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ABSTRACT

PARTICLE BASED MODELING AND SIMULATION
OF NATURAL PHENOMENA

Serkan Bayraktar

PhD in Computer Engineering

Supervisors: Prof. Dr. Bülent Özgüç and Assoc. Prof. Dr. Uǧur Güdükbay

August, 2010

This thesis is about modeling and simulation of fluids and cloth-like deformable

objects by the physically-based simulation paradigm. Simulated objects are mod-

eled with particles and their interaction with each other and the environment is

defined by particle-to-particle forces. We propose several improvements over the

existing particle simulation techniques. Neighbor search algorithms are crucial

for the performance efficiency and robustness of a particle system. We present a

sorting-based neighbor search method which operates on a uniform grid, and can

be parallelizable. We improve upon the existing fluid surface generation methods

so that our method captures surface details better since we consider the relative

position of fluid particles to the fluid surface. We investigate several alternatives

of particle interaction schema (i.e. Smoothed Particle Hydrodynamics, the Dis-

crete Element Method, and Lennard-Jones potential) for the purpose of defining

fluid-fluid, fluid-cloth, fluid-boundary interaction forces. We also propose a prac-

tical way to simulate knitwear and its interaction with fluids. We employ capillary

pressure–based forces to simulate the absorption of fluid particles by knitwear.

We also propose a method to simulate the flow of miscible fluids. Our particle

simulation system is implement to exploit parallel computing capabilities of the

commodity computers. Specifically, we implemented the proposed methods on

multicore CPUs and programmable graphics boards. The experiments show that

our method is computationally efficient and produces realistic results.

Keywords: physically-based simulation, particle system, fluid simulation, neigh-

bor search algorithms, cloth animation, free fluid surface rendering, bound-

ary conditions, mass-spring systems, shared memory parallel computing, GPU,

CUDA.
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ÖZET

DOĞAL NESNELERİN PARÇACIK TABANLI
YÖNTEMLER İLE MODELLENMESİ VE

BENZETİLMESİ

Serkan Bayraktar

Bilgisayar Mühendisliği, Doktora

Tez Yöneticileri: Prof. Dr. Bülent Özgüç ve Doç. Dr. Uǧur Güdükbay

Ağustos, 2010

Bu çalışma sıvı ve kumaş benzeri, biçimi bozulabilen nesnelerin fizik ta-

banlı yöntemler kullanılarak modellenmesi ve benzetimiyle ilgilidir. Benzetimi

yapılan nesneler parçacıklar kullanılarak modellenmektedir ve nesnelerin bir-

birleriyle ve çevreleri ile olan etkileşimleri parçacıklar arasındaki kuvvetlerle

tanımlanmaktadır. Çalışmada, varolan teknikler üzerine bir çok iyileştirme

önerilmektedir. Komşu parçacıkların doğru ve hızlı bir şekilde bulunması parçacık

tabanlı benzetim sistemleri için çok önemlidir. Bu çalışmada, paralel hesapla-

maya uygun, birbiçimli ızgara üzerinde çalışan, sıralama tabanlı komşu bulma

yöntemi önerilmektedir. Sıvı yüzeyinin oluşturulması için önerilen yöntem,

varolan yöntemlerden daha ayrıntılı bir yüzey oluşturmaktadır. Bunun se-

bebi parçacıkların sıvı yüzeyine göreceli konumlarının dikkate alınmasıdır. Sıvı-

sıvı, sıvı-kumaş ve sıvı-sınır etkileşimlerini tanımlamak üzere hesaplamalı fizikte

de kullanılmakta olan bir çok yöntem araştırılmıştır. Ayrıca örgü tipindeki

kumaşları ve bunların sıvılarla etkileşimini benzetmek amacıyla kullanışlı bir

yöntem de önerilmektedir. Sıvıların örgüler tarafından emilmesi yüzey gerilim-

lerini kullanan bir yöntemle benzetilmektedir. Önerilen parçacık sistemi birbirine

karışabilen sıvıların benzetmesini de yapabilmektedir. Bu çalışmada anlatılan

parçacık tabanlı benzetme yöntemleri, günümüzde yaygın hale gelen paralel bil-

gisayarlarda (çok çekirdekli işlemciler ve grafik işlemciler gibi) çalışabilecek şekilde

uygulanmıştır. Deneyler önerdiğimiz yöntemin işlemsel olarak verimli olduǧunu

ve gerçekçi sonuçlar ürettiǧini göstermektedir.

Anahtar sözcükler : fizik tabanlı benzetim, parçacık sistemleri, sıvı benzetimi,

komşu arama algoritmaları, kumaş canlandırma, serbest sıvı yüzeyinin görsel

giydirilmesi, sınır koşulları, kütle-yay sistemleri, paylaşımlı bellek tabanlı paralel

hesaplama, GPU, CUDA.
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Chapter 1

Introduction

One of the main research areas of computer graphics is modeling and simula-

tion of natural phenomena robustly, realistically, and efficiently. Physically-based

simulation techniques aim to achieve this goal by employing physical and mathe-

matical methods explaining the natural phenomena. Physically-based animation

techniques have the advantage of relying on fully understood theories and widely

researched numerical methods that have been used in computational physics and

engineering. Thus, these techniques provide unmatched visual reality and control

over animation through simulation parameters.

1.1 Motivation

Particle-based simulations can be considered as a subfield of physically-based

animation techniques where objects are represented by a set of discrete points

in space having several physical properties, such as mass and velocity. Particles

are natural choice for simulating natural phenomena since object interactions in

physical world are based on molecular interactions. Given enough number of

particles, it is theoretically possible to model and simulate most complex objects

and their interactions. In modeling particle-based interaction of complex objects,

it is, therefore, enough to define interaction of particle pairs.

1



CHAPTER 1. INTRODUCTION 2

The motivation of the research presented in this thesis is to understand, im-

prove, and implement particle-based modeling and simulation systems. Our main

concern is visual quality and computational efficiency rather than scientific preci-

sion since main application area of the methods we develop are video games and

entertainment industry. Thus, although we inspire from the methods developed

in the computational physics and engineering, we prefer methods producing vi-

sually attractive results without introducing much computational burden. The

research presented in this thesis is mostly concerned about simulation of fluids

and cloth-like deformable objects and their interactions with each other and their

environment.

1.2 Contributions

Defining object behavior in terms of inter-particle interactions requires detecting

the set of neighbor particles for each simulation step. Each particle pair in the

system is both computationally inefficient and unnecessary. This is because of the

fact that most of the particle interactions are defined within a limited distance.

To resolve particle interactions in a reasonable speed, it is therefore necessary

to determine the set of particles close enough to interact with each other. This

neighboring set of particles should be determined at each simulation step. One of

the main contributions of this work is to develop a method for determining particle

neighbors. The method uses sorting on a uniform grid. The proposed method

does not make any assumptions about the number of the particles, resolution of

the the grid, or particle interaction threshold distance.

The advent of multicore processors and programmable graphics processors

(GPUs) to commodity computers revolutionized computational science. Shared

memory parallel programming has been experiencing a revival. Particle simu-

lations can take advantage of this development since particles can be handled

independently (in parallel) within a simulation step. This makes particle simula-

tions a perfect candidate to be implemented on shared memory parallel processing

architectures. We implement proposed particle simulation system on multicore
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processors and programmable GPUs and gain considerable performance improve-

ments.

Another contribution of this work is an improvement of the surface generation

algorithm for free fluid flows. Unlike previous methods, the proposed algorithm

takes the global fluid structure into account so that small details in the surface

are captured. We consider the relative position of each fluid particle with respect

to the surface and modify the polygonization algorithm accordingly.

Defining the interaction of a particle with a solid unmovable object such as a

wall is crucial for realism and stability of fluid simulations. We propose several

improvements for modeling boundary interaction particle-based forces for fluid

simulations.

Our simulation system can simulate cloth and knitwear and their interac-

tion with fluids. Although similar to cloth simulation, simulating knitwear has

some additional challenges such as rendering fuzzy look of the knitwear and more

prominent thickness of the material. We also propose a method based on capillary

pressure to simulate the absorption of fluid by knitwear.

The contributions presented in this dissertation have been published in several

journals and conference proceedings. Below is the list of publications:

• Serkan Bayraktar, Uğur Güdükbay, Bülent Özgüç, “Particle-based Simula-

tion and Visualization of Fluid Flows through Porous Media,” Journal of

Visualization, To appear.

• Serkan Bayraktar, Uğur Güdükbay, Bülent Özgüç, “GPU-Based Neighbor-

Search Algorithm for Particle Simulations,” Journal of Graphics, GPU, and

Game Tools, Vol. 14, No. 1, pp. 31-42, AK Peters, Ltd., 2009.

• Serkan Bayraktar, Uğur Güdükbay and Bülent Özgüç, “Practical and

Realistic Animation of Cloth,” in Proceedings of the IEEE 3DTV-

CONFERENCE: Capture, Transmission and Display of 3D Video, Kos,

Greece, May 2007.
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• Serkan Bayraktar, Uğur Güdükbay and Bülent Özgüç, “Sıvı, Kumaş, ve

Katı Cisim Etkileşimlerinin Bilgisayar Grafiği İçin Modellenmesi (Modeling

Interaction of Fluid, Fabric, and Rigid Objects for Computer Graphics)”

(in Turkish), IEEE Sinyal İşleme ve Uygulamaları Kurultayı (SİU 2006),

Antalya, Turkey, April 2006.

1.3 List of Symbols

Table 1.1 gives a listing of the mathematical notations used in the thesis.

Notation Denoted Description
expression

r and x coordinate 2D or 3D coordinates of a particle.
f force force acting on particles
v velocity velocity vector of a particle.
a acceleration acceleration vector of a particle.
n normal normal vector to fluid or object surface at posi-

tion of particle
p pressure pressure associated with fluid particles
ρ density density of a fluid particle
μ viscosity viscosity of a fluid particle
V volume fluid volume associated with fluid particle
m mass mass of a particle
c color field color field of a particle in SPH formulation
h kernel radius kernel radius of SPH formulation
t time
W kernel kernel function of SPH formulation
φ porosity porosity of a rigid or deformable object
k permeability permeability of a rigid or deformable object
s saturation saturation of a rigid or deformable object

Table 1.1: The listing of mathematical notations used in the thesis. Bold-faced
letters are used to represent vectors and regular letters are used to represent
scalar quantities. Particles are symbolized with letters i, j, and k.
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1.4 The Organization of the Thesis

This thesis is structured as follows: Chapter 2 gives an extended overview of

the literature of physically-based simulation of natural phenomena, specifically

fluid and cloth simulation. We also give the state of the art in GPU implemen-

tation of particle-based simulation methods. Chapter 3 details fundamentals of

computational fluid dynamics and theoretical background on particle-based fluid

simulation. In Chapter 4, we provide details of the mass-spring method which

is used in simulating cloth-like deformable object. We also describe method we

propose to model and render knitwear. In Chapter 5, we underline several of the

practical issues (e.g. surface generation, neighbor search, surface tension imple-

mentation etc.) of implementing a particle-based simulation system.

Chapter 6 explains our implementation of the proposed method on GPUs.

Several points should be taken into account when porting a CPU-based algorithm

to a GPU and this chapter provides the necessary details. In Chapter 7 we present

several of our simulation examples. We underline several important characteristic

of each example such as the number of particles, simulation speed, and memory

consumption of the simulation. Each example is supplemented with one or several

still images from the simulation. Chapter 8 is our conclusion chapter.



Chapter 2

Related Work

2.1 Fluid Simulation

The simulation of fluid bodies has been a research topic for computer graphics

community for nearly two decades. Early attempts of fluid animation in computer

graphics community are mostly involved with simulating the surface behavior of

liquid bodies. These early models define the surface as a parametric function

evolves in time.

Perlin [113] propose a simple stochastic model which is used for rough ocean

surfaces. In his model, he uses normal perturbation instead of actually modify-

ing the water surface position. He employs several superimposed spherical wave

fronts that were distributed randomly. Waves of greater realism were created

by using a random spatial frequency. Max [89] uses a procedural model to ren-

der fluid surface. His algorithm is based on analytic formulas and he employs

traveling sinusoids to simulate waves. Fournier and Reeves [42] use a parametric

wave function that was based on the model by Gerstner [45] and Rankine [119].

Their model does not involve mass transport and is derived from the equations

for deep water, small amplitudes waves. The system is able to simulate wave re-

fractions and wind effects. O’Brien et al. [110] use a height field based approach

to model fluid surface. In an attempt to simulate splashing water behavior, they

6
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also incorporate a particle-based model into their system. Kass and Miller [65]

approximate 2D shallow water equations to simulate dynamic height field surface

which is in interaction with static ground objects. Their model is able to describe

wave refraction, reflection, and net transportation of the liquid. They represent

the water surface by a height field and assume that the vertical component of

the velocity of the water particles can be ignored. They also assume that the

horizontal component of the velocity of the water particles is constant.

A more realistic simulation of fluid phenomena requires solving the partial

differential equations (PDE) of motion based on dynamics. For viscous, incom-

pressible, and Newtonian fluids (fluids that have a constant viscosity at all shear

rates at a constant temperature and pressure), these equations are called Navier-

Stokes equations [43]. Most of the early attempts to solve Navier-Stokes equations

for computer graphics purposes employ an Eulerian approach. In Eulerian meth-

ods the equations governing the fluid behavior are solved in a (usually) regular

grid.

Gamito et al. [44] employ vorticity and velocity field to simulate behavior of

turbulent gaseous fluids in two dimensions. They use particles to transport the

vorticity and a uniform grid to compute velocities and displacements of particles.

Their method is able to simulate turbulent gaseous fluid in a relatively realistic

and efficient manner. Chen and Lobo [16] are the first to use Navier-Stokes in

graphics literature. They use the pressure from 2D solution of the Navier-Stokes

equations to improve height field approach and obtain third dimension. Chen et.

al. [17] use the Navier-Stokes equations in order to model animated water surface

from the pressure term. They employ a finite-difference solution technique in

order to solve the Navier-Stokes equations numerically.

Foster and Metaxas [40, 41] are the first to introduce 3D Eulerian form

of the Navier Stokes equations in the computer graphics community. Foster

and Metaxas [40] apply the Marker-And-Cell (MAC) approach of Harlow and

Welch [52] to simulate water. Their work is able to mimic realistic fluid be-

haviors such as splashing, pouring, breaking weaves and simple interaction with

floating rigid objects that are impossible to simulate by height fields approach.
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Stam [128] introduces the so–called “semi–Lagrangian” numerical methods which

is unconditionally stable, thus allowing use of large time steps. Stam replaces the

finite difference scheme of Foster’s model with a semi-Lagrangian method so that

larger time steps are possible. Stam also employs the pressure projection method

instead of Foster’s relaxation scheme to achieve zero divergence. Fedkiw and Fos-

ter [39] introduce a new hybrid method to capture small details in fluid’s surface.

Their method employs the level set approach and massless marker particles that

are placed around the fluid’s surface. They also replace the forward Euler con-

vection calculations with a semi-Lagrangian approach and use conjugate gradient

method to enforce incompressibility.

Enright et al. [33] improve the level–set based surface generation method to en-

sure mass preservation and photo–realistic fluid effects. Carlson et al. [13, 14] use

Eulerian grid based methods to model melting, and two way rigid–fluid interac-

tion. Guendelman et al. [49] use a complex surface traction method implemented

in an octree grid [86] so that fluid interaction with thin rigid objects and de-

formable bodies such as cloth is possible. Song et al. [127] propose the derivative

particle method where they implement the non–advection part of the simulation

in a conventional Eulerian grid and use a Lagragian scheme for the advection

part. Goktekin et al. [47] employ an Eulerian solution of Navier-Stokes equations

coupled with the terms to define elastic, and plastic forces to mimic behavior of

viscoelastic fluids, such as mucus, clay, toothpaste, etc. They extend the well

known staggered grid method to include the terms of strain tensors. They use a

fine detail grid for the the level-set method. Feldman et al. [34] simulate the fluid

behavior inside of a deforming mesh. They use the Eulerian method in which

the fluid velocity is computed with respect to a fixed coordinate system and ap-

ply a time-varying discretization of the fluid properties to add the effect of the

deforming mesh.

Fedkiw et al. [49] simulate the interaction of smoke and water with thin de-

formable and rigid shells. Their fluid model is Eulerian while cloth model is La-

grangian. In order to prevent the leaking of fluid across the thin objects, they uti-

lize a ray casting scheme where the space is divided into three regions with respect

to the position of the triangles constituting the thin object. Mosher et al. [121]
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propose a method to incorporate Eulerian-based fluid and Lagrangian-based rigid

body simulations. They base their method on the principle that the momentum

should be conserved on the fluid-rigid boundary. They enforce no–slip boundary

condition. Kim et al. [68] improve the level-set method to capture the small de-

tails of splashing water. They convert the marker particles which escape from

the main fluid body into fluid particles. These particles are used as seeds to pro-

duce the subcell–level detail. Volume loss is estimated and distributed to water

particles. Lasasso et al. [87] employ conventional Eulerian grid-based methods to

simulate solids, fluid, and gases. Their fluid model is based on vorticity confine-

ment and particle level-set methods. They can simulate melting and burning of

natural material, such as ice cubes and paper.

