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ABSTRACT

BilVideo-7: VIDEO PARSING, INDEXING AND
RETRIEVAL

Muhammet Bastan
Ph.D. in Computer Engineering
Supervisors: Assoc. Prof. Dr.gur Gudiikbay and Prof. Dr. Ozgiir Ulusoy
July, 2010

Video indexing and retrieval aims to provide fast, naturad entuitive access to
large video collections. This is getting more and more ingodras the amount of
video data increases at a stunning rate. This thesis intesdihe BilVideo-7 system
to address the issues related to video parsing, indexingedneval.

BilVideo-7 is a distributed and MPEG-7 compatible videoerihg and retrieval
system that supports complex multimodal queries in a unifi@ework. The video
data model is based on an MPEG-7 profile which is designedpi@sent the videos
by decomposing them into Shots, Keyframes, Still RegionsMaving Regions. The
MPEG-7 compatible XML representations of videos accordmthis profile are ob-
tained by the MPEG-7 compatible video feature extractiod annotation tool of
BilVideo-7, and stored in a native XML database. Users camtdate text, color,
texture, shape, location, motion and spatio-temporaligsem an intuitive, easy-to-
use visual query interface, whose composite query intertan be used to formulate
very complex queries containing any type and number of veEgments with their
descriptors and specifying the spatio-temporal relatiogisveen them. The multi-
threaded query processing server parses incoming quettesuiibqueries and executes
each subquery in a separate thread. Then, it fuses subeseiisrin a bottom-up man-
ner to obtain the final query result and sends the result totigenating client. The
whole system is unique in that it provides very powerful girgy capabilities with a
wide range of descriptors and multimodal query processirmniMPEG-7 compatible
interoperable environment.

Keywords: MPEG-7, video processing, video indexing, video retrievalltimodal
guery processing.



OZET

BilVideo-7: VIDEO COZUMLEME, INDEKSLEME VE
ERISIMI

Muhammet Bastan
Bilgisayar Muhendislji, Doktora
Tez Yoneticileri: Dog. Dr. @ur Gudiikbay ve Prof. Dr. Ozgiir Ulusoy
Temmuz, 2010

Video indeksleme ve erisimi sistemleri blylk captaki wderilerine hizli, dgal
ve kolay bir sekilde ulasilabilmesini amaclar. Son zalaata video arsivlerinin cok
hizli buyimesiyle bu sistemlerin 6nemi daha da artmifiu.tez, video ¢oziimleme,
indeksleme ve erigimi konularinda yeni yontemler dnerdWi@eo-7 sistemini sun-
maktadir.

BilVideo-7, karmasik cok kipli video sorgularini ayni andestekleyen, datik
mimariye sahip MPEG-7 uyumlu bir video indeksleme ve arisistemidir. Video
veri modeli bir MPEG-7 profili Gzerine bina edilmis olup,dé@olar bu profile uygun
olarak ¢cekimlere, anahtar karelere, diaa ve hareketli bélgelere ayrilmaktadir. Vide-
olarin bu veri modeline uygun XML gosterimleri, BilVidednin MPEG-7 uyumlu
video Oznitelik ¢gikarma ve etiketleme yazilimi yardimige edilip XML verita-
baninda saklanmaktadir. Kullanicilar, gorsel sorgularagiziini kullanarak metin,
renk, doku, bicim, konum, hareket ve uzamsal-zamansaltorgkolay bir sekilde
yapabilmektedir. Kompozit sorgu araytizl ise, kullanrenaistenilen sayida video
parcasini ve betimleyicisini bir araya getirip aralarikidazamsal-zamansal iliski-
leri belirleyerek, oldukca karmasik, ¢cok kipli sorgulnlayca formile edebilmesini
salamaktadir. Sorgular, ¢ok izlekli bir sorgu isleme sumic tarafindan islenmekte;
istemcilerden gelen sorgular 6nce alt sorgulara ayrilena&therbir sorgu, kendi sorgu
tipine ait biz izlek tarafindan islenmektedir. Daha sorala sorgu sonuglari birlestir-
ilerek nihai sorgu sonucu elde edilip istemciye geri gonamktedir. Sistemin bir
bltin olarak 6zgunil, MPEG-7 uyumlu bir ortamda, detayl bir video veri modeli
cok sayida betimleyici ve cok kipli sorgu isleme 6zgilile glicli bir video indeksleme
ve sorgulama sistemi olmasidir.

Anahtar s6zcuklerMPEG-7, video isleme, video indeksleme, video sorgulago&
kipli sorgu isleme.
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Chapter 1

Introduction

1.1 Motivation

YouTub@ is currently the world’s largest online video sharing siteday, 24 hours of
video are being uploaded to YouTube every minute [1], witerd&/billion views a day.
In 2008, it was estimated that there were over 45,000,0080¢dn YouTube, with a
rate of increase of 7 hours of video per minute [2]. Otherranliideo repositories, on-
demand Internet TV, news agencies, etc. all add to the aditogiamount and growth
of video data, which needs to be indexed, and when requgstesknted to the users
that may be using various client software residing on varjglatforms. This is where
multimedia database management systems are brought ayto pl

Early prototype multimedia database management systeet the query-by-
example (QBE) paradigm to respond to user queries [3, 4, &réneeded to formu-
late their queries by providing examples or sketches. Ther@hy-keyword (QBK)
paradigm, on the other hand, has emerged due to the deseartthanultimedia con-
tent in terms of semantic concepts using keywords or seeserather than low-level
multimedia descriptors. This is because it is much easifartoulate some queries by
keywords, which is also the way text retrieval systems wotkwever, some queries
are still easier to formulate by examples or sketches (#ng.trajectory of a moving

http://www.youtube.com
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object). Moreover, there is the so-called “semantic gagbfem, the disparity be-
tween low-level representation and high-level semantitsch makes it very difficult
to build multimedia systems capable of supporting keywmaided semantic queries
effectively with an acceptable number of semantic conceplt® consequence is the
need to support both query paradigms in an integrated wayadasers can formulate
gueries containing both high-level semantic and low-le\s=icriptors.

Another important issue to be considered in today’s muldiimeystems is inter-
operability: the ability of diverse systems and organaadi to work together (inter-
operat@. This is especially crucial for distributed architecturethe system is to
be used by multiple heterogeneous clients. Therefore, MIPH&} standard as the
multimedia content description interface can be emplogeatidress this issue.

The design of a multimedia indexing and retrieval systenirexctly affected by the
type of queries to be supported. Specifically for a videoxmeand retrieval system,
types of descriptors and the granularity of the represiematetermine the system’s
performance in terms of speed and effective retrieval. Beglee give some example
video query types that might be attractive for most userswich also are not all
together supported by the existing systems in an interbpeefeamework.

e Content-based queries by examplé&e user may specify an image, an image
region or a video segment and the system returns video ségsietilar to the
input query.

e Text-based semantic querieQueries may be specified by a set of keywords
corresponding to high-level semantic concepts and relafi@tween them.

e Spatio-temporal queriesQueries related to spatial and temporal locations of
objects and video segments within the video.

e Composite queriesThese queries may contain any combination of other simple
gueries. The user composes the query (hence the name ‘cioengpery) by
putting together image/video segments and specifying greperties, and then
asks the system to retrieve similar ones from the databdss.type of queries
is especially desirable to formulate very complex queraslg

2http://en.wikipedia.org/wiki/Interoperability
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Especially noteworthy is the composite query type, sineadompasses the other
guery types and enables the formulation of very complexovigeeries that would
otherwise be very difficult, if not impossible, to formulatelowever, the video data
model, query processing and query interface should be sgraesthat such queries
can be supported.

This dissertation introduces the BilVideoi7 [7,[8, 9] videarsing, indexing and
retrieval system to address the above-mentioned issuéawite domain of video
data.

1.2 Introducing BilVideo-7

BilVideo-7 is a comprehensive, MPEG-7 compatible and tisted video database
system to support multimodal queries in a unified video itgand retrieval frame-

work. The video data model of BilVideo-7 is designed in a wayehable detailed

gueries on videos. The visual query interface of BilVideis-@&n easy-to-use and pow-
erful query interface to formulate complex multimodal dasreasily, with support

for a comprehensive set of MPEG-7 descriptors. Queriesraaepsed on the multi-

threaded query processing server with a multimodal querggssing and subquery
result fusion architecture, which is also suitable for faliaation. The MPEG-7 com-

patible video representations according to the adoptedrdatel is obtained using the
MPEG-7 compatible video feature extraction and annotatohof BilVideo-7.

We next highlight the prominent features of BilVideo-7, waiirender it unique
as a complete video parsing, indexing and retrieval systethadsso emphasize the
contributions of this thesis.

e Composite queries. This is one of the distinctive featufeBilyideo-7. Users
can compose very complex queries by describing the scengadew segments
they want to retrieve by assembling video segments, imagesgie regions and
sketches, and then specifying their properties by higbtievow-level MPEG-7
descriptors. Figurds 5.2 ahd17.4 show examples of suchegueri
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¢ Video data model. In contrast to simple keyframe-basedovigpresentation
that is prevalent in the literature, BilVideo-7 uses a moetaded video repre-
sentation to enable more advanced queries (e.g., COMmppEtees).

e Multi-modal query processing. The query processing witbtédm-up subquery
result fusion architecture (Chapteér 5) enables a seamlpg®s for multimodal
gueries. Moreover, it is easy to add new modalities, whidmgortant for the
extendibility of the system.

e MPEG-7 compatibility. The data model of BilVideo-7 is basedan MPEG-7
profile. Videos are decomposed into Shots, Keyframes, Béflions and Mov-
ing Regions, which are represented with a wide range of hégia- low-level
MPEG-7 descriptors. This in turn provides manifold quertiams for the users.
MPEG-7 compatibility is crucial for the interoperability systems and is get-
ting more and more important as the use of different typesatfggms gets more
widespread.

¢ Distributed architecture. BilVideo-7 has a distributeligmt-server architecture
(Figurel4.1). This distributed architecture allows all trdine components, i.e.,
client (visual query interface), query processing servet AML database, to
reside on different machines; this is important for the tamsion of realistic,
large-size systems.

e Multi-threaded query execution. The query processingeseparses the in-
coming queries into subqueries and executes each type qtispbin a sepa-
rate thread (Sectidn 5.2, Figure15.3). Multi-modal quemycpissing and multi-
threaded query execution are closely related and thistaatbre is also very
suitable for parallelization for the construction of a ret&t system.

e MPEG-7 compatible feature extraction and annotation. E&4d-7 has an
MPEG-7 compatible video parsing, feature extraction antbtation tool, Bil-
MAT (Chaptel6), to obtain the MPEG-7 compatible XML repnetstions of the
videos according to the the detailed data model. This isarpeo fill a gap in
the literature.

e Visual query interface. BilVideo-7 clients’ visual quemtérface provides an
intuitive, easy-to-use query interface (Figurel 4.2) withnifiold querying and
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browsing capabilities: video table of contents (VideoTORQuery; textual,
color, texture, shape, motion, spatial, temporal and cait@gueries.

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows. Ch&pteviews the related work
on video database systems and MPEG-7. Chapter 3 describedto data model

of BilVideo-7. Chaptel 4 presents the distributed, clisatver architecture and main
software components of the system. Chalpter 5 focuses onutrg grocessing on the
server side. Chaptel 6 elaborates on video parsing, feattnaction and annotation to
obtain the MPEG-7 representations of the videos. Chaptembdstrates the capabil-
ities of BilVideo-7 with sample queries. Finally, Chaptéc@cludes the dissertation
with possible future directions.



Chapter 2

Related Work

2.1 Image and Video Retrieval Systems

In this section, we review some of the prominent image/vitelexing and retrieval
systems; the MPEG-7 compatible systems are discussed iio983.

QBIC (Query by Image Content) system [10, 3] was developelBbyto explore
content-based image and video retrieval methods. QBIC esigded to allow queries
on large image and video databases based on example imkegiehes, selected col-
or/texture patterns, and camera and object motion. Videmsepresented by shots,
representative frames (r-frames) and moving objects.

PicToSeek([11] is a web-based image database system fasrgplthe visual
information on the web. The images are automatically ctdi@drom the web and
indexed based on invariant color and shape features, winkctager used for object-
based retrieval.

SIMPLIcity (Semantics-sensitive Integrated Matching Ricture Llbraries)([12,
13] is an image retrieval system, which uses semantic Glestson methods and in-
tegrated region matching based on image segmentation.esrag represented by a
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set of regions, corresponding to objects, with color, textgshape, and location fea-
tures. and classified into semantic categories, such agé¢exhontextured and graph-
photograph. The similarity between images is computedguairmegion-matching
scheme that integrates properties of all the regions inntiage.

Photobook([14] is a system to enable interactive browsimgsaarching of images
and image sequences. It relies on image content ratherdkarinotations and uses
an image compression technique to reduce images to a srmali seefficients. Vi-
sualSEEKI[[5] is an image database system that supports aatbspatial queries on
images with a sketch-based query interface.

