookstore), then the rule will be applicable

for Token2, since the morphological parse of Token1 and Token2 is as follows:

kitap+Noun+A3sg+Pnon+Nom^DB+Noun+Agt+A3sg+Pnon+Loc

Since the surface form of this morphological parse is kitapçıda, the rule is

valid only for Token2.

Token1 Token2 Token3

56

Starting with Surface Form (SSF): We check whether the surface form of the

token starts with the value defined in the rule or not. Since Turkish is an

agglutinative language, many words can be derived from a stem and this type is

used for specifying tokens derived from a certain surface form. For example, if

the value in the rule is kitapçı (bookstore), we accept all the tokens which have a

surface form that starts with kitapçı, such as, kitapçılar (bookstores),

kitapçıdakiler (the ones in the bookstore), etc. For (5), the rule is valid for

Token2 and Token3 and is not valid for Token1.

Starting with a Surface Form & Partial Inflections (SSFPI): We add

inflection requirement to SSF type which allows us to use morphological

information. For example, if the value in the rule is “kitapçı, Loc”, then we

accept all the token of the words which have a surface form that starts with

kitapçı (bookstore) and having locative case marker, such as kitapçıdakiler (the

ones at the bookstores). However, the tokens that does not have a locative case

marker, like kitapçıdan (from the bookstore), kitapçılarımız (our bookstores),

won‟t be accepted as Source/Target. For (5), the rule will be valid only for

Token2.

Lexical Form (LF): We check exact match with the value defined in the rule

and morphological parse of corresponding token. We consider the

morphological parses of the tokens at the left, too. For (5), if the value in the

rule is “kitap+Noun+A3sg+Pnon+Nom^DB+Noun+Agt+A3sg+Pnon+Loc”, the rule is

valid for only Token2.

Starting with Lexical Form (SLF): We check whether the morphological parse

of the word that the token belongs to starts with the value defined in the rule. In

this case, we can put a restriction to the previous tokens or we can define the

stem with its POS tag which can be useful because of ambiguity. For example,

the word yakın has the following morphological parses:

- yakı+Noun+A3sg+P2sg+Nom (your plaster)
- yakın+Verb+Pos+Imp+A2sg (burn)

- yak+Verb+Pos+Imp+A2pl (moan)

57

- yakın+Adj (near)

- yakın+Adverb (near)
- yakın+Noun+A3sg+Pnon+Nom (near)

If the value in the rule is “yakın+Adj”, we will select all the tokens which have a

morphological parse of “yakın+Adj” or tokens derived from them like yakınlaş

(get close), yakınlaştı (he got close).

Stem with partial inflections (SPI): In this type, we specify the token with only

stem of the token and with its desired inflections. For example, the value in the

rule is “yak, Verb”, we will select the tokens which have a stem of verb yak

(burn), like yaktı (he burned), yaksaydı (what if he burned). When a word has a

derivation suffix, its meaning changes but it still has a related meaning with that

word. So we can group words having related meanings with this type

specification. If the word has more than one token with given POS tag, then the

rule will be valid for all that kind rules. For example, if the value in the rule is

“kitap, Noun”, the rule will be valid for Token1 and Token2 for (5).

6.2.3.3 Context Based

Some grammatical functions of words can change according to context. In order

to handle situations where context information is important, we have defined 2

context based types:

Surface Form of a group of words at left (SFWL): We check the context and

look at the words at left side of the corresponding token. This type is needed for

handling some collocations and noun phrases that act as adjectives. For

example, in the following word group, insanlık dışı davranış (inhumane

behavior), insanlık dışı means inhumane and this group act as adjective although

the word dışı (out of) is a noun. By using SFWL, if the value in the rule is

insanlık dışı, then the rule is valid for tokens having surface form of dışı (out of)

where surface form of the previous word is insanlık (humanity). However, it has

to be mentioned that this does not connect the words insanlık (humanity) and

dışı (out of). For connecting them, another rule should be written.

58

Surface Form of a group of words at right (SFWR): The only difference with

SFWL is that, this time, we check the words at right side of the token.

6.2.3.4 Special Types

We have two special types which cannot be categorized as the others.

LIST: A link can be applicable for many different sources/targets. Therefore,

grouping them will be helpful so that we do not need to write same rule for

different sources/targets again and again. We write all the sources we want to

use for a rule in a file by using the source types explained in this section and use

this list when needed. A list file can contain different source/target definition

types.

ANY: ANY is a reserved word which means that every token can be a

Source/Target for the corresponding rule. We use this type for handling noun

phrases with quotation marks. Quotation marks can be used for giving stress for

words between them. So there can be any words with any type between two

quotations. Therefore, we cannot put any restriction to them. For example, in the

following sentence, “Dur” uyarısına (“Stop” warning) is an NP and the first

quotation mark should be connected to the token Dur (Stop) which is a verb.

Sürücü “Dur” uyarısına uymadı. (The driver didn‟t obey the “Stop” warning.)

It is a fact that we can define Source and Target tokens with more than one

definition type. However, having so many types will ease the job of rule

designers and can be useful for handling situations that we can face in future.

6.2.4 Constraints

Although source and target can be considered as constraints, we may need more

constraints for handling more complex noun phrase structures. Therefore, in

each rule, we can also put as much as constraints we want by using generic

functions we defined. Each constraint is connected each other with AND

operation, that is to say, if one of the constraints does not hold, the rule cannot

59

be applied. In addition, a constraint can include more than one constraints

connected with AND, OR and NOT logic operations. In the Figure 3, we give a

template of rule constraints. We assume that capital letters are functions

returning a boolean result. The rule in the Figure 3 has 5 constraints and failure

in any of them will prevent the construction of the link. In constraints we use „!‟

character for NOT operation. So in 2nd constraint, the function B must return

false for the success of the rule. Additionally, we use „|‟ character for OR

operation and „^‟ character for AND operation. In 3rd constraint, C or D

functions should return true for the success of the rule. We use brackets to group

the functions which allow us to write long and complex constraints. In 4th

constraint, E should return true and F must return false. In the last constraint, we

can see that we have two groups connected with OR operation. G and H should

return true or I and J should return true for the success of the rule.

Figure 3. Rule Constraint Template.

Defining boolean functions is also an important part of our system. We have

defined some flexible functions that can take parameters and perform a specific

operation. The functions can be categorized into three groups: Only-One Token

functions, Range functions and Both-Token Functions. Now let‟s see them in

detail.

60

6.2.4.1 Only-One-Token

These functions are applied to a single token. The template of a function is as

follows:

Token: FUNCTION NAME (Parameter1, Parameter2,…)

For defining the token that function will be applied, we use indexes of

source and target tokens of the link to be constructed. Following notations are

used in our rule formats for defining indexes:

- S -> Source Token

- T -> Target Token

- S+x -> The xth token beginning from source token in the right direction.

- S-x -> The xth token beginning from source token in the left direction.

- T+x -> The xth token beginning from target token in the right direction.

- T-x -> The xth token beginning from target token in the left direction.

- B -> First token of the sentence

- E-> Last token of the sentence

This type definition of tokens allows us defining specific and powerful rules

that cannot be defined in link grammars. We can exactly determine the token

and use context information. There is a list of defined only-one-token functions

below.

- InList (LISTNAME): This function searches the token whether it is in

the given list or not. In order to use semantic information, this function

can be used. For example, if we do not want the source token to be a

country name, we can write the following constraint :

o !S:inList(CountryNameList)

- Contains(Morpheme): This functions checks whether the

morphological parse of the token contains “Morpheme” or not. For

example, if we do not want the target token to have `Pnon` morpheme.

Then, we can use the following constraint :

61

o !T:contains(+Pnon)

- hasEndLink(LinkName): This function checks whether the token is

modified by a token with the given link name

- hasBeginLink(LinkName): This function checks whether the token

modifies a token with the given link.

- derivedFrom(POS,ExceptList): This function checks whether the

previous tokens of the word that target token belongs to has the POS tag

given as parameter. Second parameter is not mandatory. If it is also

given and if the word is an element of the exception list, function returns

true. Since the scope of our study does not include words derived from

verb and affecting sentence structure, this function play an important

role. An example constraint can be as follows:

o !T:derivedFrom(Verb)

- isPossible(Morpheme): Disambiguation can sometimes eliminate

correct morphological parses and select the wrong one. In some

situations, we may want to consider eliminated parses, too. In order to do

this, we use isPossible function that checks whether there is a parse

containing Morpheme given as parameter. For example, “Ġlyas Çiçekli”

is a person name and surname, however, Çiçekli can be considered as an

adjective by the disambiguator, too. In case a wrong disambiguation is

performed, we can handle it with this function. An example can be as

follows:

o T:isPossible(Prop)

- isNPBeginning(): This function takes no parameter and checks whether

the token is a beginning token of a noun phrase or not. We can

understand this by looking the modifier link of the token. If the token has

a modifier link and the link is one of the links that can start an NP, we

can say that token is a beginning token of an NP.

- isNPHead(): This function takes no parameter and checks whether the

token is a head token of a noun phrase or not. We can understand this by

62

looking the links that modifies the token. If one of the links can start an

NP, we can say that the token is a head of an NP.

- isConnectedToLink(Link Name): This function checks whether the

token is somehow connected to the link type given as parameter.

- isEndToken(): This function checks whether the token is a head token

of a word or not.

- isLastWord(): This function checks whether the word that token

belongs to is last word of the sentence.

- turnsInto(POS):This function checks whether the preceding tokens of

the word that target token belongs to has the POS tag given as parameter.

An example constraint can be as follows:

o !T:turnsInto(Verb)

- isFirstCharacterCapital(): This function checks whether the word that

target token belongs to starts with a capital letter or not. This function is

useful to determine proper nouns since proper nouns always start with a

capital letter.

6.2.4.2 Range Functions

This type functions are applied to all tokens in a defined range. Template of a

range function is as follows:

Beginning Token->Ending Token: FUNCTION NAME (Parameter1,

Parameter2,…)

For defining beginning and ending token, we use same notation explained

above. An example is as follows.

S+1->T-1: FUNCTION NAME ()

In this example, we apply the function to the tokens from the token next to

source to previous token of target token. There is a list of defined range

functions below.

63

- numberOfWords(Integer): If number of words between beginning and

ending tokens is equal to the value given as parameter, function returns

true; otherwise, returns false. For example, if we do not want to have any

word between modifier and modified word, we can use the following

constraint :

o S->T:numberOfWords(0)

- containsUnconnectedToken(): This function checks whether there is a

token that has no relation with the tokens in given range. For example,

let‟s consider the following sentence: “Küçük çocuk güzel okula

gitti.”(The small child went to a beautiful school). If we want to create

links between adjectives and nouns, we will have two links from the

token küçük(small), which are küçük-çocuk(small child) and küçük-

okula(to small school). In order to prevent second option, we can use this

function since there is no relation between çocuk and okula.

o !S->T:containsUnconnectedToken()

There are also functions like constainsPOS, containsList, etc. which are

similar functions explained in Only-One-Token section. The only difference is

we apply the functions to all tokens in range and return false if any of the tokens

does not satisfy the constraint.

6.2.4.3 Both-Token Functions

This type functions are applied two tokens for finding agreements. Template of

a range function is as follows:

Token1~Token2: FUNCTION NAME (Parameter1, Parameter2,…)

For defining Token1 and Token2, we use same technique mentioned before.

There is a list of defined Both-Token functions below.

- agree(type): This function has two types. One of them is agreement on

person and other one is agreement on plurality of the token. The function

checks whether there is agreement on given type. By this constraint, we

64

prevent occurrence of noun phrases like bir adamlar (one men) that has

no agreement on plurality. An example statement is as follows:

o S~T:agree(plurality)

- hasSameInflectionAtEnd(): This function is used for conjunctive noun

phrases and prevents conjunctive noun phrases that has different case

markers. For example, evler, arabalar ve çocuklar (houses, cars and

children) is a valid noun phrase, however, evde, arabalarda ve çocuklar

(at home, in cars and the children) is not a valid noun phrase because of

having different inflections. It is to be mentioned that last noun phrase

can have different case markers if the others are in nominative form. For

example, Ankara, İstanbul ve İzmir’de (Ankara, Istanbul and in Izmir) is

considered as a valid noun phrase.

Now, let‟s see a sample rule in order to be clearer. Rules are written in XML

format. The following rule connects adjectives to nouns and proper nouns.

<NounPhraseRule>
 <ID>1</ID>
 <sourceType>POS</sourceType>

 <source>Adj</source>
 <targetType>LIST</targetType>

 <target>NounPropList.txt</target>
 <linkType>A</linkType>
 <priority>0.5</priority>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>
 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>
<constraint>[![S->T:numberOfWords(1)]^[S->T:containsPOS(Punc)]]
</constraint>

 <constraint>!T:hasBeginLink(Takisiz)</constraint>
 <constraint>!S:hasEndLink(Proper)</constraint>

 <constraint>!T:hasBeginLink(NA)</constraint>
<constraint>[![T:isPossible(Verb)]^[S:isPossible(Adverb)]]
</constraint>

 </NounPhraseRule>

65

Since the source type is POS and source is ADJ, the rule will consider all

tokens having adjective as POS tag. The target type is LIST which will check

the given list which is in format as follows:

POS Noun

POS Prop

So the rule will consider all tokens having Noun or Prop as POS tag. By

using this list, we do not have to rewrite the same rule for different targets. Link

type is given as „A‟ and priority is given as 0.5. Then the constraints part comes

which consisted of 8 constraints. First and third constraint check tokens between

source and target whether there is any token having verb as POS tag or not.

Second constraint checks whether there is a token that cannot be between

modifier and modified tokens (i.e. semicolon). The reason of 4th constraint is as

follows. There can be punctuations between the modifier and modified token.

For example, let‟s consider the following NP:

hızlı, ucuz ve yeni bir araba(a fast, cheap and new car)

The adjective hızlı (fast) modifies araba (car) and there is a punctuation

between them. However, when the number of tokens between source and target

is 1, we cannot allow this (i.e. hızlı, araba (fast, car)). This constraint shows the

power of rules for defining complex situations.

Some nouns can act as an adjective and modify a noun. 5th and 7th

constraints prevents building links between adjectives and nouns acting as

adjective. In the following phrase, the word güzel (beautiful) can modify the

word altın (gold) since altın can have a noun POS tag. 5th constraint prevents

this kind modification.

Güzel altın saat (beautiful gold watch)

Some surnames or names can also be an adjective. For example, let‟s

consider the following sentence.

66

Ġlyas Çiçekli öğrencisiyle konuĢuyor. (Ġlyas Çiçekli is talking to his student.)

Çiçekli is a surname but also it has another MP which is an adjective

meaning “with-flower”. Therefore, without sixth constraint, the token Çiçekli

can be connected to the token öğrencisiyle (to his student) when there is a

mistake in disambiguation. This constraint prevents connecting links if the

source is modified with a Proper link meaning that the modified token is a

proper name.