Wojtan et al. [153] propose a FEM (finite element method) based technique to

simulate realistic behavior of highly viscous fluids, and deformable models. Their

method behaves well in scenarios where thin strands and sheets appear. Thürey

et al. [140] propose a fluid animation control method where small scale details are

preserved with control forces which are represented by control particles. Their

control method can be used both in Eulerian and Lagrangian fluid simulation

paradigms. Brochu et al. [12] develop an Eulerian method to simulate inviscid

fluids. They employ semi-Lagrangian advection and an embedded-boundary finite

volume pressure projection. Instead of using an explicit surface tracking method,

they couple the simulation itself to an existing surface tracking method. This

enables them to visualize arbitrary thin features and avoid artifacts arising from

the resolution mismatch between the simulation and surface. Wojtan et al. [152]

propose a mesh-based surface tracking method. Their method is designed to

preserve fine details and adjust to the topology of the fluid body. Thanks to

their local convex-hull-based correction method, their method does not require

the re-sampling. Thürey et al. [142] present a method to simulate surface tension

derived flows by employing triangular mesh-based surface representation. They

employ a two layered simulation system where the first layer simulates the surface

tension and the second layer simulates sub-grid scale wave details. Their method

is able to simulate complex phenomena associated with strong surface tension.

Lentine et al. [81] propose an Eulerian fluid simulation technique where large
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scale fluids are simulated in coarse grid without losing details. This effectively

reduces required computational time for large scale fluid simulation. Long et

al. [83] propose a fast method for fluid simulation where they use sine and cosine

transforms instead of more expensive Fourier methods. Kang el al. [63] propose a

method to simulate both miscible and immiscible fluids. They combine two fluid

representation schema, level set functions and volume fractions. Their method is

able to simulation several mixing fluid bodies.

Alternative to Eulerian, grid-based methods, modeling and simulation of nat-

ural phenomena can be achieved by particle-based modeling and simulation meth-

ods. In particle-based methods, simulated mass is represented by a set of particles

that carry several physical attributes with them. They interact and effect each

other as the simulation evolves.

In one of the earliest works, Reeves [120] uses particles to model fuzzy objects

(e.g. fire works). Large amount of particles represent the cloud’s volume which

is able to move, and change form. Miller et al. [96] utilize pairwise particle

interactions to model viscous fluids. They define a term globule to refer to an

element of the connected particle system. Particularly, they are interested in

modeling soft collisions between the globules to avoid rigid stacking problems.

Terzopoulos et al. [136] model melting objects with interacting particles which

are connected by springs whose constants are modified as the object changes its

phase. Tonnesen [143] incorporates a discrete form of heat transfer equation into

inter–particle force equations to simulate the change in particle positions due

to thermal energy. Premoze et al. [115] use particles to simulate incompressible

fluids where they ensure incompressibility by using the Moving Particle Semi–

Implicit (MPS) method. The MPS method uses weighted averaging to determine

fluid parameters in space positions. Kruger et al. [73] use graphics hardware

(GPU) to achieve interactive rates when simulating large particle sets. To render

transparent particles correctly, they employ bitonic merge sort which suits the

requirements of shader programming well.

Most of the more recent particle-based methods employ the Smoothed Particle

Hydrodynamics (SPH) [46, 97] paradigm, which is originally designed to be used
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in computational astrophysics. Desbrun et al. [28] are among the first researchers

to use SPH in computer graphics context. They model a particle-based simulation

system with SPH to model highly deformable objects. They investigate the issues

like surface determination, adaptive time integration and fast neighbor search

algorithm. Stora et al. [130] use SPH and heat transfer equations to simulate

lava flows. They choose a procedural texture-based rendering system to visualize

the lava flows. They employ a grid to make fast neighbor detection possible.

They exploit the topology of lava spread and construct a grid which is large

in vertical range but small in height. Müller et al. [101] utilize SPH version of

the Navier–Stokes equations to model incompressible fluid at interactive rates.

They simulate surface tension using a force proportional to the curvature at each

particle location and pointing into the fluid body along the normal vector of the

surface. Müller et al. [103] later improve their system to simulate interaction

of fluids with deformable solids. They place virtual particles on solid surfaces

to handle fluid-solid interaction on a particle-to-particle base. They also model

fluid-fluid interactions using SPH [104].

Hadap and Magnenat–Thalmann [50] couple SPH with strand dynamics to

simulate hair–hair, and hair–air interactions. Their formulation is able to model

hair strands as continuum while retaining individual structure of each strand.

Clavet et al. [23] use SPH to simulate viscoelastic fluids such as toothpaste or

mud. To enforce incompressibility and avoid particle clustering, they employ a

double density relaxation procedure. An attraction term is added to force com-

putations to simulate particle stickiness. They use marching cubes to tesselate

the free fluid surface. Kipfer et al. use [70] GPU based data structure and SPH

fluid simulation method to model and render interactive simulation of rivers. To

detect particle proximities, they use a linear data structure where a virtual grid

is used to hash particles. They assert that their method provides a better perfor-

mance than an octree based collision detection algorithm. Solenthaler et al. [126]

simulate fluid, deformable bodies, and melting and solidification by using SPH

and elastic–plastic model. Their system is able to simulate flexible, deformable

objects, melting, merging, splitting, and solidification behaviors. To reduce vi-

sual artifacts in surface generation, they consider the movement of the center of
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mass.

Becker and Teschner [6] propose a variant of SPH method to simulate weakly

compressible fluid flows. The SPH method they employ is based on the Tait

equation. In addition, they propose a surface tension algorithm to be able to

visualize fluid surfaces with high curvature. Cleary et al. [24] utilize SPH to

model bubble and froth generation and their coupling with the fluid body. They

model bubbles as discrete spherical bodies and couple them with the particle-

based fluid simulation system. Lasasso et al. [88] propose a two–way coupled

simulation system where dense liquid volumes are simulated using the particle

level set and diffuse regions such as mixture of air and sprays are simulated by

SPH. Thürey et al. [141] couple shallow water simulation to the SPH method

to simulate bubble and foam effects in real-time. Spherical vortices are used to

generate flow field around the SPH-based bubbles. They add surface tension to

SPH to be able to simulate bubbles on the water surface.

Müller et al. [102] propose a surface generation and rendering technique for

rendering the resulting point clouds of SPH method. In their method, they first

setup a regular depth map and consider silhouettes. A 2D triangle mesh is con-

structed by a modified version of the Marching Squares algorithm. The mesh

is then transformed back onto world space and rendered by employing several

rendering enhancements such as reflections, refractions, and other effects. Laan

et al. [75] develop a method for rendering the particle clouds. Their method uses

surface depth and thickness. After surface depth is smoothed, a dynamic noise

texture is generated on the surface of the fluid. A final step combines the gen-

erated texture, smoothed surface depth, the noise texture and the image of the

background objects. The whole rendering method is implemented on graphics

hardware. Hoetzlein et al. [56] present a rendering technique for stream shaped

particle-based fluid flows. Instead of polygonizing the fluid surface by the March-

ing Cubes algorithm, they wrap fitted and deformed cylinders around the flow

streams.

Hong et al. [57] propose a hybrid method to simulate bubble behavior. They

combine Eulerian grid-based fluid simulator (to simulate large fluid volumes)
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with the SPH method (to simulate bubbles). By using two way coupling, they

are able to mimic realistic bubble and foam behavior. Lenaerts et al. [79] use SPH

to simulate the behavior of fluids flowing through deformable porous materials.

Their system is able to simulate permeability, abortion, and two–way coupling

between the fluid and wet material. Because of the macroscopic scale of their

pore modeling, the number of computational elements is low. Later, Lenaerts

et al. [80] use a very similar technique to simulate mixing of fluids and granular

materials where the discrete element method is employed for simulating granular

materials. Lee et al. [78] incorporate the SPH and grid-based fluid simulation

method to capture flow details even in a coarse grid. They simulate escaped

particles with SPH and merged particles with level set method. Their method is

able to simulate air bubbles where large bubbles are modeled with level sets and

small bubbles are modeled with SPH.

Bell et al. [8] design a particle-based system to simulate granular materials.

They model granular materials as collections of non-spherical particles. Their

method is able to simulate granular material’s interaction with rigid bodies,

splashing and avalanches. Becker et al. [7] propose a new predictor-corrector

scheme based method to implement one–way and two–way coupling of fluid with

rigid bodies. For fluid body simulation they use a corrected SPH and Tait equa-

tion. Their system is able to simulate realistic drag and buoyancy effects. So-

lenthaler et al. [125] extend Smoothed Particle Hydrodynamics method with a

prediction-correction schema. They actively update the fluid pressure to obtain a

certain density. Their method results in a incompressible fluid where they do not

have to solve a Poisson Equation. He et al. [54] propose a SPH-based method for

fluid interaction with complex polygon boundaries. They employ adaptive SPH

method where they redefine the rule of particle adaptation according to the com-

plexity of the scene. For handling collisions, they propose a voxelization-based

collision detection algorithm. Krǐstof et al. [72] couple Eulerian-based physical

erosion approach and SPH to simulate realistic erosion of 3D terrain. They also

propose a new donor-acceptor schema for sediment advection.
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2.2 Cloth Simulation

The early works on cloth modeling and simulation focus on geometrical methods

to mimic cloth behavior such as wrinkles and draping. Even though they are able

to simulate some cloth behavior, they are far from creating a complete system of

cloth simulation.

Weil et al. [151] employs a geometrical method for cloth modeling. They

represent hanging cloth as a grid of points. Simulation is done by fitting catenary

curves between hanging or constraint points. Although this method is very fast

since it does not involve heavy numerical computations, it can only simulate

hanging cloth. As a geometrical method, it is unable to model the properties of

real cloth behavior. Agui et al. [2] develop a geometrical method in order to model

a sleeve on bending arm. They represent the cloth as a hollow cylinder consisting

of a series of circular rings. The difference between the curvatures of the inner

and outer parts of the bent sleeve forms folds. This method, although providing

satisfactory results, can be applied only to a folding sleeve. Ng et al. [105] aim to

create an animation tool that would quickly produce clothed objects. In order to

achieve this goal, they associate the cloth layer with the shape of the skin layer.

They devise an algorithm to generate folds by using gaps between the cloth and

the skin layer to achieve a realistic appearance.

Physically-based cloth modeling and animation methods offer more realism

and ease of modeling than geometrically-based modeling methods. In these meth-

ods, cloth is represented as triangular or rectangular grid composed of a finite

number of mass points. Some of the physically-based methods are the algorithms

that calculate the energy of the whole cloth and determine the shape of the cloth

by minimizing this energy while some others are force-based. In these methods,

forces between points are represented as differential equations and a numerical

solution is utilized in order to find the positions of points.

Feynman [37] models cloth as a grid and claim that most realistic shape of

the cloth is obtained when the energy state is minimized. He utilizes the theory

of elastic plates and uses the steepest descent method to find the energy minima.
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Employing this method, Feymann simulates hanging cloths and cloths dropped

over a sphere. In their pioneering works, Terzopoulos et. al. [135, 134] define

deformable objects as a continuum. Deformable characteristics of the models are

calculated by using elasticity and plasticity theories. In this modeling schema,

potential energy functionals are used to represent elastic properties of models.

Stiffness matrices are employed to store elastic characteristics of the material.

They utilize finite element method and energy minimization techniques for nu-

merical solution. The equations of motion are expressed in Lagrange’s form which

incorporates the mass density, damping density, net external force acting on the

deformable body, and potential energy of the elastic deformation.

Sakaguchi et al. [123] develop a technique where the cloth is represented as

a grid and use Newton’s law of dynamics. Internal force is composed of spring

forces, forces due to viscosity, and forces due to plasticity. They use Euler’s

method as their numerical solver in order to obtain the velocity and position of

the cloth. Collision detection speed is improved by using a finite bounding volume

hierarchy and collisions are resolved by considering conservation of momentum.

Lafleur et al. [76] develop a technique to deal with the collisions occurring between

body parts and cloth. In their model, they create a force field around the cloth

model to prevent collisions. Thus, when a point enters the force field, it is pushed

away by a repulsive force. This model is improved later by Yang et al. [155]

to speed up collision detection. To detect self collisions, which are much more

expensive than collisions with outside objects in terms of detection, they employ

a hierarchy of bounding boxes encapsulating the cloth polygons.

Volino et al. [146] employ Newtonian dynamics and elasticity theory to simu-

late deformable objects. They model the cloth as a set of triangles. The algorithm

calculates interparticle constraints and external constraints, and then detects and

resolves collisions by using the principle of the conservation of momentum. The

interparticle constraints are due to the elasticity theory of an isotropic surface and

external constraints are due to gravity, viscous air damping, and wind. Volino

et al. [149] introduce a method to improve collision detection. They exploit the

geometrical regularity of the cloth surface and construct a hierarchy to represent

this regularity. They improve the collision detection process such that the time to
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detect collisions is proportional to not the total number of the cloth polygons, but

to the number of collisions. Provot [117] utilize a mass-spring model to simulate

cloth. At each time step, after finding the net force on each mass point, Provot

uses the Euler’s method in order to find the velocity and position of each mass

point.

Kunii et al. [74] propose a hybrid model that has two steps. The first step is

a physical simulation where the cloth is represented with a mass-spring network.

Two kinds of energies are defined: metric and curvature. A gradient descent

method is utilized in order to find the energy minima and obtain the shape

of the cloth. Then, the singularity theory is used to characterize the resulting

wrinkles. The second step is based on a geometrical technique in which surfaces

are constructed between the characteristic points to form the wrinkles. After

adding wrinkles, they again apply energy minimization to the garment.

Baraff et al. [5] address cloth–to–cloth collision problem. They propose a

method based on a history–free, global intersection analysis collision detection.

They also supply a solid–to–cloth collision resolution method called collision fly-

papering. Bridson et al. [10, 11] propose a collision handling method. Their

method can handle self intersections, provide stable folding and wrinkling and

consider kinetic and static frictions. They completely separate internal cloth

dynamics computation from the collision handling so that the method can be

used with any cloth dynamics schema and any numerical integration method.

Volino et al. [147] use a viscous damping to enhance stability of the implicit mid-

point method, which is simple to implement and provide small time steps. Since

the implicit midpoint method is not dependent on the history of simulation, it

provides a better robustness on collisions and discontinuous effects.

Choi et al. [22] propose a semi-implicit cloth simulation technique to handle

the post-buckling instability. They use a mass-spring network and define two

types interaction between neighbor particles, one for stretch and shear resistance

and one for flexural and compression resistance. They predict the static post-

buckling response with the assumption that the cloth passes the unstable post-

buckling stage and reach a stable state. Boxerman et al. [9] develop an adaptive
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implicit-explicit method that increases the sparsity of the system. By using this

method they are able to simulate decomposing cloth mesh. Oh et al. [111] propose

a semi-implicit method where damping forces generated to ensure stability are

computed only for internal deformations. They argue that their method does not

create excessive damping artifacts. Oh et al. [112] develop a multi–grid method to

simulate cloth meshes of large size. To adapt multi–grid method to physically–

based cloth simulation, they ensure conservation of cloth’s physical properties

through the levels. They achieve about 30% speedup by removing redundant

matrix–vector multiplications.

Goldenthal et al. [48] address the over–stretching of cloth mess which is an

intrinsic problem of mass–spring cloth models. They propose using Constrained

Lagrangian Mechanics and a projection filter to avoid over–stretching. Volino et

al. [148] aim to simulate nonlinear tensile behavior and large deformations of cloth

materials. They use strain–stress curves, elasticity and viscosity computations.

They choose to compute forces on mass points to keep run time complexity low.

Feng et al. [35] develop a method to achieve real-time realistic cloth simulation

with complex deformations. Their method relies on data-driven models to trans-

form low-quality simulated deformations to high-quality dynamic deformations.

Wang et al. [150] propose a data-driven method which is implemented on graphics

hardware. They aim to achieve interactive speeds for complex cloth simulation

with wrinkles. Their method interpolates a precomputed wrinkle database in

accordance to coarse cloth simulation. Although their method does not always

produce physically correct small details, it captures most of the wrinkle structure

correctly and achieves interactive simulation rates. Aguiar et al. [27] present a

learning-based approach to cloth simulation on human models. Their method

can simulate several types of cloth on human models.

