
EFFICIENCY AND EFFECTIVENESS OF
XML KEYWORD SEARCH

USING A FULL ELEMENT INDEX

a thesis

submitted to the department of computer engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Duygu Atılgan

August, 2010

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Özgür Ulusoy (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Fazlı Can

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Ahmet Coşar

Approved for the Institute of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Institute

ii

ABSTRACT

EFFICIENCY AND EFFECTIVENESS OF
XML KEYWORD SEARCH

USING A FULL ELEMENT INDEX

Duygu Atılgan

M.S. in Computer Engineering

Supervisor: Prof. Dr. Özgür Ulusoy

August, 2010

In the last decade, both the academia and industry proposed several techniques

to allow keyword search on XML databases and document collections. A common

data structure employed in most of these approaches is an inverted index, which

is the state-of-the-art for conducting keyword search over large volumes of textual

data, such as world wide web. In particular, a full element-index considers (and

indexes) each XML element as a separate document, which is formed of the text

directly contained in it and the textual content of all of its descendants. A major

criticism for a full element-index is the high degree of redundancy in the index

(due to the nested structure of XML documents), which diminishes its usage for

large-scale XML retrieval scenarios.

As the first contribution of this thesis, we investigate the efficiency and effec-

tiveness of using a full element-index for XML keyword search. First, we suggest

that lossless index compression methods can significantly reduce the size of a full

element-index so that query processing strategies, such as those employed in a

typical search engine, can efficiently operate on it. We show that once the most

essential problem of a full element-index, i.e., its size, is remedied, using such

an index can improve both the result quality (effectiveness) and query execution

performance (efficiency) in comparison to other recently proposed techniques in

the literature. Moreover, using a full element-index also allows generating query

results in different forms, such as a ranked list of documents (as expected by a

search engine user) or a complete list of elements that include all of the query

terms (as expected by a DBMS user), in a unified framework.

As a second contribution of this thesis, we propose to use a lossy approach,

static index pruning, to further reduce the size of a full element-index. In this

iii

iv

way, we aim to eliminate the repetition of an element’s terms at upper levels in an

adaptive manner considering the element’s textual content and search system’s

ranking function. That is, we attempt to remove the repetitions in the index only

when we expect that removal of them would not reduce the result quality. We

conduct a well-crafted set of experiments and show that pruned index files are

comparable or even superior to the full element-index up to very high pruning

levels for various ad hoc tasks in terms of retrieval effectiveness.

As a final contribution of this thesis, we propose to apply index pruning

strategies to reduce the size of the document vectors in an XML collection to

improve the clustering performance of the collection. Our experiments show that

for certain cases, it is possible to prune up to 70% of the collection (or, more

specifically, underlying document vectors) and still generate a clustering structure

that yields the same quality with that of the original collection, in terms of a set

of evaluation metrics.

Keywords: Information Retrieval, XML Keyword Search, Full Element-Index,

LCA, SLCA, Static Pruning, Clustering.

ÖZET

TAM ELEMAN İNDEKSİ KULLANARAK XML
ANAHTAR SÖZCÜK ARAMANIN VERİMLİLİK VE

ETKİLİLİĞİ

Duygu Atılgan

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Özgür Ulusoy

Ağustos, 2010

Son yıllarda akademide ve endüstride, XML veritabanları ve belge derlemlerinde

anahtar sözcük aramak için çeşitli teknikler önerilmiştir. Bu tekniklerin pek

çoğunda kullanılan veri yapısı, dünya çapında ağ (WWW) gibi büyük metin ve-

rileri üzerinde anahtar sözcük aramada en gelişmiş teknik olan ters indekstir. Bir

tam eleman indeksi her bir XML elemanını, metni, kendisinin doğrudan içeriği ve

torunlarının içeriklerinden oluşan ayrı bir belge olarak düşünür ve indeksler. Tam

eleman indekse yöneltilen önemli bir eleştiri (XML belgelerinin iç içe yapısından

dolayı) yüksek derecede fazlalık içermesidir. Bu durum tam eleman indeksin

büyük ölçekli XML erişimi durumlarında kullanımını azaltır.

Bu tezde XML anahtar sözcük arama için tam eleman indeksinin kullanımının

verimlilik ve etkiliği araştırılmaktadır. Öncelikle, kayıpsız indeks sıkıştırma

tekniklerinin tam eleman indeksinin büyüklüğünü önemli ölçüde azaltabileceği,

böylece tipik bir arama motorundaki sorgu işleme stratejilerinin böyle bir in-

deks üzerinde verimli bir şekilde çalışabileceği öne sürülmektedir. Bir tam e-

leman indexinin en önemli dezavantajı boyutunun büyüklüğüdür. Bu sorun

çözüldüğü takdirde bu tip indeks kullanımının, sonuç kalitesi (etkililik) ve sorgu

işleme performansını (verimlilik) son zamanlarda önerilen diğer tekniklere kıyasla

geliştirebileceği gösterilmektedir. Ayrıca tam eleman indeksi kullanmak, birleşik

bir taslakta sorgu sonuçlarını, sıralı belge listesi (bir arama motorunun kul-

lanıcısının beklediği şekilde) ya da sorgu sözcüklerinin tümünü içeren eleman

listesi (bir veritabanı sistemi kullanıcısının beklediği şekilde) gibi farklı formlarda

oluşturmaya olanak sağlar.

Bu tezin ikinci bir katkısı olarak, tam eleman indeksin büyüklüğünü daha

v

vi

da azaltmak için kayıplı bir yaklaşım olan statik budama tekniğinin kul-

lanılması önerilmektedir. Bu şekilde, bir elemanın sözcüklerinin yukarı seviye-

lerdeki tekrarının, elemanın metinsel içeriği ve arama motorunun sıralama işlevi

dikkate alınarak, uyarlanabilir bir şekilde azaltılması amaçlanmaktadır. Yani

indeksteki tekrarlamaların, çıkarılmaları sonuç kalitesini azaltmadığı takdirde,

ortadan kaldırılmasına çalışılmaktadır. Deneysel çalışmalarla, budanmış in-

deks dosyalarının çok yüksek budama seviyelerine kadar, erişim etkililiği

açısından, tam eleman indeksiyle karşılaştırabilir, hatta ondan daha iyi olduğu

gösterilmektedir.

Son olarak, indeks budama stratejilerinin, bir XML derleminin belge

vektörlerinin büyüklüklerinin azaltılarak gruplama performansının geliştirilmesin-

de kullanılması önerilmektedir. Deneyler, belli durumlar için, koleksiyonun %70

kadarı budanarak, bir grup değerlendirme metriğine göre, orijinal koleksiyonla

aynı kaliteyi sağlayan bir gruplama yapısı oluşturulabildiğini göstermektedir.

Anahtar sözcükler : Bilgiyi Geri Alma, XML Anahtar Sözcük Arama, Tam Ele-

man İndeksi, LCA, SLCA, Statik Budama, Gruplandırma.

Acknowledgement

I would like to express my sincere gratitude to my supervisor Prof. Dr. Özgür

Ulusoy for his invaluable support and guidance during this thesis.

I am also thankful to Prof. Dr. Fazlı Can and Assoc. Prof. Dr. Ahmet Coşar

for kindly accepting to be in the committee and spending their time to read and

review my thesis. I am indepted to Dr. Sengör Altıngövde not only for his endless

help and support in this research but also for his friendship. I also want to thank

my officemates Rıfat and Şadiye for sharing the office with me.

I am grateful for the financial support of The Scientific and Technological

Research Council of Turkey (TÜBİTAK-BİDEB) for two years during this thesis.

I would like to thank my friends Nil, Emre, Aslı, Nilgün, Funda, Özlem, Eda

and Büşra for their valuable friendship and understanding. Special thanks go to

Kamer for his existence.

And last but most of the my gratitude goes to my dearest family. Nothing

makes sense without their love. To them, I dedicate this thesis.

vii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

2 Related Work 5

2.1 Keyword Search for Unstructured Documents 5

2.2 Keyword Search for XML . 7

2.2.1 Node Labeling Schemes 8

2.2.2 Indexing Techniques . 9

2.2.3 Query Processing Techniques 12

2.3 Compression of Indexes . 17

2.3.1 Lossless Compression . 18

2.3.2 Lossy Compression . 19

3 XML Keyword Search with Full Element Index 21

3.1 Introduction . 21

viii

CONTENTS ix

3.2 Document Ordered Query Processing Using Full Element Index . 22

3.3 Full Element Index versus Direct Dewey Index 26

3.4 Experiments . 28

3.4.1 Experimental Setup . 28

3.4.2 SLCA Retrieval Efficiency 29

3.4.3 SLCA Retrieval Effectiveness 33

3.4.4 Size Comparison of Full Element Index and Direct Dewey

Index . 35

3.5 Conclusion . 37

4 XML Retrieval using Pruned Index Files 38

4.1 Introduction . 38

4.2 Pruning the Element-Index . 40

4.3 Experiments . 42

4.3.1 Experimental Setup . 42

4.3.2 Performance Comparison of Indexing Strategies: Focused

Task . 44

4.3.3 Performance Comparison of Indexing Strategies: Relevant-

in-Context Task . 48

4.3.4 Performance Comparison of Indexing Strategies: Best-in-

Context Task . 49

4.4 Conclusion . 51

CONTENTS x

5 Using Pruning Methods for Clustering XML 52

5.1 Introduction . 52

5.2 Baseline Clustering with C3M . 53

5.3 Employing Pruning Strategies for Clustering 54

5.4 Experiments . 54

5.5 Conclusion . 59

6 Conclusions and Future Work 61

List of Figures

2.1 Structure of an inverted index . 6

2.2 Tree Traversal Labeling of an XML Tree 9

2.3 Dewey ID Labeling of an XML Tree 10

2.4 Structure of full and direct inverted index 11

2.5 LCA nodes of the query ‘XML, Liu’ 16

2.6 SLCA nodes of the query ‘XML, Liu’ 17

3.1 Processing Time of 2-Keyword Query with Frequency 100-X . . . 31

3.2 Processing Time of 2-Keyword Query with Frequency 1000-X . . . 32

3.3 Processing Time of 2-Keyword Query with Frequency 100000-X . 32

3.4 Processing Time of Queries with Varying Number of Keywords

(Frequency 100-100000) . 33

4.1 Effectiveness comparison of Ifull, ITCP and IDCP in terms of iP[0.01] 44

4.2 Effectiveness comparison of Ifull, ITCP and IDCP in terms of

MAiP[0.01] . 45

xi

LIST OF FIGURES xii

5.1 Comparison of the highest scoring runs submitted to INEX for

varying number of clusters on the small collection. 60

List of Tables

2.1 Storage Requirement of UTF-8 Encoding 18

3.1 Complexity Analysis for Indexed Lookup Eager and Scan Eager Algo-

rithms, where ID is the Dewey index, Imin
D (Imax

D) is the length of the

shortest (longest) posting list in ID, k is the number of query terms,

TD is the total number of blocks that ID occupies on disk and d is the

maximum depth of the tree. 30

3.2 Complexity Analysis for DocOrdered Processing Algorithm, where

IF is the full index, Imin
F is the length of the shortest posting list

in IF , k is the number of query terms, and TF is the total number

of blocks that IF occupies on disk. 30

3.3 Effectiveness and Efficiency Comparison of SLCA and Top-1000

Methods . 34

3.4 Size Comparison of Full Element Index and Direct Dewey Index

with Elias-γ compression . 36

3.5 Size Comparison of Full Element Index and Direct Dewey Index

with Elias-δ compression . 36

3.6 Size Comparison of Full Element Index and Direct Dewey Index

with UTF-8 compression . 36

xiii

LIST OF TABLES xiv

4.1 Effectiveness comparison of indexing strategies for Focused task.

Prune (%) field denotes the percentage of pruning with respect to

full element-index (Ifull). Shaded measures are official evaluation

measure of INEX 2008. Best results for each measure are shown

in bold. 46

4.2 Effectiveness comparison of indexing strategies for Relevant-in-

Context task. Prune (%) field denotes the percentage of pruning

with respect to full element-index (Ifull). Best results for each

measure are shown in bold. 49

4.3 Effectiveness comparison of indexing strategies for Best-in-Context

task. Prune (%) field denotes the percentage of pruning with re-

spect to full element-index (Ifull). Best results for each measure

are shown in bold. 50

5.1 Micro and macro purity values for the baseline C3M clustering for

different number of clusters using the small collection. 56

5.2 Micro and macro purity values for the baseline C3M clustering for

different number of clusters using the large collection. 56

5.3 Comparison of the purity scores for clustering structures based on

TCP and DCP at various pruning levels using the small collec-

tion. Number of clusters is 10000. Prune (%) field denotes the

percentage of pruning. Best results for each measure are shown in

bold. 56

5.4 Micro and macro purity values for DCP at 30% pruning for differ-

ent number of clusters. 57

5.5 Mean and standard deviation of nCCG values for the baseline C3M

clustering for different number of clusters using the small collection. 58

LIST OF TABLES xv

5.6 Comparison of the mean and standard deviation of nCCG values

for clustering structures based on TCP and DCP at various prun-

ing levels using the small collection. Number of clusters is 10000.