Morphological disambiguation does not work with 100% success and

adverbs and adjectives can be confused in this process. By using 8th constraint,

we do not let build links if the source has an adjective MP and target has a verb

MP and both are eliminated in disambiguation process. Of course, this constraint

has some risk, too, since it can prevent some correct NPs.

6.3 Dependency Parser Algorithm for Connecting

Links

In this section, we explain our algorithm for connecting links between tokens by

using rules explained in previous section. We start processing every token of a

sentence from the end to the beginning of the sentence and we repeat this

iteration if a new link is constructed during the current iteration. A formal

representation of the algorithm can be seen in Algorithm 1.

We first create empty lists of links for every token in the sentences (Line 1).

These lists store all possible links that can be constructed from corresponding

token where the token is the source. As mentioned above, our algorithm runs in

a loop (line 2-42) and if any new link is constructed in the iteration, we pass

every word again to find a new link. The reason for this is that there are some

rules that depend on existence of certain link types and these new links can

cause those rules to be applied.

67

Algorithm 1. Connecting Links

We start each iteration from at the end of the sentence (line 4) and move to

left token when a process of a token is finished (line 38). When we select a

token as a possible source token, we first check whether it is a head token of a

word or not (line 7). If it is not a head-token, we do not process that token and

skip it and move to next one (line 38). Otherwise, we try to apply each rule R in

the rule set to sourceToken. If the token can be a source for that rule, we look

for target token for that rule. We consider every token that is at right side of the

sourceToken as a possible target token (line 13). If a token can be a target token

according to rule R and all constraints of rule R are satisfied (line 17-18), we

check cross link situation. If there will be a cross when this possible link is

1. Create empty Link lists for each token in the sentence

2. while new links have been contructed

3. {

4. Token sourceToken = last token of Sentence S

5. while S has more tokens

6. {

7. if sourceToken is an head token

8. {

9. for each Rule R

10. {

11. if sourceToken is a suitable source for R

12. {

13. for i = index of sourceToken +1, i ≤ number of Tokens in

14. S,i++

15. {

16. targetToken = ith Token of S

17. if targetToken is a suitable target for R

18. AND all constraints of R are satisfied

19. {

20. if possible link has contradiction with previous

21. built links AND have smaller precison

22. do not built the link

23. else

24. {

25. if there is a contradiction but

26. it has a higher priority

27. Delete the previously built link

28. connect Link L from sourceToken to targetToken

29. add L to link list of the sourceToken

30. }// end else

31. }// end if

32. }// end for

33. }// end if

34. }// end for

35. sort the links the link list of the sourceToken

36. according to their priority

37. }// end if

38. sourceToken = previous token of sourceToken

39. }// end while

40. if no new link is constructed

41. exit

42. }// end while

68

constructed, we prevent one of the links that cause the cross. In preventing one

of these links, priority of them plays an important rule. In (3), we do not let the

link L1 to be constructed since L1 has a less priority than L2‟s priority.

However, if the priority of L1 were higher than priority of L2, then we would

construct the link L1 and delete L2. If there is a cross and priority of R is

smaller, we do not build a link (Line 20-22). If there is a cross but priority of R

is higher, we delete the link that cause cross (Line 24-25), we connect our link

(line 28) and add the link to link list of the sourceToken (line 29). As we are

done with all rules and targets, we sort the links in corresponding list according

to their priority (Line 35-36). Since a token can modify only one token, we

select the link with the highest priority value as the modifier link of the token. If

there are more than one links with highest priority value, we select the one that

the distance between target and source tokens is smallest. An example for

selecting the link with highest priority is given below where P shows the priority

value of the corresponding link. We select L2 since it has the highest priority

value. Although L4 is has same priority, we eliminate it since target token of L2

(uçağında) is nearer than target token of L4 (çantaları).

Bags of people in American passenger plane are lost

Amerikan yolcu uçağında+ki insanların çantaları kayboldu.

As we processed all tokens and couldn‟t construct a new link, we end the

process. Otherwise, we repeat the all process again to connect new links. The

algorithm does not have an infinite- loop problem. In order to have an infinite

loop, we have to build and delete same link with same priority again and again.

However, links are deleted according to the priority of the rules. The link with

the highest priority will be definitely built and once it has been build, other links

are built without having a cross situation with it. The links will be built

L4, P = 0.8 L3, P = 0.7 L2, P = 0.8 L1, P = 0.5

69

according to their priority, respectively, as long as they do not have a cross

situation with a link with a higher priority. Therefore, our algorithm definitely

comes to a stable situation and ends the iterations.

6.3.1 Sample Link Construction

In this section, we give an example link construction. A representation is given

for the trace of the algorithm. For construction of links we use an abstract rule

set which is consisted of three rules. The properties of rules are given in Table 6.

For example, Rule1 connect links between T2 and T3 with a 0.2 priority.

Table 6. Abstract Rule Set for the Sample Link Construction

Rule ID Source Target Priority

1 T2 T3 0,2

2 T2 T4 0.5

3 T1 T3 0.9

We use an abstract sentence which has 4 tokens in the order: T1, T2, T3 and

T4. The trace of the algorithm is given in Table 7 where constructed links are

given at each step.

The algorithm starts from the last token, T4. Since T4 and T3 cannot be a

source for our rules, we do not build any link starting from them. When the

sourceToken is T2, we build two links: T2-T3 and T2-T4. Since priority of Rule

2 is higher than priority of Rule 1, we build a link between T2 and T4. However,

when the sourceToken is T1, we build a link between T1 and T3 which causes a

cross with T2-T4 link. Since T1-T3 link has a higher priority, we delete T2-T4

link. Since we build new links in this iteration, we start a new iteration. Again

no link is built for T3 and T4. When sourceToken is T2, we can build again two

links as before. Since T2-T4 link has a contradiction, we do not build it and

build a link between T2 and T3. When sourceToken is T1, since we already

build a link and cannot build another link with a higher priority, we keep the

70

current link. In 3rd iteration, we process every token again. Since there is no

new link in this iteration, we end the process at the end of this iteration.

Table 7. Trace of the Algorithm for the Sample Sentence and the Rule Set

Iteration Number Source Token Links

1 T4 Empty

1 T3 Empty

1 T2 T2-T4

1 T1 T1-T3 (T2-T4 is deleted)

2 T4 T1-T3

2 T3 T1-T3

2 T2 T1-T3, T2-T3

2 T1 T1-T3, T2-T3

3
No more link is constructed and after this iteration,

algorithm ends

6.4 Algorithm for Obtaining Noun Phrases from

Links

Although we can find every relationship between tokens of a sentence with our

system, we will focus on only noun phrases because of the scope of our study. In

our scope, as we mentioned, we try to find nested noun phrases, meaning that

every noun phrase can contain sub-noun phrases. While main noun phrases can

be extracted easily, detecting boundaries of sub-noun phrases requires more

complicated process. In addition, noun phrases like person and institution names

are to be handled specifically. Therefore, we developed an algorithm for

extracting noun phrases which can be easily used for other sentence parsing

operations. Formal representation of our algorithm is shown in Algorithm 2.

In the algorithm, NounPhrases is the list where we store all main noun phrases

of the sentence (Line 1). We process every word W of sentence S, from left to

right. A noun phrase cannot start with a conjunction, like ve (and), or a

punctuation, etc. Therefore, we process a word W if it can be a starting word of

71

Algorithm 2. Extracting Noun Phrases from connected links

a noun phrase (Line 4). We get the head-token of W, since no links can be

constructed beginning from a non-head token (Line 7). In some noun phrases,

some tokens give stress only, instead of extra semantic information. For

example, let‟s consider the following example.

Çok da güzel araba
(Very) (so) (beautiful) (car)

In the noun phrase, the word da gives only stress and we cannot have a noun

phrase “da güzel araba” since it will be meaningless without the previous word

Çok. That is to say, it loses its function with previous word Çok. Therefore, we

use a list that contains link names which cannot be a starting link of a noun

phrase. When we faced with a token with a modifier link in this list, or a token

that has no modifier link, we skip that word and move to next one (Line 9 - 11).

We start moving with links as much as we can to obtain longest noun phrase and

add sub-noun phrases in path, if exists. We get beginning and ending tokens of L

1. NounPhrases = empty list

2. for each word W of Sentence S

3. {

4. if W can be a starting word of an NP

5. {

6. np is an empty string

7. Token T = head token of W

8. Link L = modifier link of T

9. if L can be a starting link of an NP

10. {

11. while L != null

12. {

13. Token B = source token of L

14. Token E = target token of L

15. for each token C between B and E

16. {

17. if C has no modifier link

18. get the nex word and go to line 4

19. np += surfaceform of current token

20. }

21. if nounPhrase is a proper nounPhrase AND L is an NP-Link

22. Add np to nounPhrases

23. L = modifier link of E

24. }// end while

25. }// end if

26. }// end if

27. }

28. add single noun phrases

72

(Line 13-14) and for each token between these tokens we check whether they

are connected to any tokens between B and E. If any token is not connected, we

end our job with that word W and get the next word and go to Line 4 (Line17-

18). Otherwise, we update the surface form of noun phrase to be extracted (Line

19). As we come to the end of the link, we need more checks to be sure that the

noun phrase is valid or not. The last token of current noun phrase can have a

modifier link which connects a person name with his/her surname and name and

surnames shouldn‟t be in different NPs. Therefore, if the last token has that kind

of link, we do not form a noun phrase which ends with this token. For example,

in the noun phrase below, we shouldn‟t have a sub-NP like “Dr. Mehmet” since

“Öz” is the person‟s surname.

Dr. Mehmet Öz

The last token cannot also be a conjunction word, like ve(and), veya(or), etc.

which cannot be head word of a noun phrase.

In addition, we grouped links as noun phrase links and non-noun phrase

links since some links may not represent a noun phrase. For example, let‟s

consider the following example.

Three thousand men: (6)

Üç bin adam
(Three) (thousand) (men)

When we start extracting from word üç(three), we do not extract a noun

phrase üç bin (three thousand) since NN link is not defined as noun phrase link.

At line 21, we perform these checks and add the noun phrase in case of success.

Then, we get the modifier link of E and repeat the process until L is null. When

L is null, we reach the largest NP that we can have by starting from word W.

Dn, score = 0.9
NN, score =1.0

Title, score = 1.0

=1.0

Proper, score = 1.0

=1.0

73

Later on, we select the next word and apply same process. When adding a noun

phrase, we check its starting and ending points. If another noun phrase covers it,

we add the noun phrase as sub-NP of that noun phrase. As all words are

processed and we are done with all links, we need to form single nouns in

conjunctive noun phrases as sub-NPs and also generate noun phrases with single

nouns having no links (line 28) since if a noun is not modified by another noun

or does not modify another noun, than it can be considered as a single NP.

6.5 Sample Noun Phrase Extraction

In this part, we will give a sample noun phrase extraction of a sentence by

giving results of each step explicitly. Let‟s consider the following sentence.

Kırmızı baĢlıklı kız evin büyük kapısını açtı. (The girl with red cap opened

the big door of the house)

Figure 4. Morphological Parses of Words of Sample Sentence.

74

First, we will obtain the morphological parses of each word. The

morphological parses can be seen in Figure 4. We can see that there are some

ambiguous words. Therefore, we perform our disambiguation technique and

select only one MP for each word. The bold MPs show the selected ones in

Figure 4.

Figure 5. Tokenized Sentence According to Selected MPs.

Then we construct the sentence with using tokens. The sentence with its

selected MPs can be seen in Figure 5. We obtain the tokens according to words‟

selected MP.

Figure 6. Sample Sentence with Links.

75

After disambiguation, we apply the rules to construct links. Constructed

links can be seen in the following Figure 6. As we construct the links, we extract

the noun phrases. There are two nested NPs in the sentence which are:

- Kırmızı başlıklı kız (girl with red cap). This NP contains also another NP

which is Kırmızı başlık (red cap)

- evin büyük kapısı (the big door of the house). This NP contains also

another NP which is büyük kapısı (the big door)

76

Chapter 7

Evaluation

In this chapter, we give details about the datasets for testing our system and give

results of test and discuss them.

7.1 Experimental Setup

One of the biggest problems in NLP studies about Turkish is lack of ground

truth datasets. There had been no dataset for testing noun phrase chunkers for

Turkish before our study. Therefore, we had to construct our small datasets. The

noun phrases in datasets are tagged manually by a native speaker. In order to

ease tagging process, we have implemented a tagger tool, NPTagger, which can

be also used by other researchers. The tool has the following features:

- A text file or TXT output file of SupervisedTagger can be given as an

input to the NPTagger

- Save and load operations are available for editing.

- Surface form, type and head word of NPs are to be decided by the user.

- NPTagger automatically generates nested NPs.

- The types can be changed by user. So the tool can be used for tagging

other phrases, too.

We have constructed three manually tagged datasets (D1, D2, D3) having

different properties by using NPTagger. D1 and D3 are generated by using news

77

articles while stories which are consisted of short sentences are used in

construction of D2. Morphological analysis of words in D3 is tagged by humans,

that is to say, we can use it in order to see effect of morphological

disambiguation.

Some statistical information about datasets is given in Table 8. Main NPs are

directly components of sentence and are not a sub-NP of any NP. In forth row,

number of main NPs is given while in fifth row, number of all NPs including

sub-NPs is given.

Table 8. Statistical Information about Datasets: D1, D2 and D3

Features D1 D2 D3

Number of Words 5695 3854 3152

Average Length of Main NPs 2.04 1.59 2.05

Total Number of Main NPs 1743 1208 990

Total Number of NPs including sub-NPs 2511 1398 1424

7.2 Results

We have written 98 rules and applied it to datasets mentioned above (See

Appendix B for full list of rules). Most of the rules are designed by considering

D1 and D3. After a pre-testing with D2, we have made only small changes. In

designing rules, we didn‟t write rules that would cause over- fitting problem.

Noun Phrases can be at different sizes in terms of words and it is obvious

that finding longer NPs is more difficult than shorter ones. In Table 9, detailed

information about NPs in D1 and ones we found and results are presented

separately for each different size of NPs. The second row shows the number of

main NPs in D1 according to size of NPs. In third row, total number of main and

sub-NPs in D1 is given. In forth row, number of main NPs we found is given

while fifth row gives the total number of NPs we found. In sixth row, we show

the number of main NPs found correctly. In this calculation, if a main NP we

found is a main NP in dataset, we count it as a hit, otherwise it is counted as a

78

miss. In seventh row, we give the performance of the system with another

evaluation called Total NP Match. We find how many of the NPs in dataset

including sub-NPs are found. This is a simple calculation that calculates number

of correct NPs ignoring whether it is a sub-NP or a main NP.