Eberhardt et al. [32, 93] use a particle-based system a simulate behavior of

woven and knitted cloth. They model knitwear thread as a chain of bounding

points. For force computations they use a linear spring–based approach. Nocent

et al. [108] use a spline-based model to simulate cloth plane and project the

deformations into yarn control vertices. The stitches are modeled by defining

contact constrains. Their main contribution is to present a solution to reduce the
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linear equation system size which is increased by adding the contact constraints.

Chen et al. [18, 154] exploit the repetitive structure of knitted cloths to simulate

and render knitwear. They use spring forces and force field model for a realistic

animation. To render knitted cloth, they define lumislice which is a single cross-

section of yarn. Lumislice is used to determine the radiance from a yarn cross-

section. Kaldor et al. [62] model each yarn as an inextensible, yet otherwise

flexible, B-spline tube. Stiff penalty forces and rigid-body velocity filters are

used to simulate knitted cloth behavior. They render the knitwear by Chen’s

lumislice method. Kaldor et al. [61] aim to solve collisions on yarn-based cloth

simulations. Their method relies on approximate penalty-based contact forces.

They compute an exact collision response at one time step and use a rotated

linear force model to approximate response forces of nearby deformations.

2.3 Hardware Accelerated Physically-Based Sim-

ulation

Because of its intrinsically parallel nature, particle simulation systems have been

one of the first simulation methods to be implemented on GPUs. Harris et al. [53]

simulate clouds dynamically on graphics hardware. They use tiled 2D textures

to store 3D data to ensure scalability. A single time step of the cloud simulation

is spread to several animation frames. Latta [77] presents a technique where a

particle system is simulated fully on GPU. Attributes of particles such as posi-

tion, velocity, and acceleration are stored on 2D textures which are updated by

fragment and vertex shaders. The proposed method uses odd-even merge sort to

sort particles so that they alpha blend correctly. Their method does not deal with

inter-particle collisions. Kipfer et al. [69] present a sorting based inter-particle

collision detection system. Their method employs bitonic sort that uses grid cell

number as sorting keys. Their system has the weakness of being able to detect

a limited number of inter-particle collisions within a specific grid cell. Purcell et

al. [118] also present a sorting based algorithm to determine k -nearest neighbors
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of a photon (or a particle). They utilize vertex shaders to perform scatter opera-

tions, prepare a complex grid map and use stencil buffer for dealing with multiple

photons residing in the same cell.

Venetillo et al. [144] implement an auxiliary array on GPU to detect inter-

particle collisions. Their algorithm makes several rendering passes to deal with

multiple particles mapped into the same grid cell. Kolb et al. [71] use fragment

shaders to simulate and render dynamic particle system. Their system is able to

handle collision of particles with objects of arbitrary shapes. The outer shape

of objects is represented by depth maps that store normal vectors and distance

values to handle collisions correctly. Harada et al. [51] present a SPH-based fluid

simulation system. Their system uses bucket textures to represent a 3D grid

structure and make an efficient neighbor search. One limitation of their system

is that it can only handle up to 4 particles within a grid cell. When simulating

nearly incompressible flows, the particle density per cell may be higher than the

particle density at the rest state.

Hegeman et al. [55] implement a quadtree data structure on GPU to determine

inter-particle collisions. To improve tightness of the bounding tree, they re-order

particles by using bitonic sort.

Iwasaki et al. [58] propose a splatting-based rendering method to render fluid

surfaces completely on GPU. They construct a grid over the simulation space

and compute a density value on each grid point by accumulating densities of fluid

particles. The iso-surface is extracted and rendered by surfels. Their method can

handle refraction, reflection, and caustics.



Chapter 3

Fundamentals of Fluid Dynamics

In order to construct a fluid simulation system, it is necessary for one to be

familiar with the fundamental concepts of fluid dynamics. In this chapter, we

overview most relevant of these concepts.

The density of a fluid, denoted by ρ, is defined as its mass per unit volume.

It is defined at each point of the fluid, thus it can be written as

ρ ≡ ρ(x, y, z, t), (3.1)

where x, y and , z are coordinates of the point and t stands for time. Since density

is a scalar quantity, the field defined by Equation 3.1 defines a scalar field. Unlike

gases, for fluids variations of pressure and temperature has a very slight effect on

density.

Similarly, the velocity of a point in a fluid at a given instant is a function of

the coordinates of the point and time. That is:

v ≡ v(x, y, z, t). (3.2)

Since velocity is a vector quantity, the field defined in Equation 3.2 is a vector

field [43].

Pressure of a fluid is defined as the normal force exerted on a unit area of

a surface fully immersed in the fluid. It is created by the collisions of the fluid

20
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molecules into the surface and denoted by p. Another important fluid property

is viscosity, which is designated by μ and basically determines the fluidity of the

fluid. Viscosity can be defined as the resistance of a fluid body to deformations

due to shear forces. It is the internal friction of fluid which resists movement

against a solid surface or other layers of fluid. It can also be thought as resistance

of fluid to flowing. Viscosity of a fluid is highly dependent on the temperature of

the fluid. Usually, viscosity gets lower as the temperature of a fluid increases.

It is possible to classify fluids with respect to their parameters. An important

class of fluids is defined in accordance with viscosity. A fluid that has a constant

viscosity at all shear rates at a constant temperature and pressure is called a

Newtonian fluid. In other words, for Newtonian fluids the shearing stress is

linearly related to the rate of shearing strain (angular rate of deformation) [156].

Most common fluids and gases including water, air, and gasoline are Newtonian

fluids under normal conditions. In this thesis, all fluids are considered to be

Newtonian unless stated otherwise.

Another classification of fluids can be done in terms of the characteristics of

the flow. When the effect of the viscosity is assumed to be zero (μ = 0) then the

flow is termed an inviscid flow. Otherwise (when μ �= 0) the flow is said to be

a viscous flow. In reality inviscid flows do not exist and considered only for the

sake of simplification of the analysis.

The most important implication of the viscous flow is that the fluid in direct

contact with a solid boundary has the same velocity as the boundary itself. The

fluid velocity at a stationary solid surface in a moving fluid is zero. Since the

bulk fluid is in motion, velocity gradients and shear stresses must be present in

the flow. These stresses affect the fluid motion.

Another important concept concerning fluids is bulk modulus which describes

the compressibility of the fluid. Bulk modulus is denoted by K and defined by

the following Equation:

K = − ∂p

∂V
, (3.3)

which relates the change in fluid’s volume to change in pressure. The minus
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sign designate that the relation is reverse. For all practical purposes, fluids are

considered incompressible meaning that their density stays constant as pressure

changes. This is not the case for gases which are compressible. The rate that a

local change in pressure propagates within the fluid body is called the acoustic

velocity or the speed of sound. It is an important property for defining a specific

fluid and it can be expressed as follows:

c =

√
∂p

∂ρ
(3.4)

where p is the pressure and ρ is density.

The motion of a Newtonian, viscous, and incompressible fluid at any point of

a flow can be described fully by a set of non-linear equations known as the mo-

mentum or Navier-Stokes equations and an equation concerning the conservation

of mass.

The Navier-Stokes equations are derived from the Newton’s Second Law,

which states that the momentum is always conserved. The Navier-Stokes equa-

tions account for all possibilities of momentum exchange within the fluid. For an

incompressible fluid in three dimensions these equations are as follows:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂p

∂x
+ ρgx + μ

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
(3.5)

ρ

(
∂v

∂t
+

∂vu

∂x
+

∂v2

∂y
+

∂vw

∂z

)
= −∂p

∂y
+ ρgy + μ

(
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)
(3.6)

ρ

(
∂w

∂t
+

∂wu

∂x
+

∂wv

∂y
+

∂w2

∂z

)
= −∂p

∂z
+ ρgz + μ

(
∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)
, (3.7)

where u, v, and w are velocities in the x, y, z directions respectively, p is the local

pressure, g, gravity, and v is the kinematic viscosity of the fluid. The left hand

side of the equations account for changes in velocity due to local fluid acceleration

and convection. The right hand side of the equations define acceleration due to

the force of gravity, acceleration due to the local pressure gradient, and drag
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due to the kinematic viscosity. The Navier-Stokes equations do not account for

the conservation of mass. Conservation of mass for a incompressible flow of a

Newtonian fluid can be incorporated into the system by the following equation:

∇.V = 0, (3.8)

which is equal to
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (3.9)

where u, v, and w are as above. Since we have four unknowns (u, v, w, and p) and

four equations (equations 3.5, 3.6, 3.7, and 3.9), the problem is well-defined in

mathematical terms. However, since the Navier-Stokes equations are nonlinear,

second order partial differential equations, the exact mathematical solution does

not exist with an exception of a few very simple cases.

When a rigid body is completely or partially submerged in a fluid, the re-

sultant fluid force acting on the body is called the buoyant force. According to

Archimedes’ principle the buoyant force acting on a partially or fully submerged

object is equal to the mass of the fluid displaced by the object.

3.1 Computational Fluid Dynamics

Solving the equations of fluid dynamics in order to simulate fluids in complex

environments has been focus of research in engineering [60, 38]. These numerical

models can collectively describe every aspect of fluid motion effects. However

they are not always suitable for computer graphics purposes. This is mostly

because of the fact that each technique is derived for a specific class of problem

and they are useless in generic situations. Another reason is that these techniques

are computationally expensive for interactive applications.

There are two major approaches in computational fluid dynamics to solve fluid

flow numerically: the Eulerian approach and the Lagrangian approach. In the

Eulerian method, the fluid motion is given by completely specifying the properties

(pressure, density velocity, viscosity, etc) of fluid flow as a function of space and
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time. The information about the flow is obtained from specific and discrete points

in space by using these functions.

In order to solve the fluid system defined by Equations 3.5, 3.6, 3.7, and 3.9,

a finite representation of the environment is needed. This can be achieved by

employing a uniform grid structure. In this representation, the computation

domain is modeled by a set of cells aligned with a Cartesian coordinate system.

Velocity, and pressure are defined at the center of each cell and supposed to be

constant throughout the cell volume [128]. Another option is to define velocity

at the boundaries of each cell and calculate the values of velocity and pressure

of any point of the environment by linear interpolation [40]. In any case, an

explicit finite difference approximation of Navier-Stokes equations are employed

to resolve the system in a time-dependent fashion. The velocity and pressure

values are updated according to the divergence value computed in each direction.

In terms of numerical integration, there are two options: explicit and implicit

integration. Implicit integration approach allows stable simulations with large

time steps. The resolution of the Eulerian grid determines the degree of trade off

between the realism and computational efficiency.

The second approach in computational fluid dynamics is the Lagrangian

method. In this approach, the simulation space is not subdivided by a grid.

Instead, the numerical analysis is done by tracking individual fluid particles as

they move and determining how the fluid properties associated with these par-

ticles change as a function of time. One of the advantages of the Lagrangian

formulation is that fluid properties can be expressed as functions of time only.

Moreover, by assuming the constant number of particles and constant per-particle

mass, there is no need for an explicit mass conservation equation in the formula-

tion. There are several particle-based meshless (gridless) numerical methods that

have been used in CFD. Smoothed Particle Hydrodynamics (SPH) is one of the

most popular of these method that is widely adopted by the Computer Graphics

community.
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3.2 SPH Model

Smoothed Particle Hydrodynamics is a particle-based computational model for

simulating fluid flows. In the SPH method, fluid is represented by a set of parti-

cles that carry various fluid properties such as mass, velocity, and density. These

properties are distributed around the particle according to an interpolation func-

tion (kernel function) whose finite support is h (kernel radius). For each point

x in simulation space, the value of a fluid property can be computed by interpo-

lating the contributions of fluid particles residing within a spherical region with

radius h and centered at x.

3.2.1 Density, Pressure and Viscosity Formulations

According to the SPH, interpolation of a quantity A is defined by the integral

interpolant

AI(r) =

∫
A(ŕ) W (r− ŕ, h) dŕ, (3.10)

where dŕ is the volume element, and the function W is the smoothing kernel. h

is the core radius of the smoothing kernel [97]. The function W is chosen so that

it falls off rapidly with distance. Usually, W is zero when the distance is greater

than 2h. Such kernels that vanish at a finite distance are said to have a compact

support. In order to apply the SPH method to fluids, the total mass of the fluid

body is distributed to the particles. Particle i has a fixed mass mi, density ρi,

and a position ri. The value of A at particle location i is, then, computed as∫
A(ŕ)

ρ(ŕ)
ρ(ŕ) dŕ. (3.11)

This integral is approximated by a summation over the near (closer than h)

particles:

As =
∑

j

mj
Aj

ρj

W (ri − rj, h). (3.12)

For example, the density for the particle i then can be computed as follows

ρi =
∑

j

mjW (ri − rj , h), (3.13)
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where mj is the mass of particle j. One of the advantages of the SPH formu-

lation is the first and second derivatives of quantities are computed easily since

derivatives only effect the kernel function. For example, the first derivative of

As is

∇As(r) =
∑

j

mj
Aj

ρj

∇W (r− rj, h), (3.14)

and the second derivative computed as

∇2As(r) =
∑

j

mj
Aj

ρj
∇2W (r − rj , h). (3.15)

In its compact form the momentum equation of the the Navier-Stokes equa-

tions is as follows:

ρ

(
∂v

∂t
+ v.∇v

)
= −∇p + ρg + μ∇2v, (3.16)

where p is the scalar pressure field, μ is the viscosity of the fluid, and g is the

vector field of the total force acting of the fluid’s body. The term v.∇v accounts

for the advection in which a small amount of fluid is advected by the surrounding

fluid’s velocity field. The pressure gradient ∇p defines the effect that a part of

the fluid’s volume is moved from a location with a high pressure to a location

with low pressure. The term ∇(μ∇v) is the momentum diffusion term, and it

accounts for the dampening of the fluid’s velocity field. Higher the value of the

kinematic viscosity μ, the faster the dampening. If we assume for a constant

viscosity, the term becomes μ∇2v.

Using particles instead of an Eulerian approach has several advantages. One

of them is that since the particles are advected by fluid’s velocity field, there is no

need to include the advection term in the Navier-Stokes solution [97]. Another

advantage of using particles is that since the number of particles and their indi-

vidual mass is constant and the lower bound between the particles is enforced,

the equation for the conservation of mass is needless. Thus, the Navier-Stokes

equations becomes

ρ

(
∂v

∂t

)
= −∇p + ρf + μ∇2v. (3.17)

If we designate f as f = −∇p + ρf + μ∇2v, then we can compute the change in

the velocity, acceleration, by simply computing the value of f.
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Pressure of each particle location is computed by assuming ideal gas behavior

where p = kρ, k being the stiffness (or gas) constant. Desbrun et al. [28] point out

that, unlike the astrophysical applications, the fluid version of the SPH should

include a constant rest density. Thus, the pressure is computed by the equation

p = k(ρ − ρ0), (3.18)

where ρ0 is the rest density. When naively applied, the SPH formulation results

the following pressure gradient

∇pi = mi

∑
j

mj
pj

ρj

∇W (ri − rj , h), (3.19)

where mi and mj mass of particles i and j and pj and ρj are the pressure and

density of particle j, respectively. However, the force resulting from the pressure

gradient is not equal for different particles i and j. This violates the action-

reaction principle. Desbrun et al. [28] propose using following symmetric pressure

force equation

f pressure
i = −mi

∑
j

mj

(
pi

ρ2
i

+
pj

ρ2
j

)
∇W (ri − rj , h). (3.20)

To solve the same problem, antisymmetry of the pressure gradient, Müller et

al. [101] propose using the following force equation which is simpler and faster

f pressure
i = −mi

∑
j

mj
pi + pj

2ρj

∇W (ri − rj , h). (3.21)

The damping effect due to viscosity can be computed by applying the SPH rule

to the viscosity term. The same asymmetry problem as in the pressure case exists

in viscosity case. Müller et al. [101] solve this problem by considering velocity

differences between the particle i and neighbor particles. Thus, the force due to

viscosity can be found by the Equation:

f viscosity
i = miμi

∑
j

mj
vj − vi

2ρj

∇2W (ri − rj , h). (3.22)

where vi and vj are velocity of i and j respectively, and μi is viscosity coefficient

of particle i. The SPH momentum equation for the particle i is then:

vi

dt
= fpressure

i + fviscous
i + fexternal

i , (3.23)
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where fexternal
i denotes the external forces such as gravity acting on the particle

i, forces exerted on the particle by the boundaries etc.

3.2.2 Surface Tension

Surface tension is an important phenomenon especially in simulation fluid be-

havior in small scale. Forces due to surface tension appear in fluid boundaries,

specifically on air-to-fluid boundaries. The surface tension forces are due to the

unbalanced cohesive forces acting on the fluid molecules on the boundaries. Unlike

the interior fluid molecules that are surrounded by other molecules, the attraction

forces acting on the boundary molecules are not balanced [156]. The result is a

hypothetical membrane like structure where tensile forces acting on every point

of the surface along any line.