Prune (%) field denotes the percentage of pruning. 58

5.7 Mean and standard deviation of nCCG values for DCP at 30%

pruning for different number of clusters. 59

Chapter 1

Introduction

1.1 Motivation

In recent years, there has been an abundance of Extensible Markup Language

(XML) data on the World Wide Web (WWW) and elsewhere. In addition to

being used as a storage format for WWW, XML is also used as an encoding

format for data in several domains such as digital libraries, databases, scientific

data repositories and web services. This increasing adoption of XML has brought

the need to retrieve XML data efficiently and effectively. As XML documents have

a logical structure, retrieval of XML data is different from classic ‘flat’ document

retrieval in some ways. While most of the previous works in the Information

Retrieval (IR) field presume a document as the typical unit of retrieval, XML

documents allow a finer-grain retrieval at the level of elements. Such an approach

is expected to provide further gains for the end users in locating the specific

relevant information, however, it also requires the development of systems to

effectively access XML documents.

Although a large amount of research has been going on to retrieve XML

documents, a consensus hasn’t been reached yet about the retrieval strategy for

many reasons. The issues that are being researched by XML retrieval community

could be listed as querying, indexing, ranking, presenting and evaluating [23]. In

1

CHAPTER 1. INTRODUCTION 2

this thesis, we focus on querying, indexing and ranking of XML documents for

an efficient and effective keyword search.

1.2 Contributions

In the last decade, especially under the INitiative for the Evaluation of XML

retrieval (INEX) [18] campaigns, a variety of indexing, ranking and presentation

strategies for XML collections have been proposed and evaluated. Given the

freshness of this area, there exist a number of issues that are still under debate.

One such fundamental problem is indexing XML documents. The focused XML

retrieval aims to identify the most relevant parts of an XML document to a query,

rather than retrieving the entire document. This requires constructing an index

at a lower granularity, say, at the level of elements, which is not a trivial issue

given the nested structure of XML documents.

Element-indexing is a crucial mechanism for supporting content-only (CO)

queries over XML collections. It creates a full element-index by indexing each

XML element as a separate document. With this method, each element is formed

of the text directly contained in it and the textual content of all of its descendants.

However, this results in a considerable amount of repetition in the index as the

textual content occurring at level n of the XML logical structure is indexed n

times. Due to this redundancy in the index, element indexing is criticized for

yielding efficiency problems and its promises are rarely explored. In this thesis,

we investigate the effectiveness and efficiency of using a full element-index for

XML keyword search over XML databases and document collections.

Following a brief discussion of the related work in the next chapter, in Chapter

3, we propose to use state-of-the-art IR query processing techniques that operate

on top of a full element-index (with some slight modifications). We show that such

an index can be simple yet efficient enough for supporting keyword searches on

XML data to satisfy the requirements of both DB and IR communities. We build

an XML keyword search framework which uses document ordered processing and

CHAPTER 1. INTRODUCTION 3

apply different query result definition techniques. Query result definition, one of

the biggest challanges in XML keyword search, aims to find the ‘closely related’

nodes that are ‘collectively relevant’ to the query [37]. Smallest Lowest Common

Ancestor (SLCA) method is one of the query result definition methods widely

used for XML keyword search. The notion of SLCA is first proposed in XKSearch

system [36] and afterwards employed in other result definition techniques such as

Valuable Lowest Common Ancestor (VLCA) [24], Meaningful Lowest Common

Ancestor (MLCA) [25] and MaxMatch [26]. As SLCA is a widely used technique,

it is crucial to implement it efficiently. Within our framework we implement

a novel query processing method to find SLCA nodes and evaluate our method

through a comprehensive set of experiments. We compare the performance of our

query processing strategy using a full element-index to that of the strategies which

use a Dewey-encoded index [36]. The experiments show that the full element-

index with document ordered query processing could improve both the result

quality (effectiveness) and query execution performance (efficiency) in comparison

to XKSearch system.

In Chapter 4, we aim to increase the efficiency further by reducing the in-

dex size. For this purpose, we propose using static index pruning techniques for

obtaining more compact index files that can still result in comparable retrieval

performance to that of an unpruned full index. We also compare our approach

with some other strategies which make use of another common indexing tech-

nique, leaf-only indexing. Leaf-only indexing creates a ‘direct index’ which only

indexes the content that is directly under each element and disregards the descen-

dants. This results in a smaller index, but possibly in return to some reduction

in system effectiveness. Our experiments conducted along with the lines of INEX

evaluation framework reveal that pruned index files yield comparable to or even

better retrieval performance than the full index and direct index, for several tasks

in the ad hoc track of INEX.

In Chapter 5, we investigate the usage of index pruning techniques on another

aspect of XML retrieval which is clustering XML collections. First, we employ the

well known Cover-Coefficient Based Clustering Methodology (C3M) for clustering

XML documents and evaluate its effectiveness. Then, we apply the index pruning

CHAPTER 1. INTRODUCTION 4

techniques from the literature to reduce the size of the document vectors of the

XML collection. Our experiments show that, for certain cases, it is possible to

prune up to 70% of the collection (or, more specifically, underlying document

vectors) and still generate a clustering structure that yields the same quality

with that of the original collection, in terms of a set of evaluation metrics.

Finally, we conclude and point to future work directions in Chapter 6.

Chapter 2

Related Work

In this chapter, we briefly present some of the research literature related to key-

word search in unstructured and structured documents. We also review com-

pression methods which are employed in this thesis to reduce the sizes of the

indexes.

2.1 Keyword Search for Unstructured Docu-

ments

Keyword search, being used by millions of people all over the world now, is an

effective, user friendly way for querying HTML documents. As it does not require

any knowledge of the collection, the user can create queries intuitively and fulfill

his information need. Such a popular method should be supported with efficient

retrieval strategies to meet the needs of the users.

In terms of the retrieval strategies, keyword search in a collection could be

done by linear scanning in the most simple and naive way. However, to be able to

process the queries in a reasonable amount of time, an index structure is needed

for any information retrieval strategy. With the help of such a structure, one

could determine the list of documents that contain a term and make a boolean

5

CHAPTER 2. RELATED WORK 6

Figure 2.1: Structure of an inverted index

search. However, if query ranking should also be supported, an inverted index

which also stores the frequency of each occurrence of a term in a document would

be the optimal data structure. Currently, the inverted index is the state-of-the-art

data structure of the search engines for ranked retrieval of the documents. The

basic structure of an inverted index is shown in Figure 2.1, which is comprised of

dictionary and postings. For each term in the dictionary, there is a posting list

which lists the documents that the corresponding term occurs in. Each item in the

posting list is called a posting and contains the document id and frequency of the

term (Term positions could also be included, if phrase or proximity queries should

be supported as well). The posting list is sorted in the order of the document id

of the postings which is useful for the compression of the inverted list.

Query processing over an inverted index could be classified into two as docu-

ment ordered processing and term ordered processing according to the processing

order of the postings:

• Term Ordered Processing (TO): Term ordered processing, also called term-

at-a-time evaluation in [34], processes the posting lists sequentially. For

CHAPTER 2. RELATED WORK 7

a conjunctive query consisting of one or more keywords, the method finds

the documents containing all of the query terms by intersecting the posting

lists in a sequential manner. Once the postings of a term are completely

handled, then the postings of the next term could be processed.

• Document Ordered Processing (DO): The disadvantage of term ordered

processing is that one should wait for all the posting lists to be processed

to obtain a complete score. However, if posting lists could be processed

in parallel instead of sequentially, then query results could be returned at

the time of processing. In document ordered processing, the posting lists

are treated in parallel by making use of the fact that once a document id

is seen in a posting, there can not be a smaller document id in one of the

succeeding postings in that list since the postings of a term are stored in

increasing order of document ids.

2.2 Keyword Search for XML

Keyword search is a user-friendly way for accessing structured data. It is easy

to use and it does not require the knowledge of complex schemas or query lan-

guages. Also more meaningful results could be returned by exploiting structural

information instead of returning a list of unranked results as in query languages.

However, there are challenges of accessing structured data as it requires different

strategies in retrieval process. Different than the flat documents, XML documents

are modeled as labeled trees with a hierarchical semantic structure. Due to this

hierarchical structure, researchers are faced with various challenges regarding the

retrieval tasks such as indexing, query processing, etc. In this section, we review

the literature in terms of the different aspects of XML keyword search each of

which corresponds to a stage in the retrieval process.

CHAPTER 2. RELATED WORK 8

2.2.1 Node Labeling Schemes

Node labeling is a way to identify the nodes of an XML tree. While there are

many ways to identify a node, the recently developed techniques aim to find a

matching between the label of a node and its structural relationships with the

other nodes. A number of labeling schemes are proposed to represent the nodes

of XML trees and to support structural queries. In this thesis, we investigate the

usage of Dewey encoding [31] and tree traversal order encoding [11] which are

labeling types of prefix based labeling and subtree labeling, respectively.

First XML numbering scheme based on tree traversal order is introduced by

Dietz [11]. In this scheme, a node v is labeled with a pair of unique integers

pre(v) and post(v) which correspond to the preorder and postorder traversal ids

of v. In other words, pre(v) is the id assigned to the node v when it is visited

for the first time and post(v) is the id assigned to v when it is visited for the last

time. Tree traversal labeling of a sample XML tree is shown in Figure 2.2. Note

that for two given nodes u and v of a tree T , the following are true:

• pre(v) < post(v) for each node v of T

• pre(u) < pre(v) and post(u) > post(v) if node u is an ancestor of v

• post(u) < pre(v) if node u is a left sibling of v

• u is an ancestor of v, if and only if u occurs before v in the preorder traversal

of T and after v in the postorder traversal.

By using tree traversal order encoding, we can determine ancestor-descendant

relationships easily. Nevertheless, parent-child relationship could not be deter-

mined directly. This kind of encoding has the advantage of being easy to imple-

ment and efficient to use, however, it is inefficient for dynamic XML documents

for which node insertions and deletions occur frequently.

On the other hand, most of the recent systems for XML keyword search

use Dewey ID labelling scheme which is based on Dewey Decimal Classification

CHAPTER 2. RELATED WORK 9

Figure 2.2: Tree Traversal Labeling of an XML Tree

System. In this scheme, the label of a given node encodes the path from the

document root down to the node so that the ancestor-descendant relationships

between the nodes could be determined directly. According to this, given the

nodes u and v, u is an ancestor of v if label(u) is a prefix of label(v). However,

in this labeling scheme, the disadvantage is that the size of the label grows with

the length of the encoded path which is in the order of the depth of the XML

tree in the worst case [17]. In Chapter 3, we compare the sizes of the indexes

built using Dewey encoding and tree traversal order encoding both formally and

experimentally. Dewey ID labeling of a sample XML tree is shown in Figure 2.3.

2.2.2 Indexing Techniques

In the literature, several techniques are proposed for indexing the XML collections

and for query processing on top of these indexes. In a recent study, Lalmas

[23] provides an exhaustive survey of indexing techniques -essentially from the

perspective of IR discipline- that we briefly summarize in the rest of this section.

The most straightforward approach for XML indexing is creating a full

element-index, in which each element is considered along with the content of

CHAPTER 2. RELATED WORK 10

Figure 2.3: Dewey ID Labeling of an XML Tree

its descendants. In this case, how to compute inverse document frequency (IDF),

a major component used in many similarity metrics, is an open question. Ba-

sically, IDF can be computed across all elements, which also happens to be the

approach taken in our work. As a more crucial problem [23], a full element-index

is highly redundant because the terms are repeated for each nested element and

the number of elements is typically far larger than the number of documents. To

cope with the latter problem, an indexing strategy can only consider the direct

textual content of each element, so that redundancy due to nesting of the ele-

ments could be totally removed. In [13, 14], only leaf nodes are indexed, and the

scores of the leaf elements are propagated upwards to contribute to the scores of

the interior (ancestor) elements. In a follow-up work [15], the direct content of

each element (either leaf or interior) is indexed, and again a similar propagation

mechanism is employed. Another alternative is propagating the representations

of elements, e.g., term statistics, instead of the scores. However, the propagation

stage, which has to be executed during the query processing time, can also de-

grade the overall system efficiency. The comparison of inverted indexes for full

and direct indexing techniques is given in Figure 2.4. As it could be observed

from the figure, occurrence of a term t in an element e at depth d is repeated d

times in the full index. However, in the direct index, only the elements directly

CHAPTER 2. RELATED WORK 11

Figure 2.4: Structure of full and direct inverted index

containing the term occur in the posting list.

In the database field, where XML is essentially considered from a data-centric

rather than a document-centric point of view, a number of labeling schemes are

proposed especially to support structural queries (see [17] for a survey). In

XRANK system [16], postings are again only for the textual content directly

under an element, however, document identifiers are encoded using Dewey IDs so

that the scores for the ancestor elements can also be computed without a prop-

agation mechanism. This indexing strategy allows computing the same scores

as a full index while the size of the index can be in the order of a direct in-

dex. However, this scheme may suffer from other problems, such as the excessive

Dewey ID length for very deeply located elements. An in-between approach to

remedy the redundancy in a full element-index is indexing only certain elements

of the documents in the collection. Element selection can be based upon several

heuristics (see [23] for details). For instance, shorter elements (i.e., with only few

terms) can be discarded. Another possibility is selecting elements based on their

popularity of being assessed as relevant in the corresponding framework. The

semantics of the elements can also be considered while deciding which elements

to index by a system designer. Yet another indexing technique that is also re-

lated is distributed indexing, which proposes to create separate indexes for each

element type, possibly selected with one of the heuristics discussed above. This

latter technique may be especially useful for computing the term statistics in a

CHAPTER 2. RELATED WORK 12

specific manner for each element type.

2.2.3 Query Processing Techniques

In traditional information retrieval, the typical unit of retrieval is the whole doc-

ument. However, in XML retrieval only some part of the document could be

returned in response to a user query by exploiting the structure of a document.