Table 9. Results of D1 According to NP Length

Length of

Noun Phrase
1 2 3 4 5 6 7 8 9 ≥10 Sum

of Main NPs

in D1
775 548 211 93 58 23 20 9 2 4 1743

of Total NPs

in D1
851 1005 347 149 77 39 25 11 2 5 2511

of Main NPs

we found
882 536 225 86 51 18 21 7 2 4 1832

of Total NPs

we found
939 965 344 132 75 32 28 10 4 4 2533

of Main NPs

found correctly
720 492 184 73 45 13 16 5 1 3 1552

of Total NPs

found correctly
778 880 293 108 59 24 20 7 1 3 2173

In finding main NPs, the system performs best for NPs of size 2. NPs with

only one words is the runner up while correctness in NPs size of 3 is the third.

From the table, we can see that our system can correctly find NPs which are

longer than 10 words.

By using information in Table 10 we can calculate recall, precision and F-

Measure Value for Total NP Match, which are showed in Table 8. As it is

explained in our algorithm, we first find noun phrases according to links and

then we mark as nouns and pronouns that have no links, as noun phrases.

Therefore, NPs with size of more than one word shows the performance of our

rules. Because of this reason, we show the results when single NPs are ignored

in third row.

Now let‟s analyze the reasons of the system‟s mistakes in D1. According to

our observations over the results, we can categorize the reasons of the mistakes

as follows:

79

Table 10. Exact Match Results for D1

Measure Type F-Measure Value Recall Precision

Exact Match with
all NPs

0.862 0.865 0.858

Exact Match with

non-single NPs
0.857 0.840 0.875

- Wrong Disambiguation: A mistake in disambiguation step affects our

rule constraints, sources and targets. It can cause mistakes for other NPs,

too. The following example couldn‟t be found by our system since the

word has 6 meanings and two of them are `burn` as a verb and „close‟ as

an adjective. Since our disambiguation system chooses the verb sense for

yakın (burn) one, we couldn‟t find that NP.

Yakın kaynaklar (close sources)

In addition, after finding NPs according to links, we mark nouns and

pronouns that have no links as single noun phrases. Mistakes in wrong

disambiguation directly affect these kind mistakes.

- Sentence Structure: In Turkish, the sentence order is SOV, as we

mentioned. This structure causes mistakes like in the following example.

Adam arabasını tamir etti. (The man fixed his car) (6)

In this sentence, there are actually two NPs which are Adam (The man)

and arabasını (his car). As we mentioned before, in Turkish, a

nominative noun can be a modifier of a third-person possessive noun.

When we put a rule for handling these kind NPs, we find also wrong NPs

like Adam arabasını (Accusative form of “man car”). It is very easy to

confuse the objects and subjects in Turkish since their position in

sentence is so close. These kind mistakes cannot be seen in languages

having order of Subject-Verb-Object like English

80

- Wrong Head Selection: In nested NPs, although we find the main NP

correctly, there is a common mistake that we do in determining head

token of the sub-NPs. For example, there are two sample NPs below and

each has a sub-NP. In first example, the sub-NP is eğitimsiz insane

(uneducated person) where the adjective eğitimsiz (uneducated) modifies

the nominative noun. However, in second example, the sub-NP is yarış

arabası (race car) where the adjective Yavaş (slow) modifies the noun

arabası (car). We cannot decide the correct head noun by using only

morphological information. We need semantic information about this

which can be obtained by a learning system or a WordNet for Turkish.

Eğitimsiz insan davranıĢı(uneducated person behavior)

YavaĢ yarıĢ arabası (slow race car)

- Collocation Recognizer: We used collocation analyzer before

disambiguation as mentioned. However, in some situation, collocation

analyzer caused mistakes. For example, in the following sentence, rol

oynadı (he played role) is recognized as a collocation and the

morphological parse of the word is “rol oyna+Verb+Pos+Past+A3sg”

where stem is “play role”. However, the adjective büyük (big) modifies

the word rol (role). Because of collocation analyzer, we lose the token of

rol and cannot find the NP büyük rol (big role).

Maçı kazanmasında büyük rol oynadı.(He played big role in winning the

match)

- Conjunction Rule Mistakes: Conjunction NPs are the most complex

NPs because of being consisted of more than one NPs. When we ignored

mistakes in conjunction NPs which comes from wrong disambiguation,

there are still some problems. Context information, semantics of the

words are crucial for determining them correctly. Therefore, a deeper

analysis must be done and more complex rules must be written for this

81

kind NPs. Being lack of a good WordNet for Turkish is the bottleneck of

this problem.

- Entity Name Mistakes: Entity names can be consisted of many names

which are not morphologically connected. For example, in the following

entity name, there is not any morphological connection between Bilkent

Üniversitesi (Bilkent University) and Bilgisayar Mühendisliği Bölümü

(Computer Engineering Department)

Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü (Computer

Engineering Department of Bilkent University)

This kind NPs can be found by using semantic information or checking

the proper morphological parse of the words. However, sometimes there

can be no semantically relationship between words since the entity name

can contain a sponsor‟s name like Ziraat Türkiye Kupası (Ziraat Turkey

Cup) or city names can be appended to the institution names like Ankara

Cumhuriyet Başsavcılığı (Ankara Chief Public Prosecutor's office).

Having no semantic relation between words makes the process harder. In

addition, finding sub-NPs correctly is still a problem when there is no

semantic relationship. Furthermore, if the word is the first word of the

sentence, then the morphological analyzer may not give a proper sense

for the word. Therefore, checking proper sense may also not work in

some cases.

The ratios of mistakes in D1 for each reason we have mentioned above is

given in Table 11. Since the ratios are obtained by controlling the system‟s

output manually, there can be some insignificant mistakes about ratios. As we

see from the table, wrong disambiguation is the main problem of the study. In

addition, we can see that conjunctive noun phrases are hardly to find because of

their complex structure. A deeper analysis about them can decrease amount of

the mistakes. Another important problem is wrong head selection. Semantic

analysis of words

82

Table 11. Ratios of Mistakes in D1 According to Reasons We Observed

Reason of The Mistake Ratio of Wrong

NPs we found

Ratio of NPs

not found in D1

Wrong Disambiguation 0.180 0.189

Sentence Structure 0.050 0.044

Wrong Head Selection 0.100 0.109

Collocation Recognizer 0.003 0.012

Conjunction Rule Mistakes 0.119 0.189

Entity Name Mistakes 0.044 0.083

Wrongly Disambiguated Single Main NPs 0.183 0.071

Miscellaneous 0.321 0.302

or using learning systems and giving links priorities according to the

probabilistic result of the learning can handle this problem. Ratio of Collocation

Recognizer mistakes is very little but in a larger datasets, the importance of this

kind mistake will increase. The mistakes about entity names can be handled by a

deeper analysis of an expert about Turkish Language. In addition, using a list

name of generally known institution names will be helpful.

Table 12. Results of D2 According to NP Length

Length of Noun

Phrase

1 2 3 4 5 6 7 8 9 10 Sum

of Main NPs

in D2
706 353 111 24 7 2 2 2 0 1 1208

of Total NPs

in D2
725 487 136 30 9 4 3 2 1 1 1398

of Main NPs

we found
723 366 122 21 9 1 0 1 0 0 1243

of Total NPs

we found
734 507 143 26 9 1 1 1 0 0 1422

of Main NPs

found correctly
614 310 92 14 6 1 0 1 0 0 1038

of Total NPs

found correctly
628 443 109 17 7 1 0 1 0 0 1206

When we have tested our system with D2, then we get the results given in

Table 12. As it is seen from the table, NPs are shorter in D2 and the system

83

success decrease as the length of NPs increases. The precision, recall and F-

Measure value for D2 are given in Table 13.

Table 13. Exact Match Results for D2

Measure Type F-Measure Value Recall Precision

Exact Match with

all NPs
0.855 0,863 0.848

Exact Match with
non-single NPs

0.849 0.859 0.840

As we analyze the mistakes for D2, the ratios of mistakes in D2 for each

reason we have mentioned above are given in Table 14.

Table 14. Ratios of Mistakes in D2 According to Reasons We Observed

Reason of The Mistake
Ratio of Wrong

NPs we found

Ratio of NPs

not found in D1

Wrong Disambiguation 0.236 0,249

Sentence Structure 0.083 0.114

Wrong Head Selection 0,060 0.052

Collocation Recognizer 0.000 0.010

Conjunction Rule Mistakes 0.037 0.124

Wrongly Disambiguated Single Main NPs 0.241 0.155

Miscellaneous 0.343 0.295

From the table, we can see that wrong disambiguation is the main problem

of this dataset. An increase in performance of wrong disambiguation will affect

the performance highly. Second important problem is sentence structure. We can

say that in shorter sentences, the mistakes which are caused by sentence

structure increases. Conjunction noun phrases are still hard to define because of

having complex structure. There is no mistake with entity names since the texts

belong to stories which do not contain any entity names.

In some applications only main NPs can be enough. Therefore, we have

checked correctness of main NPs we have found. If a main NP we have found is

exactly same with a main NP in dataset, then we counted them as Full Match,

which is same evaluation in 6th rows in Table 7 and 11. However, if the NP we

84

found is a sub-NP in dataset, we counted them as Partial Match. According to

this evaluation, the results are given in Table 15 for D1 & D2.

Table 15. F-Measure Values for D1 and D2 According to Correctness of Main
NPs

Dataset
Full Match

F-Measure Value

Full Match +

Partial Match
F-Measure Value

D1 0.868 0.895

D2 0.847 0.867

From the full match value, we can see how many of the main noun phrases

we found are main noun phrase in datasets. The result of D1 is higher than the

result of D2. The reason of this is that we have written the rules by considering

D1. By adding new rules that will handle problems of D2 will increase the

results. By the results in third row, we can see that how many of main noun

phrases we found are correct noun phrases. The results are promising since they

can be improved by adding new rules or using more semantic information. In

addition, working with specialists on Turkish language can increase the

performance of the system.

7.3 Effect of Morphological Disambiguation

We propose two new systems, one for morphological disambiguation and one

for noun phrase chunking. As mentioned, our noun phrase chunking system

uses morphological disambiguation. The mistakes in disambiguation can affect

the noun phrase chunker. In order to see the performance of noun phrase

chunker, we performed test with D3 which is a manually tagged noun phrase

dataset and the morphological parses of words in D3 is also tagged by humans.

So, we can assume that all given morphological parses are true. In testing with

D3, we used these given morphological parses, instead of output of our system.

The results according to noun phrase length are given in Table 16.

85

Table 16. Results of D3 According to NP Length

Length of Noun

Phrase

1 2 3 4 5 6 7 8 9 ≥10 Sum

of Main NPs

in D3
451 297 127 47 35 13 8 7 0 5 990

of Total NPs

in D3
489 560 203 80 50 18 9 8 0 7 1424

of Main NPs

we found
457 303 126 49 33 15 8 3 0 5 999

of Total NPs

we found
493 545 197 78 46 20 9 4 1 7 1403

of Main NPs

found correctly
435 284 118 43 28 11 8 3 0 4 934

of Total NPs

found correctly
472 519 179 71 40 15 8 3 0 6 1313

From the table, we can see that best precision and recall results are obtained

in single noun phrases. This is an expected result since most of the single noun

phrases are found by the given morphological parses. The precision and recall

decrease as the length of the noun phrase increases. In addition, we see that our

rules are capable of correctly finding noun phrases which have a size of bigger

than 10. The precision, recall and F-Measure values for all noun phrases are

given in Table 17.

Table 17. Exact Match Results for D3

Measure Type F-Measure Recall Precision

Exact Match with

all NPs
0.929 0.922 0.936

Exact Match with
non-single NPs

0.913 0.899 0.927

We can see that there is a huge increase in precision and recall results, when

compared with tests with D1 and D2. When the single noun phrases are ignored,

the performance of the system decreases as expected. However, the results are

still better than the previous tests. Therefore, we can say that as the

disambiguation system‟s performance increase, success in noun phrase chunking

86

will increase. The reasons of the mistakes of our system based on our

observations and their ratios in all mistakes are given in Table 18.

As we can see from the table, the main problems of our rules are wrong

head selection and conjunction noun phrases. These mistakes can be handled by

our system with a deeper analysis by linguistics. Third main problem is about

entity names. These can also be handled by providing a list of entity names and

some linguistic features about them. The reason of not handling these mistakes

was to avoid over- fitting for datasets.

Table 18. Ratios of Mistakes in D3 According to Reasons We Observed

Reason of The Mistake Ratio of Wrong NPs
we found

Ratio of NPs not found
in D3

Sentence Structure 0.066 0.045

Wrong Head Selection 0.231 0.196

Conjunction Rule Mistakes 0.187 0.196

Entity Name Mistakes 0.132 0.223

Others 0.385 0.339

We calculated F-Measure for main NPs with D3 to compare results in Table

15. The F-Measure value of Full-Matches is 0.939 and F-Measure value of Full

Matches and Partial Matches is 0.965. The high difference between results in

Table 15 and results for D3 shows the importance of disambiguation.

The F-Measure value of Full & Partial Matches is higher than result in exact

match comparison. Therefore, we can say that our system words better in

finding main noun phrases. The reason for this is that finding sub-noun phrases

requires more semantic information than main noun phrases while finding main

noun phrases can be mostly handled with morphological information of words.

The high F-Measure of Full & Partial matches shows that as long as

disambiguation is performed well, the main noun phrases we found with only 98

rules are very reliable.

87

Chapter 8

Conclusion

In this thesis, we have developed an NP Chunker for Turkish. To the best of our

knowledge, this is the first NP Chunker for Turkish. We have implemented a

dependency parser which uses constraint based handcrafted rules for NP

chunking. Our dependency parser has many distinctive features. It uses a scoring

algorithm in constructing links for overcoming ambiguity problem. In addition,

we have defined powerful constraining rules that allow rule designers to use

semantic and morphological information together and handle very complex

structures. By changing rules, links for shallow parsing of other phrases and full

sentence parsing can be constructed, too.

Our dependency parser connects links between tokens rather than words.

Therefore, morphological analysis is crucial for our NP Chunker in order to

determine tokens. However, ambiguity is a significant problem that has to be

handled for more reliable and easy computations and correct tokenization. In

this thesis, we proposed a new morphological disambiguation technique which

combines statistical information, hand-crafted constraining rules and

transformation based learned rules. We constructed a dataset consisted of 25098

manually tagged word for testing and training the disambiguation system. This

dataset is also significant for researchers who want to work on Turkish. Our tests

with the dataset give promising results.

We have also constructed three small datasets for testing our NP Chunker.

These datasets consisted of 3941 main noun phrases at total. We implemented a

tool for easing tagging process. This tool can be used for increasing size of

88

dataset in future. Our NP Chunker gives promising results and the performance

can increase by getting help from experts on Turkish language. It is also to be

mentioned that the scope of this thesis includes NPs with complex structures like

nested NP, entity names and conjunctive NPs. We cannot compare our results

with previous studies because of using different datasets.

Enlarging training dataset of disambiguation process and testing dataset of

NP chunker is left as future work. Our dependency parser structure can also be

used for parsing other phrases, too. Therefore, shallow parsing of NPs, VPs, etc.

is also left as future work.

89

 BIBLIOGRAPHY

[1] Voutilainen, A., Heikkilä, J., Anttila, A. (1992). Constraint Grammar of

English. University of Helsinki.