STARS [15] is an object oriented multimedia (image, videa)athase system to
support a combination of text- and content-based retriginiques with special fo-
cus on spatial queries. VideoQ [4] is a content-based vidaoch system that supports
sketch-based queries formulated on a visual query interiaening on a web browser.
The data model is based on video objects which are represantequeried by low-
level color, texture, shape and motion (trajectory) feagur

BilVideo [16, [17] is a prototype video database managemgsiies that sup-
ports spatio-temporal queries that contain any combinatigpatial, temporal, object-
appearance and trajectory queries by a rule-based syst#mra knowledge-base.
The knowledge-base contains a fact-base and a comprebesetivof rules imple-
mented in Prolog. The rules in the knowledge-base signilicaeduce the number
of facts that need to be stored for spatio-temporal quergingdeo data. BilVideo
has an SQL-like textual query language, as well as a visuatyguaterface for spatio-
temporal queries. The query interface is later improvednabée natural language
queries[[18].

The system described in [19] proposes a fuzzy conceptualrdatiel to represent
the semantic content of video data. It utilizes the Unifieddelong Language (UML)
to represent uncertain information along with video spegifoperties. It also presents
an intelligent fuzzy object-oriented database framewathkich provides modeling of
complex and rich semantic content and knowledge of videaidatuding uncertainty,
for video database applications. The fuzzy conceptualmati#el is used in this frame-
work and it supports various types of flexible queries relatevideo data such as
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(fuzzy) semantic, temporal, and (fuzzy) spatial queries.

The aim of Video Google [20, 21, 22] is to retrieve the shotd keyframes of a
video containing a user-specified object/region, simdavéb search engines, such as
Google, that retrieve text documents containing partrowtards.

VITALAS [23] is a video indexing and retrieval system thaloals users to per-
form text-based keyword/concept queries, low-level Vistrailarity queries and com-
bination of high-level and low-level queries. MediaMill4Ris one of the successfull
video retrieval systems supporting high-level queriesiigmatically obtained seman-
tic concept descriptions, speech transcript based quanebw-level visual similarity
gueries. The system has effective visualization and brayvsiterfaces for interactive
video retrieval.

There are several survey articles reviewing multimediarmition retrieval sys-
tems. Early content-based image retrieval systems areibedcby Smeulderet
al. [25] and Veltkampet al. [26]. More recent image and video retrieval systems
are reviewed in[27, 28, 29, BO].

2.2 MPEG-7 Standard

MPEG-7 [6] is an ISO/IEC standard developed by MPEG (MovingjuPe Experts
Group), the committee that also developed the standardsGABEMPEG-2 and
MPEG-4. Different from the previous MPEG standards, MPE{S-@esigned to de-
scribe the content of multimedia. It is formally called “Miuhedia Content Descrip-
tion Interface.”

MPEG-7 offers a comprehensive set of audiovisual desonpiols in the form
of Descriptors (D) and Description Schemes (DS) that desdhe multimedia data,
forming a common basis for applications. Descriptors dbscfeatures, attributes
or groups of attributes of multimedia content. Descript8shemes describe entities
or relationships pertaining to multimedia content. Thegcsfy the structure and se-
mantics of their components, which may be Description S&smescriptors or data
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types. The Description Definition Language (DDL) is based\8C XML with some
MPEG-7 specific extensions, such as vectors and matricesefire, MPEG-7 docu-
ments are XML documents that conform to particular MPEGHestas/[31] in XML
Schema Document (XSD) [32] format for describing multingecbntent.

The eXperimentation Model (XM) software [33] is the frametwvdor all the ref-
erence code of the MPEG-7 standard. It implements the narenedbmponents of
MPEG-7. MPEG-7 standardizes multimedia content desorighut it does not spec-
ify how the description is produced. It is up to the develgpErMPEG-7 compatible
applications how the descriptors are extracted from theimedia, provided that the
output conforms to the standard. MPEG-7 Visual Descripfioals consist of basic
structures and Descriptors that cover the following basiaal features for multimedia
content:color, texture, shape, motioandlocalization[6), [34].

2.2.1 Color Descriptors

Color Structure Descriptor (CSDepresents an image by both color distribution and
spatial structure of coloiScalable Color Descriptor (SCD$ a Haar transform based
encoding of a color histogram in HSV color spaBaminant Color Descriptor (DCD)
specifies up to eight representative (dominant) colors ifmngge or image region.
Color Layout Descriptor (CLD)s a compact and resolution-invariant color descriptor
that efficiently represents spatial distribution of cold&oup-of-Frame or Group-of-
Picture Descriptor (GoF/GoPis used for the color-based features of multiple images
or multiple frames in a video segment. It is an alternativeitgle keyframe based
representation of video segments. The descriptor is aiddiry aggregating the his-
tograms of multiple images or frames and representing tla iilstogram with Scal-
able Color DescriptorFace Recognition Descriptor (FRDOg a Principal Component
Analysis (PCA) based descriptor that represents the grojeof a face onto a set of
48 basis vectors that span the space of all possible facersect
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2.2.2 Texture Descriptors

Edge Histogram Descriptor (EHD9pecifies the spatial distribution of edges in an im-
age. Homogeneous Texture Descriptor (HTEharacterizes the texture of a region
using mean energy and energy deviation from a set of frequelmnnels, which are
modeled with Gabor function§exture Browsing Descriptor (TB@haracterizes tex-
tures perceptually in terms of regularity, coarseness aegdtinality.

2.2.3 Shape Descriptors

Contour Shape Descriptor (CShiDgscribes the closed contour of a 2-D region based
on a Curvature Scale Space (CSS) representation of theuwroriRegion Shape De-
scriptor (RSD)is based on the Angular Radial Transform (ART) to descrikepsh

of regions composed of connected single or multiple regionsegions with holes. It
considers all pixels constituting the shape, includindnlimmtundary and interior pixels.

2.2.4 Motion Descriptors

Motion Activity (MAc)captures the notion of ‘intensity of action’ or ‘pace of acfi

in a video sequencé&Camera Motiondescribes all camera operations like translation,
rotation, focal length changeMotion Trajectory (MTr)is the spatio-temporal local-
ization of one of the representative points (e.g., centena$s) of a moving region.
Parametric Motioncharacterizes the motion of an arbitrarily shaped regiar time

by one of the classical parametric motion models (trarsiatiotation, scaling, affine,
perspective, quadratic) [B5].

2.2.5 Localization Descriptors

Region Locatoispecifies locations of regions within images using a box dygzm.
Spatio-temporal Locataspecifies locations of video segments within a video sequienc
spatio-temporally.
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2.2.6 Semantic Descriptors

In MPEG-7, the semantic content of multimedia (e.g., olsjsetents, concepts) can be
described by text annotation (free text, keyword, striedyiand/or semantic entity and
semantic relation tools. Free text annotations describedmtent using unstructured
natural language text (e.g., Barack Obama visits TurkeyanlA Such annotations are
easy for humans to understand but difficult for computerstagss. Keyword anno-
tations use a set of keywords (e.g., Barack Obama, visikelpApril) and are easier
to process by computers. Structured annotations strikdaad@ between simplicity
(in terms of processing) and expressiveness. They corig&ments each answering
one of the following questions: who, what object, what attwhere, when, why and
how (e.g., who: Barack Obama, what action: visit, wherek&yrwhen: April).

More detailed descriptions about semantic entities sucbbgects, events, con-
cepts, places and times can be stored using semantic extlty fThe semantic rela-
tion tools describe the semantic relations between seoamtities using the normative
semantic relations standardized by MPEG-7 (e.g., ageeht&d, patient, patientOf,
result, resultOf, similar, opposite, user, userOf, lamatiocationOf, time, timeOf) or
by non-normative relations|[6].

The semantic tools of MPEG-7 provide methods to create vaef br very ex-
tensive semantic descriptions of multimedia content. Sofmie descriptions can
be obtained automatically while most of them require matalaling. Speech tran-
script text obtained from automatic speech recognitionA®ols can be used as
free text annotations to describe video segments. Keywmddsauctured annotations
can be obtained automatically to some extent using statkesrt auto-annotation
techniques. Description of semantic entities and relatlmetween them cannot be ob-
tained automatically with the current-state-of-the-trgrefore, considerable amount
of manual work is needed for this kind of semantic annotation
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2.2.7 MPEG Query Format

In 2007, MPEG-7 adopted a query format, MPEG Query FormatQMP[36], to
provide a standard interface between clients and MPEG-dbdats for multimedia
content retrieval systems. The query format is based on XK @nsists of three
main parts: (1) Input query format defines the syntax of queegsages sent by a
client to the server and supports different types of quege®ry by free text, query
by description, query by XQuery, spatial query, temporarguetc. (2) Output query
format specifies the structure of the result set to be retur@ Query management
tools are used to search and choose the desired servicesrfeval.

2.3 MPEG-7 Compatible Systems

The comprehensiveness and flexibility of MPEG-7 allow itagesin a broad range of
applications, but also increase its complexity and ad\yeedéect interoperability. To
overcome this problem, profiling has been proposed. An MRE®file is a subset of
tools defined in MPEG-7, providing a particular set of fuontlities for one or more
classes of applications. In[37], an MPEG-7 profile is pregubl®r detailed description
of audiovisual content that can be used in a broad range ditappns.

An MPEG-7 compatible Database System extension to Orac®B proposed
in MPEG-7 MMDBJ[38]. The resulting system is demonstrated by audio and émag
retrieval applications. In[39], algorithms for the autdiogeneration of three MPEG-
7 DSs are proposed: (Mideo Table of Contents D$or active video browsing, (2)
Summary DSto enable the direct use of meta data annotation of the pevdand (3)
Still Image DSto allow interactive content-based image retrieval B J4n MPEG-7
compatible description of video sequences for scalabtsitngssion and reconstruction
is presented. In_[41], a method for automatically extragtimotion trajectories from
video sequences and generation of MPEG-7 compatible XMtrgemns is presented
within the context of sports videos.
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Tsenget al. [42] address the issues associated with designing a vielesopaliza-
tion and summarization system in heterogeneous usageamants utilizing MPEG-
7 and MPEG-21. The system has a three-tier architecturere¢rseniddleware and
client. The server maintains the content as MPEG-7 and MRE@®etadata descrip-
tions. The client communicates with the server to send useriegs, retrieve and dis-
play the personalized contents. The middleware selecépta@dnd delivers the sum-
marized media to the user.

An MPEG-7 compatible, web-based video database managesystem is pre-
sented in[[48]. The system supports semantic descriptiodiddo content (ob-
jects, agent objects, activities and events) and factitevetent-based spatio-temporal
gueries on video data. I1h [44], an XML-based content-basedje retrieval system is
presented. It combines three visual MPEG-7 descriptorsD DC1L.D and EHD. The
system supports high dimensional indexing using an indextstre called-Treeand
uses an Ordered Weighted Aggregation (OWA) approach to canibe distances of
the three descriptors.

IBM’s VideoAnnEx Annotation Tof#5] enables users to annotate video sequences
with MPEG-7 metadata. Each shot is represented by a singleakee and can be
annotated with static scene descriptions, key object gegnrs, event descriptions
and other custom lexicon sets that may be provided by the Tikertool is limited to
concept annotation and cannot extract low-level MPEG-tmje®rs from the video.

The M-OntoMat-Annotize46] software tool aims at linking low-level MPEG-
7 visual descriptions to conventional Semantic Web onielgnd annotations.
The visual descriptors are expressedRasource Description Framework (RDF)
The IFINDER system[[47] is developed to produce limited MPEGpresentation
from audio and video by speech processing, keyframe eidraand face detection.
COSMOS-7 system [48] defines its own video content model anderts the repre-
sentation to MPEG-7 for MPEG-7 conformance. It models aansemantics (object
names, events, etc.), spatial and temporal relations leetalgects using what is called
m-frames (multimedia frames).

ERIC7[49] is a software test-bed that implements Content-Basedje Retrieval
(CBIR) using image-based MPEG-7 color, texture and shapergors. Caliph &
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Emir [50] are MPEG-7 based Java prototypes for digital photo ambe annotation
and retrieval, supporting graph-like annotations for seicameta data and content-
based image retrieval using MPEG-7 descriptors (CLD, DGDDSEHD).