Morris [99] formulates the surface tension by using SPH by computing particle

normals. For surface tension to be computed accurately, it is crucial to calculate

surface curvature, and normal vector. The following Equation is used to compute

the particle normals:

ni =
∑

j

mj

ρj

(ci − cj) ∇W (ri − rj , h), (3.24)

where ρ is particle density. ci is called color or color field and can be computed

as follows:

ci =
∑

j

mj

ρj
W (ri − rj , h). (3.25)

The divergence of particle normals can be computed by,

(∇n̂)i =
∑

j

mj

ρj
(n̂i − n̂j) ∇W (ri − rj, h). (3.26)

where n̂ can be defined by the following Equation:

n̂ =

⎧⎨⎩n/|n| if |n| > ε

0 otherwise.
(3.27)
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The surface tension force acting on a particle i is then defined as the following

Equation:

fsurface
i = − σ

ρi

(∇n̂)i ni (3.28)

Considering the surface tension force, Equation 3.23 becomes

vi

dt
= fpressure

i + fviscous
i + fsurface

i + fexternal
i . (3.29)

3.2.3 Capillary Action

The microscale flow characteristic of fluid within a porous material is different

than characteristics of a free fluid flow. In the latter, macroscale forces due to

gravity, viscosity, pressure are dominant whereas in the former forces due to the

porosity are more prominent. In fluid dynamics, the behavior of fluid within

a very thin tube or a porous material is called capillary action and the force

resulting in this behavior is capillary force. Absorption of liquids by the pore of

a sponge, upward transfer of water within plant bodies, or uphill movement of

fluid inside a thin tube are examples of capillary action. Capillary action occurs

because the attraction force between the fluid and rigid object molecules is greater

than the inner fluid cohesion force (which is the cause of surface tension).

Two main defining characteristics of a porous material are its porosity (de-

noted by φ) and permeability (denoted by s) [79]. Permeability is the ability of

a porous material to transmit fluids. Permeability is mainly controlled by the

size and interconnectivity of pores within the material. For isotropic materials,

permeability can be represented by a scalar (denoted by k).

Porosity is the fraction of material’s void volume to its total volume and is a

scalar value between 0 and 1. It represents the porous material’s fluid absorption

capacity.

Saturation can be defined as the ratio of total fluid volume the porous medium
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can hold to the current absorbed fluid volume. Hence, one can define satura-

tion by:

s =
mfluid

φ V ρfluid

, (3.30)

where V is the total volume of the material, ρfluid is the fluid density and mfluid

is fluid mass.

The main force acting on a fluid particle inside a porous material is due to the

capillary pressure [19]. Capillary pressure is the pressure difference in multiphase

flows that occurs across the interface. The capillary pressure can directly be

expressed by porous material’s saturation [67] and can be defined as:

pcapillary(s) =
σJ(s)√

k/φ
, (3.31)

where s is saturation, k is permeability of the material, φ is porosity, and σ

a coefficient to control the pressure. J(s) is Leverett function, and it mainly

depends of the morphology of the porous material. We use the following Leverett

function [82] to define hydrophilic materials:

J(s) = 1.417(1 − s) − 2.120(1 − s)2 + 1.263(1 − s)3. (3.32)

3.2.4 Kernel Functions

Choosing kernel functions is very important since they define how the particles,

which represent fluid body in a discrete fashion, affect the space around them.

One should consider the requirements of accuracy, stability, smoothness and com-

putational efficiency in choosing SPH kernels. The kernel function should have a

compact support. It should, also be at least singly differentiable.

In the computational physics literature, the spline Gaussian kernel is widely

used

Wh(r) =
1

πh

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − 3

2
( r

h
)2 + 3

4
( r

h
)3 if 0 ≤ |r| ≤ h

1
4
(2 − r

h
)3 if h ≤ |r| ≤ 2h

0 if |r| ≥ 2h.

(3.33)
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Figure 3.1: Plot of the several kernels. Kernel choice depends on the simulated
material’s characteristics, computational performance, and required accuracy of
the simulation.

The choice of kernel functions is mainly dependent on the characteristics of

the object being modeled. Desbrun et al. [28] model deformable objects by using

the SPH. Thus, their application cannot have non-constant density and clusters

of particles. They claim that since the gradient of the spline kernel (which is

used in pressure forces computation) vanishes as r approaches to zero, that is as

particles get closer, it is not suitable for their application. They choose to use

the kernel

Wh(r) =
15

π(4h)3

⎧⎨⎩(2 − r
h
)3 if 0 ≤ |r| ≤ 2h

0 if |r| ≥ 2h,
(3.34)

which, they claim, produces forces very similar to the Lennard-Jones forces.

Müller et al. [103] use three different kernel functions in order to simulate

viscous fluid behavior. For computing pressure based forces they choose to use



CHAPTER 3. FUNDAMENTALS OF FLUID DYNAMICS 32

the spiky kernel:

Wh(r) =
15

πh6

⎧⎨⎩(h − r)3 if 0 ≤ |r| ≤ h

0 if |r| ≥ h,
(3.35)

since it does not cause particle clustering and it has vanishing first and second

derivatives at the boundary. The gradient of the spiky kernel is:

∇Wh(r) = − 45

πh6

⎧⎨⎩(h − r)2 r if 0 ≤ |r| ≤ h

0 if |r| ≥ h.
(3.36)

For viscosity, they use another kernel since they claim that a standard kernel

might cause numerical instabilities as they get negative values and might cause

relative velocities increase. The kernel they employ for viscosity is as follows:

Wh(r) =
15

2πh3

⎧⎨⎩− r3

2h3 + r2

h2 + h
2r

− 1 if 0 ≤ |r| ≤ h

0 if |r| ≥ h,
(3.37)

whose Laplacian is,

∇2Wh(r) =
45

πh6

⎧⎨⎩(h − r) if 0 ≤ |r| ≤ h

0 if |r| ≥ h,
(3.38)

and is used in viscosity computation. It is always positive, and it and its gradient

vanishes at the boundary. For density computations, they use a simple kernel:

Wh(r) =
315

64πh9

⎧⎨⎩(h2 − r2)3 if 0 ≤ |r| ≤ h

0 if |r| ≥ h.
(3.39)

In our implementation, we use the kernel defined in Equation 3.39 for density

computations since it gives smoother values as particles get closer and it does

not require taking the square root of particle distance. For computing pressure,

we prefer using the gradient of the Spiky kernel (Equation 3.36), which prevents

particle clustering. We choose the Laplacian of the kernel defined in Equation 3.37

for viscosity computations.



Chapter 4

Cloth and Knitwear Simulation

Mass-spring model is one of the most popular methods for modeling and sim-

ulating cloth-like objects. Being a particle-based method, mass-spring model is

appropriate for defining simulated object’s interaction with other objects, fine-

tuning behavior of the object in terms of inter-particle forces, and parallelizing

the simulation.

4.1 Mass-Spring Model

A mass-spring network consists of mass points connected by massless damped

springs. By this model, it is assumed that the mass of the body is concentrated

at specific points rather than it is scattered along the body. One of the constraints

on the reality of the model, then, is the density of the mass points of the mesh.

Forces acting on the mass points can be classified as external and internal forces.

Internal forces are spring forces that mass points exert on each other through

damped springs, and external forces are environmental forces such as gravity,

viscous drag, impulse based forces, and user defined forces such as mouse drag.

The mesh is simulated through time by calculating position of the mass points

after a specified time step.

33



CHAPTER 4. CLOTH AND KNITWEAR SIMULATION 34

4.1.1 Modeling the Cloth Mesh

In its simplest form, a mass-spring mesh is constructed by three kinds of springs,

as illustrated in Figure 4.1. Structural (linear) springs connect each mass point

to its four immediate neighbors (upper, lower, left, and right). Shear (diago-

nal) springs connect each mass point to its immediate diagonal neighbors, and

flexion (bending) springs connect each mass point to every other mass point.

Structural springs are constrained by the stretching and compression forces. Di-

agonal springs are constrained by the shear stresses, whereas bending springs are

used to limit bending of the structure, since they are constrained by the flex-

ion stresses [117]. Setting spring constants of these spring types independently

enables us to mimic different types cloth and rubbery objects.

Structural spring

Bending spring Mass point
Diagonal spring

Figure 4.1: A sample mass-spring mesh

4.1.2 Defining the Forces

We use the second Newtonian law of dynamics in order to determine position of

a mass point i at a particular time:

f total
i = mi ai, (4.1)
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where mi is the mass of the point, ai is the acceleration caused by the net force

fi acting on the mass point. The net total force is computed by considering the

internal forces, namely the forces mass points exert on each other through springs,

and external forces such as gravity, viscous air drag, wind etc. The force acting

on a mass point i by its neighbor j through a damping spring can be defined by

the Hooke’s Law:

f spring
i,j =

(
(−ks (|si,j| − |srest

i,j |) + ds |vi,j|)
) si,j

|si,j| , (4.2)

where

• si,j = ri − rj , where ri and rj are position vectors of mass points i and j,

respectively,

• |srest
i,j | is the rest length of the spring,

• ks and ds are the spring, and damping constants of the spring, respectively,

• vi,j is the projection of the relative velocity of mass point i and j onto the

vector si,j.

The spring force is symmetric up to its direction for the mass points connected

by the spring. That is:

f spring
i,j = −f spring

j,i . (4.3)

Besides the spring forces, external forces act on mass points. These forces are

computed and accumulated for each of the mass points. Equation 4.4 gives the

force caused by gravity on a mass point i:

f gravity
i = mi g, (4.4)

where g is the global acceleration of gravity.

Viscous air drag is another external force to act on the mass points. It is

designed as a uniform force which has the effect of dissipation of kinetic energy

of mass points. This force can be calculated by using Equation 4.5:

f drag
i = −cdrag vi, (4.5)
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where cdrag is the coefficient of air drag and vi is the velocity vector of the mass

point. Adding moderate amount of viscous drag enhances realistic look and

numerical stability of the system, but much of this force gives unrealistically oily

look.

Moving air (or fluid) also exerts a force on the mass points, which can be

computed by Equation 4.6:

f wind
i = cwind(ni . (vwind − vi))ni, (4.6)

where cwind is a coefficient to express the amplitude of wind, vwind is the velocity

vector of wind, vi is the velocity of the mass point i, and ni is the normalized

normal vector to the surface of the mass-spring mesh at the mass point m′
is

position.

4.2 Modeling Knitwear

Modeling and simulating knitwear introduce some additional challenges. One

of the challenges is to model, and simulate the thread structure of knitwear.

We choose to model the thread structure by defining the thread stitches by a

repeating pattern of bonding points. The pattern is defined in a uniform grid

which sit upon an underlying spring-mass network. The coordinates of bonding

points are interpolated from the coordinates of mass points. This structure is

illustrated in Figure 4.2.

Another challenge in modeling knitwear is to simulate the knitwear’s thick-

ness. This thickness of knitwear is important for a realistic simulation especially

in the presence of perpendicular forces. Thus, a realistic model should have a

volumetric representation of the knitwear structure. This can be achieved with-

out sacrificing the simplicity and speed of the mass-spring method. The model

depicted in Figure 4.3 illustrates how this can be done. In this model, there are

three layers of mass-spring meshes that are connected to each other with volumet-

ric springs. Each of these three layers are modeled by shear, stretch and bending

springs as explained in Section 4.1.1. This three layered structure provides a
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m1 m2

m3 m4t4

t5

t3

t6

t9

t2

t1

t8

t10

t7 t11

t12

Figure 4.2: Bonding points (gray dots) and mass–points (black dots).

dynamic thickness so that knitwear reacts to perpendicular forces in a realistic

and adjustable way.

The repeating pattern of bonding points is achieved by a set of interpolation

formula. The formulae define the set of mass points contributing each of bonding

point coordinate computation. By selecting mass points from the different spring-

mass layers, it is possible to achieve a realistic 3D visual effect for thread stitches.

Mass points are advected dynamically as a result of external forces (e.g., grav-

ity, wind, collision, user forces) and internal forces (e.g., stretching, bending, and

shearing forces). The bonding points of the knitwear model are updated (inter-

polated) accordingly (see Figure 4.2). In Figure 4.2, the gray and black dots are

bonding points and mass points, respectively, and the gray lines represent springs.

The interpolation equations for the positions of stitch control points is similar to

those described in [31], except the fact that we exploit layered structure of the

mass-spring mesh to model thickness. Equation 4.7 describes the interpolation

of the positions of bonding points for the thread structure depicted in Figure 4.2.

In Equation 4.7, mis and m′
is are mass points that belong to layers 1 and 3,

respectively.
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Stretching
 Springs

  Shear
 Springs

 Volume
 Springs

Front View Side View

Figure 4.3: Mass-spring structure of our knitwear model. To simulate the thick-
ness of knitwear, the layers are connected by volume preserving springs.

t1 = 6
7
m3 + 1

7
m4

t2 = 5.5
21

m′
1 + 1.5

21
m′

2 + 11
21

m′
3 + 3

21
m′

4

t3 = 1.5
21

m′
1 + 5.5

21
m′

2 + 3
21

m′
3 + 11

21
m′

4

t4 = 1
7
m3 + 6

7
m4

t5 = m′
3

t6 = 5
7
m′

3 + 2
7
m′

4

t7 = 4.5
28

m1 + 2.5
28

m2 + 13.5
28

m3 + 7.5
28

m4

t8 = 6
7
m1 + 1

7
m2

t9 = m′
4

t10 = 2
7
m′

3 + 5
7
m′

4

t11 = 2.5
28

m1 + 4.5
28

m2 + 7.5
28

m3 + 13.5
28

m4

t12 = 1
7
m1 + 6

7
m2

(4.7)



CHAPTER 4. CLOTH AND KNITWEAR SIMULATION 39

rif i,j
normal

f j,i
normal

f i,j
tangential

f j,i
tangential

rjri,j

vitangentialv i

v j

vjtangential

Figure 4.4: The normal and tangential components of the contact force acting on
particles pi and pj .

4.3 Handling Self Collisions

We handle self–collision of the mass-spring model in a particle–to–particle ba-

sis, where penalty forces are applied between the neighboring particles. These

penalty forces are computed by the discrete element method (DEM). Particle

proximities are detected by a grid based neighbor search algorithm where mass

points connected by springs are ignored.

Discrete Element Method (DEM) is a popular numerical method for defining

inter–particle forces especially in granular materials. The contact force f DEM
i,j

between two particles i and j can be computed as the sum of tangential and

normal components:

f DEM
i,j = f normal

i,j + f tangential
i,j , (4.8)

as shown in Figure 4.4.

The normal force component f normal
i,j is repulsive and acts on particle centers

in the direction of the vector ri,j = ri − rj, where ri and rj are the centers of

particles i and j, respectively. f normal
i,j is computed according to Equation 4.9:

f normal
i,j = k

ri,j

|ri,j| ui,j − c (v normal
i − v normal

j ), (4.9)
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where k is the compression stiffness coefficient, c is the coefficient of viscous

damping, v normal
i is velocity component of particle i in the direction of ri,j, and

ui,j = |ri,j| − (radiusi + radiusj) is the particle overlap.

f tangential
i,j is the tangential shear force and it defines the resistance to the

movement that the particles exert on each other in tangential direction. It is

computed according to Equation 4.10:

f tangential
i,j = μ (k ui,j)

v tangential
i − v tangential

j

|v tangential
i − v tangential

j | , (4.10)

where k and ui,j are as defined above, v tangential
i and v tangential

i are the tangential

velocities of particles i and j, respectively, and μ is the friction coefficient. This

formulation of tangential shear force scales with the magnitude of the normal

force, thus, ensures the stability.

Particle based self collision handling is straight forward to implement, easy

to incorporate to the particle system, and easily parallelizable. Although visual

artifacts may occur in course meshes, it produces visually satisfying results in

fine enough mass-spring meshes.

4.4 Knitwear Rendering

The rendering of the knitwear strand is important because it needs to synthesize

the microstructure of the knitwear, which consists of a huge number of thin fibers

and has a fuzzy look. We use the lumislice primitive presented in [154] as a 2D

texture, which shows the distribution of the yarn fibers in a cross–section of the

yarn.

We render an array of quads textured with 2D lumislice texture to obtain a

volumetric rendering using the alpha-blending capabilities of the graphics hard-

ware. The problem with this approach is that the alpha-blended 1-dimensional

array of textured quads do not handle view angles that are non–perpendicular

to rendered quads. This artifact is illustrated in Figure 4.5(a). To overcome
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(a)

(b)

Figure 4.5: (a) The problem related with 1-dimensional array of 2-dimensional
quads is shown. This artifact occurs when the quads lie parallel to the viewing
direction. (b) The problem is solved by using 3-D grid of voxels as explained in
the text.

this problem, we create a 3-dimensional grid of voxels for volumetric rendering,

instead of the 1-dimensional array of textured quads. In this approach, there is

a 1-dimensional array of quads along each coordinate axis of the local coordinate

system. Thus, even if one or two of the 1-dimensional quad arrays are parallel

to the viewing direction, it is guaranteed that the last one is not. Figure 4.5(b)

illustrates the result. The 3D voxel grid structure is illustrated in Figure 4.7.