[2] Voutilainen, A. (1993). NPTool, a detector of English noun phrases. In

Proceedings of the Workshop on Very Large Corpora (pp. 48-57).

Association for Computational Linguistics.

[3] Abney, S. (1991). Parsing by Chunks. Principle-Based Parsing , pp. 257-

278.

[4] Altan, Z. (2004). A Turkish Automatic Text Summarization System. In

Proceedings of IASTED International Conference on Artificial Intelligience

and Applications, (pp. 311-316). Innsbruck, Austria.

[5] Argamon, S., Dagan, I., & Krymolowski, Y. (1998). A memory-based

approach to learning shallow. In Proceedings of COLING-ACL '98.

Association for Computational Linguistics.

[6] Bourigault, D. (1992). Surface grammatical analysis for the extraction of

terminological noun phrases. In Proceedings of the 14th International

Conference on Computational Linguistics, (pp. 977-981).

[7] Brill, E. (1992). A simple-rule based part-of-speech tagger. In Proceedings

of the Third Conference on Applied Natural Language Processing.

Trento,Italy.

[8] Brill, E. (1994). Some advances in rule-based part of speech tagging. In

Proceedings of the Twelfth National Conference on Artificial Intelligence.

Seattle, Washington.

90

[9] Brill, E. (1995). Transformation-based error-driven learning and natural

language processing: A case study in part-of-speech tagging. Computational

Linguistics , 21(4):543-566.

[10] Cardie, C., & Pierce, D. (1998). Error-driven pruning of treebank grammars

for base noun phrase identification. In Proceedings of COLING-ACL '98.

Association for Computational Linguistics.

[11] Carrol, G., & Charniak, E. (1992). Two experiments on learning

probabilistic dependency grammars from corpora, Technical Report TR-92.

Department of Computer Science, Brown University.

[12] Church, K. W. (1988). A stochastic parts program and noun phrase parser

for unrestricted. In Proceedings of the Second Conference on Applied

Natural Language Processing. Austin, Texas.

[13] Collins, M., Hajic, J., Brill, E., Ramshaw, L., & Tillmann, C. (1999). A

statistical parser for Czech. In Proceedings of the 37th Meeting of the

Association for Computational Linguistics (ACL), (pp. 505–512).

[14] Cutting, D., Kupiec, J., Pealersen, J., Sibun, P. (1992). A practical part-of-

speech tagger. In Proceedings of the Third Conference on Applied Natural

Language Processing. Trento,Italy.

[15] Daelemans, W. (1996). MBT: A memory-based part of speech tagger-

generator. In Proceedings of the Fourth Workshop on very Large Corpora,

(pp. 14-27).

[16] Daelemans, W., Bosch, A. v., & Zavrel, J. (1999). Forgetting exceptions is

harmful in language learning. Machine Learning, 34:11-14 .

[17] Eisner, J. M. (1996a). An empirical comparison of probability models for

dependency grammar, Technical Report IRCS-96-11. Institute for Research

in Cognitive Science, University of Pennsylvania.

91

[18] Eisner, J. M. (1996b). Three new probabilistic models for dependency

parsing: An exploration. In Proceedings of the 16th International

Conference on ComputationalLinguistics (COLING), (pp. 340–345).

[19] Ercan, G., & Cicekli, I. (2007). Using Lexical Chains for Keyword

Extraction. Information Processing & Management, , Vol 43, No. 6, pp.

1705-1714.

[20] Eryiğit, G., & Oflazer, K. (2006). Statistical Dependency Parsing of

Turkish. In Proceedings of EACL 2006 11th Conference of the European

Chapter of the Association for Computational Linguistics. Trento,Italy.

[21] Ezeiza, N., I. Alegria, J.M. Arriola, R. Urizar and I. Aduriz. (1998).

Combining Stochastic and Rule based Methods for Disambiguation in

Agglutinative Languages. In Proceedings of the 36th Annual Meeting of the

Association for Computational Linguistics and 17th International

Conference on Computational Linguistics, (pp. 379-384). Montreal,

Quebec, Canada.

[22] F Karlsson, A Anttila. (1995). Constraint Grammar- A Language

Independent System for Parsing Unrestricted Text. Mouton de Gruyter.

[23] Gaifman, H. (1965). Dependency systems and phrase-structure systems.

Information and Control , 8:304–337.

[24] Group, T. X. (1998). A Lexicalized Tree Adjoining Grammar for English.

University of Pennsylvania. IRCS Tech Report 98-18.

[25] H. Sak, T.Güngör, and M. Saraçlar. (2007). Morphological disambiguation

of Turkish text with perceptron algorithm. In Proceedings of CICLing

2007, (pp. 107-118).

[26] Hajiˇc, J. and B. Hladká. (1998). Tagging Inflective Languages: Prediction

of Morphological Categories for a Rich, Structured Tagset. In Proceedings

92

of the 36th Annual Meeting of the Association for, (pp. 483-490). Montreal,

Canada.

[27] Hajiˇc, J. (2000). Morphological Tagging: Data vs. Dictionaries. In

Proceedings of the Applied Natural Language Processing and the North

American Chapter of the Association for Computational Linguistics

(ANLP-NAACL). Seattle.

[28] Hakkani-Tür, D. Z.,Oflazer, K.,Tür, G. (2002). Statistical Morphological

Disambiguation for Agglutinative Languages. Computers and the

Humanities, 36(4) .

[29] Harper, M. P., & Helzerman, R. A. (1995). Extensions to constraint

dependency parsing for spoken language processing. Computer Speech and

Language , 9: 187–234.

[30] Hays, D. G. (1964). Dependency theory: A formalism and some

observations. Language , 40:511–525.

[31] Istek, O. (2006). A Link Grammar For Turkish. MS Thesis . Bilkent

University.

[32] Istek, O., & Cicekli, I. (2007). A Link Grammar for an Agglutinative

Language. in Proceedings of Recent Advances in Natural Language

Processing (RANLP 2007), (pp. 285-290). Borovets, Bulgaria.

[33] J. Hammerton, M. Osborne, S. Armstrong, and W. Daelemans. (2002).

Introduction to Special Issue on Machine Learning Approaches to Shallow

Parsing. Journal of Machine Learning Research , 551-558.

[34] Jarvinen, T., & Tapanainen, P. (1998). Towards an implementable

dependency grammar. In Proceedings of the Workshop on Processing of

Dependency-Based Grammars , (pp. 1-10).

93

[35] Karlsson, F. (1990). Constraint grammar as a framework for parsing

running text. In Proceedings of the 13th International Conference on

Computational Linguistics, (pp. 168–173).

[36] Korkmaz, T. (1996). Turkish Text Generation with Systemic-Functional

Grammar . MS Thesis . Ankara,Turkey: Bilkent University.

[37] Kuang-hua Chen, Hsin-Hsi Chen. (1994). Extracting noun phrases from

large-scale texts: a hybrid approach and its automatic evaluation. In

Proceedings of the 32nd annual meeting on Association for Computational

Linguistics, (pp. 234-241).

[38] Kudo, T., & Matsumoto, Y. (2002). Japanese dependency analysis using

cascaded chunking. In Proceedings of the Sixth Workshop on

Computational Language Learning (CoNLL), (pp. 63-69).

[39] Kudo, T., & Matsumoto, Y. (2000). Japanese dependency structure analysis

based on support vector machines. In Proceedings of the Joint SIGDAT

Conference on Empirical Methods in Natural Language Processing and

Very Large Corpora (EMNLP/VLC), (pp. 18–25).

[40] Kupiec, J. (1992). Robust part-of-speech tagging using a hidden Markov

model. Computer Speech and Language , 6:225-242.

[41] Kutlu, M., Cigir, C., & Cicekli, I. (2010). Generic Text Summarization for

Turkish. The Computer Journal .

[42] L.A. Ramshaw and M.P. Marcus. (1995). Text chunking using

transformation-based learning. In Proceedings of the Third Workshop on

Very Large Corpora. ACL.

[43] Leech G.,Garside R., Bryan M. (1994). CLAWS4: The tagging of the

British National Corpus. In Proceedings of COLING‟94, (pp. 622-628).

94

[44] Levinger, M., U. Oman and A. Itai. (1995). Learning Morpho-lexical

Probabilities from an Untagged Corpus with an Application to Hebrew.

Computational Linguistics 21(3) , 383-404.

[45] Maruyama, H. (1990). Structural disambiguation with constraint

propagation. In Proceedings of the 28th Meeting of the Association for

Computational Linguistics, (pp. 31–38). Pittsburgh.

[46] Megyesi, B. (1999). Improving Brill‟s POS Tagger for an Agglutinative

Language. In Proceedings of the Joint SIGDAT Conference on Empirical

Methods in Natural Language Processing and Very Large Corpora, (pp.

275-284). College Park, Maryland, USA.

[47] Menzel, W., & Schroder, I. (1998). Decision procedures for dependency

parsing using graded constraints. In Proceedings of the Workshop on

Processing of Dependency-Based Grammars, (pp. 78-87).

[48] Munoz, M., Punyakanok, V., Roth, D., & Zimak, D. (1999). A learning

approach to shallow parsing. In Proceedings of EMNLP-WVLC'99.

Association for Computational Linguistics.

[49] Ngai, G., & Yarowsky, D. (2000). Rule writing or annotation: cost-efficient

resource usage for base noun phrase chunking. In Proceedings of ACL‟02,

(pp. 117-125).

[50] Nivre, J. (2005). Dependency grammar and dependency parsing. Vaxjö

University: School of Mathematics and Systems Engineering: Technical

Report MSI report 05133.

[51] Oflazer K., Tür G. (1997). Morphological Disambiguation by Voting

Constraints. In Proceedings of the Eighth Conference on European Chapter

of the Association for Computational Linguistics, (pp. 222-229).

95

[52] Oflazer, K., Kuruöz I. . (1994). Tagging and morphological disambiguation

of Turkish text. In Proceedings of the 4th Applied Natural Language

Processing Conference, (pp. 144-149). ACL.

[53] Oflazer, K., Tür, G. (1996). Combining Hand-crafted Rules and

Unsupervised Learning in Constraint-based Morphological Disambiguation.

In Proceedings of the ACL-SIGDAT Conference on Empirical Methods in

Natural Language Processing. Philadelphia, USA.

[54] Oflazer, K., Tür, G. (1997). Morphological Disambiguation by Voting

Constraints. In Proceedings of ACL/EACL, The 35th Annual Meeting of

the Association for Computational Linguistics. Madrid, Spain.

[55] Oflazer, K. (2003). Dependency parsing with an extended finite-state

approach. Computational Linguistics , 29: 515–544.

[56] Ozdemir, B., & Cicekli, I. (2009). Turkish Keyphrase Extraction Using

Multi-Criterion Ranking. In Proceedings of the 24rd International

Symposium on Computer and Information Sciences (ISCIS 2009). Northern

Cyprus.

 [57] Pattabhi, R. K., Vijay, S. R., Vijayakrishna, R., & Sobha, L. (2007). A Text

Chunker and Hybrid POS Tagger for Indian Languages. In Proceedings of

IJCAI-07 workshop on Shallow Parsing for South Asian Languages.

[58] Sang, E. F. (2000). Noun phrase recognition by system combination. In

Proceedings of the Language Technology Joint Conference ANLP-

NAACL2000, (pp. 50-55). Seattle, Washington, USA.

[59] Sang, E. F., & Buchholz, S. (2000). Introduction to the CoNLL-2000

Shared Task: Chunking. In Proceedings of CoNLL-2000 and LLL-2000,

(pp. 127-132). Lisbon, Portugal.

96

[60] Sastry, G. R., Chaudhuri, S., & Reddy, P. N. (2007). An HMM based Part-

Of-Speech tagger and statistical chunker for 3 Indian languages. In

Proceedings of IJCAI-07 workshop on Shallow Parsing for South Asian

Languages.

[61] Schroder, I. (2002). Natural Language Parsing with Graded Constraints.

PhD thesis . Hamburg University.

[62] Skut, W., & Brants, T. (1998). Chunk tagger – statistical recognition of

noun phrases. In Proceedings of the ESSLLI Workshop on Automated

Acquisition of Syntax and Parsing. Saarbrücken.

[63] Sleator, D., & Temperley, D. (1993). Parsing English with a link grammar.

In Proceedings of International Workshop on Parsing Technologies (IWPT),

(pp. 277–292).

[64] Sleator, D., & Temperley, D. (1991). Parsing English with a link grammar,

Technical Report CMU-CS-91-196. Carnegie Mellon University, Computer

Science.

[65] Sobha, L., & Vijay, S. R. (2006). Noun Phrase Chunking in Tamil. In

Proceedings of the MSPIL-06, (pp. 194-198). Bombay.

[66] T. Daybelge, I. Cicekli. (2007). A Rule-Based Morphological

Disambiguator for Turkish. In Proceedings of Recent Advances in Natural

Language Processing, (pp. 145-149). Borovets, Bulgaria.

[67] Tapanainen P., Voutilainen A. (1994). Tagging Accurately - Don't guess if

you know. In Proceedings of ANLP‟94, (pp. 47-52).

[68] Tjong Kim Sang, E. F., & Veenstra, J. (1999). Representing Text Chunks.

In Proceedings of EACL '99. Association for Computational Linguistics.

97

[69] Veenstra, J. (1998). Fast NP chunking using memory-based learning

techniques. In Proceedings of the Eighth Belgian-Dutch Conference on

Machine Learning.

[70] Voutilainen, A. (1995). A syntax-based part-of-speech analyzer. In

Proceedings of the Seventh Conference of the European Chapter of the

Association of Computational Linguistics. Dublin, Ireland.

[71] Voutilainen, Atro and Pasi Tapanainen. (1993). Ambiguity resolution in a

reduetionistic parser. In Proceedings of EACL'93. Utrecht, Holland.

[72] Wang, W., & Harper, M. P. (2004). A statistical constraint dependency

grammar (CDG) parser. In Proceedings of the Workshop in Incremental

Parsing: Bringing Engineering andCognition Together (ACL), (pp. 42–29).

[73] Yüret, D., Türe, F. (2006). Learning Morphological Disambiguation Rules

for Turkish. In Proceedings of HLT-NAACL .

98

APPENDIX A

Links and Their Explanations

Link Name Explanation

A The source is an adjective. i.e. Küçük

adam(Small man)

Dn The source is a number. i.e. 3 araba(3

cars)

Time The noun phrase is related to time. i.e.

Bu sabah (This morning)

NumberPossesive The source is a number and the target

is a noun with third person possessive

marker. i.e.1990 senesi (year of 1990)

ofProp The target is a proper noun and target

is a member of a group. i.e. Lig

Şampiyonlarından Beşiktaş (BeĢiktaĢ,

from the league champions.)