While such a focused strategy helps the user to access the desired data more

quickly, it requires more complex strategies to locate the relevant parts of the

documents in terms of the retrieval systems. If there is relevant information

scattered among different nodes, focused retrieval should assemble these relevant

nodes into a single result node. Such challenges of XML keyword search has

attracted the researchers to develop more complex query processing and result

definition techniques. In the literature, the result nodes are determined either

according to the tree structure of the retrieved document or tags of the elements

or peer node comparisons [37]. Below we explain these different approaches for

determining result nodes:

Result definition according to tree structure:

• ELCA: Exclusive Lowest Common Ancestor method, proposed in [16], finds

the lowest common ancestors which include all the keywords after excluding

the occurrences of the keywords in sub-elements that already contain all of

the query keywords.

• SLCA: Smallest Lowest Common Ancestor method, proposed in [36], finds

the smallest lowest common ancestor nodes which contain all the keywords

and is not ancestor of any other node which also contains all the keywords.

According to this method, the smallest result nodes are considered the most

relevant nodes.

• MLCA: Meaningful Lowest Common Ancestor method, proposed in [25],

finds the lowest common ancestor of nodes which are meaningfully related.

CHAPTER 2. RELATED WORK 13

Meaningfully relatedness concept is defined according to the structural re-

lationships between the nodes containing query terms.

Result definition according to labels/tags:

• XSEarch: In XSEarch system [8], LCA of the interconnected nodes are de-

fined as the result nodes where the interconnection relationship determines

whether the nodes are meaningfully related. According to this method, two

nodes are interconnected, thereby meaningfully related, if there is no two

nodes with the same label on their path.

• VLCA: In this work [24], the notions of Valuable LCA and Compact LCA

are proposed to efficiently answer XML keyword queries. Valuable LCA is

the LCA of a set of nodes which are homogenous. Homogeneity concept

is similar to interconnection relationship between the nodes. The nodes u

and v are homogenous if there are no nodes of the same type on u and v’s

path to root.

Result definition according to peer node comparisons:

• MaxMatch: In this work, XML keyword search is inspected from a formal

perspective. The method first finds the SLCA nodes of the query. After-

wards, the relevant matches are chosen from the subtrees rooted at SLCA

nodes according to whether they satisfy the two proporties, monotonicity

and consistency. Monotonicity states that data insertion (query keyword

insertion) causes the number of query results to non-strictly monotonically

increase (decrease). Consistency states that after data (query keyword) in-

sertion, if an XML subtree becomes valid to be part of new query results,

then it must contain the new data node (a match to the new query keyword)

[26]. With this method, the SLCA nodes which have stronger siblings are

pruned.

CHAPTER 2. RELATED WORK 14

2.2.3.1 Algorithms for Finding LCA and SLCA

In focused retrieval, the most focused results consisting of elements are returned

as the answer of a query. The most basic and intuitive method for finding focused

results is the lowest common ancestor (LCA) method many extensions of which

are developed afterwards. One of these extensions is the smallest lowest common

ancestor (SLCA) proposed in XKSearch system by Xu et al. [36]. In this thesis,

we implement an efficient method for finding SLCA nodes. Below, we give the

notation and methods for finding LCA and SLCA nodes from the literature.

An XML document is modeled as a rooted, ordered, and labeled tree. Nodes

in this rooted tree correspond to elements in the XML document. For each node

v of a tree, λ(v) denotes the label/tag of node v. u ≺ v (u � v) denotes that

u is an ancestor (descendant) of node v. Given a query q, containing k terms

listed as w1, w2, ..., wk, the posting list of each query term wi can be denoted

as Si. According to this, each node in Si contains the keyword wi in its direct

text content. The basic motivation for LCA is that if a node v′ is an LCA of

(v1, v2, ..., vk), where vi belongs to Si, then v′ contains all the keywords and should

be an answer for the query q.

Definition 2.1: Given k nodes v1, v2, ..., vk, w is called LCA of these k nodes,

iff , ∀1 ≤ i ≤ k , w is an ancestor of vi and 6 ∃u,w ≺ u, u is also an ancestor of

each vi.

Definition 2.2: Given a query M = m1,m2, ...,mk and an XML document

D, the sets of LCAs of M on D is, LCASet = LCA(S1, S2, ..., Sk) = {v|v =

LCA(v1, v2, ..., vk), vi ∈ Si}.

Most of the retrieval systems finding common ancestor nodes employ Dewey

IDs to identify the nodes. Dewey IDs provide a straightforward solution for

locating the LCA of two nodes. Given two nodes, v1 and v2, and their Dewey

IDs, p1 and p2, the LCA of two nodes is the node v having the Dewey ID p

such that p is the longest prefix of p1 and p2. Finding the LCA of two nodes is

O(d) where d is the maximum length of a Dewey ID, and at the same time the

CHAPTER 2. RELATED WORK 15

maximum depth of the XML tree. While LCA is the most intuitive method for

finding common ancestors, it suffers from false positive and false negative result

problems. Some of the LCA nodes could be irrelevant to the query since the

keywords are scattered in different nodes which are not meaningfully related or

some of the nodes that are not LCA could be more relevant and complete. The

approaches following LCA have focused on the problem of meaningfulness and

completeness. SLCA is one of these methods which we study in detail below.

An SLCA node contains all the keywords of a query and is not an ancestor

of any other node which also contains all the keywords. As a straightforward

approach, SLCA nodes could be found by finding all of the possible LCAs and

then eliminating the nodes which are ancestors of the other LCA nodes. Finding

all of the lowest common ancestors of a given query requires to compute LCA of

each possible node combination v1, v2, ..., vk where vi ∈ Si. However, this method

is very expensive as (|S1| ∗ |S2| ∗ ...∗ |Sn|) number of LCA computations should be

done. Instead of this straightforward approach, in [36] Xu et al. avoid redundant

LCA computations by making use of the Scan Eager and Indexed Lookup Eager

algorithms that they propose. With Indexed Lookup Eager algorithm, the num-

ber of LCA computations is reduced by using the notion of left and right match

of a node v with respect to a set S. Below we first give the formal definitions of

left and right match and show how to compute the SLCAs with the help of these

definitions in Algorithm 1 (adapted from Indexed Lookup Eager algorithm given

in [36]).

Definition 2.3: A node v belongs to the SLCASet(S1, S2, ..., Sk) if v ∈
LCASet(S1, S2, ..., Sk) and ∀u ∈ LCASet(S1, S2, ..., Sk) v 6≺ u.

Definition 2.4: Right match of v in a set S (rm(v, S)) is the node of S that

has the smallest preorder id that is greater than or equal to pre(v).

Definition 2.5: Left match of v in a set S (lm(v, S)) is the node of S that has

the biggest postorder id that is less than or equal to post(v).

Definition 2.6: slca({v}, S) = descendant(lca(v, lm(v, S)), lca(v, rm(v, S)))

where descendant function returns the descendant node of its arguments.

CHAPTER 2. RELATED WORK 16

Figure 2.5: LCA nodes of the query ‘XML, Liu’

Algorithm 1 Indexed Lookup Algorithm

1: k = number of keywords in the query
2: B = S1

3: for i = 1 to n do
4: B = getSLCA(B,Si)
5: end for
6: output B

function getSLCA(S1, S2)

Result={}
u = 0
for each node v ε S1 do
x = descendant(lca(v, lm(v, S2)), lca(v, rm(v, S2)))
if pre(u) <= pre(x) then

if u 6� x then
Result = Result ∪ {x}

end if
u = x

end if
end for
return Result ∪ u

CHAPTER 2. RELATED WORK 17

Figure 2.6: SLCA nodes of the query ‘XML, Liu’

In Figures 2.5 and 2.6, LCA and SLCA nodes of a query are shown respectively

for a sample XML tree. In Figure 2.6, ‘conf’ node is not an SLCA as it already

contains an LCA, ‘paper’ node in its subtree.

2.3 Compression of Indexes

The inverted indexes could be very large since the collections that the current

search engines use contain billions of documents. For such large collections, index

compression techniques become essential to provide an efficient retrieval. With

the help of compression, disk and memory requirements of the index are reduced.

Furthermore, with a smaller usage of disk space, transfer of data from disk to

memory becomes much faster. Index compression techniques are divided into

two as lossless and lossy compression. While lossless approaches do not lose any

information, lossy compression techniques discard certain information. However

these two approaches are complementary as an index could be compressed by

applying lossy and lossless compression techniques sequentially. In this thesis, we

experiment both techniques on XML full element-indexes.

CHAPTER 2. RELATED WORK 18

2.3.1 Lossless Compression

Lossless compression is a compression technique which allows the exact data to

be recreated from the compressed data. In large scale search engines, due to

the need of more efficient data structures, lossless compression techniques are

applied inevitably. Most of the techniques for inverted indexes employ integer

compression algorithms on document id gaps (d-gap). A d-gap is the difference

between two consecutive document ids in a posting list of a term. As the posting

lists are stored in the increasing order of document ids of the postings, a list of

d-gaps following an initial document id could be encoded instead of document

ids themselves. By this way, the values to be compressed become smaller and

require less space with variable encoding methods. Variable encoding methods

are lossless compression tehcniques which could be applied in either bit or byte

level. Variable byte encoding uses an integral number of bytes to encode a gap

and it is quite simple to implement. In [31], Tatarinov et al. propose to use UTF-

8 for encoding Dewey IDs, which is a variable length character encoding method

and is widely used to represent text. However, if disk space is a scarce resource,

even better compression ratios could be achieved by using bit-level encodings,

particularly Elias-γ and Elias-δ codes.

In this thesis, we investigate the effect of these compression techniques on

XML collections. We try UTF-8, Elias-γ and Elias-δ encodings on the full and

direct indexes. The bit-aligned code, Elias-γ requires 2 ∗ lg k+ 1 bits to encode a

number k. Elias-δ, on the other hand requires about 2 lg lg k+ lg k bits to encode

a number k. UTF-8 requires different number of bytes for different ranges of

numbers as in Table 2.1.

Decimal range Encoded # of bytes
0-127 1
128-2047 2
2048-65535 3
65536-2097152 4

Table 2.1: Storage Requirement of UTF-8 Encoding

CHAPTER 2. RELATED WORK 19

2.3.2 Lossy Compression

Lossy compression techniques discard certain part of an index and attain a smaller

index size while aiming to lose the least information as possible. Latent semantic

indexing and stopword omission are lossy approaches where the complete posting

list of a term is discarded from the index. Static pruning, on the other hand,

removes certain postings from a posting list and promises a more effective com-

pression strategy. In this thesis, we employ static pruning strategies, which aim

to reduce the file size and query processing time, while keeping the effectiveness

of the system unaffected, or only slightly affected. In the last decade, a number

of different approaches have been proposed for the static index pruning. In this

thesis, as in [5], we use the expressions term-centric and document-centric to in-

dicate whether the pruning process iterates over the terms (or, equivalently, the

posting lists) or the documents at the first place, respectively.

In one of the earliest works in this field, Carmel et al. proposed term-centric

approaches with uniform and adaptive versions [30]. Roughly, the adaptive top-k

algorithm sorts the posting list of each term according to some scoring function

(Smart’s TF-IDF in [30]) and removes those postings that have scores under

a threshold determined for that particular term. The algorithm is reported to

provide substantial pruning of the index and exhibit excellent performance at

keeping the top-ranked results intact in comparison to the original index. In our

study, this algorithm (which is referred to as TCP strategy hereafter) is employed

for pruning full element-index files, and it is further discussed in Section 4.2.

As an alternative to term-centric pruning, Büttcher et al. proposed a

document-centric pruning (referred to as DCP hereafter) approach with uniform

and adaptive versions [5]. In the DCP approach, only the most important terms

are left in a document, and the rest are discarded. The importance of a term for

a document is determined by its contribution to the document’s Kullback-Leibler

divergence (KLD) from the entire collection. However, the experimental setup in

this latter work is significantly different than that of [5]. In a more recent study

[3], a comparison of TCP and DCP for pruning the entire index is provided in

a uniform framework. It is reported that, for disjunctive query processing, TCP

CHAPTER 2. RELATED WORK 20

essentially outperforms DCP for various parameter selections. In this thesis, we

use the DCP strategy as well to prune the full element-index, and further discuss

DCP in Section 4.2.

There are several other proposals for static index pruning in the literature. A

locality based approach is proposed in [9] for the purpose of supporting conjunc-

tive and phrase queries. In a number of other works, search engine query logs are

exploited to guide the static index pruning [2, 12, 27, 29].

Chapter 3

XML Keyword Search with Full

Element Index

3.1 Introduction

Keyword search is a popular way to search data in several domains such as web

documents, digital libraries and databases. Firstly, as it does not require any

knowledge of query languages or complex data schemas, it increases the usability.

Furthermore, it enables data interconnection by collecting the data pieces that are

relevant to the query. The methods for keyword search in structured documents

aim to find focused results by exploiting the structural relationships between the

nodes. However, how to infer these structural relationships and how to determine

the result nodes is still a big challenge in this area. Upon studying the literature,

it could be easily observed that most of the proposed methods promise good

effectiveness values with quite impractical frameworks.

In this chapter of the thesis, we propose to build a common framework for

retrieving XML documents together with unstructured documents. For this, we

employ indexing and query processing methods similar to traditional IR methods.