2.4 Evaluation of Existing Systems

The MPEG-7 compatible systems described above have twa prajblems. (1) Most
of them use a coarse image or video representation, extgalctiv-level descriptors
from whole images or video frames and annotating them, Imatrigg region-level de-
scriptors. This coarse representation in turn limits thhgeaof queries. (2) The user
cannot perform complex multimodal queries by combiningesawideo segments and
descriptors in different modalities. BilVideo-7 addres#igese two major problems by
adopting an MPEG-7 profile with a more detailed video repregeon (Section 3]2)
and using a multimodal query processing and bottom-up serfgqesult fusion archi-
tecture to support complex multimodal queries (e.g., catipgueries — see Chapiér 7
for examples) with a comprehensive set of MPEG-7 desciptor



Chapter 3

Video Data Model

3.1 Introduction

A video is a sequence of frames which are structured to reptessenes in motion.
Figure[3.1 broadly depicts the structural and semantidimglblocks of a video. A
shotis a sequence of frames captured by a single camera in a simgfi@uous action.
Shot boundaries are the transitions between shots. Thdyecabrupt (cut) or gradual
(fade, dissolve, wipe, morph). sceneis a logical grouping of shots into a semantic
unit. This structure is important in designing the videcadabdel.

t video sequence

r-———~>F~"~>""~"~>"~"~>""~>"""“~“""“""~""™>"™""~>"™">"™™>7/7/ r--r—-———~>~>" "~~~ T——77 1 r————7 e —I

: scene : I scene : : scene ]|
| I I

| shot | ‘| shot | i l shot | i

shot boundary

[frame | | frame | | frame | [frame | [ frame |

Figure 3.1: Building blocks of a video.

15
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The first step in constructing a multimedia indexing andieeal system is to de-
cide what kind of queries will be supported and then desigrtita model accordingly.
This is crucial since the data model directly affects theéesys performance in terms
of querying power. For instance, considering a video inag@and retrieval system, if
the videos are represented by only shot-level descripags,annot perform frame or
region based queries. Similarly, if video representatioasdnot include object-level
details, we cannot perform queries including objects amadicfifemporal relations be-
tween them. There is a trade-off between the accuracy oéseptation and the speed
of access: more detailed representation will enable mawelde queries but will also
result in longer response time during retrieval.

3.2 Video Decomposition and Representation

As avideo indexing and retrieval system, BilVideo-7 tak#e consideration the above
mentioned factors for the design of its video data modelt E#he data model should
have enough detail to support all types of queries the systamesigned for and it

should also enable quick response time during retrievahcelethe data model should
strike a balance between level of detail in representatiairatrieval speed.

As an MPEG-7 compatible video indexing and retrieval systdma data model
of BilVideo-7 is represented by the MPEG-7 profile depictedrigure[3.2. First,
audio and visual data are separated (Media Source Decatiopd$]). Then, visual
content is hierarchically decomposed into smaller strat®nd semantic units: Shots,
Keysegments/Keyframes, Still Regions and Moving Regiofis.example of video
decomposition according to this profile is shown in Figui& 3.
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Multimedia

Media Source Decomposition

Video

Temporal Decomposition

r
Video Segment
(Shots)

Temporal Decomposition Spatio-temporal Decomposition

- Temporal location
- Annotation
- Visual descriptar

Video Segment
(Keyframes)

- Temporal location
- Annotation
- Visual descriptor

Spatio-temporal Decomposition

Still Regions

- Spatial location
- Annotation
- Visual descriptor

Moving Regions
(Salient Objects)

- Spatio-temporal location - trajectory
- Annotation
- Visual descriptor

Temporal Decomposition

Y

Still/Moving Regions

- Spatial location
- Annotation
- Visual descriptor

Figure 3.2: MPEG-7 profile used to model the video data.

3.3 Temporal Decomposition

Video is temporally decomposed into non-overlapping videgments calle&hots
each having a temporal location (start time, duration) ogetion to describe the ob-
jects and/or events with free text, keyword and structuretbtations, and visual de-
scriptors (e.g., motion, GoOF/GoP).

The background content of the Shots does not change mudgtialipif the cam-
era is not moving. This static content can be representedshgéeKeyframeor a few
Keyframes. Therefore, each Shot is temporally decompasedsmaller, more ho-
mogeneous video segmenkeysegmenjswvhich are represented by Keyframes. Each
Keyframe is described by a temporal location, annotatioksaaset of visual descrip-
tors. The visual descriptors are extracted from the fransewalsole.
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3.4 Spatio-temporal Decomposition

Each Keyframe in a Shot is decomposed into a s&tdf Regions(Spatio-temporal
Decompositiohto keep more detailed region-based information in the fofispatial
location by the MBRs of the region, annotation and regioselavisual descriptors.
These Still Regions are assumed to be valid for the durafitimea<eysegment that is
represented by this Keyframe.

Each Shot is decomposed into a seMiving Regiongo represent the dynamic
and more important content of the Shots corresponding tsdhent objects. This is
to store more information about salient objects and keegk & the changes in their
position and appearance throughout the Shot so that moadetktiueries regarding
them can be performed. We represent all salient objects Mithing Regions even
if they are not moving.Facesare also represented by Moving Regions, having an
additional visual descriptor: Face Recognition Descripto

To keep track of the changes in position, shape, motion asubliappearance of
the salient objects, we sample and store descriptor vatugsepoints when there is a
predefined amount of change in the descriptor values. Tleetaay of a salient object
is represented by thdotion Trajectorydescriptor. The MBRs and visual descriptors
of the object throughout the Shot are stored by temporaltpagosing the object into
Still Regions

Notation: From here on, we refer to Shots, Keyframes, Still RegionsMading
Regions, avideo segmentslhroughout the text, we capitalize these terms to comply
with the MPEG-7 terminology.

3.5 Summary and Discussion

To summarize the video data model of BilVideo-7, each videnscsts of a set of
Shots. Each Shot consists of a set of Keysegments and Mowgmis. Keysegments
are represented by Keyframes which are composed of a sell &&ffions. Keyframes
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and Still Regions are used to represent mainly the statikgvaand content of Shots,
while Moving Regions act as the salient objects in the scene.

The summarized data model is a generic data model exprasddBEG-7 for a
general purpose video indexing and retrieval system,a&system for TV news videos.
The representation is coarse at shot level, and it gets firtefier for Keyframes, Still
Regions and Moving Regions. The detail level can be easjlyséet] to better suit to
different application domains. For example, if shot andfieye level queries are
enough for a particular application domain, then the redgeel description (Still and
Moving Regions) can be omitted during the creation of MPEGoeihpatible XML
representations of videos. On the other hand, if the foregtcsalient objects and
faces are of primary interest, as in a surveillance systansdourity purposes, the
Moving Regions may be represented with greater detail,erthi¢ shot and keyframe
level descriptions may be kept at a minimum or even entiretjtted. The omission
iSs not necessary, but should be preferred to save onlinemfirocessing time and
storage.
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Figure 3.3: MPEG-7 decomposition of a video according toMiREG-7 profile used
in BilVideo-7. Low-level color, texture and shape desarigtof the Still and Moving
Regions are extracted from the selected arbitrarily shaggidns, but the locations of
the regions are represented by their Minimum Bounding Rei¢s (MBR).



Chapter 4

System Architecture

4.1 Overview

BilVideo-7 has a distributed, client-server architectaseshown in Figure 4.1. Videos
are processed offline and their MPEG-7 compatible XML regméstions are stored in
an XML database. Users formulate their queries on BilVidebients'visual query in-
terface(Sectiori4.4), which communicate with the BilVide@uery processing server
over TCP/IP, using an XML-based query language (Se€tigh 4.be query process-
ing server communicates with the XML database to retriegedlquired data, executes
gueries and sends the query results back to the client.

This distributed architecture allows all the online comgats, i.e., client, query
processing server and XML database, to reside on differachines; this is important
for the construction of realistic, large-size systemsitr@mmore, the query processing
server and XML database can have a distributed architetduaklow for faster query
processing and hence shorter query response times.

21
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Clients
Figure 4.1: Distributed, client-server architecture aMgieo-7.

4.2 Feature Extraction and Annotation

Videos should first undergo an offline processing stage taiobheir MPEG-7 com-
patible XML representations. This processing is to decasepovideo into its struc-
tural and semantic building blocks (Shots, Keysegmentsgfdmes, Still Regions and
Moving Regions), extract the low-level MPEG-7 descriptangl annotate them with
high-level semantic concepts, according to the adopteglovithta model. Chaptel 6
focuses on video parsing, feature extraction and annat&tiothe MPEG-7 compati-
ble representations of videos.

4.3 XML Database

MPEG-7 compatible representations of videos are obtaise<ML files conforming
to the MPEG-7 schema [31]. Conceptually, there are two idiffeways to store XML
documents in a database. The first way is to map the data miithel KML document
to a database model and convert XML data according to thigpmgp The second
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way is to map the XML model into a fixed set of persistent sutes (a set of tables
for elements, attributes, textfc.) designed to hold any XML document. Databases
that support the former method are call¥lL-enableddatabases, whereas databases
that support the latter are calledtive XML databases (NXO5b1]. XML-enabled
databases map instances of the XML data model to instand¢agiobwn data model
(relational, hierarchical, etc). Native XML databases tiee XML data model di-
rectly [52]. As aresult, itis more convenient and natural$e a native XML database
to store the MPEG-7 descriptions. Therefore, BilVideo-#wa native XML database,
Tamino [53], along with the standard W3C XQuery[54] to exedts queries in the
database.

4.4 Visual Query Interface

Users formulate queries on BilVideo-7 clients’ visual querterface, which provides
an intuitive, easy-to-use query formulation interfaceg(fFe[4.2). The graphical user
interface consists of several tabs, each for a differeng typbquery: textual query,
color-texture-shape query, motion query, spatial querynporal query, composite
guery, XQuery and video table of contents. As shown in Figlg the query for-
mulation tabs are on the left, the query result list is digpthat the top right, the
guery results can be viewed on the media player at the boftgit) and messages are
displayed in the log window at the bottom left.

The user can select the media type, return type (video, \ségment, shot, shot
segment) and maximum number of results to be returned, fnentoblbar at the top.
The user can provide weights and distance/similarity tholets for each video seg-
ment, each descriptor (e.g., CSD, HTD) and query type (eotpy, texture, motion) in
the query to have more control over query processing. Heheayeights and thresh-
olds can be tuned by the user according to the query resutibtin better results.
Chaptef_b describes the details of how the weights and tbidslare used in query
processing and in fusing the subquery results. The quereesanverted into Bil-
VideoQuery format (Sectidn 4.5) in XML and sent to the Bilg@7 query processing
server.
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Figure 4.2: BilVideo-7 client visual query interface. Thaegies are formulated on the
query formulation area on the left, result list is shown attibp right, the query results
can be viewed on the media player at the bottom right and mesda the user are
shown at the bottom left.

4.4.1 Video Table of Contents

Video Table of Contents (VideoTofS)a useful facility to let the user browse through
the video collection in the database. The contents of eadowvis shown in a hier-
archical tree view reflecting the structure of the MPEG-#espntation of the video
in XML format. As shown in Figuré 413, all the videos in the aladise are displayed
at the top, along with all the high-level semantic conceptictvare used to annotate
the videos. The user can view the contents and list of higéFeemantic concepts of
each video at the bottom. The user can browse through the wide see all the Shots,
Keyframes, Still Regions and Moving Regions as well as tmeaggic concepts they
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are annotated with and their temporal location (Media Timehe video.

4.4.2 Textual Query Interface

Textual Query Interfaceenables the user to formulate high-level semantic queries
quickly by entering keywords and specifying the type of wdsegment (Shot,
Keyframe, Still Region, Moving Region) and annotation €frext, keyword, struc-
tured) to search in (Figufe_4.4). The user can also formulatee detailed keyword-
based queries to search in structured annotations.

4.4.3 Color, Texture, Shape Query Interface

Color, Texture, Shape Query Interfasaised for querying video segments by MPEG-7
color, texture and shape descriptors. The input media canvieo segment, a whole
image or an image region (Figure 4.5). To be able to executgeaydor the input
media, the descriptors need to be extracted from the sdlegbat media. Instead of
uploading the input media to the server and extracting tisergeors there, we extract
the descriptors on the client, form the XML-based query egpion containing the
descriptors and send the query to the server. Therefor®)BteG-7 feature extraction
module (Chapter]6) is integrated into BilVideo-7 clientsheTuser also specifies the
type of video segments to search in, and also other quergraptsuch as weights and
thresholds for each type of descriptor.

4.4.4 Motion Query Interface

Motion Query Interfaces for the formulation of Motion Activity and Motion Trajec-
tory queries. Trajectory points are entered using the m{kigeire[4.6). The user can
optionally specify keywords for the Moving Region for whitte trajectory query will
be performed. Motion Activity queries can be specified byjaimg intensity of the
motion activity or by a video segment from which the motiothaty descriptor will
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be computed. The search can be based on motion intensitgrashtial/temporal
localization of motion intensity.

4.4.5 Spatial Query Interface

Spatial Query Interfacenables the user to formulate spatial queries for Still ang-M
ing Regions using either keywords and a set of predefinedbaspalations (left, right,
above, below, east, west, etc. — Figuréd 4.7, top) or by skeiche minimum bound-
ing rectangles (MBR) of objects using the mouse (Figure Botom), and if desired,
giving labels to them. It is possible to query objects baselboation, spatial relations
or both. The sketch-based query interface is more powarfidrins of expressing the
spatial relations between the regions.