Bsiz The source is a nominative noun and

target has a possessive marker rather

than Pnon. i.e. ders notu(Lecture note)

Bli The source is a noun or a pronoun

with a genitive case marker and target

is a noun with a third person

possessive marker. Adamın

arabası(The man‟s car)

Prop Source and target has a proper noun

sense but the disambiguator found

them as noun. The link is used to

handle Entity Names. Its priority is

smaller than the link Proper.

99

AA The source has ablative case marker

and target is adjective. i.e. konudan

bağımsız(free from the subject)

MadeOf The source shows what is made of

target. i.e. Altın saat (golden watch)

Title The target is a proper noun and the

source is its job or caption. i.e. Prof.

Ali

toQ The target is a quotation mark and

source is anything.

fromQ The source is a quotation mark and

target is anything.

Quotation-Possessive The quotation mark is connected to a

noun with a third person possessive

marker. i.e. “dur” uyarısı(“stop”

warning)

Dash The source or target is a dash. i.e. sarı-

kırmızı(yellow-red)

Connector The source or the target is a

conjunction word. i.e. kitap ve

kalem(book and pencil)

Proper The source and the target is a proper

noun.

NA The source is a noun that acts as an

adjective and the target is a noun or a

proper noun.

ANP The source is a noun and a part of an

NP which acts as adjective. i.e.

insanlık dışı davranış(inhumane

behaviour)

NominativeModifier Same with link Bsiz. The reliability of

this link is less.

100

QuotationAdj Source is a quotation mark and the

target is a noun. The previous word of

quotation mark should be an adjective.

i.e. “iyi” adam(“good” man)

AdverbConj Connects conjunction to an adjective

where the adjective modified with an

adverb. For example, the link is

constructed between “da” and “güzel”

in the following NP: Çok da güzel

araba(very good car)

numberConnector It is used for connecting numbers that

define a range. For example, the link

is constructed between “30” and “ile”

in the following NP : 30 ile 40 kadar

araba(nearly 30 or 40 cars)

NN It is used for connecting numbers that

are defining a unique number. For

example, The link is constructed

between “Üç” and “bin” in the

following NP: 3 bin adam(three

thousand man)

withProp It is used for connecting a special type

of noun phrases. The source is

nominative proper noun and target is a

one of the words with certain

semantic. For example, the link is

constructed in the following word

phrases : Hint asıllı(Indian origined),

John isimli(with name of John)

postNumber It is used for connecting number and

conjunctions in a certain conjunction

type. For example, 400 veya üstünde

adam(400 or more men)

Distance It is used for connecting distance

units. For example, the link is

constructed between “metre” and

101

“santim” in the following word

phrases : 3 metre 10 santim(3 meters

and 10 centimeters)

AToA Connects two adjectives where both

modify same word and there is a

conjunction word between them. i.e.

iyi ve güzel araba(good and beautiful

car)

102

APPENDIX B

List of Rules

In implementation of the rules, NumberPossesive link is named as YearN, AA is named

as From, madeOf is named as Takisiz, toQ is named as toTirnak, fromQ is named as

fromTirnak, Quotation-Possesive is named as QuatationBsiz, Dash is named as

TireLink, NominativeModifier is named as Belirtisiz, Distance is named as uzunluk

and AToA is named as SifatToSifat, by the rule designer.

<!-- küçük adam – small man -->

<NounPhraseRule>

 <ID>1</ID>

 <sourceType>POS</sourceType>

 <source>Adj</source>

 <targetType>LIST</targetType>

 <target>NounPropList.txt</target>

 <linkType>A</linkType>

 <priority>100</priority>

 <constraint>!T:hasBeginLink(Takisiz)</constraint>

 <constraint>!S:hasEndLink(Proper)</constraint>

 <constraint>!T:hasBeginLink(NA)</constraint>

 <constraint>[![T:isPossible(Verb)]^[S:isPossible(Adverb)]]</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

<constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>

<constraint>[![S->T:numberOfWords(1)]^[S-

>T:containsPOS(Punc)]]</constraint>

 <constraint>!S:inList(Rule1ExceptList.txt)</constraint>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

</NounPhraseRule>

<!—Hızlı yarış arabası – fast race car – connects adj to the noun with Bsiz Link

 -->

<NounPhraseRule>

 <ID>2</ID>

 <sourceType>POS</sourceType>

 <source>Adj</source>

 <targetType>POS</targetType>

 <target>Noun</target>

 <linkType>A</linkType>

 <priority>120</priority>

 <constraint>T:hasEndLink(Bsiz)</constraint>

 <constraint>!S->T:containsUnconnectedToken()</constraint>

 <constraint>!S->T:containsLink(About)</constraint>

 <constraint>!S->T:containsMorpheme(+Gen)</constraint>

 <constraint>!S->T:containsMorpheme(Adj+Rel)</constraint>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>

 <constraint>!S:inList(Rule2ExceptList.txt)</constraint>

<constraint>[![S->T:numberOfWords(1)]^[S-

>T:containsPOS(Punc)]]</constraint>

 </NounPhraseRule>

<!-- 5 bir adam – one man -->

<NounPhraseRule>

 <ID>3</ID>

 <sourceType>POS</sourceType>

 <source>Num</source>

103

 <targetType>LIST</targetType>

 <target>NounPropPronList.txt</target>

 <linkType>Dn</linkType>

 <priority>100</priority>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!T:hasBeginLink(Takisiz)</constraint>

 <constraint>!T:hasBeginLink(NA)</constraint>

 <constraint>!T:turnsInto(Adj)</constraint><!-- see rule 64-->

 <constraint>!S->T:containsUnconnectedToken()</constraint>

</NounPhraseRule>

<!-- Güzei ve iyi car – beautiful and good car – connects sifat to sifat -->

<NounPhraseRule>

 <ID>4</ID>

 <sourceType>POS</sourceType>

 <source>Adj</source>

 <targetType>POS</targetType>

 <target>Adj</target>

 <linkType>SifatToSifat</linkType>

 <priority>95</priority>

 <constraint>[![S->T:numberOfWords(1)]^[S+1:inList(ConnectorList.txt)]]

 </constraint>

 <constraint>!S:derivedFrom(Verb)</constraint>

 <constraint>!T:derivedFrom(Verb)</constraint>

</NounPhraseRule>

<!-- bu akşam – This night -->

<NounPhraseRule>

 <ID>5</ID>

 <sourceType>POS</sourceType>

 <source>Adj</source>

 <targetType>LIST</targetType>

 <target>ZamanList.txt</target>

 <linkType>Time</linkType>

 <priority>110</priority>

 <constraint>[![[S->T:containsPOS(Noun)]|

 [S->T:containsPOS(Prop)]]]</constraint>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!S+1->T-1:numberOfWord(",1,EQ)</constraint>

 <constraint>!S+1->T-1:numberOfWord(',1,EQ)</constraint>

 </NounPhraseRule>

 <!-- bir akşam - a night -->

 <NounPhraseRule>

 <ID>6</ID>

 <sourceType>POS</sourceType>

 <source>Num</source>

 <targetType>LIST</targetType>

 <target>ZamanList.txt</target>

 <linkType>Time</linkType>

 <priority>110</priority>

 <constraint>[![[S->T:containsPOS(Noun)]|

 [S->T:containsPOS(Prop)]]]</constraint>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!S+1->T-1:numberOfWord(",1,EQ)</constraint>

 <constraint>!S+1->T-1:numberOfWord(',1,EQ)</constraint>

</NounPhraseRule>

<!-- 4 yüz – 4 hundred -->

<NounPhraseRule>

 <ID>7</ID>

 <sourceType>POS</sourceType>

 <source>Num</source>

 <targetType>POS</targetType>

 <target>Num</target>

 <linkType>NN</linkType>

 <priority>200</priority>

104

 <constraint>S->T:numberOfWords(0)</constraint>

</NounPhraseRule>

<!-- 1990 senesi – year of 1990 -->

<NounPhraseRule>

 <ID>8</ID>

 <sourceType>POS</sourceType>

 <source>Num</source>

 <targetType>LIST</targetType>

 <target>SeneList.txt</target>

 <linkType>YearN</linkType>

 <priority>110</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

</NounPhraseRule>

<!-- Liderlerinden Richard - Richard, one of the leaders, -->

<NounPhraseRule>

 <ID>9</ID>

 <sourceType>POSPI</sourceType>

 <source>Noun,+Abl,+A3pl</source>

 <targetType>POS</targetType>

 <target>Prop</target>

 <linkType>ofProp</linkType>

 <priority>80</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>!S:contains(Pnon)</constraint>

</NounPhraseRule>

<!—- Okul arkadaşı – school friend -->

<NounPhraseRule>

 <ID>10</ID>

 <sourceType>LIST</sourceType>

 <source>NounPropNomList.txt</source>

 <targetType>LIST</targetType>

 <target>NounPropList.txt</target>

 <linkType>Bsiz</linkType>

 <priority>100</priority>

 <constraint>!T:contains(Pnon)</constraint>

 <constraint>S~T:agree(Plural)</constraint>

 <constraint>!T:hasEndLink(YearN)</constraint>

 <constraint>!T:hasEndLink(postNumber)</constraint>

 <constraint>!T:hasEndLink(Belirtisiz)</constraint>

 <constraint>[![S+1->T-1:containsPOS(Noun)]|

 [S+1->T-1:containsPOS(Prop)]]^[!S->T:numberOfWords(0)]</constraint>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>

 <constraint>[![S->T:numberOfWords(1)]^[S->T:containsPOS(Punc)]]</constraint>

 <constraint>!S->T:containsList(Rule10BlockerList.txt)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!T:inList(BirlesikIsimList.txt)</constraint>

 </NounPhraseRule>

<!—- For connecting third person possesive nouns to previous nomivative words if

still they are not connected-->

<NounPhraseRule>

 <ID>11</ID>

 <sourceType>LIST</sourceType>

 <source>NounPropNomList.txt</source>

 <targetType>LIST</targetType>

 <target>NounPropList.txt</target>

 <linkType>Belirtisiz</linkType>

 <priority>40</priority>

 <constraint>!T:contains(Pnon)</constraint>

 <constraint>!T:hasEndLink(YearN)</constraint>

 <constraint>!T:hasEndLink(postNumber)</constraint>

 <constraint>!S->T:containsUnconnectedToken()</constraint>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>

 <constraint>!S->T:containsPOS(Punc)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

105

 <constraint>!S->T:containsList(Rule10BlockerList.txt)</constraint>

 <constraint>!T:hasEndLink(Bsiz)</constraint>

 <constraint>!T:hasEndLink(Belirtisiz)</constraint>

 <constraint>!T:hasEndLink(Bli)</constraint>

 <constraint>!T:inList(BirlesikIsimList.txt)</constraint>

</NounPhraseRule>

<!-- Connects person name to a proper noun found as a noun -->

<NounPhraseRule>

 <ID>12</ID>

 <sourceType>POSPI</sourceType>

 <source>Prop,+A3sg,+Pnon,+Nom</source>

 <targetType>LIST</targetType>

 <target>NounPropList.txt</target>

 <linkType>Proper</linkType>

 <priority>120</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>T:isPossible(Prop)</constraint>

 <constraint>!S:endsWith(oğlu)</constraint>

 <constraint>S:inList(person.first_name.txt)</constraint>

 <constraint>!T:inList(ulke.txt)</constraint>

 <constraint>!T:inList(TurkiyeSehir.txt)</constraint>

 <constraint>!T:inList(ilce.txt)</constraint>

</NounPhraseRule>

<!—- Adamın işi – the job of the man, the man’s job -->

<NounPhraseRule>

 <ID>13</ID>

 <sourceType>LIST</sourceType>

 <source>NounPropGenList.txt</source>

 <targetType>LIST</targetType>

 <target>NounPropList.txt</target>

 <linkType>Bli</linkType>

 <priority>90</priority>

 <constraint>T:contains(+P3)</constraint>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>

 <constraint>[![S->T:numberOfWords(1)]^[S->T:containsPOS(Punc)]]</constraint>

 <constraint>!T:hasEndLink(postNumber)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!T->E:hasP3SGNounDerivedFromVerb()</constraint>

 <constraint>!T:inList(SifatIsimTamlamari.txt)</constraint>

</NounPhraseRule>

<!-- For connecting third person possesive nouns to previous genitive words if

still they are not connected -->

 <NounPhraseRule>

 <ID>14</ID>

 <sourceType>LIST</sourceType>

 <source>NounPropGenList.txt</source>

 <targetType>LIST</targetType>

 <target>NounPropList.txt</target>

 <linkType>Bsiz</linkType>

 <priority>40</priority>

 <constraint>T:contains(+P3)</constraint>

 <constraint>S~T:agree(Plural)</constraint>

 <constraint>!T:hasEndLink(YearN)</constraint>

 <constraint>!T:hasEndLink(postNumber)</constraint>

 <constraint>!S->T:containsUnconnectedToken()</constraint>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>

 <constraint>!S->T:containsPOS(Punc)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!T:hasEndLink(Bsiz)</constraint>

 <constraint>!T:hasEndLink(Bli)</constraint>

 <constraint>!T:inList(BirlesikIsimList.txt)</constraint>

 </NounPhraseRule>

<!—- en ucuz – the cheapest -->

<NounPhraseRule>

106

 <ID>15</ID>

 <sourceType>POSFI</sourceType>

 <source>Adverb+AdjMdfy</source>

 <targetType>POS</targetType>

 <target>Adj</target>

 <linkType>Eap</linkType>

 <priority>110</priority>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S->T:containsPOS(Punc)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>

 <constraint>[![S->T:numberOfWords(1)]^[S->T:containsPOS(Punc)]]</constraint>

 <constraint>!S+1->T-1:numberOfWord(",1,EQ)</constraint>

 <constraint>!S+1->T-1:numberOfWord(',1,EQ)</constraint>

 <constraint>!S->T:containsUnconnectedToken()</constraint>

</NounPhraseRule>

<!-- Connects nominative proper noun to a proper noun. ie. Necip Fazıl -->

<NounPhraseRule>

 <ID>16</ID>

 <sourceType>POSPI</sourceType>

 <source>Prop,+A3sg,+Pnon,+Nom</source>

 <targetType>POSPI</targetType>

 <target>Prop,+A3sg,+Pnon</target>

 <linkType>Proper</linkType>

 <priority>110</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>!T:inList(ulke.txt)</constraint>

 <constraint>!T:inList(TurkiyeSehir.txt)</constraint>

 <constraint>!T:inList(ilce.txt)</constraint>

 <constraint>!S:endsWith(oğlu)</constraint>

 <constraint>!T:inList(rule16ExceptList.txt)</constraint>

 <constraint>!S:inList(rule16ExceptList.txt)</constraint>

 <constraint>!T:derivedFrom(Verb,exceptList.txt)</constraint>

</NounPhraseRule>

<!-- connects nominative proper noun to a noun word which has an proper noun

sense which is eliminated in disambiguation process -->

<NounPhraseRule>

 <ID>17</ID>

 <sourceType>POSPI</sourceType>

 <source>Prop,+A3sg,+Pnon,+Nom</source>

 <targetType>POS</targetType>

 <target>Noun</target>

 <linkType>Prop</linkType>

 <priority>70</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>T:isPossible(Prop)</constraint>