We use regular document-oriented keyword search methods on a full element-

index built for the corresponding database or collection. In the literature, this

21

CHAPTER 3. XML KEYWORD SEARCH WITH FULL ELEMENT INDEX22

approach is claimed to have some problems such as space overhead, spurious query

results and inaccurate ranking. As mentioned in Section 2.2.2, in a full element-

index, each element e in an XML document is considered as a separate indexable

unit and includes all terms at the subtree rooted at e. Since the full element

index is assumed to yield efficiency problems, its promises are rarely explored in

the literature. In this chapter of the thesis, we list the major criticisms (e.g., see

[16]) against using a full element-index and discuss how we handle each case. We

support our arguments by the experiments conducted on our framework.

3.2 Document Ordered Query Processing Using

Full Element Index

In this section, we first give the details of our approach that employs a full

element-index for keyword search on XML databases and collections. The tech-

niques used to accomplish different tasks of our retrieval system are as given

below:

Query Processing: For the basic query processing task, we make use of doc-

ument ordered processing so that query results can be obtained before the pro-

cessing of all the posting lists is finished. The query processing is conjunctive in

accordance with the result definition method that is used.

Node Labeling: As mentioned in Section 2.2.1 there are many node labeling

techniques proposed for XML trees. In this work, we label the nodes according

to their preorder and postorder traversal ids. This labeling scheme is simple to

implement and useful for deducing ancestor-descendant relationships and thereby

finding focused results such as SLCAs.

Indexing: In XML keyword search, each element of an XML document is indexed

separately. There are many indexing techniques proposed for XML documents as

mentioned in Section 2.2.2. In this work we make use of a full element index which

is the most suitable index for traditional query processing techniques. With this

CHAPTER 3. XML KEYWORD SEARCH WITH FULL ELEMENT INDEX23

index, there is no need for a propagation mechanism or a special query processing

algorithm as in XRank [16] or SLCA [36].

Result Definition: Resulting elements obtained by document ordered process-

ing could be overlapping with each other which is an undesired case according

to user studies. To prevent overlapping and to find the elements at the best

granularity, the result list should be eliminated further. Among various result

definition methods, we focus on SLCA method, as it is one of the most basic

and intuitive methods in XML keyword search. This method finds the smallest

lowest common ancestor nodes which contain all the keywords and is not an an-

cestor of any other node which also contains all the keywords. After a temporary

result list, R, is obtained by applying document ordered processing to a query,

the nodes which are not SLCAs are eliminated from R. For this, we propose a

method which is in the order of the length of the result list, O(|R|), and depends

on the following lemma.

Lemma: Given a temporary result list, R, sorted according to postorder traver-

sal ids of the result nodes, a node n is an SLCA if the previous node n′ in the

result list is not an SLCA and is not a descendant of n.

Proof: Consider a collection which consists of a single XML document. As-

sume that nodes n′ and n are two adjacent nodes in R which is sorted according

to postorder traversal ids. According to this, it could easily be deduced that

post(n′) < post(n). This implies that either n′ is a descendant of n or n′ does not

have an ancestor-descendant relationship with n. If n′ is a descendant of n and

n′ is an SLCA, then n can not be an SLCA according to the definition. However,

if n′ is not a descendant of n, then n is an SLCA since there can not be any other

node n′′ where n′′ is a descendant of n and n′′ < n′ < n.

In our algorithm, we make use of this lemma and check whether a result node

is an SLCA in O(1) time. The pseudocode for the algorithm is given in Algorithm

2.

Given the techniques and the algorithms used in this work, we list the criti-

cisms against using a full element index (e.g., [16]) and state our solutions below:

CHAPTER 3. XML KEYWORD SEARCH WITH FULL ELEMENT INDEX24

Algorithm 2 Finding SLCAs with Document Ordered Processing qi : ith query
term Ii : The inverted list associated with ti

Result={}
for each query term qi do
h[i] = 1 {Current head of Ii points to the first posting I1i }

end for
min = index of the query term having minimum posting list size
I finished = false
while (¬I finished && h[min] > size(Imin)) do

p = (I
h[min]
min)

current id = p.docid
for i = 0 to query size do

if i == min then
continue

end if
repeat
p = I

h[i]
i

h[i] = h[i] + 1
until p.did ≥ current id ‖ h[i] > size(Ii)
if h[i] > size(Ii) then
I finished = true
break {End of the posting list Ii, processing finished}

else if p.docid == current id then
num updated = num updated+ 1
break {ti is in p, continue processing with ti+1}

else if p.docid > current id then
h[min term] = h[min term] + 1
break {ti is not in p, continue processing with the next posting}

end if
end for
if num updated == query size then

if isSLCA(current id, pre id) then
Result = Result ∪ {current id}
pre id = current id

end if
end if

end while

CHAPTER 3. XML KEYWORD SEARCH WITH FULL ELEMENT INDEX25

function isSLCA(id1, id2)

p1 = preorder id of node with id1
p2 = preorder id of node with id2
if p1 < p2 then

return true
else

return false
end if

Criticism#1: The full index causes significant amount of redundancy since a

term that is indexed at a particular node has to be indexed for all ancestors of

that node, as well.

Discussion#1: It is obvious that the raw (uncompressed) full element-index is

inefficient in terms of storage space in comparison to the most widely used in-

dexing approach in the literature, namely, Dewey-encoded index. However, as we

discuss in the experiments section, both index files are comparable in size when

compressed using state-of-the-art index compression methods. Indeed, our em-

pirical findings can also be supported with the formal discussion given in Section

3.3.

Criticism#2: The graph-based relationships (e.g., ancestor-descendant rela-

tionship) cannot be captured in the full index (without significantly increasing

its size). Such relationships are crucial to determine LCA, SLCA, VLCA, etc.

that are typically used to define the result of search in data-centric usages of

XML.

Discussion#2: In this work, we defend that, such a relationship of element ids

can be kept separately instead of being coupled with the index. More specifically,

let’s assume that each element is assigned a post-order traversal id in the index.

Furthermore, in an in-memory mapping, we store the preorder traversal id of each

element. Then, given two elements e1 and e2 (such that post(e1) < post(e2)),

testing their ancestor-descendant relationship simply means that testing whether

pre(e1) < pre(e2). Such a mapping can be kept in the main memory, and accessed

during query processing. Note that, such an auxiliary structure (which can be

used by all query processing threads in case of the existence of several parallel

CHAPTER 3. XML KEYWORD SEARCH WITH FULL ELEMENT INDEX26

QP threads) would be reasonable in size in comparison to the other components

of the search system.

Criticism#3: The query processing on the full element-index would yield spu-

rious results since for an answer node that includes all query terms, all ancestors

of that node would also be listed in the result.

Discussion#3: The full element-index would clearly include all ancestors of an

SLCA node. However, assuming that the index is sorted in element id (postorder

traversal id as in our framework) order, it is guaranteed that if the previous node

in the result list is not a descendant of the current node, then the current node

would be an SLCA. According to this, whether a node is an SLCA could be found

out in O(1) time.

3.3 Full Element Index versus Direct Dewey In-

dex

Assume we have a complete k-ary tree of depth d.

Case 1 - Direct index with Dewey ID (ID)

Direct Dewey index is a widely used indexing method especially in focused re-

trieval on databases. With this method, each node of an XML tree is labeled

with Dewey ID labeling scheme and includes only the direct text content.

Dewey ID of a node at level m consists of m integers, where 1 ≤ m ≤ d. A node

at level m with Dewey ID a = a1.a2.a3.am has the following constraints:

In the worst case, each node could be a leaf node and m = d. Since, each ai is

smaller than k, by using Elias-γ compression, such a Dewey ID can be represented

by at most d(2 lg k + 1) bits. If the posting list of term t in the direct index ID

consists of e number of elements, then the size of the posting list of t would be

e×d(2 lg k+1) bits. Hence, the size of a direct index with Dewey ID is O(ed lg k).

CHAPTER 3. XML KEYWORD SEARCH WITH FULL ELEMENT INDEX27

Case 2 - Full index with postorder traversal id (IF)

With tree traversal labeling scheme, the nodes of an XML tree T are labeled with

respect to the postorder traversal of T . If T is a complete k-ary tree, these labels

are smaller than the number of nodes in T which is

K = 1 + k + k2 + ...+ kd−1 = (kd − 1)/(k − 1)

Assume that there are e elements in a posting list of direct index ID as in Case

1, and e′ elements in a posting list of full index IF . We also assume that all of

the elements in a posting list of ID are leaf elements at depth d. To compare the

sizes of direct and full indexes, we try to estimate e′ by analyzing two extreme

cases:

1. If none of the leaf elements has a common ancestor except the root node,

then they would have e(d − 1) + 1 distinct ancestors. In this case, the

corresponding posting list in IF would have e(d − 1) + 1 + e = ed + 1

elements.

2. All of the ancestors of these leaves could be common. In this case, leaf

elements would have d − 1 ancestors and the corresponding posting list in

IF would have e+ d− 1 elements.

However, both of these cases are quite rare. Therefore, we try to estimate a

decay factor, α, which symbolizes the proportion of decrease in number of nodes

in consecutive levels. Assume that there are e` number of nodes at depth ` which

contain term t directly and these elements have e`−1 = αe` number of ancestors

at depth `− 1. Note that α ≤ 1 and hence, e`−1 ≤ e`.

For example, if α ≤ 1/2 since the number of nodes in IF is less than e+ e/2 +

e/4 + ...+ e/2d ≤ 2e, e′ is in the order of e. Note that the element id gaps could

be indexed instead of element ids themselves for a smaller index size. Since the

ids are between 1 and K and there are e′ elements, the average element id gap

CHAPTER 3. XML KEYWORD SEARCH WITH FULL ELEMENT INDEX28

would be K/e′. Since e′ ≤ 2e, the size of the Elias-γ compressed posting list

consisting of e′ elements is

e′ lg
K

e′
= e′ lg

(kd − 1)/(k − 1)

e′

< 2e lg
(kd − 1)

2e

< 2ed lg k

= O(ed lg k).

Hence, when α ≤ 1/2, the space complexity of full and direct indexes are both

O(ed lg k).

3.4 Experiments

3.4.1 Experimental Setup

Collection: In this work, we use real datasets which are obtained from DBLP

[32] and Wikipedia [10] collections. DBLP dataset contains a single XML docu-

ment of size 207 MB retrieved from the DBLP Computer Science Bibliography

website. English Wikipedia XML collection, on the other hand, consists of mul-

tiple XML files (659,388 articles of total size 4,5 GB) and has been employed in

INEX campaigns between 2006 and 2008.

Queries: The queries used for DBLP dataset are randomly generated from the

word lists of the datasets. We have 8 of these synthetic query sets each consisting

of 1000 queries with different number of keywords which have different frequen-

cies. For Wikipedia dataset, we use the query set provided in INEX 2008 which

contains 70 queries with relevance assessments (see [21] p. 8 for the exact list of

the queries).

Evaluation: In these experiments, we compare the performance of our Do-

cOrdered algorithm with Scan Eager and Indexed Lookup Eager algorithms pro-

posed in [36]. We make a comparison based on efficiency and effectiveness of these

CHAPTER 3. XML KEYWORD SEARCH WITH FULL ELEMENT INDEX29

methods. For evaluating the time performance of the algorithms, we measure the

time for each query to be processed in milliseconds. For comparing effectiveness

values, we give interpolated precision at 1% recall and mean average interpolated

precision. We use BM25 function to rank the elements in the result list. While

we employ full element-index for our algorithm, direct Dewey index is used for

Scan Eager and Indexed Lookup Eager algorithms. To provide a fair evaluation,

we also compare the sizes of full element index and direct Dewey index both

theoretically and experimentally.

3.4.2 SLCA Retrieval Efficiency

In the experiments below, we provide the comparison of DocOrdered, Scan Ea-

ger and Indexed Lookup Eager algorithms in terms of query processing time for

finding SLCAs. The complexity of Scan Eager and Indexed Lookup Eager algo-

rithms are given in Table 3.1 (adapted from [36]) while that of our algorithm is

given in Table 3.2. The main memory complexity of the algorithms depends on

several variables such as the number of query terms, the length of the longest

and shortest posting lists in the indexes and maximum depth of XML tree. As

stated in Section 2.2.2, the full element index (IF) is known to have longer post-

ing lists than that of direct Dewey index (ID). Therefore, more postings should

be processed to find all SLCAs. An advantage of full index, however, is that the

ancestor-descendant relationships between the nodes could be found out in O(1)

time while the cost of comparing two Dewey IDs is O(d) in direct Dewey index.

The DocOrdered algorithm finds the set of nodes that contain all keywords in

O(kImax
F) number of operations. This temporary result set, say R, should be

eliminated to find the nodes that are SLCAs. The length of R could be at most

equal to the length of the longest posting list in IF , denoted as Imax
F . Since it costs

O(1) to check whether a node is an SLCA, the number of total SLCA operations

could be at most O(Imax
F). In total, memory time complexity of our algorithm is

O(kImax
F). The disk I/O time complexity, on the other hand, is equal to O(TF)

where TF is the number of blocks that posting lists reside on disk.

Scan Eager algorithm processes the shortest posting list and finds a left and

CHAPTER 3. XML KEYWORD SEARCH WITH FULL ELEMENT INDEX30

Algorithm Disk I/O #LCA
operations

#Dewey
comparisons

Memory
Complexity

Scan Eager O(TD) O(kImin
D) O(kImax

D) O(kdImax
D)

IL Eager O(kImin
D) O(kImin

D) O(kImin
D log Imax

D) O(kdImin
D log Imax

D)

Table 3.1: Complexity Analysis for Indexed Lookup Eager and Scan Eager Algorithms,

where ID is the Dewey index, Imin
D (Imax

D) is the length of the shortest (longest) posting

list in ID, k is the number of query terms, TD is the total number of blocks that ID
occupies on disk and d is the maximum depth of the tree.

right match in each one of the other posting lists. Therefore the number of left

and right match operations is O(kImax
D). Then, for each posting in the shortest

posting list, the LCAs with left and right matches are found, which is in the order

of O(kImin
D). Each of the LCA and left and right match operations costs O(d)

where d is the length of a Dewey ID which is at most equal to the depth of the

XML tree. In total, memory complexity of Scan Eager algorithm is O(kdImax
D).