4.4.6 Temporal Query Interface

Temporal Query Interfacis very similar to spatial query interface; this time, thews
specifies temporal relations between video segments (Steframes, Still Regions,
Moving Regions) either by selecting from a predefined terap@iations such as be-
fore, after, during (Figure_4.8, top) or by sketching the penal positions of the seg-
ments using the mouse (Figlrel4.8, bottom).

James F. Allen introduced the Allen’s Interval Algebra femporal reasoning in
1983 [55]. It defines possible relations between time iraisrand provides a com-
position table that can be used as a basis for reasoning tdyopobral intervals. The
temporal query interface provides the 13 base temporaioetadefined by James F.
Allen: before, after, equal, meets, met-by, overlaps, overlajigyeduring, includes,
starts, started-by, finishes, finished-ye user can select one of these relations from
the pull-down list to formulate his query. The sketch-bagedry interface is more
powerful in terms of expressing the temporal relations leetwthe video segments.
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4.4.7 Composite Query Interface

Composite Query Interfade the most powerful query interface and enables the user
to formulate very complex queries easily (Figlrel 4.9). Thergy is composed by
putting together any number of Shots, Keyframes, Still Begiand Moving Regions
and specifying their properties as text-based semantiotations, visual descriptors,
location, spatial and temporal relations. Using this ifates, the user can describe a
video segment or a scene and ask the system to retrieve rsuiiée segments.

4.4.8 XQuery Interface

XQuery Interfaces more suited to experienced users who can formulate thernies
in W3C standard XQuery language to search in the databager@=.10). This pro-
vides a direct access to the XML database, but XQuery previaidy access to the
data and cannot handle, for instance, similarity-basedléael descriptor (color, tex-
ture, shape, etc.) queries. Providing XQuery support mayseéul in two ways. (1)
It provides a very flexible query interface for text-baseerigs, or queries related to
the contents of the database. (2) If a client does not useishahquery interface of
BilVideo-7, it can use its own query interface and convegrigs to XQuery or XML-
based query language of BilVideo-7. Then, it can post-me®@nd present the query
results to the user on its own graphical user interface.
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Figure 4.3: Video table of contents (VideoToC) interfaceadilVideo-7 client. The
whole video collection and concepts are shown at the toplsletheach video are
shown at the bottom.
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Figure 4.4: BilVideo-7 client textual query interface.
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Figure 4.5: BilVideo-7 client color, texture, shape querierface.
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Figure 4.6: BilVideo-7 client motion query interface. Mati Trajectory queries are
formulated at the top; Motion Activity queries are formadtat the bottom.
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Figure 4.8: BilVideo-7 client temporal query interface. mgoral relations between
video segments can be selected from the pull-down list dbfheSketch-based queries
can be formulated at the bottom.
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Figure 4.10: BilVideo-7 client XQuery interface.
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4.5 XML-based Query Language

We need a query language for the communication betweenigr@shnd the server.
Since MPEG-7 uses XML as its Description Definition LanguédgBPL), and video
representations in XML format are kept in a native XML datdat is most appro-
priate to use an XML-based query language. This languagarnsparent to the user,
since queries are formulated on the visual query interfelogvever, any client with its
own query formulation interface can convert its queriesits tormat and execute the
queries on the system.

Current version of BilVideo-7 does not support MPQF quemglaage (Sec-
tion[2.2.7) since itis not possible to formulate some of ti¥iBeo-7 queries in MPQF
(e.q., spatial queries by location). The format of the Bi&&®-7's XML-based query
language is as follows.

<Bil VideoQuery attributes="general query options’>

<VideoSegment attributes='subquery options’'>
<Textual attributes='subquery options’' >SubQuery</ Textual >
<Location attributes='subquery options’ >SubQuery</Location>
<Col or attributes='subquery options’ >SubQuery </ Col or >
<Texture attributes='subquery options’>SubQuery</ Texture>
<Shape attributes='subquery options’'>SubQuery </ Shape>
<Motion attributes="subquery options’>SubQuery</Motion>

</ Vi deoSegment >

<VideoSegment attributes='subquery options’>

SubQuery
</ Vi deoSegment >
<Spatial attributes='subquery options’>SubQuery</Spatial >
<Tenmporal attributes='subquery options’ >SubQuery</ Tenmporal >
<TOC attributes="subquery options’>SubQuery</TOC>
<XQUERY>SubQuery </ XQUERY>

</ Bi | Vi deoQuery>
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As shown above, the query may consist of a list of VideoSegsnalong with
their descriptors and Spatial and/or Temporal queries)yf ar a single TOC (Video
Table of Contents) or XQuery query. The Spatial and Tempyuaties references the
VideoSegments already described by their unique segmentNdte that our XML-
based query language is very similar to MPQF.

4.6 Query Processing Server

The query processing server accepts incoming clients gutiéseo their queries. First,
it parses the queries that are in XML format into subqueribglvare composed of
a single query video segment and a single descriptor, el§eyframe with Color

Structure Descriptor (CSD), a Moving Region with Region @h®escriptor (RSD).
Then, it retrieves the required data from the XML databaseguiQuery, executes
each subquery and fuses the results of all subqueries tnabtingle list of video

segments as the query result. Finally, it ranks the videmsegs in the query result
according to their similarities to the query and sends tkaltdack to the originating
client. Chaptelrl5 is dedicated to discuss the query praugasidetail.



Chapter 5

Query Processing

This chapter focuses on query processing on the BilVidea&r@Processing Server.
We first describe the multi-threaded query execution agchire, then give the details
of how different types of queries are processed, and finaliaén the subquery result
fusion strategy that enables complex queries.

5.1 Overview

BilVideo-7 clients connect to the query processing serwvaxecute their queries. The
guery processing server is a multi-threaded server sidgooent that listens to a
configured TCP port, accepts incoming clients and processasjueries (Figure 4.1).
Clients send their queries in the XML-basBdVideoQueryformat (see Section 4.5)
and receive query results in XML-basBiVideoResulformat, which contains a list
of video segments (video name, start time, end time) in rcuokder.

Definition 5.1.1 (Simple Query) A query is asimple quenyf it contains only one
guery segment with only one descriptor.

For example, a Shot with GoF, a Keyframe with HTD, a Moving iRagvith CSD
gueries are all simple queries.

38
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Definition 5.1.2 (Composite Query)A query is acomposite querif it contains mul-
tiple query segments or multiple descriptors.

For example, a Shot with GoF + MAc, a Keyframe with SCD + EHD xt ta Still
Region and a Moving Region with spatial relation queriesadreomposite queries.
The query in Figureé5]2 is also a composite query.

5.2 Multi-threaded Query Execution

The query processing server receives queries in XML-baskddBoQuery format
from the clients and parses each incoming query into subEgjerhich are simple
queries (see Definition 5.1.1). Then, it executes the suiEpié a multi-threaded
fashion, with one thread for each type of subquery, as shawigure[5.B. Queries
with the same subquery type (e.g., color) are accumulatadjuireue and executed on
a first-in-first-out (FIFO) basis. For example, subquerascblor descriptors (CSD,
SCD, DCD, etc.) are added to the end of the queu€abr Query Executothread
and executed in this order. This is the current implememtan BilVideo-7, however,
other possibilities of multi-threaded query processingpadxist, such as a separate
thread for each type of descriptor, in which case the numbt#ireads will be much
higher.

One XQuery is formed and executed on the XML database for gatofpuery, con-
sisting of a single video segment and a single descriptgr, (Keyframe with CSD).
The XML database returns the XQuery results in XML format,jckihare parsed to
extract the actual data (the descriptors). The descriptotergo further processing for
distance/similarity computation to obtain the subquesute If there are spatial rela-
tion queries between Still/Moving Regions, and/or tempaekation queries between
video segments (Shot, Keyframe, Still/Moving Region),ytlage executed after the
execution of the subqueries related to the high/low-leeskdptions of the video seg-
ments. Subquery results must be fused to obtain the finay gesult; this is discussed
in Sectior 5.B.

An illustrative query example, as formulated on the clieisual query interface,
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Query Result
(List of Video Segments)

T

Temporal Relations

t

Spatial Relations

s

Video Segment Video Segment ‘ Video Segment
| I |T | |
‘ Text ‘ ‘ Color ‘ [ Location ‘ ‘ Texture ‘ ‘ Shape ‘ ‘ Motion ‘
F Y F Y F Y Fy
|
|csp|[sco]|ctp||[pco|[Fro||[coF| [enp| [HTD| [cshD| [RsD| [ MTr]| [MmAc]

Figure 5.1: Subquery results are fused in a bottom-up manBach node has an
associated weight and threshold. The similarity of a videgnsent at each node is
computed as the weighted average of the similarities ohitslien.

is shown in Figuré 5]2. This is a composite query having thideo segments (one
Keyframe, one Still Region and one Moving Region) with vagalescriptors. When
the user presses the “Search” button on the Composite Quienydce (Figure 419), the
specified descriptors are extracted from the Keyframd,R&tjion and Moving Region
and using the other query options (weights, thresholds) ¢be query is assembled
into an XML string and sent to the server. The query procgsserver parses this
guery into 6 (simple) subqueries: (1) Still Region with HTR) Keyframe with DCD,
(3) Keyframe with CSD, (4) Keyframe with text, (5) Moving Reg with CSD, (6)
Moving Region with MTr. Then, the query processing proceaslslescribed in the
previous paragraph and in the following sections.

5.2.1 Similarity Computation

Textual queries are the easiest to execute since the XMlbds¢acan handle textual
gueries and no further processing is needed for the sityileoimputation. However,

the database cannot handle the similarity queries for émelldescriptors. That is,
the similarity between the descriptors in a query and thergasrs in the database
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cannot be computed by the database. Therefore, the congiggogquery execution
thread retrieves the relevant descriptors from the datatoashe video segment in the
subquery (e.g., CSD for Keyframes) and computes theirriststo the query.

The distance measures suggested by MPEG-7 authors for eactipdor are im-
plemented in MPEG-7 XM Reference Software![33] but they aernormative, i.e.,
any other suitable distance measure can also be used witheaiting the MPEG-7
compatibility of the system. An evaluation of distance muas for a set of MPEG-7
descriptors([56] shows that although there are better mistaneasures such as pat-
tern difference and Meehl index, the distance measurest@ended by MPEG-7 are
among the best. Therefore, we adapted the distance me&sumethe XM Reference
Software implementation. In the following sections, we suamize the adapted dis-
tance metrics. More detailed information on MPEG-7 distameasures can be found
in [6)33,/56].

The user specifies a set of weights and thresholds at quenufation time. If the
computed distance for a video segment in the database iggtean the user-specified
distance threshold for the query video segment and desc(ipy., for Keyframe with
CSD, ifd(Q,D)/dmax> Tkeyframecsn), that segment is discarded. Otherwise, the sim-
ilarity, s(Q, D), between two descriptors Q and D is computed as

S(Q,D) =1—d(Q,D)/dmax 0<(Q,D) < 1.0

whered(Q, D) is the distance between descriptors Q andiRxis the maximum
possible distance for the type of descriptor in the compartailThe maximum distance
for each descriptor is computed by taking the maximum dcgdrom a large set of
descriptors extracted from video segments.

5.2.2 VideoTOC and Textual Query Processing

Video table of contents (VideoTOC) interface (Figlrel 4&juests (1) the video col-
lection and high-level semantic concepts in the XML databasd (2) the contents of
avideo, which are retrieved from the database with XQuedyseamd back to the client
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in XML format.

Textual queries can be handled by the database. MPEG-7sallespecification
of confidence scores for text annotations which can be takghesimilarity value
during query processing if the annotation matches with trery

5.2.3 Color, Texture, Shape Query Processing

Low-level color, texture and shape queries may originateeefrom the color, texture,
shape query interface (Figure 4.5) or the composite quégyfate (Figuré 419). These
gueries are executed by the respective color, texture apestxecution threads, which
are responsible for executing a simple subquery (e.g.,rdey with CSD) at a time.
The distances between the descriptor in the query and ttueijgkess in the database
should be computed using suitable distance measures.

In the following, we briefly describe the distance measudapted from MPEG-7
XM software for color, texture and shape descriptd@stefers to a descriptor in the
qguery,D to a descriptor in the database ais the computed distance between the
descriptors.

Li-norm is used to compute the distance between Color SteicBaalable Color,
GoF/GoP, Region Shape descriptors.

d,(Q.D) = ¥ |Q(i) ~ D(i)|

The distance between two Color Layout descript@s; {QY, QCh QCr} andD =
{DY,DCb,DCr}, is computed by

d(Q,D) = \/Z Wyi(QY — DYi)? + \/Z Wpi(QCh — DChy)? + \/Z wri (QCri — DCri)?
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where the subscriptrepresents the zigzag-scanning order of the coefficierts an
the weights i, Whi, Wri) are used to give more importance to the lower frequency
components of the descriptor.