 <constraint>!S:endsWith(oğlu)</constraint>

 <constraint>!T:inList(ulke.txt)</constraint>

 <constraint>!T:inList(TurkiyeSehir.txt)</constraint>

 <constraint>!T:inList(ilce.txt)</constraint>

</NounPhraseRule>

<!-- Connects noun which can be a proper noun to a proper noun -->

<NounPhraseRule>

 <ID>18</ID>

 <sourceType>POS</sourceType>

 <source>Noun</source>

 <targetType>POS</targetType>

 <target>Prop</target>

 <linkType>Prop</linkType>

 <priority>100</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>S:isPossible(Prop)</constraint>

 <constraint>!S:endsWith(oğlu)</constraint>

 <constraint>![[!S:inList(person.first_name.txt)]^

 [T:inList(person.first_name.txt)]]</constraint>

 <constraint>!T:inList(ulke.txt)</constraint>

 <constraint>!T:inList(TurkiyeSehir.txt)</constraint>

 <constraint>!T:inList(ilce.txt)</constraint>

107

</NounPhraseRule>

<!-- Connects noun which is also a possible proper noun to a noun which is also

a possible proper noun -->

<NounPhraseRule>

 <ID>19</ID>

 <sourceType>POS</sourceType>

 <source>Noun</source>

 <targetType>POS</targetType>

 <target>Noun</target>

 <linkType>Prop</linkType>

 <priority>100</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>S:isPossible(Prop)</constraint>

 <constraint>!S:endsWith(oğlu)</constraint>

 <constraint>S:contains(Nom)</constraint> <!--can be deleted -->

 <constraint>T:isPossible(Prop)</constraint>

 <constraint>!T:inList(ulke.txt)</constraint>

 <constraint>!T:inList(TurkiyeSehir.txt)</constraint>

</NounPhraseRule>

<!-- kendi kalemi – his own pen -->

<NounPhraseRule>

 <ID>20</ID>

 <sourceType>SSF</sourceType>

 <source>kendi,+Nom</source>

 <targetType>POS</targetType>

 <target>Noun</target>

 <linkType>Bsiz</linkType>

 <priority>100</priority>

 <constraint>!T:contains(Pnon)</constraint>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!T:hasEndLink(YearN)</constraint>

 <constraint>!T:hasEndLink(postNumber)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

</NounPhraseRule>

<!-- bütün bunlar – all of these -->

<NounPhraseRule>

 <ID>21</ID>

 <sourceType>LIST</sourceType>

 <source>PronModifierList.txt</source>

 <targetType>LIST</targetType>

 <target>ModifyablePronList.txt</target>

 <linkType>A</linkType>

 <priority>100</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

</NounPhraseRule>

<!-- konuyla ilgili – about the subject -->

<NounPhraseRule>

 <ID>22</ID>

 <sourceType>LIST</sourceType>

 <source>NounPropInsList.txt</source>

 <targetType>LIST</targetType>

 <target>InsSifatList.txt</target>

 <linkType>About</linkType>

 <priority>80</priority>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!T:hasEndLink(YearN)</constraint>

 <constraint>!T:hasEndLink(postNumber)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!S+1->T-1:numberOfWord(",1,EQ)</constraint>

 <constraint>!S+1->T-1:numberOfWord(',1,EQ)</constraint>

 <constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>

</NounPhraseRule>

<!-- konuya ilişkin – related to the subject -->

<NounPhraseRule>

 <ID>23</ID>

 <sourceType>LIST</sourceType>

108

 <source>NounPropPronDatList.txt</source>

 <targetType>LIST</targetType>

 <target>DatSifatList.txt</target>

 <linkType>About</linkType>

 <priority>80</priority>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!T:hasEndLink(YearN)</constraint>

 <constraint>!T:hasEndLink(postNumber)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!S+1->T-1:numberOfWord(",1,EQ)</constraint>

 <constraint>!S+1->T-1:numberOfWord(',1,EQ)</constraint>

 <constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>

</NounPhraseRule>

<!-- konudan bağımsız – free from the subject -->

<NounPhraseRule>

 <ID>24</ID>

 <sourceType>LIST</sourceType>

 <source>NounPropPronAblList.txt</source>

 <targetType>LIST</targetType>

 <target>AblSifatList.txt</target>

 <linkType>From</linkType>

 <priority>80</priority>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!T:hasEndLink(YearN)</constraint>

 <constraint>!T:hasEndLink(postNumber)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!S+1->T-1:numberOfWord(",1,EQ)</constraint>

 <constraint>!S+1->T-1:numberOfWord(',1,EQ)</constraint>

</NounPhraseRule>

<!-- saat 5'te – at 5 o’clock -->

<NounPhraseRule>

 <ID>25</ID>

 <sourceType>SF</sourceType>

 <source>saat</source>

 <targetType>POS</targetType>

 <target>Noun</target>

 <linkType>Time</linkType>

 <priority>120</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>T:derivedFrom(Num)</constraint>

 </NounPhraseRule>

<!-- saat 3 - 3 o’clock -->

<NounPhraseRule>

 <ID>26</ID>

 <sourceType>SF</sourceType>

 <source>saat</source>

 <targetType>POS</targetType>

 <target>Num</target>

 <linkType>Time</linkType>

 <priority>110</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

</NounPhraseRule>

<!-- 24 ekim perşembe günü, 24 October Thursday – Connects October to Thursday

-->

<NounPhraseRule>

 <ID>27</ID>

 <sourceType>LIST</sourceType>

 <source>AyList.txt</source>

 <targetType>LIST</targetType>

 <target>GunList.txt</target>

 <linkType>Takisiz</linkType>

 <priority>100</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

</NounPhraseRule>

<!-- 24 ekim 2000 = 24 october 2000 – Connects October to 2000 -->

<NounPhraseRule>

109

 <ID>28</ID>

 <sourceType>LIST</sourceType>

 <source>AyList.txt</source>

 <targetType>POSFI</targetType>

 <target>Num+Card</target>

 <linkType>Time</linkType>

 <priority>100</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

</NounPhraseRule>

<!-- dün gece – the night of yesterday -->

<NounPhraseRule>

 <ID>29</ID>

 <sourceType>LIST</sourceType>

 <source>ZamanModifierList.txt</source>

 <targetType>LIST</targetType>

 <target>ZamanList.txt</target>

 <linkType>Time</linkType>

 <priority>100</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

</NounPhraseRule>

<!-- Rektör Atalar – Rector Atalar -->

 <NounPhraseRule>

 <ID>30</ID>

 <sourceType>LIST</sourceType>

 <source>meslek.txt</source>

 <targetType>POS</targetType>

 <target>Prop</target>

 <linkType>Title</linkType>

 <priority>110</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

</NounPhraseRule>

<!—- yaklaşık 200 - nearly 200 -->

<NounPhraseRule>

 <ID>31</ID>

 <sourceType>LIST</sourceType>

 <source>preNumberModifierList.txt</source>

 <targetType>POS</targetType>

 <target>Num</target>

 <linkType>NN</linkType>

 <priority>100</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

</NounPhraseRule>

<!-- altın saat - golden watch -->

<NounPhraseRule>

 <ID>32</ID>

 <sourceType>LIST</sourceType>

 <source>takisizList.txt</source>

 <targetType>LIST</targetType>

 <target>NounPropPnonList.txt</target>

 <linkType>Takisiz</linkType>

 <priority>100</priority>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!T:hasEndLink(YearN)</constraint>

 <constraint>!T:hasEndLink(postNumber)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!S+1->T-1:numberOfWord(",1,EQ)</constraint>

 <constraint>!S+1->T-1:numberOfWord(',1,EQ)</constraint>

</NounPhraseRule>

<!-- 30 civarında - around 30 -->

<NounPhraseRule>

 <ID>33</ID>

 <sourceType>POS</sourceType>

 <source>Num</source>

 <targetType>LIST</targetType>

 <target>postNumberModifierList.txt</target>

110

 <linkType>postNumber</linkType>

 <priority>110</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

</NounPhraseRule>

<!-- 30'dan fazla – more than 30 -->

<NounPhraseRule>

 <ID>34</ID>

 <sourceType>POSPI</sourceType>

 <source>Noun,+Abl</source>

 <targetType>LIST</targetType>

 <target>postNumberNounAblModifierList.txt</target>

 <linkType>postNumber</linkType>

 <priority>100</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>S:derivedFrom(Num)</constraint>

</NounPhraseRule>

<!-- 30'a yakın – near to 30 -->

<NounPhraseRule>

 <ID>35</ID>

 <sourceType>POSPI</sourceType>

 <source>Noun,+Dat</source>

 <targetType>LIST</targetType>

 <target>postNumberNounDatModifierList.txt</target>

 <linkType>postNumber</linkType>

 <priority>100</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>S:derivedFrom(Num)</constraint>

</NounPhraseRule>

<!-- 30'a yakın adam – nearly 30 men – Connects yakın to adam -->

<NounPhraseRule>

 <ID>36</ID>

 <sourceType>ANY</sourceType>

 <source>ANY</source>

 <targetType>LIST</targetType>

 <target>NounPropList.txt</target>

 <linkType>A</linkType>

 <priority>100</priority>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb)</constraint>

 <constraint>[![S->T:numberOfWords(1)]^[S->T:containsPOS(Punc)]]</constraint>

 <constraint>!S+1->T-1:numberOfWord(",1,EQ)</constraint>

 <constraint>!S+1->T-1:numberOfWord(',1,EQ)</constraint>

 <constraint>S:hasEndLink(postNumber)</constraint>

</NounPhraseRule>

<!-- hint asıllı – Indian Origined -->

<NounPhraseRule>

 <ID>37</ID>

 <sourceType>POSPI</sourceType>

 <source>Prop,+Nom</source>

 <targetType>LIST</targetType>

 <target>postNomPropModifierList.txt</target>

 <linkType>withProp</linkType>

 <priority>100</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

</NounPhraseRule>

<!-- çok da güzel araba – very good car – Connects da to güzel -->

<NounPhraseRule>

 <ID>38</ID>

 <sourceType>LIST</sourceType>

 <source>dedaList.txt</source>

 <targetType>POS</targetType>

 <target>Adj</target>

 <linkType>adverbConj</linkType>

 <priority>100</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

111

 <constraint>S-1:contains(AdjMdfy)</constraint>

</NounPhraseRule>

<!—- Connects ― to any word -->

<NounPhraseRule>

 <ID>39</ID>

 <sourceType>LIST</sourceType>

 <source>tirnakList.txt</source>

 <targetType>ANY</targetType>

 <target>ANY</target>

 <linkType>fromTirnak</linkType>

 <priority>100</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>T->E:hasBeginLink(toTirnak)</constraint>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>T->E:hasBeginLink(toTirnak)</constraint>

</NounPhraseRule>

<!-- Connects any word to ― -->

<NounPhraseRule>

 <ID>40</ID>

 <sourceType>ANY</sourceType>

 <source>ANY</source>

 <targetType>LIST</targetType>

 <target>tirnakList.txt</target>

 <linkType>toTirnak</linkType>

 <priority>125</priority>

 <constraint>![[S:contains(Verb)]^[!S-1:inList(tirnakList.txt)]]</constraint>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>!T:hasBeginLink(fromTirnak)</constraint>

</NounPhraseRule>

<!—- ‖Dur‖ ihtarı – ―Stop‖ warning -->

<NounPhraseRule>

 <ID>41</ID>

 <sourceType>LIST</sourceType>

 <source>tirnakList.txt</source>

 <targetType>LIST</targetType>

 <target>NounPropList.txt</target>

 <linkType>QoutationBsiz</linkType>

 <priority>80</priority>

 <constraint>!T:hasEndLink(toTirnak)</constraint>

 <constraint>!T:contains(+Pnon)</constraint>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>[![S->T:numberOfWords(1)]^[S->T:containsPOS(Punc)]]</constraint>

 <constraint>!T:hasEndLink(YearN)</constraint>

 <constraint>!T:hasEndLink(postNumber)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!S+1->T-1:numberOfWord(",1,EQ)</constraint>

 <constraint>!S+1->T-1:numberOfWord(',1,EQ)</constraint>

 <constraint>!T:inList(BirlesikIsimList.txt)</constraint>

</NounPhraseRule>

<!-- sözkonusu adam – aforementioned man -->

<NounPhraseRule>

 <ID>42</ID>

 <sourceType>LIST</sourceType>

 <source>IsimSifatList.txt</source>

 <targetType>LIST</targetType>

 <target>NounPropList.txt</target>

 <linkType>NA</linkType>

 <priority>100</priority>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb)</constraint>

 <constraint>[![S->T:numberOfWords(1)]^[S->T:containsPOS(Punc)]]</constraint>

 <constraint>!S+1->T-1:numberOfWord(",1,EQ)</constraint>

 <constraint>!S+1->T-1:numberOfWord(',1,EQ)</constraint>

</NounPhraseRule>

<!-- ve adam – and man -->

112

<NounPhraseRule>

 <ID>43</ID>

 <sourceType>LIST</sourceType>

 <source>veVeyaVsList.txt</source>

 <targetType>ANY</targetType>

 <target>ANY</target>

 <linkType>connector</linkType>

 <priority>100</priority>

 <constraint>[[T:isNPBeginning()]|[T:inList(NounPropPronList.txt)]]

 </constraint>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>!T:derivedFrom(Verb,exceptList.txt)</constraint>

 <constraint>T:isEndToken()</constraint>

 <constraint>S~T:connectorAgreement()</constraint>

</NounPhraseRule>

<!—- çocuk ve – kid and -->

<NounPhraseRule>

 <ID>44</ID>

 <sourceType>LIST</sourceType>

 <source>NounPropPronList.txt</source>

 <targetType>LIST</targetType>

 <target>veVeyaVsList.txt</target>

 <linkType>connector</linkType>

 <priority>105</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>T:hasBeginLink(connector)</constraint>

 <constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>

 <constraint>S~T:hasSameInflection()</constraint>

</NounPhraseRule>

<!—- Connects comma to any word -->

<NounPhraseRule>

 <ID>45</ID>

 <sourceType>SF</sourceType>

 <source>,</source>

 <targetType>ANY</targetType>

 <target>ANY</target>

 <linkType>CommaConnector</linkType>

 <priority>105</priority>

 <constraint>[[T:isNPBeginning()]|[T:inList(NounPropPronList.txt)]|

 [S:isPossible(Noun)]]</constraint>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>T:isConnectedToLink(connector)</constraint>

</NounPhraseRule>

<!—- Connects any noun to a comma -->

<NounPhraseRule>

 <ID>46</ID>

 <sourceType>ANY</sourceType>

 <source>ANY</source>

 <targetType>SF</targetType>

 <target>,</target>

 <linkType>CommaConnector</linkType>

 <priority>105</priority>

 <constraint>[[S:inList(NounPropPronList.txt)]|[S:isPossible(Noun)]]