Indexed Lookup Eager algorithm differs from Scan Eager in one aspect that while

Indexed Lookup Eager uses binary search to find left and right matches of a node,

Scan Eager scans the posting lists. As the complexities of the three algorithms

depend on the index sizes, we also make an analysis of the sizes in Section 3.4.4

to provide a better insight for the comparison of three methods and to give an

idea of disk access times.

Algorithm Disk I/O #Postorder Id
Comparison

#SLCA
Comparison

Memory
Complexity

DocOrdered O(TF) O(kImax
F) O(Imax

F) O(kImax
F)

Table 3.2: Complexity Analysis for DocOrdered Processing Algorithm, where IF
is the full index, Imin

F is the length of the shortest posting list in IF , k is the
number of query terms, and TF is the total number of blocks that IF occupies on
disk.

In Figure 3.1, each query contains two keywords with smaller frequency 100,

and the bigger frequency variable X. In Figure 3.2, each query contains two

keywords with smaller frequency 1000, and the bigger frequency variable X. In

CHAPTER 3. XML KEYWORD SEARCH WITH FULL ELEMENT INDEX31

Figure 3.1: Processing Time of 2-Keyword Query with Frequency 100-X

these experiments, we observe the effect of the length of the posting list with

bigger frequency on query processing time. While the Scan Eager algorithm per-

forms better than the Indexed Lookup Eager algorithm as in [36], our algorithm

computes SLCA results significantly (i.e., around five times) faster than both

algorithms.

In Figure 3.3, each query contains two keywords with smaller frequency vari-

able X, and the bigger frequency 100000. In these experiments, we evaluate the

effect of the size of the smaller posting list on the performance by varying the

smaller frequency and keeping the bigger frequency constant. DocOrdered and

Scan Eager algorithms’ performance does not vary much since their memory com-

plexity depends on the length of the longest posting list. Similarly, DocOrdered

algorithm has a much better performance than that of the Scan Eager and In-

dexed Lookup Eager algorithms.

In Figure 3.4, we give the processing time of the queries with different number

of keywords. For each query with k number of keywords, the keyword with the

smallest posting list has a frequency of 100, while the remaining (k-1) keywords

posting lists’ frequency is 100000.

CHAPTER 3. XML KEYWORD SEARCH WITH FULL ELEMENT INDEX32

Figure 3.2: Processing Time of 2-Keyword Query with Frequency 1000-X

Figure 3.3: Processing Time of 2-Keyword Query with Frequency 100000-X

CHAPTER 3. XML KEYWORD SEARCH WITH FULL ELEMENT INDEX33

Figure 3.4: Processing Time of Queries with Varying Number of Keywords (Fre-
quency 100-100000)

3.4.3 SLCA Retrieval Effectiveness

In this section, we evaluate the effectiveness of the SLCA method. The basic idea

behind this method is that, if a node contains all the keywords in a query, then it

will be more relevant than its ancestors. However, since the SLCA method returns

an unranked list of results as database query languages, a ranking mechanism

is required to improve the effectiveness. We implement a ranking mechanism

by adapting BM25 ranking function to XML retrieval. The term statistics for

the traditional BM25 function are within-document term frequency, tf , inverse

document frequency, idf , document length, and average document length. In

XML retrieval, these traditional measures could be calculated at element level.

However, because of the nested structure of XML, the interpretation of these

statistics could vary depending on the indexing mechanism. We adapt the term

statistics according to the full index and the direct Dewey index. In full index,

each element is indexed with its full content and term statistics are calculated

accordingly. In direct Dewey index, on the other hand, since each element is

indexed with its direct content, term statistics are calculated at query execution

time. In Index Eager algorithm, depending on the way that SLCAs are found,

tf of an SLCA node, v, is the sum of the tfs of children nodes whose slca is v.

CHAPTER 3. XML KEYWORD SEARCH WITH FULL ELEMENT INDEX34

Document length of v is also calculated similarly.

Another common method in XML keyword search is to calculate the score

of each element containing all the keywords and eliminate the overlapping re-

sults. Overlap elimination is achieved by choosing the highest scoring element

on a path in the XML document. In Table 3.3, we compare the effectiveness

of this traditional IR method, named as Ranked Top-1000, to that of Ranked

and Unranked SLCA methods. As the effectiveness evaluation measure, we use

mean average interpolated precison(MAiP) and interpolated precision at 1% re-

call level(iP[0.01]). While Unranked SLCA results give the worst iP[0.01] and

MAiP, the best effectiveness values are achieved by Ranked SLCA DocOrdered

method. The difference in ranking of DocOrdered and Index Eager methods

results from the values of term statistics. The way that term statistics are cal-

culated in Index Eager method possibly causes inaccurate ranking of the results.

Ranked Top-1000 method is also less effective then Ranked SLCA DocOrdered

Method. This may result from the fact that Ranked SLCA favors smaller nodes

and most of the content in the datasets occur in leaf nodes. We also provide the

efficiency results in Table 3.3 to give an idea about the query execution time of

each algorithm. The results reveal that ranking operation increases the query

execution times slightly.

Unranked
SLCA
DocOrdered

Unranked
SLCA
Index Eager

Ranked
SLCA
DocOrdered

Ranked
SLCA
Index Eager

Ranked
Top-1000

iP[0.01] 0.103 0.103 0.326 0.202 0.256

MAiP 0.016 0.016 0.086 0.028 0.086

Time(mSec) 5.941 39.824 6.118 40.662 6.559

Table 3.3: Effectiveness and Efficiency Comparison of SLCA and Top-1000 Meth-
ods

CHAPTER 3. XML KEYWORD SEARCH WITH FULL ELEMENT INDEX35

3.4.4 Size Comparison of Full Element Index and Direct

Dewey Index

As mentioned in Section 2.2.2, several techniques are proposed for indexing XML

collections. In this thesis, we employ the element indexing which is the closest

technique to traditional IR. This technique indexes each XML element considering

the content of the element itself and its descendants. However, with this approach,

each term occurring at nth level of the XML tree is repeated n times in the

index which yields a considerable amount of redundancy in terms of the index

size. Another technique for indexing an XML collection is leaf-only indexing.

With this technique, a direct index is obtained where each element contains only

the direct text content. With direct index, Dewey encoding is used so that the

ancestor-descendant relationships could be deduced from the ids of the elements.

Below, we compare the sizes of full element index and direct Dewey index built

from DBLP and Wikipedia collections. While the DBLP collection consists of a

single XML document, Wikipedia collection consists of multiple XML documents.

Both the full element index and direct Dewey index consist of the posting lists of

the terms. Each posting list is made up of the postings which include the element

identifier and the frequency of the term. As we use tree traversal based ordering

in full index and Dewey ID based ordering in direct index, the element identifiers

have different structure in these indexes. In full index, the element identifier is

the postorder traversal id of the element. In direct Dewey index, the element

identifier consists of the Dewey ID of the element, and the depth of the Dewey

ID. In Tables 3.4, 3.5 and 3.6, sizes of the indexes are compared with different

compression methods, namely Elias-γ, Elias-δ and UTF-8 encoding, respectively.

Here we observe that Elias-γ is the best method to compress a Dewey index.

Although UTF-8 encoding is proposed for Dewey index in [31], it results in the

biggest index size. Postorder traversal ids are single integers ,therefore, it is

possible to use id gaps instead of ids themselves. However, since Dewey IDs

consist of d number of integers where d is equal to the depth of the element in

the XML tree it is not possible to use gap encoding with Dewey IDs.

CHAPTER 3. XML KEYWORD SEARCH WITH FULL ELEMENT INDEX36

Element Id Depth TF Total
IDirectDBLP 68.744 5.172 1.787 75.703
IFullDBLP 32.190 0 2.991 35.181
IDirectINEX 441.599 67.246 32.346 541.191
IFullINEX 389.834 0 103.407 493.241

Table 3.4: Size Comparison of Full Element Index and Direct Dewey Index with
Elias-γ compression

Element Id Depth TF Total
IDirectDBLP 53.561 6.877 1.800 62.238
IFullDBLP 28.489 0 3.029 31.518
IDirectINEX 463.107 83.139 35.705 581.951
IFullINEX 351.204 0 114.612 465.816

Table 3.5: Size Comparison of Full Element Index and Direct Dewey Index with
Elias-δ compression

Element Id Depth TF Total
IDirectDBLP 68.129 14.097 14.097 96.323
IFullDBLP 32.384 0 23.325 55.709
IDirectINEX 701.762 174.898 176.528 1053.188
IFullINEX 590.558 0 482.799 1073.357

Table 3.6: Size Comparison of Full Element Index and Direct Dewey Index with
UTF-8 compression

CHAPTER 3. XML KEYWORD SEARCH WITH FULL ELEMENT INDEX37

3.5 Conclusion

In this chapter, we compare the performance of our query processing strategy

using a full element-index to that of the strategies that use a Dewey-encoded

index [36]. Our findings are as follows:

• When the datasets are compressed using state-of-the-art techniques, full

element-index files take less disk space than a direct Dewey index.

• Computation of SLCAs on both datasets are significantly (i.e., around five

times) faster than using the SLCA computation algorithms [36] that operate

on direct Dewey index.

• Our experiments on Wikipedia dataset show that IR-based ranking of ele-

ments may yield better results than producing SLCAs for document-centric

datasets. The efficiency promises are still kept.

Chapter 4

XML Retrieval using Pruned

Index Files

4.1 Introduction

In this chapter, we essentially focus on the strategies for constructing space-

efficient element-index files to support content-only (CO) queries. In the liter-

ature, the most straight-forward element-indexing method considers each XML

element as a separate document, which is formed of the text directly contained in

it and the textual content of all of its descendants. As mentioned in Section 2.2.2

this structure is called a full element-index. Clearly, this approach yields signifi-

cant redundancy in terms of the index size, as elements in the XML documents

are highly nested. To remedy this, a number of approaches are proposed in the lit-

erature. One such method is restricting the set of elements indexed, based on the

size [28] or type of the elements. Such an approach may still involve redundancy

for the elements that are selected to be indexed. Furthermore, determining what

elements to index would be collection and scenario dependent. There are also

other indexing strategies that can fully eliminate the redundancy. For instance,

a direct element-index is constructed by only considering the text that is directly

38

CHAPTER 4. XML RETRIEVAL USING PRUNED INDEX FILES 39

contained under an element (i.e., disregarding the content of the element’s de-

scendents). In the literature, propagation based mechanisms, in which the score

of each element is propagated upwards in the XML structure, are coupled with

the direct index for effective retrieval (e.g., [15]). In this case, the redundancy

in the index is somewhat minimized, but query processing efficiency would be

degraded.

For an IR system, it is crucial to optimize the underlying inverted index size

for the efficiency purposes. A lossless method for reducing the index size is using

compression methods some of which are experimented with full element index in

Chapter 3. On the other hand, many lossy static index pruning methods have also

been proposed in the last decade. All of these methods aim to reduce the storage

space for the index and, subsequently, query execution time, while keeping the

quality of the search results unaffected. While it is straight-forward to apply index

compression methods to (most of) the indexing methods proposed for XML, it is

still unexplored how those pruning techniques serve for XML collections, and how

they compare to the XML-specific indexing methods proposed in the literature.

In this chapter of the thesis, we propose to employ static index pruning tech-

niques for XML indexing. We envision that these techniques may serve as a

compromise between a full element-index and a direct element-index. In partic-

ular, we first model each element as the concatenation of the textual content in

its descendants, as typical in a full index. Then, the redundancy in the index is

eliminated by pruning this initial index. In this way, an element is allowed to

contain some terms, say, the most important ones, belonging to its descendants;

and this decision is given based on the full content of the element in an adaptive

manner.

For the purposes of index pruning, we apply two major methods from the

IR literature, namely, term-centric [30] and document-centric pruning [5] on the

full element-index. We evaluate the performance for various retrieval tasks as

described in the latest INEX campaigns. More specifically, we show that retrieval

using pruned index files is comparable or even superior to that of the full-index

up to very high levels of pruning. Furthermore, we compare these pruning-based

CHAPTER 4. XML RETRIEVAL USING PRUNED INDEX FILES 40

approaches to a retrieval strategy coupled with a direct index (as in [15]) and show

that pruning-based approaches are also superior to that strategy. As another

advantage, the pruning-based approaches are more flexible and can reduce an

index to a required level of storage space.

In Section 2.3.2, we have summarized some of the static index pruning strate-

gies that are proposed for large-scale IR systems and search engines. In the re-

maining part of this chapter, we describe the pruning techniques that are adapted

for reducing the size of a ‘full’ element-index, in which all descendants of an ele-

ment are considered during indexing. Next, we give the experimental evaluations

and point to future work directions on XML index pruning.

4.2 Pruning the Element-Index

The size of the full element-index for an XML collection may be prohibitively

large due to the nested structure of the documents. A large index file does

not only consume storage space but also degrades the performance of the actual

query processing (as longer posting lists should be traversed). The large index

size would also undermine the other optimization mechanisms, such as the list

caching (as longer list should be stored in the main memory).