The distance between two Dominant Color descriptors Q anditb@ut using the
spatial coherency and optional color variance) is comphyed

D ={(cqj, Pdj,Vdj),Sa},j = 1,2,...,Ng
Ng Ny

Ny Ny
d?QD) =S pi+ S pgi— 284 d Pai Pd
2, Pt D Paj 2 ) 2d.diPaPa)

whereag 4 is the similarity coefficient between two colazgandcy,

aq 1_d(CQ7Cd)/dmaX7 d(CQ7Cd) STC
d =
’ 0, d(cq,Cq) > Te

whered(cg,cq) = ||cg— Cq|| is the Euclidean distance between two coleysind
cq; Tc is the maximum distance for two colors to be considered amaihddmax= aTe.
The recommended value fdg is between 10 and 20 in CIE-LUV color space and
between 10 and 15 for a.

The distance between two Edge Histogram descrigfpesid D is computed by
adapting thd_1-norm as

79 4

64
d(Q.0) = 3 holi) ~ho(0)] +5 3 (0)~H(D)] + 3 [re(D) ~h3(0)

wherehg(i) andhp (i) represent the histogram bin values of im&yandD, h%(i)
andhg (i) for global edge histograms, amd,(i) andhp (i) for semi-global edge his-
tograms.
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The distance between two Homogeneous Texture descriptarslD (full layer —
using both energy and energy deviation) is computed by

d(Q,D) = Wyc|Q(0)—D(0)| +Wstg |Q(1) — D(1)[ +
RD-1AD-1
Z) > We(n)|Q(n-AD+m+2) —D(n-AD+m+2)| +
n=0 m=0

Weg(N) |Q(n- AD+ m+32) —D(n- AD+m+ 32)|

wherewyc, We andweg are the weights; thRadial Division RD = 5 andAngular
Division, AD = 6. Matching with this distance metric is not scale and rotatinvariant.

The distance between two Face Recognition descrifioasd D is computed as
follows.

47
d(Q.0) = 3 w(Q() D))"

For spatial position queries, Euclidean distance betwkercénter points of ob-
jects’ MBRs is used. The definition of distance computation@ontour Shape de-
scriptor is rather long, and therefore, not included hefreadltiple instances of a de-
scriptor are available for a Moving Region to account for¢hanges in its descriptors
throughout the shot, the distance is computed for all thiantes and the minimum is
taken.

5.2.4 Motion Query Processing

Motion query execution thread handles the Motion ActivitydaMotion Trajectory
gueries. The intensity of Motion Activity is a scalar valdkerefore, the distance is
computed simply by taking the difference between two desarivalues in the query
and the database. When the spatial localization of motitvitgas given, Euclidean
distance between the vectors is used.
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The distance between two object trajectofigsand Tp is computed as a weighted
average of distances between object positispeedsls and accelerationda.

Wedp(To, To) +Wsds(Tq, To) +Wada(Tg, o)

d(Te:To) = Wp + Ws + Wa
2 2
(To. To) =3 (Xgi — Xdi) Ati(yq. Yai)

with similar definitions fords andda [6].

5.2.5 Spatial Query Processing

Spatial locations of Still Regions and Moving Regions amgexd in the database by
their MBRs, without any preprocessing to extract and stbeedpatial relations be-
tween them. Therefore, spatial similarity between regism®mputed at query execu-
tion time. This is computationally more expensive but ityides a more flexible and
accurate matching for spatial position and spatial retedjioeries.

For each Still Region or Moving Region in the query, first, ge® related to the
properties of the region (textual, color, texture, shapegtion, motion) are executed as
described above. Then, the resulting video segments umdpagial query processing
to compute the spatial similarities between them.

We use the spatial similarity matching approach describgd5] because of its
efficiency and robustness. First, the vectors connectiagcémter points of objects’
MBRs, Q,y, andDjj, are computed as shown in Figlre|5.4. Then, the pairwiséaspat
similarity is computed by the cosine of the an@léetween the vecto®,, andDj,
using vector dot product:
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The output value is in the range [-1, +1], with +1 indicatidgmtical spatial relation
and -1 opposite spatial relation. In Figlrel5.4, the spatiation between the database
objectsD; andD3 is the most similar to the spatial relation between quergaisQ;
andQ,.

The text-based spatial queriegyft, left, above, below, efc.are executed in the
same way, by converting each spatial relation query to avewitor (Figuré 514, left).
For instanceQy right Qy (Qx is to the right ofQy) query is converted to a query vector

Qxy = [—1,0], from Qx to Qy.

Multiple MBRs are stored in the database for Moving Regian&dep track of
their locations. The spatial similarity is computed fortalk MBRs and the maximum
similarity value is taken as the final similarity. Figlirell6strates the spatial relation
guery processing between a Still Region and a Moving Region.

5.2.6 Temporal Query Processing

Temporal queries, if any, are executed after spatial gsidryechecking if the list of
video segments satisfies the temporal relations specifitteiquery. Spatial queries
implicitly enforce a temporal relation between Still and Wy Regions, since they
must co-appear on a scene for a certain time interval in tteovio satisfy the spatial
relations.

5.2.7 Composite Query Processing

In Sectiori 5.1, we defined the composite query as a query dnéios multiple query
segments or multiple descriptors. When received by theyquiercessing server, the
composite queries are decomposed into a set of ‘simple’usriEs and executed sep-
arately. The subquery results are fused (similar to lateofufs7]) in a bottom-up
manner as explained below, in Section 5.3. This flexible ypevcessing architecture
enables the easy formulation of complex queries.
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5.3 Fusion of Subquery Results

When multiple descriptors, possibly in different modabt are specified for a query
video segment, each is executed as a separate subquetiingesua list of video
segments with similarity values. These subquery resultstihe fused to come up
with the final query result. This is done in a bottom-up marageshown in Figure 5.1
and illustrated in Figure 5.6. Referencing Figlrel 5.1, eaotie in the tree has an
associated weight and a threshold, which can be specifieidoyger during query
formulation.

The similarity at each node is computed as the weighted geevhthe similari-
ties of its children and the fusion process continues upwatte tree until the final
guery resultis obtained. This is similar to the sum rule ghbming classifier outputs,
which is shown to be more resilient to errors compared tojrfstance, the product
rule [58, 59]. Moreover, this simple approach provides g Wiaxible query process-
ing architecture to support complex multimodal queriesrdeasly and to add new
modalities and descriptors easily.

To illustrate the fusion process, consider a composite ygeensisting of a
Keyframe with color (CSD and DCD), texture (EHD and HTD) aedttbased se-
mantic (keywordgolf greer) descriptors. The query processor parses this query into
5 subqueries (CSD, DCD, EHD, HTD and text), executes eachpaodiices 5 lists
of Keyframes from database with similarity values. Therfiuses color (CSD, DCD)
and texture (EHD, HTD) subquery results to obtain the cotat gexture similarities
of each Keyframe.

WKey frameCSD S,cSD+ WKey frameDCD Si,DCD
WKey frameCSD+ WKey frameDCD

Wkey frameEHD S,EHD + WKeyframeHTD S,HTD
Wkey frameEHD + WKey frameHTD

S Color =

S Texture=

where s color is the color similarity for theith Keyframe, Wiey framecsp IS the
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weight for CSD and so on. If the similarity of Keyframas less than the thresh-
old specified by the user, it is discarded. At this point weehauists of Keyframes
having similarity values for color, texture and text. Weduhlese 3 lists to obtain the
final list of Keyframes.

5= Wkey frameColor Si,Color T WKey frameTextureSi TextureT WKey frameText S Text
Wkey frameColor + WKey frameTexture WKey frameText

If there are also spatial or temporal relation subqueries; are executed and sim-
ilarity values of the video segments are updated in the saaye ®inally, we obtain
Nys lists of video segments, wheMys is the number of video segments in the query.
The final query result is obtained by fusing these lists udiegsame weighted average
approach as above and sorting the list in descending ordamdérity.

5.4 Discussion

Multithreading provides some degree of parallel executinrmulti-core processors,
and hence reduces query execution time. Query procesgirgnimiltimedia retrieval
system is computationally costly. To keep the responsedirtiee system at interactive
rates, especially for large databases, a truly paralleésyshould be employed. In a
parallel architecture, each query processing node may #eegata for a subset of
descriptions (e.g., text, color, texture, shape) and dremuly the relevant subqueries.
A central Query Processor can coordinate the operationafyquocessing nodes.

The multimodal query processing and bottom-up subquemyitréssion architec-
ture make it possible to add new modalities easily. For msgacurrent BilVideo-7
implementation can easily be extended to support queriateceto the audio content
of the videos. In such a case, audio and visual segment guziebe executed first,
and final list of video segments can be merged after temparatygprocessing (if

any).
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Figure 5.2: Interpretation of the input queries on the quencessing server. Com-
posite queries are parsed into several subqueries, whechllagimple queries.
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Figure 5.3: The framework of the query processing serverLXddsed queries coming
from the clients are parsed into subqueries and each typebojugery is executed in
a separate thread. Subquery results are fused in a bottarmanper (Figuré 511) and
the final result is returned to the client.
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Figure 5.4: Spatial query processing by vector dot prodetiveen the vectors con-
necting centers of objects’ MBRs. In the sketch-based alpgiery in the middle, the
query is represented with the vecQy,, from the center of objedD; to the center
of objectQ,. The spatial relation between the database obje¢csndD3 is the most
similar to the spatial relation between query obje@isand Q.. Text-based queries
(right, left, above, below, efcare converted to unit vectors as shown on the left.
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Chapter 6

From Videos to MPEG-7
Representations

This chapter discusses the issues related to how to obtaiMBPEG-7 compatible
XML representations of the videos. We first present our vidadure extraction and
annotation tool, BiIMAT, and then explore possible ways wifcanatizing the process
of video-to-MPEG-7 conversion as much as possible.

6.1 Introduction

Videos should undergo an offline processing stage to obiteiin MPEG-7 compat-

ible XML representations which are then stored in the daebaThis processing
(1) decomposes the videos into its structural and semantldifg blocks (Shots,

Keyframes, Still Regions and Moving Regions) accordingh®adopted data model,
(2) extracts low-level descriptors from them and (3) antestthem with high-level se-
mantic concepts. The extraction of low-level descriptoddr, texture, shape, motion,
etc.) from the video segments is done automatically. Whatres is the decompo-
sition into and annotation of video segments, which can lheesed in one of the

following three modes of video processing.

53
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e Manual processing: both video decomposition and annotaie done manu-
ally.

e Semi-automatic processing: some human assistance iseddar either video
decomposition or annotation.

e Automatic processing: video decomposition and annotatrerperformed auto-
matically, without the need for any human help.

6.2 Semi-automatic Video Parsing

The termvideo parsings borrowed from the work of Tet al. [60], where it is used as
image parsingdecomposing an image into its constituent visual pattanasproduc-
ing a scene representation in a “parsing graph” similar tsipg sentences in speech
and natural language. Likewise, video parsing is defineti@pitocess of decompos-
ing a video into its constituent parts according to the vidata model adopted. In our
case, the constituent parts are Shots, Keyframes, StiloReg@nd Moving Regions,
according to our data model described in Chapter 3.

There are several annotation tools in the literature. dbg61,62] is a web-based
image annotation tool to label objects in images by spewfyhe objects’ boundaries
with polygons and providing keyword labels. The resultingédls are stored on the
LabelMe server in XML format. Similarly, LabelMe videb [684] is a web-based
video annotation tool to label objects and events. The abmpgoduce large amounts
of annotated ground truth image/video data that can be usedining for the recog-
nition of objects, scenes, actions, etc. The Graphical Aatian Tool (GAT) [65] is a
region-level annotation tool for images, producing MPEGML outputs. Recently,
Amazon Mechanical Turk[66, 67] has become a popular way t&inimg high-quality
ground truth annotations at a low cost, according to the ttiom protocol defined by
the initiator.

MUuLVAT [68] is a video annotation tool, which uses structdirenowledge, in
the form of XML dictionaries, combined with a hierarchic#ssification scheme to
attach semantic labels to video segments at various levgtasfularity. There are
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also MPEG-7 compatible tools (VideoAnnEx [45], Caliph & Erf80], M-OntoMat-
Annotizer [46], ERIC7([49]) which were discussed in Chaf@eNone of these tools is
sufficient for the task of MPEG-7 compatible video featur&rastion and annotation
in BilVideo-7, which lead us to develop a new tool, BiIMAT,st&ibed next.

6.2.1 BIIMAT for Semi-automatic Video Processing

BIilMAT is short for BilmediaM PEG-7AnnotationT ool. It is designed to be a generic
multimedia feature extraction and annotation tool to suppoage, audio and video
data. In this work, we focus on video data only. The requireshual work to parse
a video consists of selecting the video segments and amtéem with a set of
high-level semantic concepts.

Figurel6.1 shows a snapshot of BiIIMAT while processing aw@ide the figure, the
current video frame is shown at the top left, latest proakfsene is at the bottom left,
latest selected region is at the top right, and selected MpRiegions along with their
trajectories are shown at the bottom right. Selected viéggments along with their
annotations are shown on the right in a hierarchical tree vedlecting the structure
and showing the contents of the video.