 </constraint>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>T:hasBeginLink(CommaConnector)</constraint>

 <constraint>S~T:hasSameInflectionAtEnd()</constraint>

 <constraint>!S:derivedFrom(Verb)</constraint>

</NounPhraseRule>

<!-- Connects dash to any word -->

<NounPhraseRule>

 <ID>47</ID>

 <sourceType>SF</sourceType>

 <source>-</source>

 <targetType>ANY</targetType>

 <target>ANY</target>

 <linkType>TireLink</linkType>

113

 <priority>100</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>!T:derivedFrom(Verb,exceptList.txt)</constraint>

 <constraint>!T:derivedFrom(Conj)</constraint>

</NounPhraseRule>

<!-- Connects any word to a dash -->

<NounPhraseRule>

 <ID>48</ID>

 <sourceType>ANY</sourceType>

 <source>ANY</source>

 <targetType>SF</targetType>

 <target>-</target>

 <linkType>TireLink</linkType>

 <priority>100</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>!S:derivedFrom(Conj)</constraint>

 <constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>

</NounPhraseRule>

<!—- insanlık dışı davranış – inhuman behaviour -->

<NounPhraseRule>

 <ID>49</ID>

 <sourceType>LIST</sourceType>

 <source>SifatIsimTamlamari.txt</source>

 <targetType>LIST</targetType>

 <target>NounPropList.txt</target>

 <linkType>ANP</linkType>

 <priority>105</priority>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>[![S->T:numberOfWords(1)]^[S->T:containsPOS(Punc)]]</constraint>

 <constraint>!S+1->T-1:numberOfWord(",1,EQ)</constraint>

 <constraint>!S+1->T-1:numberOfWord(',1,EQ)</constraint>

 <constraint>!T:hasBeginLink(Takisiz)</constraint>

 <constraint>!T:hasBeginLink(NA)</constraint>

</NounPhraseRule>

<!-- 3 metre 30 santim – 3 meters and 30 cm – Connects meters to cm -->

<NounPhraseRule>

 <ID>50</ID>

 <sourceType>LIST</sourceType>

 <source>uzunlukList.txt</source>

 <targetType>LIST</targetType>

 <target>uzunlukList.txt</target>

 <linkType>uzunluk</linkType>

 <priority>150</priority>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!S->T:containsPOS(Punc)</constraint>

</NounPhraseRule>

<!-- Connects special words to modifies texts -->

<NounPhraseRule>

 <ID>51</ID>

 <sourceType>LIST</sourceType>

 <source>DogalDiller.txt</source>

 <targetType>LIST</targetType>

 <target>YaziCinsIsimleri.txt</target>

 <linkType>A</linkType>

 <priority>80</priority>

</NounPhraseRule>

<!-- Çarşamba günü saat 02:00'de – On wendesday at 2 o’clock - Connects günü to

02:00'de -->

<NounPhraseRule>

 <ID>52</ID>

 <sourceType>SSF</sourceType>

 <source>gün,+P3</source>

 <targetType>POS</targetType>

 <target>Noun</target>

114

 <linkType>Time</linkType>

 <priority>100</priority>

 <constraint>S+1:contains(saat)</constraint>

 <constraint>T:derivedFrom(Num)</constraint>

</NounPhraseRule>

<!-- 3. Takım – 3. Team -->

<NounPhraseRule>

 <ID>53</ID>

 <sourceType>POSFI</sourceType>

 <source>Num+Ord</source>

 <targetType>LIST</targetType>

 <target>NounPropList.txt</target>

 <linkType>Dn</linkType>

 <priority>150</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>!T:derivedFrom(Verb)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!T:inList(IsimSifatList.txt)</constraint>

</NounPhraseRule>

<!-- bir yarış arabası – a race car – Connects bir to arabası -->

<NounPhraseRule>

 <ID>54</ID>

 <sourceType>POS</sourceType>

 <source>Num</source>

 <targetType>LIST</targetType>

 <target>NounPropList.txt</target>

 <linkType>Dn</linkType>

 <priority>120</priority>

 <constraint>T:hasEndLink(Bsiz)</constraint>

 <constraint>!S->T:containsLink(About)</constraint>

 <constraint>!S->T:containsMorpheme(+Gen)</constraint>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S->T:containsUnconnectedToken()</constraint>

 <constraint>!S:derivedFrom(Verb)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!S+1->T-1:numberOfWord(",1,EQ)</constraint>

 <constraint>!S+1->T-1:numberOfWord(',1,EQ)</constraint>

 <constraint>!S->T:containsMorpheme(Adj+Rel)</constraint>

</NounPhraseRule>

<!-- 24 ekim – 24 October -->

<NounPhraseRule>

 <ID>55</ID>

 <sourceType>POS</sourceType>

 <source>Num</source>

 <targetType>LIST</targetType>

 <target>AyList.txt</target>

 <linkType>Time</linkType>

 <priority>200</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

</NounPhraseRule>

<!-- Adj + nouns actıng as adjectives -->

<NounPhraseRule>

 <ID>56</ID>

 <sourceType>POS</sourceType>

 <source>Adj</source>

 <targetType>LIST</targetType>

 <target>IsimSifatList.txt</target>

 <linkType>A</linkType>

 <priority>80</priority>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>

 <constraint>[![S->T:numberOfWords(1)]^[S->T:containsPOS(Punc)]]</constraint>

 <constraint>!S+1->T-1:numberOfWord(",1,EQ)</constraint>

 <constraint>!S+1->T-1:numberOfWord(',1,EQ)</constraint>

</NounPhraseRule>

115

<!-- amerikan savaş uçağı – american war plane -->

<NounPhraseRule>

 <ID>57</ID>

 <sourceType>LIST</sourceType>

 <source>IsimSifatList.txt</source>

 <targetType>LIST</targetType>

 <target>NounPropList.txt</target>

 <linkType>A</linkType>

 <priority>120</priority>

 <constraint>T:hasEndLink(Bsiz)</constraint>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S->T:containsMorpheme(+Gen)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb)</constraint>

 <constraint>[![S->T:numberOfWords(1)]^[S->T:containsPOS(Punc)]]</constraint>

 <constraint>!S+1->T-1:numberOfWord(",1,EQ)</constraint>

 <constraint>!S+1->T-1:numberOfWord(',1,EQ)</constraint>

 <constraint>!S->T:containsUnconnectedToken()</constraint>

</NounPhraseRule>

<!-- yeni yetkili – The new person in charge -->

<NounPhraseRule>

 <ID>58</ID>

 <sourceType>POS</sourceType>

 <source>Adj</source>

 <targetType>LIST</targetType>

 <target>IsimOlmayanHeadNounList.txt</target>

 <linkType>A</linkType>

 <priority>100</priority>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>

 <constraint>[![S->T:numberOfWords(1)]^[S->T:containsPOS(Punc)]]</constraint>

 <constraint>!S+1->T-1:numberOfWord(",1,EQ)</constraint>

 <constraint>!S+1->T-1:numberOfWord(',1,EQ)</constraint>

 <constraint>!T:inList(IsimSifatList.txt)</constraint>

</NounPhraseRule>

<!-- bir yetkili – a person in charge -->

<NounPhraseRule>

 <ID>59</ID>

 <sourceType>POS</sourceType>

 <source>Num</source>

 <targetType>LIST</targetType>

 <target>IsimOlmayanHeadNounList.txt</target>

 <linkType>A</linkType>

 <priority>100</priority>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!S+1->T-1:numberOfWord(",1,EQ)</constraint>

 <constraint>!S+1->T-1:numberOfWord(',1,EQ)</constraint>

 <constraint>!T:inList(IsimSifatList.txt)</constraint>

</NounPhraseRule>

<!-- Fatih Bey – Mr. Fatih -->

<NounPhraseRule>

 <ID>60</ID>

 <sourceType>POSPI</sourceType>

 <source>Prop,+Nom</source>

 <targetType>LIST</targetType>

 <target>PropNamePostUnvanList.txt</target>

 <linkType>Proper</linkType>

 <priority>120</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>!T:inList(ulke.txt)</constraint>

 <constraint>!T:inList(TurkiyeSehir.txt)</constraint>

 <constraint>!T:inList(ilce.txt)</constraint>

</NounPhraseRule>

<!—- Avukat Adem – Advocate Adem -->

116

<NounPhraseRule>

 <ID>61</ID>

 <sourceType>LIST</sourceType>

 <source>meslek.txt</source>

 <targetType>POSPI</targetType>

 <target>Prop,+Nom</target>

 <linkType>Title</linkType>

 <priority>105</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

</NounPhraseRule>

<!-- daha hassas – more sensitive -->

<NounPhraseRule>

 <ID>62</ID>

 <sourceType>POSFI</sourceType>

 <source>Adverb+AdjMdfy</source>

 <targetType>POS</targetType>

 <target>Noun</target>

 <linkType>A</linkType>

 <priority>80</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>T:isPossible(Adj)</constraint>

 <constraint>!T:isLastWord()</constraint>

 <constraint>!T:derivedFrom(Verb)</constraint>

</NounPhraseRule>

<!-- bir kitap - a book – Connects noun to countable nouns -->

<NounPhraseRule>

 <ID>63</ID>

 <sourceType>POS</sourceType>

 <source>Num</source>

 <targetType>LIST</targetType>

 <target>countableNounList.txt</target>

 <linkType>Dn</linkType>

 <priority>200</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

</NounPhraseRule>

<!-- bir adam - a man -->

<NounPhraseRule>

 <ID>64</ID>

 <sourceType>POS</sourceType>

 <source>Num</source>

 <targetType>LIST</targetType>

 <target>NounPropList.txt</target>

 <linkType>Dn</linkType>

 <priority>90</priority>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!T:hasBeginLink(Takisiz)</constraint>

 <constraint>!T:hasBeginLink(NA)</constraint>

 <constraint>T:turnsInto(Adj)</constraint>

</NounPhraseRule>

<!-- Salı günü – Tuesday -->

<NounPhraseRule>

 <ID>65</ID>

 <sourceType>LIST</sourceType>

 <source>GunList.txt</source>

 <targetType>SSF</targetType>

 <target>gün,Noun</target>

 <linkType>gun</linkType>

 <priority>90</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

</NounPhraseRule>

<!—- Direktör Ali – Director Ali – The proper noun is a person name -->

 <NounPhraseRule>

 <ID>66</ID>

 <sourceType>LIST</sourceType>

117

 <source>meslek.txt</source>

 <targetType>POS</targetType>

 <target>Prop</target>

 <linkType>Title</linkType>

 <priority>70</priority>

 <constraint>[S->T:numberOfWords(1)]^

 [S+1:inList(personTitle.txt)]</constraint>

</NounPhraseRule>

<!-- Connects nom. Prop. noun to nom. noun which is possible a proper noun-->

<NounPhraseRule>

 <ID>67</ID>

 <sourceType>POSPI</sourceType>

 <source>Prop,+A3sg,+Pnon,+Nom</source>

 <targetType>POSPI</targetType>

 <target>Noun,A3sg,+Pnon,+Nom</target>

 <linkType>Proper</linkType>

 <priority>75</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>T:isPossible(Prop)</constraint>

 <constraint>!T:inList(ulke.txt)</constraint>

 <constraint>!T:inList(TurkiyeSehir.txt)</constraint>

 <constraint>!T:inList(ilce.txt)</constraint>

</NounPhraseRule>

<!-- İlyas Çiçekli -->

<NounPhraseRule>

 <ID>68</ID>

 <sourceType>POSPI</sourceType>

 <source>Prop,+Nom</source>

 <targetType>POS</targetType>

 <target>Adj</target>

 <linkType>Prop</linkType>

 <priority>100</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>T:isPossible(Prop)</constraint>

 <constraint>!T:inList(ulke.txt)</constraint>

 <constraint>!T:inList(TurkiyeSehir.txt)</constraint>

 <constraint>!T:inList(ilce.txt)</constraint>

</NounPhraseRule>

<!-- Connect nominative noun which is possibly a proer noun to a proper noun-->

<NounPhraseRule>

 <ID>69</ID>

 <sourceType>POSPI</sourceType>

 <source>Noun,+Nom</source>

 <targetType>POS</targetType>

 <target>Prop</target>

 <linkType>Proper</linkType>

 <priority>105</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>S:isPossible(Prop)</constraint>

 <constraint>!T:inList(ulke.txt)</constraint>

 <constraint>!T:inList(TurkiyeSehir.txt)</constraint>

</NounPhraseRule>

<!—- Connects special words to modifies liquids -->

<NounPhraseRule>

 <ID>70</ID>

 <sourceType>LIST</sourceType>

 <source>SiviModifierList.txt</source>

 <targetType>LIST</targetType>

 <target>siviList.txt</target>

 <linkType>A</linkType>

 <priority>80</priority>

</NounPhraseRule>

<!—- Connects adjectives which are possibly noun to p3 nounss -->

<NounPhraseRule>

 <ID>71</ID>

 <sourceType>LIST</sourceType>

118

 <source>AdvAdjList.txt</source>

 <targetType>LIST</targetType>

 <target>NounPropList.txt</target>

 <linkType>Belirtisiz</linkType>

 <priority>40</priority>

 <constraint>!T:contains(Pnon)</constraint>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>S:isPossible(Noun)</constraint>

 <constraint>!T:hasEndLink(YearN)</constraint>

 <constraint>!T:hasEndLink(postNumber)</constraint>

 <constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!T:hasEndLink(Bsiz)</constraint>

 <constraint>!T:hasEndLink(Belirtisiz)</constraint>

 <constraint>!T:hasEndLink(Bli)</constraint>

 <constraint>!T:inList(BirlesikIsimList.txt)</constraint>

</NounPhraseRule>

<!-- liderlerinden Aslı – Aslı, one of the leaders of..–Aslı is found as noun-->

<NounPhraseRule>

 <ID>72</ID>

 <sourceType>POSPI</sourceType>

 <source>Noun,+A3pl,+Abl</source>

 <targetType>POS</targetType>

 <target>Noun</target>

 <linkType>ofProp</linkType>

 <priority>80</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>T:isPossible(Prop)</constraint>

</NounPhraseRule>

<!-- Erzurum 3. ceza mahkemesi - Erzurum 3. Fine court – Connects Erzurum to

court -->

<NounPhraseRule>

 <ID>73</ID>

 <sourceType>LIST</sourceType>

 <source>TurkiyeSehir.txt</source>

 <targetType>LIST</targetType>

 <target>yereAitIsimler.txt</target>

 <linkType>Bsiz</linkType>

 <priority>80</priority>

 <constraint>!S->T:containsUnconnectedToken()</constraint>

 <constraint>!T:contains(Pnon)</constraint>

 <constraint>S:contains(Nom)</constraint>

</NounPhraseRule>

<!-- General Muşaviri – General Consultant – Used for wrong disambiguation -->

<NounPhraseRule>

 <ID>74</ID>

 <sourceType>LIST</sourceType>

 <source>NounPropNomList.txt</source>

 <targetType>POSPI</targetType>

 <target>Prop,+Nom</target>

 <linkType>Bsiz</linkType>

 <priority>80</priority>

 <constraint>T:isPossible(+P3)</constraint>

 <constraint>!T:hasEndLink(postNumber)</constraint>

 <constraint>!T:hasEndLink(Belirtisiz)</constraint>

 <constraint>!T:hasEndLink(Bsiz)</constraint>

 <constraint>[![S+1->T-1:containsPOS(Noun)]|

 [S+1->T-1:containsPOS(Prop)]]^[!S->T:numberOfWords(0)]</constraint>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>