In this chapter of the thesis, our main concern is reducing the index size to

essentially support content-only queries. Thus, we attempt to make an estimation

of how the index sizes for the above approaches can be ordered. Of course,

size(Ifull), i.e., size of full element-index, would have the largest size. Selective

(and/or distributed) index, denoted as size(Isel), would possibly be smaller; but

they can still have some degree of redundancy for those elements that are selected

for indexing. Assuming that Isel would typically index all leaf level elements, a

direct index (size(Idirect)) that indexes only the text under each element would

be smaller than the former. Finally, the lower bound for the index size can be

obtained by discarding all the structuring in an XML document and creating an

index only on the document basis (i.e., Idoc). Thus, a rough ordering can be like

CHAPTER 4. XML RETRIEVAL USING PRUNED INDEX FILES 41

size(Ifull) < size(Isel) < size(Idirect) < size(Idoc). In this work, we employ some

pruning methods that can yield indexes of sizes comparable to size(Idirect) or

size(Isel). We envision that such methods can prune an index up to a given level

in a robust an adaptive way, without requiring a priori knowledge on the collection

(e.g., semantics or popularity of elements). Furthermore, the redundancy that

remains in the index can even help improving the retrieval performance.

Previous techniques in the literature attempt to reduce the size of a full

element-index by either totally discarding the overlapping content, or only in-

dexing a subset of the elements in a collection. In contrast, we envision that

some of the terms that appear in an element’s descendants may be crucial for the

retrieval performance and should be repeated at the upper levels; whereas some

other terms can be safely discarded. Thus, instead of a crude mechanism, for

each element, the decision for indexing the terms from the element’s descendants

should be given adaptively, considering the element’s textual content and search

system’s ranking function. To this end, we employ two major static index prun-

ing techniques, namely term-centric pruning (TCP) [30] and document-centric

pruning (DCP) [5] for indexing the XML collections:

• TCP (I, k, ε): As mentioned in the related work, TCP, the adaptive version

of the top-k algorithm proposed in [30], is reported to be very successful

in static pruning. In this strategy, for each term t in the index I, first the

postings in t’s posting list are sorted by a scoring function (e.g, TF-IDF).

Next, the kth highest score, zt, is determined and all postings that have

scores less than zt ∗ ε are removed, where ε is a user defined parameter

to govern the pruning level. Following the practice in [4], we disregard

any theoretical guarantees and determine ε values according to the desired

pruning level. A recent study shows that the performance of the TCP

strategy can be further boosted by carefully selecting and tuning the scoring

function used in the pruning stage [4]. Following the recommendations of

that work, we employ BM25 as the scoring function for TCP.

• DCP (D,λ): We apply the DCP strategy for the entire index, which is

slightly different from pruning only the most frequent terms as originally

CHAPTER 4. XML RETRIEVAL USING PRUNED INDEX FILES 42

proposed by [5]. For each document d in the collection D, its terms are

sorted by the scoring function. Next, the top |d| ∗ λ terms are kept in the

document and the rest are discarded, where λ specifies the pruning level.

Then, the inverted index is created over these pruned documents. KLD has

been employed as the scoring function in [5]. However, in a more recent

work [3], it is reported that BM25 performs better when it is used during

both pruning and retrieval. Thus, we also use BM25 with DCP algorithm.

4.3 Experiments

4.3.1 Experimental Setup

Collection and queries: In this work, we use English Wikipedia XML collection

[10] employed in INEX campaigns since 2006. The dataset includes 659,388 ar-

ticles obtained from Wikipedia. After conversion to XML the collection includes

52 million elements. The textual content is 1.6 GB whereas the entire collec-

tion (i.e., with element tags) takes 4.5 GB. Our main focus is content-only (CO)

queries whereas content-and-structure queries (CAS) are left as a future work.

In the majority of the experiments reported below, we use 70 query topics with

relevance assessments provided for the Wikipedia collection in INEX 2008 (see

[21] p. 8 for the exact list of the queries). The actual query set is obtained from

the title field of these topics after eliminating the negated terms and stopwords.

No stemming is applied.

Indexing: As we essentially focus on CO queries, the index files are built upon

only using the textual content of the documents in the collection; i.e., tag names

and/or paths are not indexed. In the best performing system in all three tasks

of INEX 2008 ad hoc retrieval track, only a subset of elements in the collection

are used for scoring [19]. Following the same practice, we only index the fol-

lowing elements: <p>, <section>, <normallist>, <article>, <body>, <td>,

<numberlist>, <tr>, <table>, <definitionlist>, <th>, <blockquote>, <div>,

, <u>. Each of these elements in an XML document is treated as a separate

CHAPTER 4. XML RETRIEVAL USING PRUNED INDEX FILES 43

document and assigned a unique global identifier. Thus, the number of elements

to be indexed is found to be 7.4 million out of 52 million elements in Wikipedia

collection. During indexing, we use the open-source Zettair open-source search

engine [38] to parse the documents in the collection and obtain a list of terms

per element. Then, an element-level index is constructed by using each of the

strategies described in Section 2.2.2. We compare the retrieval performance of

four different XML indexing approaches which are Ifull (full element-index as

described before), Idirect (an index created by using only the text directly un-

der each element), ITCP (index files created from Ifull by using TCP algorithm

at a pruning level) and IDCP (index files created from Ifull by using DCP algo-

rithm at a pruning level). The posting lists in the resulting index files include

<element-id, frequency> pairs for each term in the collection, as this is adequate

to support the CO queries. Of course, the index can be extended to include ad-

ditional information, say, term positions, if the system is asked to support phrase

or proximity queries, as well. Posting lists are typically stored in a binary file

format where each posting takes 8 bytes (i.e., a 4 byte integer is used per each

field). In the below discussions, all index sizes are considered in terms of their

raw (uncompressed) sizes.

Retrieval tasks and evaluation: We concentrate on three ad-hoc retrieval

tasks, namely, Focused, Relevant-in-Context (RiC) and Best-in-Context (BiC),

as described in recent INEX campaigns (e.g., see [18, 21]). In short, the Focused

task is designed to retrieve the most focused results for a query without returning

overlapping elements. The underlying motivation for this task is retrieving the

relevant information at the correct granularity. Relevant-in-Context task requires

returning a ranked list of documents and a set of relevant (non-overlapping) el-

ements listed for each article. Finally, Best-in-Context task is designed to find

the best-entry-point for starting to read the relevant articles. Thus, the retrieval

system should return a ranked list of documents along with a (presumably) best

entry point for each document. We evaluate the performance of different XML

indexing strategies for all these three tasks along with the lines of INEX 2008

framework. That is, we use INEXeval software provided in [18] which computes

a number of measures for each task, which is essentially based on the amount of

CHAPTER 4. XML RETRIEVAL USING PRUNED INDEX FILES 44

Figure 4.1: Effectiveness comparison of Ifull, ITCP and IDCP in terms of iP[0.01]

retrieved text that overlaps with the relevant text in assessments. In all experi-

ments, we return up to 1500 highest scoring results.

4.3.2 Performance Comparison of Indexing Strategies:

Focused Task

For the focused retrieval task, we return the highest scoring 1500 elements after

eliminating the overlaps. The overlap elimination is simply achieved by choosing

the highest scoring element on a path in the XML document.

In Figure 4.1, we plot the performance of TCP and DCP based indexing

strategies with respect to the full element-index, Ifull. The evaluation measure is

interpolated precision at 1% recall level, iP[0.01], which happens to be the official

measure of INEX 2008. For this experiment, we use BM25 function as described

in [5] to rank the elements using each of the index files. For the pruned index files,

the element length, i.e., number of terms in an element, reduces after pruning. In

earlier studies [3, 4], it is reported that using the updated element lengths results

better in terms of effectiveness. We observed the same situation also for XML

retrieval case, and thus, used the updated element lengths for each pruning level

of TCP and DCP.

CHAPTER 4. XML RETRIEVAL USING PRUNED INDEX FILES 45

Figure 4.2: Effectiveness comparison of Ifull, ITCP and IDCP in terms of
MAiP[0.01]

To start with, we emphasize that the system performance with Ifull is rea-

sonable in comparison to INEX 2008 results. That is, focused retrieval based on

Ifull yields an iP figure of 0.643 at 1% recall level. The best result in INEX for

this task, as we discussed in the experimental setup section, yielded 0.687 and our

result is within the top-10 results of this task (see Table 6 in [21]). Note that, this

is also the case for RiC and BiC results that will be discussed in the upcoming

sections, proving that we have a reasonable baseline for drawing results in our

experimental framework.

Figure 4.1 reveals that DCP based indexing is as effective as Ifull up to 50%

pruning and indeed, at some pruning levels, it can even outperform Ifull. In other

words, it is possible to halve the index and still obtain the same or even better

effectiveness than the full index. TCP is also comparable to Ifull up to 40%. For

this setup, DCP seems to be better than TCP, an interesting finding given that

just the reverse is observed for typical document retrieval in previous works [2, 3].

However, the situation changes for higher levels of recall (as shown in Table 4.1),

and, say, for iP[.10] TCP performs better than DCP up to 70% pruning.

In Table 4.1, we report the interpolated precision at different recall levels and

mean average interpolated precision (MAiP) computed for 101 recall levels (from

0.00 to 1.00). For these experiments, we show three pruning levels (30%, 50%

CHAPTER 4. XML RETRIEVAL USING PRUNED INDEX FILES 46

Indexing Strategy Prune(%) iP[.00] iP[.01] iP[.05] iP[.10] MAiP

Ifull 0% 0.725 0.643 0.507 0.446 0.167

ITCP,0.3 30% 0.700 0.628 0.560 0.511 0.200

IDCP,0.3 30% 0.750 0.672 0.529 0.469 0.174

ITCP,0.5 50% 0.666 0.613 0.549 0.518 0.191

IDCP,0.5 50% 0.708 0.641 0.518 0.473 0.177

ITCP,0.7 70% 0.680 0.611 0.511 0.446 0.159

IDCP,0.7 70% 0.681 0.614 0.534 0.477 0.175

Idirect 65% 0.731 0.611 0.448 0.362 0.126

Idirect+PROPSCORE 65% 0.519 0.473 0.341 0.302 0.110

Idirect+PROPBM25 65% 0.450 0.435 0.384 0.302 0.116

Table 4.1: Effectiveness comparison of indexing strategies for Focused task. Prune
(%) field denotes the percentage of pruning with respect to full element-index
(Ifull). Shaded measures are official evaluation measure of INEX 2008. Best
results for each measure are shown in bold.

and 70%) for both TCP and DCP. The results reveal that, up to 70% pruning,

both indexing approaches lead higher MAiP figures than Ifull (also see Figure

4.2). The same trend also applies for iP at higher recall levels, namely, 5% and

10%.

In Table 4.1, we further compare the pruning based approaches to other re-

trieval strategies using Idirect. Recall that, as discussed in Section 4.2, Idirect is

constructed by considering only the textual content immediately under each ele-

ment, disregarding the element’s descendants. For this collection, the size of the

index turns out to be almost 35% of the Ifull, i.e., corresponding to 65% prun-

ing level. In our first experiment, we evaluate focused retrieval using Idirect and

BM25 as in the above. In this case, Idirect also performs well and yields 0.611 for

iP[.01] measure, almost the same effectiveness for slightly smaller indexes created

by TCP and DCP (see the case for 70% pruning for TCP and DCP in Table 4.1).

However, in terms of iP at higher levels and MAiP, Idirect is clearly inferior to the

pruning based approaches, as shown in Table 4.1.

As another experiment, we implemented the propagation mechanism used in

the GPX system that participated in INEX between 2004 and 2006 [13, 14, 15].

CHAPTER 4. XML RETRIEVAL USING PRUNED INDEX FILES 47

In these campaigns, GPX is shown to yield very competitive results and ranked

among the top systems for various retrieval tasks. Furthermore, GPX is designed

to work with an index as Idirect, i.e., without indexing the content of descendants

for the elements. In this system, first, the score of every element is computed as in

the typical case. However, before obtaining the final query output, the scores of

all elements in an XML document are propagated upwards so that they can also

contribute to their ancestors’ scores. We implement the propagation mechanism

(denoted as PROP) of GPX and calculate the relevance score of leaf and inner

nodes by using the equations 4.1 and 4.2 proposed in [15].

L = Kn−1
n∑

i=1

ti
fi

(4.1)

R = L0 +D(n)
n∑

i=1

Li (4.2)

L0 = The score of the current node

n = the number of children elements

D(n) = N1 if n = 1

= N2 otherwise

Li = The relevance score of the ith child element

In accordance with the INEX official run setup described in GPX work, we set

K = 5, N1 = 0.11 and N2 = 0.31 in our implementation. Their work reports that

the scoring function defined in Equation 4.1 (denoted as SCORE here) also per-

forms quite well when coupled with the propagation. Thus, we obtained results

for our implementation using both scoring functions, namely, BM25 and SCORE.

In Table 4.1, corresponding experiments are denoted as Idirect+PROPBM25 and

Idirect+PROPSCORE, respectively. The results reveal that, SCORE function per-

forms better at early recall levels, but for both cases the effectiveness figures are

considerably lower than the corresponding cases (i.e., 70% pruning level) based

on TCP and DCP. We attribute the lower performance of PROP mechanism to

the following observation. For the Wikipedia dataset, 78% of the data assessed as

relevant resides in the leaf nodes. This means that, returning leafs in the result

CHAPTER 4. XML RETRIEVAL USING PRUNED INDEX FILES 48

set would improve effectiveness, and vice versa. In contrast, PROP propagates el-

ement scores to the upper levels in the document, which may increase the number

of interior nodes in the final result and thus reduce the effectiveness.