The user loads a video along with its shot boundary inforomati.e., the start
and end times of each Shot; selects which descriptors to é@ tasrepresent each
type of video segment, and then processes the video on éygtstet basis. The
MPEG-7 visual descriptors (color, texture, shape, motmeglization) for the selected
video segments are computed by the tool, using the MPEG{drgeaxtraction li-
brary of BilVideo-7, adapted from MPEG-7 XM Reference Sdafte/[33]. Some parts
of the feature extraction library, along with executabke® publicly available at the
BilVideo-7 website[[9].

e Shot ProcessingSince shot boundaries are already loaded, the only manu&l wo
is to enter the annotations for the Shot. The tool computeotli-level descriptors
selected by the user, such as Group-of-Frame and Motiowifjctiescriptors, and
adds the current Shot to the list of processed Shots andagisplin the tree view



CHAPTER 6. FROM VIDEOS TO MPEG-7 REPRESENTATIONS 56

[ BilMAT: Bilmedia MPEG-7 Annotation Tool
Fle Tools Help

2 Audio ] Video

Video file: |D:\research\data\video\ABC1.avi Load. . Load SBI Start i

— sky A
— S€Q B
B éﬁ Moving Regions
- B canoe
g shot3
= ﬁ shot4
= -{w Keysegments
= JT_ frame429
— boat
- S€a
e SKY
e Mountain -
= building
&:@ Moving Regions

a wave =
~

< I i

|Shot: 4 Frame: F[ZE_‘

Add Keyframe |

‘ pause | [play |  <prevframe | nextframe> | < prev shot| mext a'hnt->]i

Add StillRegion |

1 Log Window

21:14:46: Region selected ~ Add Movngeglon |
21:15:04: Extracting low-level features of the StillRegion.. =
21:15:04: Done.
51115:04: Added Still Region. = Add Current Shot I

~

] Save XML | Exit J
BIIMAT started.. rready 7

Figure 6.1: BIIMAT: BilmediaM PEG-7AnnotationT ool.

on the right. Then, the user may proceed to further processtot by adding
Keyframes, Still and Moving Regions that reside in the Shot.

Keyframe ProcessingThe user may select one or more Keyframes from the Shot
and annotate them with high-level descriptors. The toolpates the user-specified
low-level descriptors, such as Color Structure and Homeges Texture descrip-
tors, and adds the Keyframes to the Shot and displays thereaight.

Still Region Processinglhe user may select, annotate and add a set of Still Regions
for each Keyframe. The user-specified low-level descrgtsuch as Dominant
Color and Scalable Color descriptors, are extracted fraséhected regions.

Moving Region Processing-inally, the user may also select, annotate and add a
set of Moving Regions, i.e., salient objects, for each Shbe visual appearance,
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position and MBR of the Moving Regions may change througtiotShot, there-

fore, when a change occurs in these attributes they shoulghdeted by the user.
The user-specified low-level descriptors, such as Regi@p&land Color Struc-

ture descriptors, are extracted from the selected regisrieeavisual appearance
is updated. Faces in the Shot are also represented by Mowgmpis with Face

Recognition Descriptor. The tool has the capability to dedad track all the faces
in the Shot, but the high-level annotations should still bevjgled by the user.

When processing the video is completed, the user may aentbtatwhole video
(provide annotations related to the content of the whole®jdnd save the MPEG-7
representation into an XML file. This manual processingutiotedious, provides an
accurate representation of the video, which is crucial lieraffective retrieval of the
video content.

6.3 Towards Automatic Video Parsing for MPEG-7
Representation

It is not practical to use a manual tool to parse and annasage lamounts of video.
Moreover, due to human subjectivity, the video representatobtained by different
people may be quite different, leading to unpredictabitityring retrieval. Conse-
guently, there is a need for automatic tools for video parsind annotation. In the
following sections, we propose methods in an effort to aatiire the whole process
as much as possible.

The proposed methods address the automatic decompositithie @ideos, and
leave the automatic annotation of the video at several ¢gmatylevels (providing Free
Text, Keyword and Structured annotations for Video, Shayfkame, Still/Moving
Region) as a future work. This is still an open research grabkand to the best of our
knowledge, the problem of video annotation at several deaityilevels, as described,
has not yet been addressed in the literature.
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6.3.1 Temporal Video Segmentation

Temporal video segmentation aims to decompose a video tathpmto its con-
stituent parts. In our case, these constituent parts ans 8hd Keyframes.

6.3.1.1 Shot Boundary Detection

Shot boundary detection (SBD) is the process of automatidatecting the bound-
aries between Shots in a video, and the research in this fieldbe considered to be
mature. Several methods have been proposed for Shot bquentthscene change de-
tection [69] 70| 71]. SBD was one of the tracks of activityhitthe annual TRECVid
benchmarking between 2001 and 2007. The wide range of edsiused by the
participants and performance comparisons are presen{ZdJinThese methods use
various features to measure the similarity between frarfesexample, color his-
tograms, edge information, motion information, keypoirgtaining, or a combination
of these features. In [72], a local keypoint matching aldponiis presented to detect the
Shot changes using a so-called color context histogram (JZ3] feature computed
around Harris corner points [74].

Abrupt shot transitions are usually easy to detect sinceligtance between con-
secutive frames has a high peak value at the transition (&i§i2-(a)), and this can
be detected by a simple thresholding approach. On the o#mat, lyradual transitions
are harder to detect, and it is not enough to measure justdtede between the con-
secutive frames since they take longer, the variation @friframe distances is more
smooth and the peak value is much lower. Therefore, it is comim use two different
thresholds to detect both the abrupt and gradual transition

Considering the characteristics of abrupt and gradualtshiagitions, we developed
a two-pass, graph-based shot boundary detection alggrittspired from the graph-
based image segmentation algorithm proposed by Felzelisawd Huttenlocher. In
this image segmentation algorithm, an undirected gaph(V, E) is constructed from
the input image; each pixel is a vertex V and is connected to the neighboring pixels
with edges having edge weightgv;,v;j). Edge weights are the distances between the
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pixels.

As shown in Algorithni 6.1, the edges are first sorted into menelasing weight
order. Then, edges are processed in this sorted order; tmpawents are merged if
the edge weight is less than a threshold, which is updated @dich merge operation
based on an input parameterand the weight of the edge connecting the recently
merged components. Hence, the algorithm merges the mosrscamponents first
(greedy decision), i.e., the components that are conndigtediges with the smallest
weights, and the merge operation continues as long as thghtseare smaller than
the dynamically updated thresholds. The output is a disgehforest, in which each
disjoint set corresponds to a connected component in thganiehe algorithm is fast
and it uses union-by-rank and path compression heurigiicdigjoint set operations
to further improve the running time.

We adapted our shot boundary detection algorithm from tbigrentation algo-
rithm by constructing an undirected gragh= (V,E) from the video frames; each
frameF is a vertexv € V and edge weights are computed as the distances between the
frames,w(vi,vj) = d(F,F;). Figure[6.2-(a) shows the variation of inter-frame CSD
distances (edge weights) throughout a video containingawapt and three gradual
shot transitions. As discussed above, abrupt shot transiire usually easy to detect,
while gradual transitions need special treatment. Theeetwe apply a two-pass seg-
mentation with differenk values and different distance measures for the computation
of the edge weights. In the first pass, we detect the abrupsitr@ans having large
peak values at the transitions. We perform the the secorsl@es all the segments
obtained in the first pass, to detect the gradual transitions

In the first pass, we construct an undirected gr&ph (V,E) from all the video
frames; the edge weights are the distances between theccbinsevideo frames,
w(vi,Vi+1) = d(F,F+1). Then, we segment the gra@using Algorithm[6.1l with
a largek value (e.g., 10). The output of the first pass is a set of viggonents delin-
eated by abrupt transitions. These segments may contalngriaansitions, which are
detected in the second pass of our algorithm. For each of geggments, we construct
a new undirected grap®’ = (V',E’) whose vertices consist of the frames in one of the
segments and edge weights are computed as a weighted avédig@nces between
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Algorithm 6.1 EGBSG@, k, c): Efficient graph-based segmentation

G: input graph to be segmente@d,= (V,E)
k: input parameter, largderesults in larger components
¢: minimum size of a component to be output
I* initialize |V| sets sets of size 1 */
foreachveV do
MAKE-SET (v)
end for
/* initialize threshold val ues */
foreachveV do
thresholdy] « k
end for
sort edges<E in non-decreasing weight order
/* go over the edges in sorted order */
for eachedgév;,vj) € E do
Uy + FIND-SET(v)
U <— FIND-SET(v))
if u1 # up and w(v;,vj) < threshold{i;] and w(v;,v;) < thresholdi;] then
UNION (ug, up)
U+ FIND-SET (up)
I* |C|: size of the new set after the union operation */
thresholdfi] < w(v;,v;) +k/|C]|
end if
end for
/* postprocessing: elimnate conponents snaller than ¢ */
/* go over the edges in sorted order */
for eachedgév;,v;) € E do
u; < FIND-SET(v))
Uz <— FIND-SET(v))
if up £ up and (size{;) < cor size(r) < c) then
UNION (ug, up)
end if
end for

frames on a neighborho:

sz Wd(R Ry )
ZJ‘ W1
J=-W ]

d(F,F1) = , 1#0, 1<i+j<N

where,N is the number of frames in the segment, and the distance betir@mes
F andF_ 1 is computed by the weighted average of the distances coimsj¥ frames
preceding and succeeding frafRe Figure[6.2-(b) shows the variation of CSD dis-
tances throughout a video (the same video as in Figuie §)2+¢ag this weighted
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average distance approach Yr= 3 andW = 5. Note that this graph is obtained us-
ing the whole video sequence in the distance computatidrerahan the individual
segments obtained in the first pass; this is shown in Flg@€d; therefore, the graph
in Figurel6.2-(c) does not contain the abrupt transitions.

We see that, using this type of distance measurement amspiifes distances at
the gradual transitions (second, third and fourth trams#iin the figure) while it
smoothens the abrupt transitions (first and fifth transgtionthe figure). This is why
we detect the abrupt transitions in the first pass using dwyinter-frame distance
between the consecutive frames, since, this way we camadieithe transition points
more accurately.

Finally, we segment the grags for each segment using again Algorithm]6.1 with
a smallk value (e.g., ®). The output of this second pass is a set of video segments
(Shots) delineated by gradual transitions. As a result, btaio both the abrupt and
gradual transitions using a two-pass algorithm.

6.3.1.2 Keyframe Selection

The aim of Keyframe selection is to obtain a set of framesdbaers all aspects of a
video sequence as much as possible. It is common to reprasamdt with a single
Keyframe, the frame in the middle of the Shot. This causesidenable information
loss for Shots containing strong camera motion and scenatgatvhich is why mul-
tiple Keyframes are usually needed for each Shot. Anothargsttforward approach
is to uniformly sample the video sequence with a certain &aate [75], but this may
lead to redundancy.

The most common approach to Keyframe selection is to clukeeframes from
the Shots based on their low level features such as colorextdré, and choose the
frames closest to cluster centroids as Keyfrarnes [75, 76/8]7

In a video indexing and retrieval setting, the aim is to sfost enough number
of Keyframes to represent a Shot. Storing fewer Keyframegmsely affects the re-
trieval performance, but is good for retrieval speed, sifaveer Keyframes will be
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considered during query processing time. Storing many &eyés per Shot has the
opposite effect. Therefore, we take a clustering approadtrike a balance between
representation detail and retrieval speed.

We cluster the frames in a Shot with respect to their low{lBMRREG-7 descriptors
(CSD, HTD) to account for the variations in the visual appeae and also keep the
number of selected Keyframes as low as possible. We emplmceamental K-means
algorithm for clustering[[72, 80], as summarized in Algbnit[6.2. We process each
frame in its temporal order; if its distance to the currentstér is below a threshold,
it is added to the cluster and the cluster centroid is upda@derwise, a new cluster
is formed. At the end of processing a Shot, we obtain a setudtets with non-
overlapping frames. The clusters are taken as the Keysdgraed the centroid frame
of each cluster is selected as the Keyframe (Figure 6.3-(a))

Figurel6.8-(b) shows Keyframe samples selected by thermanéal k-means algo-
rithm described above. Color (CSD), texture (HTD) and a cowatiion of color and
texture (CSD + HTD) are used as low-level descriptors toesgnt the frames. The
distances are normalized to.(0 1.0] as described before, and a threshold value bf 0
is used in the examples given. The value of the threshold eamsbd to adjust the
number of Keyframes selected; a smaller threshold for a&fangmber of Keyframes
and vice versa. Using CSD and HTD together, with a threshaligevof 01, results in
perceptually good Keyframes, as also demonstrated by tbeted Keyframes in the
figure.