 <constraint>[![S->T:numberOfWords(1)]^[S->T:containsPOS(Punc)]]</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

</NounPhraseRule>

<!-- Mucahid Kutlu – connects person names to surnames -->

<NounPhraseRule>

 <ID>75</ID>

 <sourceType>POS</sourceType>

119

 <source>Noun</source>

 <targetType>POS</targetType>

 <target>Prop</target>

 <linkType>Proper</linkType>

 <priority>100</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>S:inList(person.first_name.txt)</constraint>

 <constraint>!T:inList(TurkiyeSehir.txt)</constraint>

 <constraint>!T:inList(ulke.txt)</constraint>

</NounPhraseRule>

<!-- BJK Ankara Şubesi – BJK Ankara Branch – Connects institution names to city

names -->

<NounPhraseRule>

 <ID>76</ID>

 <sourceType>LIST</sourceType>

 <source>kurumList.txt</source>

 <targetType>LIST</targetType>

 <target>TurkiyeSehir.txt</target>

 <linkType>Prop</linkType>

 <priority>100</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>S:isPossible(Prop)</constraint>

</NounPhraseRule>

<!-- Connects person names to nouns which are possibly proper noun -->

 <NounPhraseRule>

 <ID>77</ID>

 <sourceType>LIST</sourceType>

 <source>NounPropList.txt</source>

 <targetType>POS</targetType>

 <target>Noun</target>

 <linkType>Proper</linkType>

 <priority>105</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>S:isPossible(Prop)</constraint>

 <constraint>T:isPossible(Prop)</constraint>

 <constraint>S:inList(person.first_name.txt)</constraint>

 <constraint>!T:inList(TurkiyeSehir.txt)</constraint>

 <constraint>!T:inList(ulke.txt)</constraint>

</NounPhraseRule>

<!-- Connects person names founds as noun to adjectives which is possibly a

proper noun -->

<NounPhraseRule>

 <ID>78</ID>

 <sourceType>LIST</sourceType>

 <source>NounPropList.txt</source>

 <targetType>POS</targetType>

 <target>Adj</target>

 <linkType>Proper</linkType>

 <priority>105</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>S:isFirstCharacrerCapital()</constraint>

 <constraint>T:isPossible(Prop)</constraint>

 <constraint>S:inList(person.first_name.txt)</constraint>

 <constraint>!T:inList(TurkiyeSehir.txt)</constraint>

 <constraint>!T:inList(ulke.txt)</constraint>

</NounPhraseRule>

<!--400 ve ustunde eleman – 400 and more employee – connects 400 to ve -->

<NounPhraseRule>

 <ID>79</ID>

 <sourceType>POS</sourceType>

 <source>Num</source>

 <targetType>SF</targetType>

 <target>ve</target>

 <linkType>postNumber</linkType>

 <priority>111</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>T+1:inList(postNumberModifierList.txt)</constraint>

120

</NounPhraseRule>

<!--400 ve ustunde eleman – 400 and more employee – connects ve to üstünde -->

<NounPhraseRule>

 <ID>80</ID>

 <sourceType>SF</sourceType>

 <source>ve</source>

 <targetType>LIST</targetType>

 <target>postNumberModifierList.txt</target>

 <linkType>postNumber</linkType>

 <priority>110</priority>

 <constraint>S-1:contains(+Num+)</constraint>

</NounPhraseRule>

<!--30 ile 40 – 30 and 40 – Conncets 30 to ile -->

<NounPhraseRule>

 <ID>81</ID>

 <sourceType>POS</sourceType>

 <source>Num</source>

 <targetType>SF</targetType>

 <target>ile</target>

 <linkType>numberConnector</linkType>

 <priority>110</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>T+1:contains(+Num+)</constraint>

</NounPhraseRule>

<!--30 ile 40 - connects ile to 40 -->

<NounPhraseRule>

 <ID>82</ID>

 <sourceType>SF</sourceType>

 <source>ile</source>

 <targetType>POS</targetType>

 <target>Num</target>

 <linkType>numberConnector</linkType>

 <priority>110</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>S-1:contains(+Num+)</constraint>

</NounPhraseRule>

<!-- subat tarihli anlaşma – agreement with February date - - Connects Şubat to

tarih -->

<NounPhraseRule>

 <ID>83</ID>

 <sourceType>LIST</sourceType>

 <source>AyList.txt</source>

 <targetType>SSF</targetType>

 <target>tarih</target>

 <linkType>takisiz</linkType>

 <priority>100</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

</NounPhraseRule>

<!-- "gerçek" adam – ―real‖ man -->

<NounPhraseRule>

 <ID>84</ID>

 <sourceType>LIST</sourceType>

 <source>tirnakList.txt</source>

 <targetType>LIST</targetType>

 <target>NounPropList.txt</target>

 <linkType>QoutationAdj</linkType>

 <priority>100</priority>

 <constraint>S-1:contains(Adj)</constraint>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>

 <constraint>[![S->T:numberOfWords(1)]^[S->T:containsPOS(Punc)]]</constraint>

 <constraint>!T:hasBeginLink(Takisiz)</constraint>

 <constraint>!S:hasEndLink(Proper)</constraint>

 <constraint>!T:hasBeginLink(NA)</constraint>

 <constraint>[![T:isPossible(Verb)]^[S:isPossible(Adverb)]]</constraint>

121

 <constraint>!S:inList(Rule1ExceptList.txt)</constraint>

</NounPhraseRule>

<!-- adamlardan 2'si – two of the men -->

<NounPhraseRule>

 <ID>85</ID>

 <sourceType>LIST</sourceType>

 <source>NounPropPronAblList.txt</source>

 <targetType>POSPI</targetType>

 <target>Noun,+P3</target>

 <linkType>Bsiz</linkType>

 <priority>100</priority>

 <constraint>T:derivedFrom(Num)</constraint>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>

 <constraint>[![S->T:numberOfWords(1)]^[S->T:containsPOS(Punc)]]</constraint>

 <constraint>!T:hasBeginLink(Takisiz)</constraint>

 <constraint>!S:hasEndLink(Proper)</constraint>

 <constraint>!T:hasBeginLink(NA)</constraint>

 <constraint>[![T:isPossible(Verb)]^[S:isPossible(Adverb)]]</constraint>

</NounPhraseRule>

<!-- yüzde 5 – 5 percent -->

<NounPhraseRule>

 <ID>86</ID>

 <sourceType>POSPI</sourceType>

 <source>Noun,+Loc</source>

 <targetType>POS</targetType>

 <target>Noun</target>

 <linkType>A</linkType>

 <priority>100</priority>

 <constraint>T:derivedFrom(Num)</constraint>

 <constraint>S:derivedFrom(Num)</constraint>

 <constraint>S->T:numberOfWords(0)</constraint>

</NounPhraseRule>

<!-- Prof. Atalar -->

<NounPhraseRule>

 <ID>87</ID>

 <sourceType>LIST</sourceType>

 <source>kisaltmalar.txt</source>

 <targetType>LIST</targetType>

 <target>NounPropList.txt</target>

 <linkType>Title</linkType>

 <priority>70</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

</NounPhraseRule>

<!—- benim arabam – my car -->

<NounPhraseRule>

 <ID>88</ID>

 <sourceType>POSPI</sourceType>

 <source>Pron,+Gen</source>

 <targetType>LIST</targetType>

 <target>NounPropList.txt</target>

 <linkType>Bli</linkType>

 <priority>90</priority>

 <constraint>!T:contains(Pnon)</constraint>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>

 <constraint>S~T:agree(Person)</constraint>

 <constraint>[![S->T:numberOfWords(1)]^[S->T:containsPOS(Punc)]]</constraint>

 <constraint>!T:hasEndLink(YearN)</constraint>

 <constraint>!T:hasEndLink(postNumber)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!T->E:hasP3SGNounDerivedFromVerb()</constraint>

 <constraint>!T:hasEndLink(Bli)</constraint>

 <constraint>!T:inList(SifatIsimTamlamari.txt)</constraint>

</NounPhraseRule>

122

<!—- Avulat Ali –Advocate Ali -->

<NounPhraseRule>

 <ID>89</ID>

 <sourceType>LIST</sourceType>

 <source>meslek.txt</source>

 <targetType>POS</targetType>

 <target>Noun</target>

 <linkType>Title</linkType>

 <priority>110</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>T:isPossible(Prop)</constraint>

</NounPhraseRule>

<!-- en az – the least -->

<NounPhraseRule>

 <ID>90</ID>

 <sourceType>POSFI</sourceType>

 <source>Adverb+AdjMdfy</source>

 <targetType>POSFI</targetType>

 <target>Adverb+AdjMdfy</target>

 <linkType>Eap</linkType>

 <priority>110</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

</NounPhraseRule>

<!-- en az 10 – at least 10 – Connects az to 10 -->

<NounPhraseRule>

 <ID>91</ID>

 <sourceType>POSFI</sourceType>

 <source>Adverb+AdjMdfy</source>

 <targetType>POS</targetType>

 <target>Num</target>

 <linkType>Eap</linkType>

 <priority>110</priority>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S->T:containsPOS(Punc)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>

 <constraint>[![S->T:numberOfWords(1)]^[S->T:containsPOS(Punc)]]</constraint>

 <constraint>!S+1->T-1:numberOfWord(",1,EQ)</constraint>

 <constraint>!S+1->T-1:numberOfWord(',1,EQ)</constraint>

 <constraint>!S->T:containsUnconnectedToken()</constraint>

</NounPhraseRule>

<!-- konuya ilişkin – related to the topic -->

<NounPhraseRule>

 <ID>92</ID>

 <sourceType>LIST</sourceType>

 <source>DatSifatList.txt</source>

 <targetType>ANY</targetType>

 <target>ANY</target>

 <linkType>About</linkType>

 <priority>80</priority>

 <constraint>S:hasEndLink(About)</constraint>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>

 <constraint>[![S->T:numberOfWords(1)]^[S->T:containsPOS(Punc)]]</constraint>

 <constraint>!T:hasBeginLink(Takisiz)</constraint>

 <constraint>!S:hasEndLink(Proper)</constraint>

 <constraint>!T:hasBeginLink(NA)</constraint>

 <constraint>[![T:isPossible(Verb)]^[S:isPossible(Adverb)]]</constraint>

 <constraint>!S:inList(Rule1ExceptList.txt)</constraint>

</NounPhraseRule>

<!— connects any word to comma -->

<NounPhraseRule>

 <ID>93</ID>

 <sourceType>ANY</sourceType>

 <source>ANY</source>

123

 <targetType>SF</targetType>

 <target>,</target>

 <linkType>CommaConnector</linkType>

 <priority>105</priority>

 <constraint>S:isPossible(Prop)</constraint>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>T:hasBeginLink(CommaConnector)</constraint>

</NounPhraseRule>

<!-- connects comma to any word -->

<NounPhraseRule>

 <ID>94</ID>

 <sourceType>SF</sourceType>

 <source>,</source>

 <targetType>ANY</targetType>

 <target>ANY</target>

 <linkType>CommaConnector</linkType>

 <priority>105</priority>

 <constraint>T:isPossible(Prop)</constraint>

 <constraint>S->T:numberOfWords(0)</constraint>

 <constraint>T:isConnectedToLink(connector)</constraint>

</NounPhraseRule>

<!—- onun arabası – his car-->

<NounPhraseRule>

 <ID>95</ID>

 <sourceType>POSPI</sourceType>

 <source>Pron,+Gen</source>

 <targetType>LIST</targetType>

 <target>NounPropList.txt</target>

 <linkType>Bli</linkType>

 <priority>90</priority>

 <constraint>T:contains(+P3)</constraint>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>

 <constraint>S~T:agree(Person)</constraint>

 <constraint>[![S->T:numberOfWords(1)]^[S->T:containsPOS(Punc)]]</constraint>

 <constraint>!T:hasEndLink(YearN)</constraint>

 <constraint>!T:hasEndLink(postNumber)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!T->E:hasP3SGNounDerivedFromVerb()</constraint>

 <constraint>!T:inList(SifatIsimTamlamari.txt)</constraint>

</NounPhraseRule>

<!--in case wrong disambiguation of P3sg+Nom (Pnon+Acc), connects nominative

noun to Pnon+Acc noun -->

<NounPhraseRule>

 <ID>96</ID>

 <sourceType>LIST</sourceType>

 <source>NounPropList.txt</source>

 <targetType>LIST</targetType>

 <target>NounPropPnonAccList.txt</target>

 <linkType>Bsiz</linkType>

 <priority>80</priority>

 <constraint>T:isPossible(P3sg)</constraint>

 <constraint>S:contains(Nom)</constraint>

 <constraint>S~T:agree(Plural)</constraint>

 <constraint>!T:hasEndLink(YearN)</constraint>

 <constraint>!T:hasEndLink(postNumber)</constraint>

 <constraint>!T:hasEndLink(Belirtisiz)</constraint>

 <constraint>[![S+1->T-1:containsPOS(Noun)]|

 [S+1->T-1:containsPOS(Prop)]]^[!S->T:numberOfWords(0)]</constraint>

 <constraint>!S->T:containsPOS(Verb,exceptList.txt)</constraint>

 <constraint>!S:derivedFrom(Verb,exceptList.txt)</constraint>

 <constraint>[![S->T:numberOfWords(1)]^[S->T:containsPOS(Punc)]]</constraint>

 <constraint>!S->T:containsList(Rule10BlockerList.txt)</constraint>

 <constraint>!S->T:containsList(NPBlockerList.txt)</constraint>

 <constraint>!T:inList(BirlesikIsimList.txt)</constraint>

</NounPhraseRule>

124

<!-- X benzeri Y – Y like X - Connects X to benzeri -->

<NounPhraseRule>

 <ID>97</ID>

 <sourceType>POSPI</sourceType>

 <source>Noun,+Nom</source>

 <targetType>LIST</targetType>

 <target>postNomNounModifierList.txt</target>

 <linkType>postNomNounModifier</linkType>

 <priority>100</priority>

 <constraint>S->T:numberOfWords(0)</constraint>

</NounPhraseRule>

<!—- Connects special words to modifies clothes-->

<NounPhraseRule>

 <ID>98</ID>

 <sourceType>LIST</sourceType>

 <source>GiyecekModifierList.txt</source>

 <targetType>LIST</targetType>

 <target>GiyecekList.txt</target>

 <linkType>A</linkType>

 <priority>80</priority>

</NounPhraseRule>