Note that, we also attempted to verify the reliability of our implementation

of propagation mechanism by using INEX 2006 topics and evaluation software,

and to see how our results compare to the GPX results reported in [15]. We

observed that the results slightly differ at early ranks but then match for higher

rank percentages.

We can summarize our findings as follows: In terms of the official INEX

measure, which considers the performance at the first results most, the index

files constructed by the static pruning techniques lead to comparable to or even

superior results than Ifull up to 70% pruning level. A direct element-index also

takes almost 35% of the full index. Its performance is as good as the pruned index

files for iP[.01], but it falls rapidly at higher recall levels. Score propagating

retrieval systems, similar to GPX, perform even worse with Idirect and do not

seem to be a strong competitor. Another advantage of the index files created

by the static pruning techniques is that they can be processed by typical IR

systems without requiring any modifications in the query processing, indexing

and compression modules.

4.3.3 Performance Comparison of Indexing Strategies:

Relevant-in-Context Task

For the Relevant-in-Context task, after scoring the elements, we again eliminate

the overlaps and determine the top-1500 results as in the Focused task. Then,

those elements from the same document are grouped together. The result is

a ranked list of documents along with a set of elements. While ranking the

documents, we use the score of the highest scoring retrieved element per document

as the score of this particular document. We also experimented with another

technique in the literature; i.e. using the average score of elements in a document

for ranking the documents, which performs worse than the former approach and

CHAPTER 4. XML RETRIEVAL USING PRUNED INDEX FILES 49

is not investigated further.

In Table 4.2, we present the results in terms of the generalized precision (gP)

metric at early ranks and mean average generalized precision (MAgP); i.e., the

official measure of INEX 2008 for both RiC and BiC tasks. The results show that

approaches using Idirect are inferior to those using the pruned index files based

on either TCP or DCP at 70% pruning level; however with a relatively smaller

margin with respect to the previous task. In comparison of TCP and DCP based

approaches to Ifull, we observe that the former cases still yield comparable or

better performance, however up to 50% pruning, again a more conservative result

than that reported for the previous task.

Indexing Strategy Prune(%) gP[5] gP[10] gP[25] gP[50] MAgP

Ifull 0% 0.364 0.321 0.246 0.198 0.190

ITCP,0.3 30% 0.380 0.321 0.248 0.199 0.193

IDCP,0.3 30% 0.381 0.321 0.256 0.202 0.196

ITCP,0.5 50% 0.385 0.321 0.247 0.196 0.185

IDCP,0.5 50% 0.366 0.321 0.252 0.196 0.185

ITCP,0.7 70% 0.355 0.297 0.223 0.170 0.152

IDCP,0.7 70% 0.352 0.305 0.232 0.172 0.157

Idirect 65% 0.312 0.281 0.210 0.168 0.140

Idirect+PROPSCORE 65% 0.275 0.242 0.201 0.158 0.142

Idirect+PROPBM25 65% 0.223 0.199 0.184 0.145 0.108

Table 4.2: Effectiveness comparison of indexing strategies for Relevant-in-Context
task. Prune (%) field denotes the percentage of pruning with respect to full
element-index (Ifull). Best results for each measure are shown in bold.

4.3.4 Performance Comparison of Indexing Strategies:

Best-in-Context Task

For the Best-in-Context task, we obtain the relevant documents exactly in the

same way as in RiC. However, while ranking the documents, if the article node of

the document is within these retrieved elements, we use its score as the document

score. Otherwise, we use the score of the highest scoring retrieved element as the

CHAPTER 4. XML RETRIEVAL USING PRUNED INDEX FILES 50

score of this particular document. Then, we identify a best-entry-point (BEP)

per document. In INEX 2008, a simple approach of setting BEP as 1 is found

to be very effective and ranked second among all participants [21]. Note that,

this suggests starting to read each ranked document from the beginning. For

our work, we also experimented with providing the offset of the highest scoring

element per document as BEP [21], which yielded inferior results to the former

approach. Thus, we only report the results where BEP is set to 1.

In Table 4.3, we compare indexing strategies in terms of the same evalua-

tion metrics used in RiC task. As in RiC case, the performance obtained by

using pruned index files with TCP and DCP is comparable to that of using the

full element-index up to 50% pruning. At the 70% pruning level, both pruning

approaches have losses in effectiveness with respect to Ifull, but they are still

considerably better than using Idirect with the (approximately) same index size.

For instance, while MAgP for DCP is 0.143, the retrieval strategies using Idirect

(with BM25), Idirect+PROPSCORE and Idirect+PROPBM25 yield the MAgP figures of

0.087, 0.086 and 0.074, respectively. Again, basic retrieval using Idirect outper-

forms propagation based approaches, especially at the earlier ranks for generalized

precision metric.

Indexing Strategy Prune(%) gP[5] gP[10] gP[25] gP[50] MAgP

Ifull 0% 0.367 0.314 0.237 0.186 0.178

ITCP,0.3 30% 0.369 0.318 0.237 0.187 0.178

IDCP,0.3 30% 0.388 0.332 0.246 0.187 0.184

ITCP,0.5 50% 0.364 0.319 0.232 0.179 0.165

IDCP,0.5 50% 0.363 0.310 0.234 0.178 0.166

ITCP,0.7 70% 0.335 0.287 0.198 0.154 0.138

IDCP,0.7 70% 0.340 0.280 0.214 0.157 0.143

Idirect 65% 0.215 0.183 0.141 0.116 0.087

Idirect+PROPSCORE 65% 0.127 0.132 0.120 0.100 0.086

Idirect+PROPBM25 65% 0.156 0.151 0.136 0.115 0.074

Table 4.3: Effectiveness comparison of indexing strategies for Best-in-Context
task. Prune (%) field denotes the percentage of pruning with respect to full
element-index (Ifull). Best results for each measure are shown in bold.

CHAPTER 4. XML RETRIEVAL USING PRUNED INDEX FILES 51

4.4 Conclusion

Previous experiences with XML collections suggest that element indexing is im-

portant for high performance in ad hoc retrieval tasks. In our work, we propose to

use static index pruning techniques for reducing the size of a full element-index,

which would otherwise be very large due to the nested structure of XML docu-

ments. We also compare the performance of term and document based pruning

strategies to those approaches that use a direct element index that avoids index-

ing nested content more than once. Our experiments are conducted along the

lines of previous INEX campaigns, and the results reveal that pruned index files

are comparable or even superior to the full element-index up to very high pruning

levels for various ad hoc tasks (e.g., up to 70% pruning for and 50% for RiC and

BiC tasks) in terms of retrieval performance. Furthermore, the performance of

pruned index files is also better than that of the approaches using the direct index

file at the same index size.

Chapter 5

Using Pruning Methods for

Clustering XML

5.1 Introduction

As the number and size of XML collections increase rapidly, there occurs the

need to manage these collections efficiently and effectively. While there is still

an ongoing research in this area, INEX XML Mining Track fulfills the need for

an evaluation platform to compare the performance of several clustering methods

on the same set of data. Within the Clustering task of XML Mining Track of

INEX campaign, clustering methods are evaluated according to cluster quality

measures on a real-world Wikipedia collection.

To this end, in the last few workshops, many different approaches have been

proposed which use structural, content-based and link-based features of XML

documents. In INEX 2008, Kutty et al. [22] use both structure and content to

cluster XML documents. They reduce the dimensionality of the content features

by using only the content in frequent subtrees of an XML document. In another

work, Zhang et al. [39] make use of the hyperlink structure between XML doc-

uments through an extension of a machine learning method based on the Self

Organizing Maps for graphs. De Vries et al. [35] use K-Trees to cluster XML

52

CHAPTER 5. USING PRUNING METHODS FOR CLUSTERING XML 53

documents so that they can obtain clusters in good quality with a low complexity

method. Lastly, Tran et al. [33] construct a latent semantic kernel to measure the

similarity between content of the XML documents. However, before construct-

ing the kernel, they apply a dimension reduction method based on the common

structural information of XML documents to make the construction process less

expensive. In all of these works mentioned above, not only the quality of the

clusters but the efficiency of the clustering process is also taken into account.

In this chapter of the thesis, we propose an approach which reduces the dimen-

sion of the underlying document vectors without change or with a slight change

in the quality of the output clustering structure. More specifically, we use a par-

titioning type clustering algorithm, so-called Cover-Coefficient Based Clustering

Methodology (C3M) [7], along with some index pruning techniques for clustering

XML documents.

5.2 Baseline Clustering with C3M

In this thesis, we use the well-known Cover-Coefficient Based Clustering Method-

ology (C3M) [7] to cluster the XML documents. C3M is a single-pass partition-

ing type clustering algorithm which is shown to have good information retrieval

performance with flat documents (e.g., see [6]). The algorithm operates on docu-

ments represented by vector space model. Using this model, a document collection

can be abstracted by a document-term matrix, D; of size m by n whose individual

entries, dij (1 < i < m; 1 < j < n), indicate the number of occurrences of term

j (tj) in document i (di). In C3M , the document-term matrix D is mapped into

an m by m cover-coefficient matrix, C, which captures the relationships among

the documents of a database. The diagonal entries of C are used to find the

number of clusters, denoted as nc; and to select the cluster seeds. During the

construction of clusters, the relationships between a nonseed document (di) and

a seed document (dj) are determined by calculating the cij entry of C; where cij

indicates the extent to which di is covered by dj. A major strength of C3M is

CHAPTER 5. USING PRUNING METHODS FOR CLUSTERING XML 54

that, for a given dataset, the algorithm itself can determine the number of clus-

ters; i.e., there is no need for specifying the number of clusters, as in some other

algorithms. For the purposes of our work, we cluster the XML documents into

a given number of clusters (for several values like 1000, 10000, etc.) using C3M

method and we simply use the content of XML documents for clustering.

5.3 Employing Pruning Strategies for Cluster-

ing

From the previous works, it is known that static index pruning techniques can

reduce the size of an index (and the underlying collection) while providing com-

parative effectiveness performance with that of the unpruned case [2, 3, 4, 5, 30].

In Chapter 4, we have shown that such pruning techniques can also be adapted

for pruning the element-index for an XML collection [1]. Here, with the aim of

both improving the quality of clusters and reducing the dataset dimensions for

clustering, we apply static pruning techniques on XML documents. We adapt

the term-centric [30] and document-centric pruning [5] techniques mentioned in

Section 2.3.2 to obtain more compact representations of the documents. Then, we

cluster documents with these reduced representations for various pruning levels,

again using C3M algorithm.

5.4 Experiments

In this chapter of the thesis, we essentially use a subset of the INEX 2009 XML

Wikipedia collection. This subset, so-called small collection, contains 54575 doc-

uments. On the other hand, the large collection contains around 2.7 million

documents and takes 60 GB. The large collection is used only in the baseline

experiments for various number of clusters.

CHAPTER 5. USING PRUNING METHODS FOR CLUSTERING XML 55

As the baseline, we form clusters by applying C3M algorithm to XML doc-

uments represented with the bag of words representation of terms. For several

different number of output clusters, namely 100, 500, 1000, 2500, 5000 and 10000,

we obtain the clusters and evaluate them at the online evaluation website of INEX

2009 XML Mining Track. The website reports the standard evaluation criteria

for clustering such as micro purity, macro purity, micro entropy, macro entropy,

normalized mutual information (NMI), micro F1 score and macro F1 score for

a given clustering structure. However, only purity measures are used as the of-

ficial evaluation criteria for this task. In Tables 5.1 and 5.2, we report those

results for clustering small and large collections, respectively. For the latter case

we experimented with three different numbers of clusters such as 100, 1000 and

10000. A quick comparison of the results in Tables 5.1 and 5.2 for corresponding

cases implies that purity scores are better for the smaller dataset than that of the

larger dataset, especially for large number of clusters. We anticipate that better

purity scores for the large collection can be obtained by using a higher number of

clusters. Next, we experiment with the clusters produced by the pruning-based

approaches. For each pruning technique, namely, TCP and DCP, we obtain the

document vectors at four different pruning levels; i.e., 30%, 50%, 70% and 90%.

Note that, a document vector includes term id and number of occurrences for

each term in a document, stored in the binary format (i.e., as a transpose of an

inverted index). In Table 5.3, we provide results for the small collection and 10000

clusters. Our findings reveal that up to 70% pruning with DCP, quality of the

clusters is still comparable to or even superior than the corresponding baseline

case, in terms of the evaluation measures.

Regarding the comparison of pruning strategies, clusters obtained with DCP

yield better results than those obtained with TCP up to 70% pruning for both mi-

cro and macro purity measures. For the pruning levels higher than 70%, DCP and

TCP give better results interchangeably for these measures. In the experiments

presented in Chapter 4, we observed a similar behavior regarding the retrieval

effectiveness of indexes pruned with TCP and DCP.

From Table 5.3, we also deduce that DCP-based clustering at 30% pruning

level produces the best results for both of the evaluation measures in comparison

CHAPTER 5. USING PRUNING METHODS FOR CLUSTERING XML 56

No. of clusters Micro Purity Macro Purity
100 0.1152 0.1343
500 0.1528 0.1777
1000 0.1861 0.2147
2500 0.2487 0.3031
5000 0.3265 0.4160
10000 0.4004 0.5416

Table 5.1: Micro and macro purity values for the baseline C3M clustering for
different number of clusters using the small collection.