6.3.2 Spatial Segmentation for Still Regions

In BilVideo-7 data model, Still Regions are intended to esemt the background re-
gions, which usually constitute a large portion of the ssef@r example, regions cor-
responding to sky, greenery, grass, sea and forest areall ggndidates for Still Re-
gions. In contrast to Moving Regions, we do not need a veryrate boundary/shape
information for such regions, since queries related to gemknd regions will usually

be related to color, texture and possibly a coarse positimnmation. As a result, after
selecting a set of Keyframes from a Shot, a coarse segmamtteach Keyframe will
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Algorithm 6.2 Keyframe SelectioS T)

VS input video sequence (Shot) haviNgramesV S= {Fy,F,...,Fy}
T: threshold for starting a new cluster<0T < 1.0
[* initialize */
KS«+ 0/* Keysegments */
KF < 0/* Keyfranes */
C<«F/* Current cluster */
/* go over all the frames F...Fy in their tenporal order */
fori=1toNdo
[* conpute the distance to the centroid of the current cluster */
d «+ distancg R, centroid(C))
if (d<T) then
C«+ CUFR/* Add this frame to the current cluster */
update the centroid of clustér
else/* New cluster */
KS«+ KSUC/* Update Keysegments */
KF < KF U centroid(C) / * Update Keyframes */
C«F/* Start a new cluster */
end if
end for

be sufficient for our purposes. Then, the largest regionsarsegmentation, possibly
with an area above a certain threshold (e.g., 20% of the fianew®), can be chosen as
the representative Still Regions. Next, we review some efwkll-known segmenta-
tion algorithms that can be utilized for this task.

Object segmentation is used to identify regions of inteireatscene and is one of
the most challenging tasks in image/video processing.rteseas the key technique
in many applications, including content-based indexingd egtrieval, compression,
recognition, event analysis, understanding, video slianeie, intelligent transporta-
tion systems, and so on. The problem of unsupervised image/\object segmenta-
tion is ill-defined because semantic objects do not usualligespond to homogeneous
spatio-temporal regions in color, texture, or motion. Hfiere, the segmented objects
are often not consistent with human visual perception. €guently, practical appli-
cation of these algorithms is normally limited to regionrsegtation rather than object
segmentatiori [81].

There is a large literature on spatial image segmentatiogimg from graph-
based methods, region merging techniques and graph cutsettral methods. In
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Blobworld [82], segmentation is obtained by clusteringgtéxin a joint color-texture-
position feature space using Expectation Maximization YHmM[83], the authors con-
struct an edge flow graph based on detected edges, and usapietg find objects
in the scene. Normalized Cuis [84] algorithm constructsaplyifrom the image; each
node (pixel) has an edge to all other nodes (pixels). The eatation is obtained
by finding the normalized cuts of the graph. It is one of the nsoEcessful image
segmentation algorithms in literature but it is computadilty costly.

In JISEG algorithm [85], images are first quantized to sevemksentative classes.
Then, each pixel is replaced by its representative clasd.|ldBy applying a “good”
segmentation criterion to local windows, a “J-image” isquoed. Finally, a region
growing approach is used to segment the image based on soalé-J-images. It is
also applied to video sequences with an additional regacking scheme and shown
to be robust on real images and video.

An efficient graph-based segmentation (EGBS) is propos{&bin It runs in time
linearly with the number of graph edges and is much faster tha Normalized Cuts
algorithm. It constructs a graph, in which each pixel is aeseand is connected to
the neighboring pixels. It is a greedy algorithm and workgitst sorting the edges in
increasing order of weight and then processing the edgéssiotder in the segmenta-
tion of the graph. Finally, a disjoint set forest (DSF) isabed; each set corresponds
to one component in the image.

Nock and Nielsen proposed a fast segmentation algorithiledcstatistical region
merging (SRM), based on statistical properties of colorgesa[87]. The approach
takes into account expected homogeneity and separahitipepties of image objects
to obtain the final segmentation through region mergings linsupervised and well
suited to noisy images, while the method presented in [8&lires some user as-
sistance. The algorithm has an input paramé&er {1,2,...,255} for the statistical
complexity of the scene to segment. The smaller the value ofh® coarser the seg-
mentation. It is hence possible to control the coarseneggeafegmentation and build
a hierarchy of coarse-to-fine (multiscale) segmentatidas amage.

Among the good segmentation algorithms reviewed above, elected the
JSEG [85], EGBS [86] and SRM [87] and assembled them into meatation library
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using OpenCV/|[89]. Using this library we developed a segmugon tool, BIISEG
(Figurel6.4), to explore the effects of preprocessingffiitg color space and segmen-
tation parameters on these algorithms. Using the tool, eadesof various filters
(median, Gaussian, mean shift, bilateral, etc.) can bdexppd the input image prior
to segmentation, and various color spaces (RGB, HSV, CIE Céb LUV, YCbCr)
can be used for the input image (JSEG uses LUV color space).

We observed that JSEG and SRM are good candidates for SgibReegmenta-
tion, while EGBS tends to produce oversegmentation (sglitthe image into many
small regions), especially on textured images. In termgetd, JSEG is 5-6 times
slower than SRM and EGBS, and EGBS is a bit faster than SRMiréfi§.5 shows
example segmentations using JSEG (region merging thigeéf®)land SRM Q value
10). We favor SRM for Still Region segmentation for its spead better control of
hierarchy of coarse-to-fine segmentation by tuning theevafi@. A Q value of around
10 is appropriate for our purposes.

In some cases, large regions may belong to salient objeatsi(ld Regions) in
the scene, e.g., the flower in Figlrel6.5. To avoid redundéstoying the same region
as both Still and Moving Region), the output of Moving Regssgmentation can be
used to exclude such regions.

6.3.3 Segmentation for Moving Regions

In BilVideo-7 data model, Moving Regions are intended taespnt the salient objects
in the Shots. Salient objects are the most prominent objeatdhe users might want
to perform more detailed queries about, compared to otlssritaportant objects in

the scene. In the following, we first review the literaturesatiency, and then focus on
how to employ saliency analysis within the context of videgexing and retrieval.
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6.3.3.1 Saliency

In the literature, salient objects are defined as the vigd@tinguishable, conspicuous
image components that attract our attention at the firstcglaas in Figuré 616. These
are usually high contrast regions, or regions with signifilyadifferent appearance
compared to their surroundings. Detection of salient mgis also referred to as
image attention analysis

The first remarkable work on saliency is by ktial.[90]. It combines multiscale
image features into a single topographical saliency mapndJhis map and a dy-
namic neural network, the attended image locations areteelén order of decreasing
saliency. In[[91], a saliency map is generated based on tmdtast analysis, then a
fuzzy growing method is used to extract attended areas @ctsbfrom the saliency
map by simulating human perception.

In [92], the authors propose a salient object extractiorhogtby a contrast map
using three features (luminance, color and orientatiom, salient points for object-
based image retrieval. The work in_[93] investigates erogily to what extent pure
bottom-up attention can extract useful information abbetlbcation, size and shape
of objects from images and demonstrates how this informatam be utilized to enable
unsupervised learning of objects from unlabeled imagef94h image segmentation
is formulated as the identification of single perceptuallysitnsalient structure in the
image.

In [95], the authors try to obtain OOI (Object-of-Interes€gmentation of natural
images into background and a salient foreground by regiagimg within a selected
attention window based on saliency maps and saliency piwortsthe image. In[[96],
the log spectrum of each image is analyzed to obtain the rgppeesidual, which is
transformed into spatial domain to obtain the saliency mhaghvin turn indicates the
positions of proto-objects. In [97], salient object deimtts formulated as an image
segmentation problem, in which the salient object is sepdritom the image back-
ground. A set of novel features are proposed: multi-scalgrast, center-surround
histogram, and color spatial distribution to describe sesabbject locally, regionally,
and globally. A Conditional Random Field (CRF) is learneshgg human labeled set
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of training images to effectively combine these featuresédient object detection.

There has been little work on salient object detection ir@jdaking into account
the valuable motion information. The model proposed in [@&ldicts the saliency of
a spatio-temporal event based on the information it costdihe joint spatial and tem-
poral conditional probability distributions of spatiastporal events are modeled and
their spatio-temporal saliencies are computed in an iategrway. Motion channels
are added to intensity-based saliency maps_ in [99]. Theoasifrgue that addition
of motion information, as they described, did not improve plerformance. Iri [100],
spatial and temporal saliency maps are fused to computet@-¢paporal saliency
map. The spatio-temporal saliency framework describedl@1] combines spatial
feature detection, feature tracking and motion predidtioorder to generate a spatio-
temporal saliency map to differentiate predictable andedigtable motions in video.

6.3.3.2 Saliency for Moving Regions

For a video/image object, the notion of being salient or 8o isubjective matter;
different people may select different objects from the saoment. Elazary and Itti

claim that selecting interesting objects in a scene is lgrgenstrained by low-level

visual properties rather than solely determined by higlellebject recognition or cog-

nitive processes$ [102]. The authors support this claim layyamg the selected objects
in LabelMe image database to evaluate how often interestijects are among the
few most salient locations predicted by a computational@hotibottom-up attention.

From this work, we can conclude that low-level visual featucan be employed to
determine the salient objects, at least to some degree.

In contrast to pixel-based saliency map approaches rediabeve, we take a
segmentation-based approach to determine the salierdtshggions with the aim of
obtaining the boundaries of objects better. Next, we list¢haracteristics of video
objects that make them perceived as salient by a human av4&68, 104, 105]. We
also suggest possible features that may be used to disetensuch objects from the
others or from the background.
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1. In videos, objects in camera focus are usually importeuy. (a speaking head
in the middle). Objects in camera focus have higher contnadtsharper edges
compared to the background. This can be measured usingiregi@nce, en-
tropy, and edge strength on the region boundary.

2. Visually conspicuous regions are salient. This is ingiddby how different the
region is from its surrounding and from the rest of the scem& hence can
be measured by inter-regional contrast on specific fea(ergs color, texture,
motion).

3. Moving objects may be important (e.g., walking persorljrgaboat); hence
velocity is an important clue.

4. Too large, too small, too long/thin regions are usuallyimportant. For exam-
ple, large regions are mostly background. This suggesigyuwsiea and shape
features.

5. Salient objects should be consistent; they should apgpeapst of the frames
within a Shot (e.g., at least 10% of the frames in the Shot).

Using these characteristics, we compute the followinguiesst for each region and
obtain a feature vector of length 18. We obtain the segmentabf each frame in a
Shot using the JSEG algorithm (see Sedtion 6.3.2). Thet@résaare easy to compute
once the segmentation of a frame is available.

1. Regional color, shape, texture and motion features

e Region color variance (maximum of 3 RGB channels) and egttopm
grayscale image)
Given a regiorR and a descriptoD that takes on valued;, ..., d } (e.g.,
in an 8-bit grayscale imag® is from 0 to 255), the regional entropy is
defined as

Hor=— Z Po,r(di) log, Po r(dh) (6.1)
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wherePp r(d;) is the probability of descriptdd taking the valued; in the
regionR as described in [106].

e Average region velocities iX andY directions computed by optical flow
between successive frames

e Region area & shape properties: ratio of region area to framea, aspect
ratio, ratio of region area to MBR area (compactness)

2. Inter-regional features

e Local & global contrast: sum of difference of mean color,iaace, en-
tropy, velocity of a region from its neighbors, and from ather regions,
weighted by region areas (Figure6.7).

For a regionA, the contrast feature€4) are computed as,

CA:;W)(‘FA—F)(’ (62)

whereF is a color, texture or motion feature, is a weight reflecting the
effect of how large the regioX is. For local contrastX is any region
neighboring regiorA; for global contrastX represents all the remaining
regions.

e Boundary edge strength.

6.3.3.3 Classification and Tracking of Moving Regions

We collected 300+ positive/negative salient region exasptomputed the above-
mentioned features, normalized them to zero mean and unénez, and trained a
Support Vector Machine (SVM)_[107, 108, 109]. Using this SMie classify each
region as being salient or not. For each salient region,itartte to the separating hy-
perplane returned by the SVM is assigned as the saliencg.stbe higher the score,
the more salient the region. We rank the regions accorditigiscsscore and select the
first N regions. This parameter can be used to tune the detectioisiore& recall of
the system. The number of salient regions as detected by SAfivbe zero or more,
hence our system can say that there is no salient region anzefr
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We need to track each salient region throughout the Shotdosistency check
and also for trajectory information, which is stored in ttegabase. The literature on
tracking is broad[[110, 111, 112, 113]. Tracking algorithassume that the object
to be tracked is given as input, which is not a valid assumgfithe system is fully
automatic and should both detect and track the objects wutitany user assistance.
Therefore, we take an approach similar to the saliencyebdseriminant tracking
approachl[[114] in the sense that the target is detected im feame using saliency
analysis and hence tracked.

We keep a list of tracked salient regions within each Shogalch frame, we try to
find a match for each tracked region by first imposing posiéiod shape constraints
and then checking color histogram distance between thenegiAt the end of pro-
cessing a Shot, if a region appeared less than a threshold ¢f@he frames in a
Shot), it does not qualify as a salient region. This thredlvain also be used to tune
the detection precision & recall.