One limitation of the hardware-accelerated alpha-blending is that the quads

must be rendered in back-to-front order. This is a requirement because of how

blending works in hardware: the rendering pipeline must know the pixel at the

back when rendering the pixel at the front to be able to compute the correct

color of the final pixel. This sorting operation has to be done whenever the

viewer orientation or model position/orientation changes. To sort the quads, we

employ bitonic sort on GPU.

After sorting, we twist the grid of quads along the axis defined by the normal
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(a)

(b)

Figure 4.6: (a) The artifacts because of the discontinuities in the overlaps at the
segment joints. (b) The artifacts are alleviated by fitting a Catmull-Rom spline
on the bonding points.

of each quad in order to increase the visual quality of the strand. The 3D grid

of voxels are aligned along the path defined by stitch bonding points. When

the voxels are positioned on the straight line between the bonding points, visual

artifacts appear because of the overlaps at the joints as illustrates in Figure 4.6(a).

To overcome this problem, we fit a Catmull-Rom spline on the bonding points

and this spline is used to determine the path of each thread of knitwear. This
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Figure 4.7: 1-dimensional array of quads (on the left) versus 3-dimensional grid
of voxels (on the right) are shown.

provides a smoother path for the quads and consequently results in a much better

visual quality. In this improved approach, instead of rendering a different yarn

segment corresponding to each line segment, we render the whole yarn thread at

once by placing the quads with regular intervals on the spline. When we render

the threads in this way, no discontinuity results in a single thread, and thus, the

image quality is much higher, as shown in Figure 4.6(b).

Soft shadows are indispensable for a realistic, high quality rendering of a

knitwear model as they help stitches stand out, especially when the cloth is folded

or there are many levels of cloth on top of each other. To achieve high rendering

quality of soft shadows, we employ cascaded shadow mapping technique [30],

which divides the frustum into a number of segments, making it possible to use

different texture resolutions and obtaining high level antialiasing.



Chapter 5

Particle System Implementation

In this chapter, we discuss several practical issues of a particle-based simulation

system. Implementing a fast, robust, and realistic particle system depends on

addressing these issues and formulating effective solutions. Each of the Sections

in this chapter presents an important aspect of implementing a particle system

and presents a practical and robust solution.

Section 5.1 presents the details of how to define boundary conditions for a

particle based fluid simulation system. Boundary conditions are essential for

defining fluid body’s interaction with its environment. Section 5.2 gives a detailed

description of our fluid surface generation method and explains the improvements

we propose to generate a free fluid surface with a higher visual quality. Section 5.3

underlines the implementation of the surface tension and capillary forces whose

theory is explained in Section 3.2.2 and Section 3.2.3, respectively. In Section 5.5,

we explain the neighbor search algorithm we employ to detect particle proximities.

Section 5.6 underlines the alternatives of numerical integration methods.

44
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5.1 Boundary Conditions

The choice of boundary forces is crucial to simulate fluid behavior at the bound-

aries of a rigid, unmovable (walls, pipes, etc.) objects or as it flows through

channels, filters, or porous materials. Flow characteristics in these cases are usu-

ally that of Laminar flows and generally dominated by viscous and friction forces

rather than inertial forces. Thus, it is important to model fluid-boundary in-

teractions to achieve realistic results. Fluid-boundary interaction forces can be

considered in two categories.

Non-penetration condition requires that fluid particles do not penetrate into

the boundary region. Also known as Neumann boundary condition [20], Non-

penetration condition can be expressed mathematically as follows:

∂v

∂n
= 0, (5.1)

where v is fluid velocity and n is the boundary normal vector. In computational

physics, periodic boundary condition may be used instead of non-penetration con-

dition. In periodic boundary conditions, materials (particles) leaving the simula-

tion space from a boundary appears at the opposite boundary. That is, a particle

leaving the boundary of the simulation space from the front wall reappears at the

back door in the following simulation step.

Slip conditions consider the force exerted on the fluid particles in tangential

direction to the boundary surface. In the case of free-slip condition, no force is

exerted on fluid particles as they move tangential to the boundary whereas in the

case of no-slip condition a tangential frictional force is applied so that tangential

velocity is zero. No-slip condition is usually simulated by modeling viscous drag

applied by boundary particles.

Typically, non-penetration and slip boundary conditions in particle based sim-

ulation systems are enforced by inserting stationary boundary particles which ex-

ert repulsive and frictional forces on the fluid particles [97]. Usually, the bound-

ary particles are placed to create a layer (or several layers depending on the

application) of particles. Figure 5.1 illustrates such a setting where a layer of
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Figure 5.1: A frame of a 2D particle-based fluid simulation where a layer of
stationary boundary particles (drawn in black) are placed to enforce boundary
conditions on the fluid particles(drawn in red).

boundary particles are placed to enforce boundary conditions. One can choose

one of the several fluid particle-to-boundary particle interaction schema to define

non-penetration and slip conditions.

5.1.1 Enforcing Boundary Conditions using SPH-Based

Forces

One way to define fluid particle-to-boundary particle interaction forces is to com-

pute SPH-based pressure and viscosity forces between fluid and boundary parti-

cles. This can be achieved by computing density and velocity values for boundary

particles. The density of a boundary particle can be computed by Equation 3.13.

In this computation, it is possible that only fluid particles contribute to the

density computation. However, as mentioned by Morris et al. [100], when the

boundary particles do not contribute to the density of fluid particles, pressure

stays constant as fluid particles and boundary particles diverge. Thus, to gener-

ate a pressure based restoring force, Morris et al. propose that boundary parti-

cles contribute to the density of fluid particles. Based on the computed density,

a repulsive pressure force (Equation 3.21) is computed to enforce no-penetration

condition.
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To compute a frictional tangential force for slip conditions, a viscosity-based

force can be employed. This requires calculating velocities of boundary parti-

cles. Boundary particle velocities are computed by interpolating the velocities of

neighboring fluid particles. The velocity vj of boundary particle j is interpolated

from the velocities of the neighboring fluid particles by the following equation:

vj =
∑

i

mi vi Wij, (5.2)

where Wij is the kernel defined by Equation 3.34, and mi and vi are the mass and

velocity of neighboring fluid particle i, respectively. The viscous drag exerted on

fluid particles by boundary particles is computed by Equation 3.22. It should be

noted that the boundary particles are stationary and their evolved density and

velocity values are used only in viscous drag computation. One disadvantage of

implementing boundary conditions by SPH-based pressure and viscosity forces

is that doing so introduces an additional computational burden since density for

each boundary particle should be computed at each time step prior to boundary

force computations.

5.1.2 Enforcing Boundary Conditions by Lennard-Jones

Potential or the Discrete Element Method

Another choice for implementing non-penetration condition is known as the

Lennard-Jones potential [3] and widely used in molecular dynamics. The form of

the Lennard-Jones potential is as follows:

f(d) =

⎧⎨⎩
D
d
((d0

d
)α0 − (d0

d
)α1) if 0 ≤ d ≤ d0

0 otherwise,
(5.3)

where d is the distance between the particles and d0 is chosen to be the kernel

radius h. The usual choices of α0 and α1 are 12 and 6, respectively [98]. Notice

that in this formulation the Lennard-Jones potential is solely repulsive.

Boundary conditions can also be enforced by the discrete element method
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(DEM) which is described in Section 4.3 within the context of self-collision han-

dling in mass-spring meshes. With DEM method one can fine-tune repulsive

normal force and tangential frictional force by adjusting the corresponding coef-

ficients. The advantage of the Lennard-Jones potential or the discrete element

method over a SPH based boundary force schema is that it is computationally

more efficient since it only depends on the distance between the particles.

5.1.3 Implementing Adhesive Boundary Forces

In addition to ensuring non–penetration and no–slip conditions, boundary parti-

cles contribute to fluid particles’ pressure–based force computation. This creates

an adhesive force that prevents fluid particles from leaving the solid boundary

freely. We evaluate the pressure value of each solid boundary particle and apply

the force computed by the following equation on each fluid particle i for creating

a realistic and easily controllable adhesion–like effect.

fadhesive
i =

∑
j

mj

(
pi

ρ2
i

+
pj

ρ2
j

)
∇Wij, (5.4)

where j is the neighboring boundary particle of particle i, mj is the mass, pj is the

pressure, ρj is the density of particle j, and Wij is as defined by Equation 3.35.

Figure 5.2 shows the still images from two simulations where, in the left frame,

proposed pressure–based adhesion force is active, and in the right, there is no

adhesion force acting on the fluid particles.

5.2 Fluid Surface Generation and Rendering

For particle based fluid simulation methods, it is a challenging task to extract

a fluid surface since particles do not carry any explicit information about their

spatial arrangement and connectivity, see Figure 5.3. A 3D particle based simu-

lation system should provide a robust and physically correct surface generation

system for rendering. The generated surface should deliver details in regions like
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(a) (b)

Figure 5.2: Fluid pours down on a sphere with (a) adhesion effect and (b) no–
adhesion effect.

thin fluid fronts and drops and frame-to-frame coherence. The typical solution is

to compute a polygonized isosurface from particle positions for rendering. One

of the frequently used algorithms for polygonizing an isosurface is the Marching

Cubes [85].

(a) (b)

Figure 5.3: (a) A particle-based simulation, (b) a fluid surface is generated and
rendered.

The Marching Cubes algorithm traces a uniform grid iteratively and achieves

tessellation based on the scalar values computed on the corners of the grid cells.

Originally, the algorithm considers 15 unique cube configurations for each grid

cell. The algorithm has been improved by resolving some ambiguous cases [21,

107, 84].

Within the context of a particle-based fluid simulation, the scalar value used

by the Marching Cubes is computed by measuring the distances of the neighboring
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fluid particles to the cube corners. Thus, for a grid cube corner x, the function

φ(x) computes the scalar value:

φ(x) =

√√√√∑
i

(
1 −

(
di

h

)2
)3

, (5.5)

where h is the threshold distance, i iterates over the fluid particle neighbors of x,

and di = |x − ri|, where i is the fluid particle with di ≤ h.

The resulting surface captures the main features of the fluid body but it has

a thickening effect in detailed surface regions such as waves and water fronts and

a bumpy look in flat regions. Adams et al. [1] address this problem by employing

a weighted function for the isosurface computation. Their method uses a higher

particle density in detailed regions improving the visual quality of the free fluid

surface. We propose a modification to Equation 5.5 such that it differentiates

particles according to their relative positions to the free fluid surface by assigning

a value. This value is computed for each particle according to its proximity to

the free fluid surface. We refer to this value as the surface value and calculate it

for each particle using particle normal vectors, as described in [129].

To compute the normal vector for each particle i, we first determine the

centroid ci of the sphere with radius h centered at the location of particle i.

That is:

ci =

∑
j rj

ki
, (5.6)

where particle j is a neighbor of particle i satisfying |rj − rj| ≤ h, ki is the

number of such neighbors of particle i, and h is the SPH kernel radius. Then the

normal vector of particle i is defined to be:

ni = ri − ci, (5.7)

where ri is the position of the particle i. The length of the normal vector, |ni|,
indicates relative proximity of the particle to the fluid surface. The magnitude of

the normal vectors of the particles that are closer to the surface are larger than

those of particles located deeper the fluid body. Figure 5.5 illustrates a situation

where two particles having normal vectors of different lengths because of their

relative distances to the fluid surface.
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We compute the surface values for each fluid particle i by the following equa-

tion:

si = 1 −
(∑

j |nj|
ki h

+
�
2

)
, (5.8)

where nj is the normal vector of the neighboring fluid particle j, and ki is the

number of neighbors of particle i. � is defined to be the maximum of �i’s where

�i =

∑
j |nj|
ki h

. (5.9)

Equation 5.8 ensures that particles closer to the fluid surface have smaller surface

values, thus contribute to the isosurface less than non–surface particles. After

including si to the function φ(x), Equation 5.5 becomes:

φ(x) =

√√√√∑
i

(
1 −

(
di si

h

)2
)3

. (5.10)

(a) (b)

Figure 5.4: Fluid dam breaks into a rigid object. In (a) the surface is generated
by including the surface value as proposed and in (b) no surface value is included
during the surface generation.

By including the surface value si, the generated fluid surface displays better

quality on flat surfaces and captures finer details in splashes and filaments since

fluid particles close to the surface contribute less to the isovalue. Figure 5.4 illus-

trates effectiveness of our modified surface generation algorithm. Figure includes

two frames of the same scene. Figure 5.4 (a) is from the simulation where the

surface value is included during the surface generation. Figure 5.4 (b) is from the

simulation where surface value is not considered. It is clear from Figure 5.4 that

including the surface value enhances the visual quality of the simulation.

We experimented several values for the grid resolution for our Marching Cubes

algorithm. Finer grids produces higher quality surface while introducing a com-

putational burden. In our system, we found that the grid resolution which is
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equal to 1
6
h, where h is the kernel radius as defined before, is the optimum. With

this resolution each grid corner (the ones that are surrounded by the fluid body)

has around 80 neighboring fluid particles.

fluid surface

Figure 5.5: Computing particle normals. The particle closer to the surface has
a longer normal vector than the particle residing inside the fluid body. The
red dashed circle and red dot illustrate the neighborhoods of particles and the
centroids of neighboring particles, respectively. The black arrow pointing from
the centroid to particle center is the particle’s normal vector.

We use The Persistence of Vision Ray tracer (POV-Ray) [92] for offline ren-

dering of tessellated fluid surface. A faster but probably less exact alternative

would be isosurface ray casting algorithm implemented on the graphics hard-

ware [106, 133, 124].

5.3 Implementing Surface Tension and Capil-

lary Forces

An accurate computation of the force due to surface tension is crucial both for

robustness and visual realism of a fluid simulation. Section 3.2.2 presents a the-

oretical account of the surface tension force and a method to compute it. We

implement the surface tension based on the particle normals that are computed

by the Equation 5.7 as explained in Section 5.1. The surface tension force is
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Figure 5.6: 2D SPH simulation where no gravity and environmental viscous drag
are present. Because of the surface tension fluid body ossilates between drop-like
shapes along two axes.

computed by Equation 3.28 and applied to particles. Figure 5.6 illustrates the

result of the surface tension force in a 2D fluid simulation. The red particles

are detected by the system as the surface particles while black particles reside

deeper in the fluid body. Detection of surface particles is based on comparing

the magnitude of the particle normal vectors, as explained in Section 5.1. In

the absence of gravity and the environmental viscous drag, fluid body takes a

drop-like shape and ossilates along the axes, which is an expected behavior under

these conditions.

Section 3.2.3 gives the theoretical background of capillary action. To imple-

ment porosity and capillary forces in our particle-based simulation system, we

associate each particle i of a porous object with porosity φi and void volume

Vi [79]. Then, the total capillary force acting on the neighboring fluid particle j

can be computed by:

f capillary
j =

∑
i

pcapillary
i ∇W (rij, h), (5.11)

where rij = ri − rj and ri and rj are the positions of particles i and j, respec-

tively. h is the kernel radius and pcapillary
i is the capillary pressure associated with

particle i. pcapillary
i is computed as explained in Section 3.2.3.

The porous object’s weight increases because of the absorbed fluid mass and

this can be simulated by adding neighboring fluid particles’ mass to porous object

particles. This addition is achieved by the following Equation:

mi = mi +
∑

j

mjW, (5.12)
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where mi is the mass of the porous object particle, mj is mass of neighboring

fluid particle, and W is the smoothing kernel as defined by Equation 3.39. The

saturation of the porpous object is modified according to Equation 3.30.

5.4 Simulating Miscible and Immiscible Fluids

Miscibility is a property of fluids to mix at any proportions, resulting in a homoge-

neous solutions. The term immiscibility, on the other hand, is used for the fluids

that do not mix and retain a detectable boundary. Degree of miscibility can be

quantified by dispersion, denoted by D, which stands for the mass transfer from

highly concentrated regions to less concentrated regions. The convection-diffusion

equation models the transfer of solute as follows [158]:

dC(t)

dt
= D(∇2C(t)), (5.13)

where C is concentration. For practical purposes, we can assume that the fluid

density is linearly related to the concentration of solute. For SPH, this linear

relation can be expressed by the following equation for each fluid particle i [132]:

mi = mf
i + α Ci, (5.14)

where Ci is concentration associated with particle i, mf
i is fluid mass of i, and α

is a constant. Equation 5.13 can be adopted to SPH as follows [157]:

dCi

dt
=
∑

j

(Dini + Djnj)(Ci − Cj)

ninj(ri − rj)2
(ri − rj)∇W (ri − rj, h), (5.15)

where Di is dispersion associated with i, Ci and ni are concentration and number

density of particle i, respectively. Number density is computed as in:

ni =
∑

j

W (ri − rj, h). (5.16)

At each simulation step, particle masses and concentrations are updated by Equa-

tions 5.14 and 5.15, respectively.

Figure 5.7 illustrates the effect of different dispersion coefficients. In the

simulations, there are two fluid bodies with different concentration (and same



CHAPTER 5. PARTICLE SYSTEM IMPLEMENTATION 55

dispersion coefficients), pink fluid having C = 1.0 and white having C = 0.1.

Because of the higher concentration, pink fluid tends to flow down by the effect

of gravity. In the top row of the figure, D = 0, which results in immiscible fluid

flow. Pink fluid does not mix with the white fluid and settles down at the bottom

of the containers. In the middle row, D = 0.2, so that fluid bodies mix with each

other, white fluid getting pinkish. In the bottom row, the dispersion coefficient

is higher resulting in a faster mixing.

(t=20) (t=50) (t=80) (t=110)

Figure 5.7: Simulation of miscible fluid flows with different dispersion coeffi-
cients, D. In the top row, D = 0, in the middle row, D = 0.2, and in the bottom
row, D = 0.45.

5.5 Neighbor Search

In most of the particle based simulation methods, particles interact only with a

small set of particles at each simulation step. The naive approach of considering

the whole particle set for interparticle forces computation results in O(n2) run

time complexity. It is therefore important to employ precise and fast neighbor

search algorithm to improve simulation performance. Even then, the neighbor

search usually dominates the run time of a particle based simulation system.
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Several methods have been proposed to optimize neighbor search in particle

based simulation systems. Most of these methods employ some kind of space

subdivision approach. Space subdivision methods usually employ a uniform

grid [137, 70] and discretize the simulation space to improve the performance

of contact detection. Bounding volumes [138], and Binary Space Partitioning

(BSP) trees [94] are among other methods of improving contact detection perfor-

mance. Grid based approaches as used in SPH based particle simulation systems

employ a uniform grid with voxel size of 2h. We propose a neighbor search al-

gorithm that uses a uniform grid to subdivide the simulation space and speed

up neighbor detection step. Particles are sorted with respect to their discretized

grid locations. Following sections give the details of our sorting-based neighbor

search algorithm.

5.5.1 Search Algorithm

Algorithm 1 outlines the proposed neighbor search algorithm. The first step of

the neighbor search algorithm is to discretize particle coordinates with respect to

the grid to obtain integral positions (rix, riy, riz) of each particle i. The vortex

size of the uniform grid is chosen to be 2h, h being the kernel radius of the

SPH algorithm. These grid coordinates are then converted to 1D coordinates by

Equation 5.17 and stored in a 1D array particleCoordinate:

rix + riy ∗ gridWidth + riz ∗ gridWidth ∗ gridHeight. (5.17)

The particleCoordinate array is sorted first with respect to vortex ids and

and then particle ids by employing the Radix Sort algorithm. In another

pass, we determine the first and last position of each vortex within the sorted

particleCoordinate array and store these pointers in the vortexPointer array

(Figure 5.8). We, then, scan the particleCoordinate array and determine po-

tential neighbors of each particle. In order to achieve this, constant offsets are

employed for each of the 26 neighbor vortices of particle’s host vortex. For exam-

ple, (i − 1)th vortex is the left neighbor of ith vortex and i + grid widthth vortex

is the upper neighbor of the ith vortex.
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1 for each time step do
2 compute the array particleCoordinate;
3 radix sort the array particleCoordinate
4 scan particleCoordinate and compute vertexPointer array
5 forall the fluid particle pi do
6 for each of 27 neighbor grid cells k do
7 for j ←vertexPointer[k] to vertexPointer[k+1] do
8 while i < particleCoordinate[j] do
9 check whether particle i and particleCoordinate[j] are

neighbors
10 end
11 end
12 endfor
13 end
14 end

Algorithm 1: The proposed neighbor search algorithm

22 2422 23 23 23 23 23 23....... .......

....... .......
particles

grid vortices

2220 21 23 24 25

800 212 57 56 42 6954 103 143

....... .......

particleCoordinate array

vortexPointer array

Figure 5.8: The sorted particleCoordinate array and vortexPointer array

Figure 5.9 illustrates the algorithm where potential neighbors of particle 57

are being searched (within a virtual grid of 30 vortices width, with particle distri-

bution as seen in Figure 5.10). The algorithm goes through the particles of vortex

23 (particle 57’s own vortex), of vortex 24 (the right neighboring vortex), and of

vortex 53 (the upper neighboring vortex). Start pointers of the vortices in the

particleCoordinate array is read from the vortexPointer array. To consider each

potential neighbor pair exactly just once, we scan particles in ascending order

and stop when we reach a particle with smaller id. In the example we stop at

particle 42 and particle 34.
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Figure 5.9: Potential neighbors of particle 57 is being searched.
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Figure 5.10: Sample grid configuration.

5.6 Numerical Integration

In particle-based simulation systems particles’ positions are updated according

to the Newton’s second law of motion. In mathematical notation, the position of

the particle i is computed by the following Equation:

xi = mi ẍi, (5.18)

where xi and mi are the position and mass of the particle i, respectively. ẍi

denotes the second time derivative of xi (i.e. acceleration) in Newton’s notation.

This expression is an ordinary differential equation that is solved numerically.

Numerical ordinary differential equations is a vast topic in itself and discussing

it in its full details is out of the scope of this thesis. We will introduce some

concepts about the numerical methods of solving particle movement numerically

and discuss some of the alternatives.
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Within the context of physically-based simulation methods, numerical ordi-

nary differential equations can be classified into two main categories: implicit

methods and explicit methods. Implicit methods are more suitable for phys-

ically based simulations than explicit methods since explicit methods consider

each particle independently which causes errors especially in mass-spring sim-

ulations where particles are coupled by strong force constraints. On the other

hand, implicit methods are much more complex to model and implement. This

is the especially case in case of parallel programming. In the following sections,

we discuss some explicit and implicit integration methods.

5.6.1 Explicit Methods

The simplest method for updating the position and velocity of a mass point is

the Euler’s method. The general expression of the Euler’s method is:

x(t + Δt) = x(t) + Δt ẋ(t), (5.19)

where Δt is the step size and ẋ the first time derivative of x. Thus, by the

Euler’s method integrating for the particles’ updated position is fairly simple.

Equations 5.20, 5.21, and 5.22 express the Euler’s method:

a(t + Δt) =
1

m
f(t), (5.20)

v(t + Δt) = v(t) + Δt a(t + Δt), (5.21)

x(t + Δt) = x(t) + Δt v(t + Δt), (5.22)

where a, v and x are particle acceleration, velocity, and position.

Although it is very simple to implement, the Euler’s method is not efficient nor

accurate especially for stiff equations. This makes the Euler method unsuitable

for particle based simulations.

As an alternative to the Euler’s method, one can choose to use the fourth-

order Runge-Kutta method, which, gives more accurate results with larger time

steps. The generic expression of the fourth-order Runge-Kutta method is as

follows [116]:

k1 = f(x0, t0)
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k2 = Δt f(x0 +
k1

2
, t0 +

Δt

2
)

k3 = Δt f(x0 +
k2

2
, t0 +

Δt

2
)

k4 = Δt f(x0 + k3, t0 + Δt)

x(t0 + Δt) = x0 +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4

Although it allows using larger time steps than Euler integration, Runge-Kutta

method introduces a high computational overhead because of the fact that each

time step requires 4 force computations. This overhead is especially prominent

when force computations involve recomputing neighbor particle sets and density

computations as in the case of fluid simulations of the discrete element method.

As it is clear from the formula, the fourth-order Runge-Kutta method uses

a constant step size. That is, time step should explicitly be determined so that

it is not that large to blow up the calculations or that small to slow down the

simulation unnecessarily. Theoretically efficiency of the method can be improved

by employing adaptive step size control. A numerical solver with adaptive step

size control tries to achieve some predetermined accuracy by using as large time

steps as possible. This is done by using small time steps where the steepness of

the function is high and large time steps where the steepness is low. A possible

method for step size can be so called step doubling. In this method the algorithm

takes each step twice, once as a full step, then, independently, as two half steps.

This method requires 11 function evaluations. An alternative method found by

Fehlberg uses a fifth-order method in order to estimate truncation error [116].

The fact that this method requires 6 function evaluations may cause worse run

times than the fourth-order constant step sized Runge-Kutta.

Another method of implicit numerical integration method is the Verlet algo-

rithm which has been used especially in molecular dynamics [145]. The Verlet

algorithm is more accurate than the Euler’s method and easier to implement than

the fourth-order Runge-Kutta method. The position update according to Verlet

integration is computed by:

x(t + Δt) = 2 x(t) − x(t − Δt) + a Δt2, (5.23)
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where x(t+Δt) is the updated position, x(t) is the current position, x(t−Δt) is

the position from the previous time step, and a is the acceleration vector. Since

its fomulation does not involve the velocity term, the Verlet method makes it

very easy to establish distance constraints between particles [59] which can be

very usable to construct a basic physically based simulation system. On the other

hand, not computing the velocity explicitly can be problematic since velocity is

generally used in several of the force computations such as viscous and frictional

forces. This can be alleviated by explicitly computing the velocity by using the

position:

v(t + Δt) =
x(t + Δt) − x(t − Δt)

2Δt
. (5.24)

Instead, the velocity Verlet algorithm [3, 131], which has the same accuracy as

the Verlet method, can be used. It is also called the Leapfrog method and is a

variation of the common Verlet algorithm. Its error in position and velocity is

O(Δt3). The velocity Verlet algorithm updates velocity and positions according

to the following equations,

x(t + Δt) = x(t) + v(t)Δt + (1/2) a(t)Δt2,

v(t + Δt/2) = v(t) + (1/2) a(t)Δt,

a(t + Δt) = (1/m) f, (5.25)

v(t + Δt) = v(t + Δt/2) + (1/2) a(t + Δt)Δt,

where m is the mass, x is the position, v is the velocity, a is the acceleration of

the particle and f is the total force acting on the particle.

Explicit numerical solutions for differential equations should satify the

Courant-Friedrichs-Lewy condition (CFL condition) [26]. The CFL condition

constraints time step by some computable quantity.

In the SPH-based fluid simulations one of the constraints on time step is due

to the magnitude of particle accelerations [97],

Δt ≤ α min
i

√
h

|ai| , 0 ≤ α ≤ 1.0, (5.26)
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where h is the smoothing kernel radius and α is the CFL coefficient. Another

constraint is due to particle velocities v,

Δt ≤ α min
i

h

|vi| , 0 ≤ α ≤ 1.0, (5.27)

In mass-spring systems, the time step is limited by the stiffness of the system

defined by spring coefficients. One upper bound for time step is then can be

defined as follows [66]:

Δt ≤ 2
mmin

K
, (5.28)

where mmin is the minimum mass of particles and K is defined as:

K =
∑

i

ki, (5.29)

for each spring constant ki. This upper bound is an upper bound for the worst

case where each of the spring is connected in parallel between to mass particles.

This cannot be the case in a cloth animation where the mass-spring mesh is

constructed in such a way that two mass points are connected with only one

spring (see Section 4.1.1). Then K in Equation 5.28 can be defined as:

K = max
i

ki. (5.30)

5.6.1.1 Implicit Methods

A simple application of implicit integration method is the implicit Euler Method.

Recall that the explicit Euler method is in the following form:

v(t + Δt) = v(t) + f(t)
Δt

m
(5.31)

x(t + Δt) = x(t) + v(t + Δt)dt (5.32)

where v(t) and v(t + Δt) are the particle velocities at time t and t + Δt, re-

spectively. Likewise x(t) and x(t + Δt) are the positions and f(t) and f(t + Δt)

are the forces at time t and t + Δt, respectively. It should be noted that the

forces from the previous time step contribute to the positions at the next time

step. This fact introduces the aformentioned Courant condition [116]. According

to this criterion the integration time step is inversely proportional to the square
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root of the stiffness. In this case we have to keep the time step small enough

to prevent the system from blowing up. Otherwise, a large time step can induce

huge changes in position. An alternative in this case is to use an implicit inte-

gration method. Implicit integration methods can provide us time steps large

enough for an interactive simulation, if the large linear systems they produce are

approximated by the mentioned, or another similar, way.

The implicit Euler method uses the forces at time t+Δt instead of the forces

at time t. Thus the equations of the Euler method are as follows:

v(t + Δt) = v(t) + f(t + Δt)
Δt

m
(5.33)

x(t + Δt) = x(t) + v(t + Δt)Δt (5.34)

In this case the position in the next time step corresponds to the forces of the

next time step. In theory, with any value of the time step, we calculate the

positions coherent with the forces. Thus, the numerical solver cannot give rise

to any instabilities. Problem with this method is that it involves the term f t+Δt
i .

Fortunately f t+Δt
i can be approximated by the following equation:

f(t + Δt) = f(t) +
∂f

∂x
Δx(t + Δt) (5.35)

where f(t) stands for the internal energy of the system. The expression ∂f
∂x

is a

negated Hessian matrix and denoted by H [29]. Since

Δx(t + Δt) = x(t + Δt) − x(t) = (v(t) + Δv(t + Δt))Δt (5.36)

the equation 5.33 can be expressed by the following equation:

(I − Δt2

m
H)Δv(t + Δt) = (f(t) + ΔtHv(t))

Δt

m
(5.37)

Since Δv(t + Δt) = v(t + Δt)−v(t), we are to find v(t + Δt). In Equation 5.37,

Δt H v(t) represents the artificial viscosity forces added to create a dissipative

force in mass-spring or particle systems [95]. It can be calculated by the following

equation:

Δt H v(t) = Δt
∑

(i,j)∈E

ki,j(vj(t) − vi(t)) (5.38)



CHAPTER 5. PARTICLE SYSTEM IMPLEMENTATION 64

where E is the set of the spring edges in the mass-spring system. This artificial

viscosity is proportional to the time step and the stiffness of the system which

are responsible for the instability of the integration process. Thus, adding this

artificial viscosity introduces additional stability.

In order to update the system the expression I−Δt2

m
H in Equation 5.37, which

is an O(n×n) sized matrix where n is the number of mass points, should be solved

at each time step. In [4] Baraff et. al. employ a modified conjugate-gradient

method in order to ease this computational burden. Another method which is

argued to be faster is proposed by Desbrun et. al [29] where the Hessian matrix

H is approximated in the following manner. The entry of the Hessian matrix Hi,j,

where i is the row number and j is the column number, is approximated as Hi,j =

ki,j, and Hi,i = −∑j �=i ki,j, where ki,j is the stiffness of the spring connecting the

mass points i and j. ki,j is 0 when the mass points i and j are not linked.

By this method the matrix (I − Δt2

m
H)

−1
remains constant during the animation

alleviating the computational burden. The inverse matrix is, then, precomputed

and used as a filter during the animation. The equation summarizing the method

proposed by Desbrun et. al. can be written as:

Δv(t + Δt) = (I − Δt2

m
H)

−1
f̃Δt

m
(5.39)

where f̃ is the sum of the spring forces and the viscosity forces. Although using the

precomputed filter eases the computational burden, it has several disadvantages.

One of them is that it is not possible to use the adaptive time-step approach.

Moreover, it is impossible to change mass or stiffness and the matrix (I − Δt2

m
H)

−1

is not always a sparse matrix.

Young et. al. [64] propose another approximation method in which they as-

sume a uniform spring constant for the sake of simplicity. They, first, rewrite

Equation 5.37 in the following manner:

(I − Δt2Hii

mi
)Δvi − Δt2

mi

∑
(i,j)∈E

(Hi,jΔvj) =
f̃Δt

mi
(5.40)

In order to update the velocity change of the ith mass point they only consider

the linked mass points, because when ith and jth mass points are not connected,
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Hi,j is 0. Since they assume a uniform spring constant all over the mass-spring

network, the Hessian matrix can be rewritten as Hi,j = k and Hi,i = kni where

k is the spring constant and ni is the number of the springs connected to the ith

mass point. Thus, the update equation 5.40 can be written as:

mi + Δt2kni

mi
Δv(t + Δt) =

f̃ t
i Δt

mi
+

Δt2k
∑

(i,j)∈E Δvj(t + Δt)

mi
(5.41)

By using Equation 5.41, we can express Δvi(t + Δt) as follows:

Δvi(t + h) =
f̃i(t)h + kΔt2

∑
(i,j)∈E Δvj(t + Δt)

mi + kΔt2ni
(5.42)

which includes another unknown expression Δvj(t + Δt) which is the velocity

change of the jth mass points linked to the ith mass point. Young et. al. worked

out this problem by expressing Δvj(t + Δt) as follows:

Δvi(t + Δt) =
f̃j(t)Δt + Δt2

∑
(j,l)∈E kjlΔvl(t + Δt)

mj + Δt2
∑

(j,l)∈E kjl
(5.43)

and by dropping the term Δt2
∑

(j,l)∈E kjlΔvl(t + Δt) to get the following ap-

proximation:

Δvj(t + Δt) 
 f̃j(t)Δt

mj + Δt2
∑

(j,l)∈E kjl

(5.44)

After this approximation the formula for Δvit + Δt becomes:

Δvi(t + Δt) =
f̃i(t)Δt + Δt2k

∑
(i,j)∈E

efj(t)Δt

mj+Δt2knj

mi + Δt2kni

(5.45)

By using Equation 5.45, we can calculate vi(t + Δt) and then, xi(t + Δt) by

employing Equation 5.34.