6.3.3.4 Results and Discussion

We tested our system on several video sequences with leagtivdds of frames each.
Figure[6.8 shows example detections of varying qualityhdfframes are easy to seg-
ment, so that the segmentation quality is satisfactoryrgbelting detections are good.
In an example opposite case, as shown in the first row, secwagk of Figuré 618, the
walking person could not be correctly detected due to pogmeatation.

We compared the performance of our system with one of thargashliency
model (SM) [90] approaches, whose MATLAB implementationfrisely available
at[115]. The SM approach is developed for images; thereteeeextracted Keyframes
from each Shot and run the MATLAB implementation on the Kagies. Figuré 619
shows detection examples by the two methods. We linitd¢d 5 in the experiments.
In most cases, our approach performs much better in termaro&h visual percep-
tion and in terms of our definition of saliency. We also conepluthe precision-recall
values of the two systems on 2 test video sequences with laofo§®8 frames and
evaluated the first 5 detections as correct/wrong/misskd.pfecision-recall graph in
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Figure[6.10 indicates that our system is better in detecdtiagalient regions.

Our approach achieves good detection at region level, banlie objects are not
homogeneous in color/texture, it fails to capture the dsjas a whole (e.g., golfer in
Figure[6.8, second row, second column), since the unsiggehgdegmentation algo-
rithm cannot handle such cases. This is still an open resgaablem. Our current
work focuses on using color, texture, motion and salien@scynergetically to re-
cover the salient objects as a whole. A recent work by Akbal.[116] is a good step

forward in this direction.
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Figure 6.2: Shot boundary detection, CSD distance for aovgguence having two

abrupt and three gradual shot transitions. (a) Inter-frdisnces between consecu-
tive frames and shot boundaries, (b) weighted inter-frarstaidce on a neighborhood,

(c) the same distance as in (b) for the three segments didthbg abrupt transitions.
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Figure 6.3: (a) Keyframe selection, (b) Keyframe exampf@ame numbers according
to the start of the Shot are shown at the bottom of each image, 8TD, CSD + HTD

are the low-level descriptors used to select each group yir&mes.
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Figure 6.4: BIISEG: BilVideo-7 Segmentation Utility. Inpunage is shown at the top
left, filtered image at the bottom left, the last two segmeois on the right.
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Figure 6.5: Segmentation examples using JSEG [85] and SRM [8
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Figure 6.6: Salient objects are visually distinguishalblenspicuous image compo-
nents that attract our attention at the first glance.

Figure 6.7: Computing the contrast features for a regiorp: Toiginal video frame,
left: local contrast measuring how different a region isrdgs surrounding, right:
global contrast, measuring how different a region is fromrést of the frame.
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Figure 6.8: Example salient region detections. Numberhkiwitectangles show the
rank of saliency for the enclosed region.
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Figure 6.9: Visual comparison of first 5 detections. Left: Sight: our approach.
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Figure 6.10: Precision-recall graph for the detection at #rsalient regions, compar-
ing our approach with SM_[90].



Chapter 7

Experiments

7.1 Implementation Details

The system is implemented in C++. Graphical user interfacesreated with open-
source, cross-platform C++ GUI library wxWidgelts [117]. édpSource Computer Vi-
sion Library (OpenCV)[[89] and FFmpeg [118] are used to hagaad, decode, copy,
save, etc.) the image and video data. The MPEG-7 compatilde veature extraction
and annotation tool uses the MPEG-7 feature extractioaryhjpartly available online
at [9]) that we adapted from the MPEG-7 XM Reference Softyja8s. XML data is
handled with open-source Xerces-C++ XML Parser librar®@]1Einally, Tamino[[53]
is used as the native XML database to store the MPEG-7 XMLrg#gms of videos.
The system can use any XML database that supports XQuery.

7.2 Data Set

In this section, we present some example queries performedvideo data set con-
sisting of 14 video sequences with 25 thousand frames froBOWd 2004 and
2008 data set$ [120], consisting of news, documentary,aigunal and archiving pro-
gram videos. We obtained the MPEG-7 representations ofitlens manually with

80
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our MPEG-7 compatible video feature extraction and anmwtabol, BiIMAT (Sec-
tion[6.2.).

7.3 Sample Queries

Three spatial queries are shown in Figure 7.1. The first qatethe top searches for the
video segments in which a golferabovea golf cart, formulated as a text-based spatial
relation query, “golfeabovegolf cart”. The system successfully returns three relevant
video segments that exactly match the spatial query ceamdiff he fourth result con-
tains a “golfer” but no “golf cart” and spatial condition i®nsatisfied. Therefore, its
rank is lower than the first three.

The second query in the middle, “Clintdeft Blair”, is sketch-based. The spatial
guery condition is satisfied exactly in the first two video reegts returned, while
it is not satisfied in the last two, but “Clinton” and “Blair'ppear together. This is
a desirable result of our bottom-up fusion algorithm; asrtheber of satisfied query
conditions for a video segment decreases the video segsémilarity also decreases,
ranking lower in the query result. As a result, the rankingrapch is effective and it
produces query results that are close to our perceptionthittequery at the bottom
is a sketch-based spatial query containing three objediss query is also handled
successfully. There is no limit on the number of objects ia sketch-based query
interface.

Several low-level queries are shown in Fighre 7.2. In thegieabased query (a),
guery image is represented by CSD and DCD descriptors amch&shin Keyframes.
Three region-based low-level queries are shown in FiguZe(y). The first query
searches for an anchorman by providing the region shownetett) specifying CSD
as the descriptor and searching in Moving Regions (salibjgcts). The last two
region-based queries searches for a face by providing ad¢gem and specifying CSD
+ RSD and FRD as the descriptors respectively. Figuie 3.8~ @wvs a video sequence
based query using the GoF descriptor. All query results atisfactory considering
the input video segments and the types of descriptors used.
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Figure[7.8 shows three motion trajectory queries. The fiisty searches for ob-
jects moving from left to right, by plotting a set of trajept@oints with the mouse.
The second query elaborates on the first query by providiagthor information of
the moving query object as well (by inputting a pink regioniebhis selected from an
image); this results in promoting the video segment havngspecified color infor-
mation to a higher rank. The last query searches for videmeats containing two
objects moving to each other from the left and right of thenec® meet in the mid-
dle. As illustrated by these examples, the queries may soatgy number of objects
with any number of suitable descriptors, which demonsérétte querying power of
the system.

Figure[7.4 shows various composite queries, in which hiylellsemantics in the
form of keyword annotations and low-level descriptors (QCI3D, EHD, RSD, MTr,
etc.) are used together to describe the query video segmientke first composite
query, the Keyframe is represented with DCD ayudf green the Moving Region is
represented with CSD, RSD agdlfer. The second query is similar to the first one; the
Keyframe is represented with CSD and the Moving Region isasgnted with CSD,
RSD and MTr. Hence, the inclusion of motion trajectory imh@tion in the query
specification is reflected in the query result.

In the third composite query, two Still Regions at the top andhe bottom are
represented with CSD and EHD. The Moving Region in the migdfepresented with
semantic conceptirplane or boat or helicopterFinally, the composite query at the
bottom searches for a scene, in which there is one MovingdRegipresented with
CSD andhorse and one Still Region represented with ogiseen or grass Again,
the queries are handled successfully and the result raskiregin agreement with our
expectations.

Using such composite queries, the user can access vide@stghaving any spe-
cific composition described in the query. The number and tfpedeo segments in
the query, as well as the descriptors used to describe thenmoatimited. This makes
the composite queries very flexible and powerful, enabliguser to formulate very
complex queries easily. To our knowledge, our system isuaiq supporting such
complex queries.
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Table 7.1: Query execution times (in seconds) for diffetgpes of queries. Query
processing server and Tamino XML database are installechotedook PC with Intel
Core 2, dual-core 2.0 GHz processors and 2.0 GB of RAM, rignwimdows XP. The
client connects to the server and executes the querieshisgan the table.

Query type Description Execution
(Segments and descriptors) time (sec)
Textual query Keyframe (keyword) 0.125
Textual query Moving Region (keyword) 0.125
Textual query Keyframe (keyword), 0.188
Moving Region (keyword)
Color query Keyframe (CSD) 0.141
Texture query Keyframe (HTD) 0.125
Color + Texture query Keyframe (CSD+HTD) 0.172
Shape query Moving Region (RSD) 0.156
Spatial query Text-based, 2 Still Regions 0.172
Spatial query Text-based, 2 Moving Regions 0.187
Spatial query Sketch-based, 2 Moving Regions 0.187
Composite query Keyframe (DCD+keyword), 0.438
Figurel7.4, first Moving Region (CSD+RSD+keyword)
Composite query 2 Still Regions (CSD+EHD), 0.391
Figurel7.4, third Moving Region (keyword)

7.4 Running Time

Table[7.1 presents query execution times for several qgiefibe execution time is
measured as the difference between the arrival and completnes of a query. The
guery execution time is proportional to the number of subgsenumber of video
segments and descriptors in the query), database size énuwhbideo segments in
the database), the size of the descriptors and the comptextie matching algorithm
(distance measure). Note that query execution is basedl@ustive search, i.e., all
the relevant video segments in the database are processethio a subquery result.
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As shown in the table, queries involving low-level desmipttake longer to exe-
cute compared to text-based queries since the distanceutatigm between the low-
level descriptors is computationally more expensive. i@petlation queries are fast,
although the spatial relation similarities are computeglLiatry execution time, for flex-
ibility and accuracy of matching. Another observation etijueries involving Moving
Regions takes longer than, for instance, Still Regionss héexpected, since multiple
instances and hence multiple descriptors are stored foirgdvegions to account for
the variation in their visual appearances and locations.

The multi-threaded query processing architecture prevatene degree of paral-
lelism and shortens the query execution times when the sulaguare executed in
separate threads. For instance, a Keyframe query with Clsf3 @141 seconds and
a Keyframe query with HTD takes 25 seconds to execute, while a Keyframe query
with CSD and HTD descriptors takesl@2 seconds to execute, which is less than the
serial execution times of CSD and HTD queries (0.266 seqofidss is also demon-
strated in the last two composite queries in the table.
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Query: golferabovegolf cart

Query: Clinton left Blair
n

Figure 7.1: Spatial queries. (a) Text-based spatial mlaquery, “golferabovegolf

cart”. (b) Sketch-based spatial relation query, “Clinkeft Blair”, formulated by draw-
ing two rectangles and labeling them @Bnton andBlair. (c) Sketch-based spatial
relation query containing 3 objects.
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Figure 7.2: Low-level queries. (a) Image-based query, rijascs: CSD + DCD. (b)
Region-based queries, descriptors: CSD (first), CSD + R8Ebfd), FRD (third). (c)
Video sequence based query, descriptor: GoF.
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Figure 7.3: Trajectory query examples.
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Figure 7.4: Various composite query examples. Queriesratbeleft.

88




Chapter 8

Conclusions and Future Work

We described our prototype MPEG-7 compatible video databgstem, BilVideo-7,
that supports different types of multimodal queries seasife To our knowledge,
BilVideo-7 is the most comprehensive MPEG-7 compatiblesuidiatabase system
currently available, in terms of the wide range of MPEG-7adiggors and manifold
guerying options. The MPEG-7 profile used for the represemtaf the videos en-
ables the system to respond to complex queries with the Helpeoflexible query
processing and bottom-up subquery result fusion architecihe user can formulate
very complex queries easily using the visual query interfachose composite query
interface is novel in formulating a query by describing aaddegment as a composi-
tion of several video segments along with their descriptors

The broad functionality of the system is demonstrated waiinge queries which
are handled effectively by the system. The retrieval pertorce depends very much
on the MPEG-7 descriptors and the distance measures usedowHevel MPEG-7
descriptors have been found effective, consistent withobgervations, and therefore,
widely used by the researchers in the computer vision, patezognition and multi-
media retrieval communities.

The multi-threaded query execution architecture is sletady parallelization. This
is required for video databases of realistic size to keepaigonse time of the system
at interactive rates. In a parallel architecture, eachygpercessing node may keep the

89
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data for a subset of descriptions (e.g., text, color, textsinape) and execute only the
relevant subqueries. A central query processor can catedihe operation of query
processing nodes.

The major bottleneck for the system is the generation of tiREM-7 representa-
tions of videos by manual processing, which is time consgnemor-prone and which
also suffers from human subjectivity. This hinders the tmasion of a video database
of realistic size. Therefore, the MPEG-7 compatible videstéire extraction and anno-
tation tool should be equipped with automatic processipgbsgities to reduce manual
processing time, error and human subjectivity during negelection and annotation.

Finally, an MPEG-7 compatible multimedia database systemc¢ch would also
support the representation and querying of audio and imatge dan easily be built
based on the architecture of BilVideo-7. Images can be densd to be a special case
of Keyframes which are decomposed into Still Regions; tloeeg an image database
system can be considered to be a subset of BilVideo-7. Aualia can be represented
similar to video, decomposing into audio shots and audigisots and extracting the
low-level MPEG-7 audio descriptors, and query processiitijo& exactly the same.
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