Although implicit numerical integration methods are intrinsicly stable, they

are not easy to implement. It is even more diffucult to implement implicit meth-

ods in GPGPU or another parallel architecture. It is also not trivial to incorparate

position or force constraint with the implicit methods. Thus, an explicit integra-

tion method with a high order of error such as the velocity Verlet is an optimal

solution.



Chapter 6

GPU-based Particle Simulation

Previous chapters present theoretical and practical backgrounds of particle-based

simulation of fluids and cloth like deformable objects and their interaction. In

this Chapter, we detail the implementation of a particle-based simulation system

on common purpose Graphics Processing Units (GPUs). GPUs provide cheap,

accessible and easy to use parallel computing environment for personal comput-

ers. Exploiting the parallel computing capabilities of GPUs and parallel nature

of particle-based simulation systems, performance of such applications can be

improved greatly.

6.1 Introduction

In the last decade, common purpose graphics boards have experienced a very

rapid improvement in terms of processing power and programmability. Pushed

by the demand of gaming industry for faster, stronger and cheaper boards, GPU

producers have been developing more powerful GPUs. Thus, the increase of GPU

performance has been much more rapid than that of CPUs have been experienc-

ing as illustrated in Figure 6.1. This growing computational power of GPUs has

attracted the attention of not only game developers but also software develop-

ers who want to exploit computational power of graphics boards for numerical

66
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computations. To provide better development tools to researchers, GPU pro-

ducers have been developing better programming interfaces. Early examples of

numerical computations on GPUs have used the graphical programming interfaces

(shading languages), which are essentially aimed at graphics programming appli-

cations. Using shading languages for numerical computations is usually named

General-Purpose computing on Graphics Processing Units (GPGPU) [90].

Figure 6.1: Floating-Point operations per second and memory bandwidth for the
CPU and GPU [109].

GPUs are designed to execute similar operations on several data members in
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parallel. Using GPUs is especially beneficial for the tasks where a relatively small

amount of operations are applied to a large amount data. In GPUs, multiple

vertices, geometric primitives and fragments are processed in parallel through

a pipeline, which is called the Graphics Hardware Pipeline [36]. The graphics

pipeline is divided into several logical stages and their corresponding hardware

components (shaders), as illustrated in Figure 6.2. Through the development of

GPUs several of these components were made programmable.

The shader responsible of transforming the incoming vertices is called the

Vertex Shader. The vertex shader can perform a series of mathematical operations

on vertices and in modern GPUs it can read data from textures. This stage is

also called the vertex transformation. The next stage in the graphics pipeline

is executed by the Geometry Shader. The programmable geometry shader is a

relatively new addition to GPGPU and it can generate new graphics primitives

additional to those that are sent to the pipeline initially. The third stage of the

graphics pipeline is executed by the fragment or pixel shader, which operates on

every pixel. The fragment shader executes mathematical operations on each of

the pixels and it can lookup from and write into textures. Section 6.2 presents a

particle simulation system implemented by using a shading language.

Nvidia released CUDATM(Compute Unified Device Architecture) in November

2006, which is a parallel computing architecture. It is designed to run on Nvidia

GPUs from the G8X onwards and uses an extension to the C language although

some other high level languages are supported as well. CUDA is different from

the shading languages both in terms of its motivation and design. By definition,

shading languages follow the graphics pipeline in their programming style and

syntax. This introduces a high learning curve for non-graphics programmers.

CUDA, on the other hand, introduces a set of C programming language extensions

and constructs that are easier to learn. CUDA provides programmers with a

versatile and powerful, both low and high level, APIs to harvest the parallel

processing power of modern GPUs.

In CUDA terminology the CPU and main memory is called the host and

GPU and video memory is the device. CUDA functions (processing constructs)
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are called kernels and they are invoked by the host functions. Kernels process

data residing on the device’s global memory and execute a number of threads

in parallel. These threads are grouped into blocks. Other than the global (and

relatively slow) memory, each threads belonging to the same block share an on-

chip memory space (the shared memory). Moreover, CUDA has the texture

and constant memory spaces which are both read only and have shorter access

times than the global memory. CUDA has some built-in vector types which are

suitable for a physical based simulation. float3 and float4 vector types have 3

and 4 components, respectively, and these components are accessed through the

fields x, y, z, and w (in case of float4 ).

In Section 6.3, we present the details of a particle-based simulation system

implemented in CUDA. The system simulates fluid behavior and its interaction

with rigid and cloth like objects.

geometry
  shader

   vertex
   shader

fragment
   shader

vertex
  data

primitive
    data

frame
buffer

transformed
   vertices

new vertices

transformed
   fragments

 texture
memory

 texture
memory

Figure 6.2: The overview of the graphics pipeline.

6.2 Particle-Based Simulation by GPGPU

Particle-based simulations, such as SPH, mass-spring networks, and DEM, are

perfect candidates to be implemented on GPUs because of GPUs ability to pro-

cess multiple particles in parallel [114]. In this and following sections, we describe

a simulation system where parallel processing power of GPUs are exploited by

GPGPU for the purpose of particle simulations. Specifically, we have imple-

mented our particle system by using Nvidia’s shading language Cg (C for Graph-

ics) [91].
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In GPGPU, 2D textures are used to store the data where each texture element

has four components corresponding to RGBA values. The simulation data that

would be stored in arrays in a CPU implementation are instead stored in 2D

textures. Particle positions, velocities, acceleration, which are 3D vectors are

stored such that xyz components correspond to RGB values in 2D textures, as

illustrated in Figure 6.3(a). For some of the particle properties such as position

and velocity, two 2D textures are used as double buffer, as shown in Figure 6.3(b).

Scalar particle properties can be combined into single texture. For example,

particle densities and pressures are stored in R and G channels of the density-

pressure texture, respectively.

The processing element we use in our simulations is the pixel (fragment)

shader. Fragment shader is executed by drawing a full-screen quad. Drawing

such a rectangle instructs the graphics hardware to call the fragment shader for

each of the data elements. The output textures are, usually, targeted not to screen

but some output textures. This is achieved by the frame buffer (FBO) extension

of OpenGL. FBO enables the fragment shader to do an off-screen rendering.

Figure 6.4 (a) illustrates the flow diagram of our Cg implementation of SPH.

The initial step of the simulation is one-time setup where GPU memory (textures)

for the particle data are allocated and initialized. Once the particle data is

initialized on GPU memory, it runs entirely on GPU avoiding data transfers

between the main memory and video memory. The memory foot print of the

entire system on the CPU memory is negligible.

The first part of the simulation loop is the neighbor search where we con-

struct grid-particle map to be used in neighbor lookups. Then particle densities,

internal fluid forces, boundary and rigid object interaction forces are computed.

In the next step, the particle positions are updated by the numerical integration

with respect to net force acting on each particle. The output of this numeri-

cal integration step is a render target so that the updated particle positions are

rendered directly. In the following sections, we give the details of each of these

simulation steps.
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Figure 6.3: (a) Particle positions are stored in a 2D texture. R, G, B, and A are
the channels of each texture element and Xi, Yi, and Zi are the components of
the 3D position vector of the particle i. (b) Particle data are stored in several 2D
textures. For position and velocity double buffering is used.

6.2.1 GPGPU-based Neighbor Search

The biggest challenge of implementing a particle-based simulation by a shading

language is to detect particle proximities efficiently. This is because of the fact

that the fragment shaders that we use as the main processing units are not capable

of scatter. That is, they cannot write a value to a memory location for a computed

address since fragment programs run using precomputed texture addresses only

and these addresses cannot be changed by the fragment program itself. This

limitation makes several basic algorithmic operations (such as counting, sorting,

finding maximum and minimum) more complicated.

One of the common methods for detecting the set of neighboring particle is

to use a uniform grid to subdivide the simulation space. Kipfer et al. [69] use a

uniform grid and sorting mechanism to detect inter-particle collisions on GPU.

Purcell et al. [118] also use a sorting based grid method. They employ stencil

buffer for dealing with multiple photons residing in the same cell. Harada et

al. [51] present a SPH-based fluid simulation system on GPUs. Their system uses

bucket textures to represent a 3D grid structure and make an efficient neighbor

search. One limitation of their system is that it can only handle up to 4 particles

within a grid cell.

We implement the neighbor search algorithm presented in Section 5.5 on GPU

by using Nvidia’s shading language Cg. Because of the aforementioned limitations
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Figure 6.4: (a) The flow chart of the GPGPU-based SPH implementation. (b)
The flow chart of the CUDA-based particle simulation system. In the system
fluid and cloth particles interact with each other and the environment.

of shading languages, the algorithm has to be modified. The following section

explains the modified version of the algorithm.
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6.2.2 Grid Map Generation

Figure 6.4(a) illustrates the work flow of the GPU-based particle simulation that

employs the presented technique to compute the particle neighborhood informa-

tion. Each white rectangle in Figure 6.4(a) represents a rendering pass by a

fragment program and each gray rectangle represents an RGBA float texture.

The first part of the neighbor search algorithm is to generate the grid map.

The grid map stores the location information of particles per cell. By creating the

grid map, we determine the number of particles in each cell and its immediate

neighbors host, and IDs of these particles. Algorithm 2 outlines the grid map

generation process.

Step 1 of the algorithm computes 1D grid coordinates of particles (Equa-

tion 6.1), and stores this information in the grid coordinate texture (texGridCoor)

along with particle IDs. Step 2 sorts the texture texGridCoor with respect to

computed 1D grid coordinates. The sorting phase employs the bitonic sort [118].

Bitonic sort is developed for parallel machines and makes log2 N passes over the

texture, N being the number of particles. It is a good choice for sorting data by

shaders.

ix + iy × grid width + iz × grid width × grid height. (6.1)

Step 3 searches texGridCoor texture for the first occurrence of each grid cell

by using binary search. The fragment program searches the grid cell ID within

the sorted texGridCoor and stores the first occurrence in the R channel of the

grid map texture (texGridMap). If the grid cell does not host any particle, the

fragment program stores a sentinel value in the texture.

Step 4 counts the total number of particles belonging to each grid cell and

stores this information in the G channel. This is done by linear searching the

texGridCoor texture from the position found in Step 3 until we hit the next grid

cell ID.

Step 5 computes the total number of particles in and around of each grid

cell. The fragment program sums the number of particles stored in G channels
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of immediate neighbor grid cells. This information is stored in the B channel of

the grid map texture. Step 6 accumulates the values in the B channel and stores

this sum in the alpha channel.

1 for each grid cell i do
2 Step 1:
3 compute 1D grid coordinates of particles and store in texGridCoor ;
4 Step 2:
5 sort texGridCoor with respect to 1D grid coordinates ;
6 Step 3:
7 find first occurrence of i using binary search on texGridCoor (output to

channel R);
8 Step 4:
9 scan texGridMap to determine the number of particles belonging to i (output

to channel G);
10 Step 5:
11 scan texGridMap to determine number of particles belonging to i and its

immediate neighbors (output to channel B);
12 Step 6:
13 for j ← 0 to i do
14 sum the channel G values of j (output to channel A);
15 end
16 end

Algorithm 2: The algorithm for grid map generation

Figure 6.5 depicts a sample grid map texture. In this figure, i) the values in the

R channel point to the first occurrence of the grid cell within the grid coordinate

texture texGridCoor, ii) the values in the G channel are the total number of the

particles hosted within the grid cell, and iii) B values are the total number of

particles hosted in the grid cell itself and its immediate neighbors, and iv) the

alpha channel values point to the first occurrence of the grid cell with the fluid

grid texture (texFluidGrid), which is generated afterwards.

6.2.3 Generating Fluid Grid Texture and Neighbor

Lookup

Algorithm 3 outlines the fluid grid texture generation. Fluid grid texture (texFlu-

idGrid) is similar to grid coordinate texture (texGridCoor) in the sense that it

contains particle IDs sorted with respect to their 1D grid coordinates. The dif-

ference between texGridCoor and texFluidGrid is that the latter has an entry for
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Figure 6.5: Grid map texture and fluid grid texture.

particle host cell and, additionally, an entry for each of the immediate neighbor

cells of the host cell. Each particle appears up to 27 times in texFluidGrid ; once

for the host cell and 26 times (which could be less if the host cell lies on the grid

boundary) for each neighboring cell.

1 for each texture coordinate i of texFluidGrid do
2 binary search the A channel of texGridCoor for i ;
3 determine host cell c of i ;
4 linear search i within particle list of c;
5 determine particle ID to be written into the current texture position i ;
6 end

Algorithm 3: The algorithm for fluid grid texture generation.

To construct texFluidGrid, the fragment program has to decide which parti-

cle ID is to be stored in the current texture coordinate. Basically, the fragment

program determines the grid cell hosting the particle by searching the particles

using the alpha channel of the grid map texture texGridMap. Then by following

the pointers of the grid cell to the grid coordinate texture texGridCoor, the frag-

ment program finds the appropriate particle ID. For example, assume that the

current texture coordinate is 215,425 and the current texGridMap is as shown

in Figure 6.5. Binary searching for this coordinate in the alpha channel of the

texGridMap reveals that the particle resides in the neighborhood of the grid cell

15,495. Then, to determine the particle ID to store in the current location, we

go through the list of hosted particles in the neighborhood of grid cell 15,495.
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After generating the textures texGridMap and texFluidGrid, finding possible

neighbors of a particle is a simple task. We use the particle’s 1D grid ID to look

up the pointer to texFluidGrid. For example, if 1D grid cell coordinate of particle

i is 15,494, then i has 258 potential neighbors starting with 1,807 (see Figure 6.5).

6.2.4 Density and Force Computations and Numerical In-

tegration

The next step after neighbor search phase is to compute the scalar values of

particle density and pressure, as defined by Equation 3.13 and Equation 3.18,

respectively. The density-pressure computation step is implemented by a sin-

gle fragment shader which outputs particle density and pressure values into the

density-pressure texture.

The internal fluid forces are pressure and viscosity forces and they are defined

by Equation 3.21 and Equation 3.22, respectively. The internal fluid forces are

made symmetrical to satisfy the third law of the Newton’s law of motion:

f internal
i,j = −f internal

j,i , (6.2)

for each fluid particle pair i and j. The boundary forces and rigid body forces

acting on fluid particles are computed by the discrete element method (DEM),

which is explained in Section 4.3.

The internal fluid forces and rigid body boundary forces are computed by a

single fragment shader, which takes particle positions, densities and pressures as

input, and outputs net forces acting on each fluid particle.

Updating particle position from the new forces is done by the velocity Verlet

integration, which is explained in Section 5.6. As mentioned in Section 6.2, to

implement the velocity Verlet integration by fragment shaders, we use double

buffers for particle positions and velocities. This is because the verlet algorithm

takes particle positions (and velocities) as input and outputs new position val-

ues. However, fragment shader cannot output into the input texture. To work
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around this limitation, we swap the input and output position (and velocity)

textures at each time step. This practice is commonly called the the Ping-Pong

technique [90].

The old fragment shaders can only output to one texture at a time. That

limitation implies that the verlet algorithm as expressed in Equation 5.23 should

be implemented in separate fragment shaders. That is, each step of the velocity

verlet algorithm is implemented in a different fragment shader. Newer GPUs sup-

ports the Multiple Render Targets (MRT) extension by which fragment shaders

can write values to multiple render targets [122]. With this capability, Verlet

integration can be implemented by a single fragment shader.

6.3 Particle-Based Simulation in CUDA

We implement a SPH based fluid simulation system alongside with a mass-spring

system in CUDA. The system is able to simulate cloth and fluid behavior and

their interaction with each other and rigid objects. Figure 6.4(b) illustrates the

main steps of the CUDA implementation.

The simulation starts with a one-time startup step which allocates and initial-

izes the data structures for the particle system in the main memory (the host).

The particle data structure includes 1D arrays of float3 or float4 vector types

and they store coordinates, velocities, acceleration, and density-pressure values

of particles.

To store the connectivity (spring neighborhood) of cloth particles in the cloth

mesh we construct a simple data structure as illustrated in Figure 6.6. Since the

the connectivity of the cloth mesh stays constant throughout the simulation, the

depicted structure is created in the host and uploaded to the device. As Figure 6.6

shows, two lookups are needed to find the neighbors of a cloth particle.

After values of the particle data structure is copied over to allocated device
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Figure 6.6: The constant cloth mesh connectivity is stored on the device memory
as illustrated. Two lookups are performed to find the cloth particles that are
connected to particle 53.
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Figure 6.7: Memory bandwidths between and within CPU and GPU [109].

(GPU) arrays, the host arrays are deallocated. As in the GPGPU implementa-

tion, the entire simulation data resides on the device memory avoiding slow data

transfers between the host and device. Figure 6.7 shows the memory bandwidths

between the structural elements of the CPU-GPU computational model. As it is

clear from Figure 6.7, it is crucial to avoid frequent data transfers between the

host and device to prevent performance degradation.

As in the CPU and GPGPU case, the simulation cycle in CUDA implementa-

tion starts with neighbor search step where particle proxomities are determined.
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Figure 6.8: CUDA implementation of the neighbor search algorithm, which is
similar to the corresponding CPU implementation. Boxes stand for kernels.

6.3.1 Neighbor Search Algorithm with CUDA

In the CUDA implementation of the particle system, we employ the neighbor

search method that we detail in Chapter 5.5. We present the GPGPU imple-

mentation of the algorithm in Section 6.2.1. The CUDA implementation of the

neighbor search algorithm is much simpler than the GPGPU case. This is be-

cause of the fact that CUDA kernels are able to perform arbitrary reads and

writes from and into arrays residing in the global memory.

The steps of the neighbor search algorithm are underlined in Algorithm 1 of

Section 5.5.1. Figure 6.8 illustrates the flowchart of the algorithm in CUDA. The

boxes in Figure 6.8 depicts the kernels which are main computational elements

of CUDA platform. The first kernel computes the 1D grid coordinates of each

particle by applying Equation 6.1 to integral particle coordinates. The next kernel

uses the radix sort algorithm [25] to sort the particles with respect to their 1D

grid coordinates. The sorted particles are scanned to find the pointers for each

grid voxel to the sorted particle array. The voxel pointers are used in potential

neighbor lookup in fluid force-density computation kernel.



CHAPTER 6. GPU-BASED PARTICLE SIMULATION 80

6.3.2 Density and Force Computations, and Numerical

Integration in CUDA

The bottleneck of the CUDA implementation of our particle simulation is neigh-

bor lookup (step 4 in Figure 6.8) where each thread scans the neighbor particle

list to determine potential neighbors. Thus, it is crucial for the performance of

the simulation to reduce number of lookups for each particle. In a naive SPH

implementation, a kernel would first compute particle densities by scanning the

neighbor list. Then a second kernel would use the densities to compute pres-

sure based SPH forces again by computing the potential neighbors. Although

this approach produces physically more precise results, it requires two kernels

to determine potential neighbor lists for each particle. A faster way is to use a

single kernel for force and density computations, in this case by using density

values from the previous simulation step. In our experiments, using particle den-

sities from the previous simulation step and combining SPH force and density

computations into a single kernel improve the overall performance of the system

about 30 %. The kernel computing the fluid particle densities and SPH forces

uses Equations 3.13, 3.21, 3.22, and 3.28. The same kernel uses Lennard-Jones

potential (Equation 5.3) for computing the boundary forces acting on the fluid

particles.

As illustrated in Figure 6.4(b), the interaction between cloth and fluid particles

are computed by another kernel which computes discrete element method forces

(Equations 4.9 and 4.10) and forces due to capillary pressure (Equation 5.11).

The same kernel adds the gravitational acceleration and environmental viscous

drag to fluid and cloth particles. Updated particle position are computed by the

integration kernel which uses the velocity Verlet integration schema.



Chapter 7

Results

This chapter presents several examples of particle-based simulations. The ex-

amples are presented by indicating the implementation details, such as the ar-

chitecture the simulation runs on (CPU or GPU), the number of total particles

(fluid, cloth, and rigid body particles), run time for each simulation step, memory

footprint (main memory and graphics memory), and the details of the rendering

process. The simulations are implemented with C++ programming language, Cg

shading language, and CUDA for parallel computing on the GPU.

We exploit multicore architecture of CPU via OpenMP [139]. OpenMP is

an API supporting shared memory multicore processors which have become the

standard processor architecture for common use desktop and laptop computers.

By using OpenMP, certain parts of a simulation algorithm (specifically for loops)

can be parallelized easily [15].

The first example is from a 2D simulation where a fluid body is simulated by

SPH, see Figure 7.1. Repulsive forces between the unmovable rigid body particles

and fluid particles are computed by the Lennard-Jones potential as explained

in Section 5.1. The simulation runs on CPU where OpenMP is employed to

exploit the multicore structure of the processor. There are 12 thousand (12K)

fluid particles in the scene and total number of rigid body particles is 1K. The

simulation runs at 50 FPS.

81
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Figure 7.1: A 2D simulation where fluid particles run through a pipe-like rigid
object. The simulation runs on CPU.

Figure 7.2: A cloth is draped onto a rigid object.

In Figure 7.2, a cloth mesh is draped onto a cylinder. Collision between the

cloth mesh and the rigid object is handled in particle-to-particle basis. Collision

response forces are computed by the discrete element method which is explained

in Section 4.3. Cloth model and rigid object consists of 6K and 13K particles,

respectively. The scene is rendered in Povray.

Figure 7.3 shows frames of a simulation where a river flowing through a stack

of rocks blocking a valley bed. By employing the boundary conditions mentioned

in Section 5.1, water flows through a complex structure realistically. The scene

consists of 60K fluid particles and 220K solid boundary particles including the

stone stack and the valley. The simulation runs on CPU with speed of 30 FPS

excluding the rendering which is done by Povray [92].



CHAPTER 7. RESULTS 83

Figure 7.3: A river flowing through a stack of rocks.

The next example, which is illustrated by Figure 7.4, depicts a viscous liquid

(lava) flowing down on a terrain. For this simulation, the viscosity coefficient μ

of Equation 3.22 is set to 12.0. Moreover the rigid object particles exert a viscous

drag on the fluid particle based on the rigid particle velocities (Equation 5.2). The

lava and terrain consist of 50K and 60K particles, respectively and the simulation

runs at 35 fps. Rendering is done offline with Povray.

Figure 7.4: Lava flows down on a terrain.

Figure 7.5 illustrates frames from a simulation where two bodies of fluid are

mixed by a rotating disk. The example demonstrates the splashing and mix-

ing effects of two fluid bodies with different densities. The density difference

of the fluids is simulated by assigning different values to the rest densities ρ0

(Equation 3.18) The scene has a total of 50K fluid particles and 150K boundary

particles. The simulation runs on CPU, at 34 fps.
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Figure 7.5: Two types of fluids with different densities are mixed by a rotating
mixer.

Figure 7.6 shows still images from an animation where fluid dragons are

dropped into a container. After the fluid stabilizes, it flows down through a

pipe. Total number of fluid particles is 120K and object particles is 50K. Simu-

lation is implemented on CPU and the memory footprint of the whole system is

about 1.1 GB. The simulation runs at 25 fps.

Figure 7.6: Fluid dragons dropped into a container and flow down through a pipe.

The next simulation demonstrates fluid cloth interaction where fluid particles

leak through pores of a cloth, see Figure 7.7. The cloth is modeled with a mass-

spring network as explained in Section 4.1, and the poured fluid passes through

micropores. The simulation runs on CPU in 30 FPS.

Figure 7.8 illustrates two different simulations which are implemented by Cg

on fragment shaders as described in Section 6.2. In Figure 7.8 (a) fluid particles
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Figure 7.7: Fluid is poured onto a hanged cloth and leaks through the pores of
cloth.

(a) (b)

Figure 7.8: (a) Fluid particles flow down onto a fountain (simulation speed 20
FPS). (b) Fluid particles flow into a cloth mesh simulation speed 22 FPS).

flow down onto a fountain model and fill it. There are 64K fluid particles and the

fountain object consists of 64K particles. In Figure 7.8 fluid particles jet into a

cloth mesh which moves because of the fluid flow. Both of these simulations run

entirely on GPU with a memory footprint of approximately 700 MB. Both scenes

are rendered by OpenGL. Figure 7.9 shows a series of frames from a breaking

dam animation which run on GPU. The fluid body consists of 200K particles and

memory footprint of the system is about 850 MB. The simulation is implemented

by Cg as well and runs at 30 FPS.

Still images shown in Figure 7.10 are from a simulation where a fluid body

flows down through a collection of rigid objects. The simulation is implemented

in CUDA and runs at 60 FPS. The number of fluid and rigid body particles are

60K and 120K, respectively.
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Figure 7.9: A series of frames from a breaking dam simulation. The simulation
is implemented by GPGPU (Cg) and rendered by OpenGL.

Figure 7.10: A fluid body flows down through a series of rigid objects.

Figure 7.11 shows still images from a simulation where fluid and a knitwear

interact. Fluid flow jets into the hanged knitwear and pushes it. Some of the fluid

gets through the knitwear and some is absorbed by it by capillary pressure forces

as explained in Section 3.2.3 and Section 5.3. As it absorbs fluid, knitwear changes

its color and weight. The whole system is implemented on CUDA. The rendering

of fluid and knitwear is done by GLSL [122] shaders. Knitwear rendering is done

as it is explained in Section 4.4.

Figure 7.12 (a) illustrates a simulation where a knitwear model is draped

onto a rigid sphere. This simulation shows the volumetric structure of knitwear,

detailed in Section 4.2, and its response to perpendicular forces alongside with
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Figure 7.11: A fluid flow jets into a hanged piece of knitwear. Two way coupling
is handled in particle-to-particle basis. Some of the fluid is absorbed by the
knitwear because of its porous structure. Knitwear changes its appearance and
weight as it gets wet.

the shear, stretch and bending forces. The scene is rendered by GLSL shaders

with the method which is explained in Section 4.4. The rendering provides the

knitwear a realistic fluffy look and detailed soft shadows. The spring mass part

of the simulation is implemented to run on GPU with CUDA.

A deformable bunny model drops onto floor as shown in Figure 7.12 (b). The

deformable model is modeled by placing spring constraints to the polygon edges

of model. To prevent the model from collapsing into itself an addition set of

springs is placed between each of the vertices and object centroid. Although this

is not an optimal way to model a deformable object, the simulation shows that

the computational power of GPU can attain interactive rates even the number of

springs is very high. The bunny model has approximately 32K vertices and 64K

edges. The deformable model has approximately 100K springs and simulation

runs at 32 FPS.

The chart in Figure 7.14 shows the performance of a breaking dam scene

with different number of fluid particles. The simulation is run with the same

parameters (kernel radius, grid resolution, fluid parameters, etc.) except the

number of fluid particles. The tests are performed in two different computers

whose relevant technical details are given in Figure 7.13. These two computers

(especially in terms of their GPU capabilities) are of different generations with

Computer 2 being a high end performance computer.

Several of the technical parameters are of importance for the performance of
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(a) (b)

Figure 7.12: (a) A piece of knitwear is dropped into a rigid body. (b) A deformable
object falls onto floor.

our simulation method. The number of microprocessors and number of cores per

microprocessor is crucial since these parameters directly relate to the number of

concurrent computations. Maximum number of threads per block is also impor-

tant since higher number of threads that can reside inside a single block means

more threads can communicate through the shared memory and execution can

switch from stalled threads to idle threads improving the occupancy of the whole

system. Maximum register size is also crucial since registers are used to store

temporary data (such as variable) during computations. Physically registers re-

side on the chip and their latency is very low. However, whenever the number of

registers is insufficient, the slower shared or global memory is used for temporary

storage. This of course impedes the performance.

Figure 7.14 illustrates the performance gain in terms of frames per second as a

more powerful hardware is used. The difference in the performance of two tested

graphics boards suggests that the performance of the simulations method is very

responsive to improvement of hardware. Our CUDA implementation can provide

interactive rates for 200K particles. One important statistics to show the amount

of computation is the number of particle-to-particle interactions, that is number

of particles close enough to affect each other. Although this number changes

according to the parameters of the scene, in our tests there are approximately 6

million particle interactions for 240K fluid particles.
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Computer 1 Computer 2

CPU DualCore Intel Core i5 QuadCore Intel Core i7

CPU Clock 2400 MHz 2666 MHz

Memory Size 4 GB. 12 GB.

Memory Type DDR3 DDR3

Memory Bus Clock 1079 MHz

GPU Name nVIDIA GeForce GT 330M nVIDIA GeForce GTX 480

Clock Rate 1265 MHz 810 MHz

Multiprocessors / Cores 6 / 48 15 / 120

Number of Transistors 486 million 3200 million

Bus Type PCI Express 2.0 x16 @ x16 PCI Express 2.0 x16 @ x16

Memory Bus Type DDR3 DDR3

Max Threads Per Block 512 1024

Max Registers Per Block 16384 32768

Device

Host

Figure 7.13: Several parameters of the computers used in performance tests.
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Chapter 8

Conclusion

This Thesis propose several new methods for modeling and simulation of natural

phenomena. We employ the physically-based simulation paradigm which provides

great flexibility, control, and realism. Specifically, we investigate particle-based

modeling and simulation methods with the aim of mimicking natural occurrences

that is fluids, cloth-like deformable objects and their behaviors. Our priority

during our research has been practicality, realism, and computational efficiency

of the implemented methods.

Determining the set of neighboring particles at each simulation step is a vital

stage of a particle system. We develop a sorting-based space subdivision method

for the purpose of achieving fast, accurate, and robust neighbor detection. Our

neighbor search method can be used with any particle simulation paradigm (e.g.

Smoothed Particle Hydrodynamics, the Discrete Elements Method) since it does

not depend on any assumptions of the nature of the simulation algorithm or

simulation parameters. We use the Marching Cubes algorithm to tessellate the

free fluid surface. To improve the quality of the final rendering, we propose a

method where we differentiate the particles according to their relative position

to the surface. The result is a fluid surface which is smoother in flat regions and

gives better details in regions like water fronts.

In the proposed particle system, objects interact with each other through

90
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interparticle forces. There are several alternatives for defining these forces and in

our system, we use a combination of these alternatives. We simulate fluid-fluid,

cloth-fluid, boundary-fluid interactions with interparticle forces.

We animate cloth-like deformable objects and knitwear by employing mass-

spring method. We propose improvements upon the mass-spring methods so

that knitwear which has a prominent thickness and complex microstructue can

be simulated and visualized. We develop a hardware-based method to render

knitwear realistically. We propose a method for simulation of absorption of fluids

by cloth-like object where capillary pressure-based forces are employed.

One of the intrinsic characteristics of particle systems is that they are paral-

lelizable. Even though particles interact with each other, they can be handled

independently within a simulation step. Thus particle systems are very good

candidates to be implemented on parallel computing systems that have become

accessible even to low end computer systems. We implement the proposed par-

ticle system on multicore CPUs and programmable graphics processors (GPUs)

to exploit their computational power. The details of these implementations are

presented in the preceding chapters.

There are several possible extensions for improving the applicability, perfor-

mance, and realism of the proposed particle system. A hardware accelerated

rendering method can be incorporated into the system for a high quality, state of

art visualization. GPU implemented ray-casting algorithms are very good can-

didates for this purpose. Isosurface extraction methods fail to capture details,

such as, in mixing fluids. Rigid, semi-rigid, granular objects can be added to our

particle system by modeling them as particle collection.
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smoothed particle hydrodynamics. Computer Graphics Forum (Proceedings

of Eurographics’09), 28(2):219228, mar 2009.

[73] J. Kruger, P. Kipfer, P. Kondratieva, and R. Westermann. A particle system

for interactive visualization of 3D flows. IEEE Transactions on Visualiza-

tion and Computer Graphics, 11(6):744–756, 2005.

[74] T. Kunii and H. Gotoda. Singularity theoretical modeling and animation

of garment wrinkle formation process. The Visual Computer, 6(6):326–336,

1990.

[75] W. Laan, S. Green, and M. Sainz. Screen space fluid rendering with cur-

vature flow. In Proceedings of the Symposium on Interactive 3D Graphics

and Games (I3D’09), pages 91–98, New York, NY, USA, 2009. ACM.

[76] B. Lafleur, N. M. Thalmann, and D. Thalmann. Cloth Animating with Self-

Collision Detection in Modeling in Computer Graphics. Springer-Verlag,

Berlin, 1991.



BIBLIOGRAPHY 100

[77] L. Latta. Building a million particle system. In Proceedings of the Game

Developers Conference, 2004.

[78] H.-Y. Lee, J.-M. Hong, and C.-H. Kim. Interchangeable sph and level set

method in multiphase fluids. The Visual Computer, 25(5-7):713–718, 2009.

[79] T. Lenaerts, B. Adams, and P. Dutré. Porous flow in particle-based
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trol. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on

Computer Animation (SCA’06), pages 7–12, 2006.
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