No. of clusters Micro Purity Macro Purity
100 0.1566 0.1234
1000 0.1617 0.1669
10000 0.1942 0.2408

Table 5.2: Micro and macro purity values for the baseline C3M clustering for
different number of clusters using the large collection.

Pruning Strategy Prune(%) Micro Purity Macro Purity
No Prune 0% 0.4004 0.5416

DCP 30% 0.4028 0.5400
TCP 30% 0.3914 0.5229
DCP 50% 0.4019 0.5375
TCP 50% 0.3870 0.5141
DCP 70% 0.4016 0.5302
TCP 70% 0.3776 0.5042
DCP 90% 0.3783 0.4768
TCP 90% 0.3639 0.5073

Table 5.3: Comparison of the purity scores for clustering structures based on
TCP and DCP at various pruning levels using the small collection. Number of
clusters is 10000. Prune (%) field denotes the percentage of pruning. Best results
for each measure are shown in bold.

CHAPTER 5. USING PRUNING METHODS FOR CLUSTERING XML 57

to the other pruning-based clusters. For this best-performing case, namely DCP

at 30% pruning, we also provide performance findings with varying number of

clusters (see Table 5.4).

No. of clusters Micro Purity Macro Purity
100 0.1021 0.1265
500 0.1347 0.1539
1000 0.1641 0.1917
2500 0.2234 0.2737
5000 0.2986 0.3854
10000 0.4028 0.5400

Table 5.4: Micro and macro purity values for DCP at 30% pruning for different
number of clusters.

The comparison of the results in Tables 5.1 and 5.4 shows that the DCP-

based clusters are inferior to the corresponding baseline clustering up to 10000

clusters, but they provide almost the same performance for the 10000 clusters

case. Other than the standard evaluation criteria INEX 2009 XML Mining Track,

we also investigate the quality of the clusters relative to the optimal collection

selection goal. To this end, a set of queries with manual query assessments from

the INEX Ad Hoc track are used and each set of clusters obtained is scored

according to the result set of each query. According to the clustering hypothesis

[20], the documents that cluster together have similar relevance to a given query.

Therefore, it is expected that the relevant documents for ad-hoc queries will be

in the same cluster in a good clustering solution. In particular, mean Normalised

Cluster Cumulative Gain (nCCG) score is used to evaluate the clusters according

to the given queries.

In Table 5.5, we provide the mean and the standard deviation of nCCG values

for our baseline C3M clustering on the small data collection. Regarding the

pruning-based approaches, the mean nCCG values obtained from the clusters

produced by TCP and DCP for various pruning levels are provided in Table 5.6.

In parallel with the findings obtained by the purity criteria, mean nCCG values

of the clusters obtained by DCP are still better than or comparable to the ones

CHAPTER 5. USING PRUNING METHODS FOR CLUSTERING XML 58

obtained by the baseline approach up to 70% pruning level. On the other hand,

TCP approach yields better mean nCCG values even at 90% pruning level. In

Table 5.7, we provide the mean nCCG values obtained from different number of

clusters formed by the DCP approach at 30% pruning level. A quick comparison

of the results in Table 5.7 with those in Table 5.5 reveals that clusters obtained

after DCP pruning are more effective than the clusters obtained by the baseline

strategy for various number of clusters.

No. of clusters Mean nCCG Std. Dev. CCG
100 0.7344 0.2124
500 0.6258 0.2482
1000 0.5986 0.2790
2500 0.5786 0.2352
5000 0.5918 0.2395
10000 0.4799 0.2507

Table 5.5: Mean and standard deviation of nCCG values for the baseline C3M
clustering for different number of clusters using the small collection.

Pruning Strategy Prune(%) Mean nCCG Std. Dev. CCG
No Prune 0% 0.4799 0.2507

DCP 30% 0.4950 0.2549
TCP 30% 0.4950 0.2549
DCP 50% 0.4828 0.2467
TCP 50% 0.4618 0.2236
DCP 70% 0.4601 0.2207
TCP 70% 0.5075 0.2176
DCP 90% 0.4613 0.2343
TCP 90% 0.5132 0.2804

Table 5.6: Comparison of the mean and standard deviation of nCCG values for
clustering structures based on TCP and DCP at various pruning levels using
the small collection. Number of clusters is 10000. Prune (%) field denotes the
percentage of pruning.

Finally, in Figure 5.1 we compare the performance of the C3M clustering with

the other runs submitted to INEX 2009 in terms of the mean nCCG. For each

CHAPTER 5. USING PRUNING METHODS FOR CLUSTERING XML 59

No. of clusters Mean nCCG Std. Dev. CCG
100 0.7426 0.1978
500 0.6424 0.2326
1000 0.5834 0.2804
2500 0.5965 0.2504
5000 0.5929 0.2468
10000 0.4950 0.2549

Table 5.7: Mean and standard deviation of nCCG values for DCP at 30% pruning
for different number of clusters.

case (i.e., number of clusters), we plot the highest scoring clustering approaches

from each group. Note that, for cluster numbers of 100, 500, 2500, and 5000, our

strategy (denoted as C3M) corresponds to DCP based clustering at 30%; and for

the cluster number of 10000 we report the score of TCP based clustering at 90%.

For one last case where the cluster number is set to 1000, we report the baseline

C3M score, which turns out to be the highest.

5.5 Conclusion

In this chapter, we employ the well-known C3M algorithm for content based

clustering of XML documents. Furthermore, we use index pruning techniques

from the literature to reduce the size of the document vectors on which C3M

operates. Our findings reveal that, for a high number of clusters, the quality of

the clusters produced by the C3M algorithm does not degrade when up to 70%

of the index (and, equivalently, the document vectors) is pruned.

CHAPTER 5. USING PRUNING METHODS FOR CLUSTERING XML 60

Figure 5.1: Comparison of the highest scoring runs submitted to INEX for varying
number of clusters on the small collection.

Chapter 6

Conclusions and Future Work

XML keyword search is a challenging and promising research topic. It would

satisfy the user by retrieving specific and relevant information at the right gran-

ularity, provided that efficient and effective XML retrieval systems could be de-

veloped. In this thesis, we have dealt with the querying, indexing and ranking

aspects of XML keyword search using a full element-index. We have shown that

such an index, together with state-of-the-art IR query processing techniques,

could allow efficient and effective keyword search over XML databases and doc-

ument collections in a unified manner.

More specifically, we first implemented two recent result definition techniques,

SLCA and TOP-K using full element-index and document ordered query pro-

cessing. We compared our approach to the well known techniques finding SLCA

which are Scan Eager and Index Eager algorithms. The experimental results

have revealed that, contrary to the current belief, using full element-index could

be simple yet efficient for XML keyword search. In addition to the efficiency re-

sults, it has been shown that our approach can retrieve SLCA nodes with greater

effectiveness compared to Index Eager and Scan Eager algorithms. Since the

full element-index allows the term statistics to be calculated according to the full

content of an element, more accurate ranking is possible in comparison to a direct

dewey index.

61

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 62

In XML retrieval, when the documents are deeply nested, sizes of the indexes

could be problematic for large scale systems. To handle that situation, we applied

a lossy compression technique, static pruning, on full element index to further

reduce its size. We managed to prune 50% of the index without losing effective-

ness. With a comprehensive set of experiments, several tasks of XML keyword

search were evaluated and static pruning techniques were proven to be useful not

only on classic flat document indexes but also on XML element indexes.

Lastly, we investigated another aspect of XML retrieval, which is clustering.

We employed the well known C3M clustering algorithm to group XML docu-

ments. The document vectors used in clustering were obtained from the full

element index. To observe the performance impact of static pruning on XML

clustering, both unpruned and pruned indexes were employed. The experimen-

tal results revealed that even 70% pruned document vectors yield a clustering

structure in the same quality with unpruned ones with C3M algorithm.

The whole set of experiments in this thesis support that full element-index,

when used with appropriate query processing and clustering algorithms, could be

an optimal solution for XML retrieval. Future work directions involve extending

our framework as a unified retrieval system for both XML and flat documents.

Such a system could allow generating query results in different forms (such as

SLCA or TOP-K) according to user’s preferences and retrieving the relevant data

from different types of collections. With regard to compression issues, we intend

to experiment some other static index pruning techniques for query processing

and clustering tasks.

Bibliography

[1] I. S. Altingövde, D. Atilgan, and Ö. Ulusoy. Xml retrieval using pruned

element-index files. In Proceedings of the 32nd European Conference on In-

formation Retrieval, pages 306–318, 2010.

[2] I. S. Altingövde, R. Ozcan, and Ö. Ulusoy. Exploiting query views for static

index pruning in web search engines. In Proceedings of the 18th ACM In-

ternational Conference on Information Knowledge and Management, pages

1951–1954, 2009.

[3] I. S. Altingövde, R. Ozcan, and Ö. Ulusoy. A practitioner’s guide for static

index pruning. In Proceedings of the 31st European Conference on Informa-

tion Retrieval, pages 675–679, 2009.

[4] R. Blanco and A. Barreiro. Boosting static pruning of inverted files. In

Proceedings of the 30th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 777–778, 2007.

[5] S. Büttcher and C. L. A. Clarke. A document-centric approach to static

index pruning in text retrieval systems. In Proceedings of the 2006 ACM In-

ternational Conference on Information Knowledge and Management, pages

182–189, 2006.

[6] F. Can, I. S. Altingövde, and E. Demir. Efficiency and effectiveness of query

processing in cluster-based retrieval. Information Systems, 29(8):697–717,

2004.

63

BIBLIOGRAPHY 64

[7] F. Can and E. A. Ozkarahan. Concepts and effectiveness of the cover-

coefficient-based clustering methodology for text databases. ACM Trans-

actions on Database Systems, 15(4):483–517, 1990.

[8] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. Xsearch: A semantic search

engine for xml. In Proceedings of the 29th International Conference on Very

Large Data Bases, pages 45–56, 2003.

[9] E. S. de Moura, C. F. dos Santos, B. D. de Araujo, A. S. da Silva, P. Calado,

and M. A. Nascimento. Locality-based pruning methods for web search.

ACM Transactions on Information Systems, 26(2), 2008.

[10] L. Denoyer and P. Gallinari. The wikipedia xml corpus. In Comparative Eval-

uation of XML Information Retrieval Systems, 5th International Workshop

of the Initiative for the Evaluation of XML Retrieval, INEX 2006, Revised

and Selected Papers, pages 12–19, 2007.

[11] P. F. Dietz. Maintaining order in a linked list. In ACM Symposium on

Theory of Computing, pages 122–127, 1982.

[12] S. Garcia. Search Engine Optimization Using Past Queries. PhD thesis,

RMIT, 2007.

[13] S. Geva. Gpx - gardens point xml information retrieval at inex 2004. In Ad-

vances in XML Information Retrieval, Third International Workshop of the

Initiative for the Evaluation of XML Retrieval, INEX 2004, Revised Selected

Papers, pages 211–223, 2005.

[14] S. Geva. Gpx - gardens point xml ir at inex 2005. In Advances in XML

Information Retrieval and Evaluation, 4th International Workshop of the

Initiative for the Evaluation of XML Retrieval, INEX 2005, Revised Selected

Papers, pages 240–253, 2006.

[15] S. Geva. Gpx - gardens point xml ir at inex 2006. In Comparative Evaluation

of XML Information Retrieval Systems, 5th International Workshop of the

Initiative for the Evaluation of XML Retrieval, INEX 2006, Revised and

Selected Papers, pages 137–150, 2007.

BIBLIOGRAPHY 65

[16] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. Xrank: Ranked key-

word search over xml documents. In Proceedings of the 2003 ACM SIGMOD

International Conference on Management of Data, pages 16–27, 2003.

[17] L. C.-S. H. Su-Cheng. Node labeling schemes in xml query optimization: A

survey and trends. IETE Technical Review, 26(2):88–100, 2009.

[18] Initiative for the evaluation of xml retrieval, 2009.

http://www.inex.otago.ac.nz/.

[19] K. Y. Itakura and C. L. A. Clarke. University of waterloo at inex 2008:

Adhoc, book, and link-the-wiki tracks. In Advances in Focused Retrieval,

7th International Workshop of the Initiative for the Evaluation of XML Re-

trieval, INEX 2008, Revised and Selected Papers, pages 132–139, 2009.

[20] N. Jardine and C. J. van Rijsbergen. The use of hierarchic clustering in

information retrieval. Information Storage and Retrieval, 7(5):217–240, 1971.

[21] J. Kamps, S. Geva, A. Trotman, A. Woodley, and M. Koolen. Overview of the

inex 2008 ad hoc track. In Advances in Focused Retrieval, 7th International

Workshop of the Initiative for the Evaluation of XML Retrieval, INEX 2008,

Revised and Selected Papers, pages 1–28, 2009.

[22] S. Kutty, T. Tran, R. Nayak, and Y. Li. Clustering xml documents us-

ing frequent subtrees. In Advances in Focused Retrieval, 7th International

Workshop of the Initiative for the Evaluation of XML Retrieval, INEX 2008,

Revised and Selected Papers, pages 436–445, 2009.

[23] M. Lalmas. XML Retrieval. Synthesis Lectures on Information Concepts,

Retrieval, and Services. Morgan & Claypool Publishers, 2009.

[24] G. Li, J. Feng, J. Wang, and L. Zhou. Effective keyword search for valuable

lcas over xml documents. In Proceedings of the 2007 ACM International

Conference on Information Knowledge and Management, pages 31–40, 2007.

[25] Y. Li, C. Yu, and H. V. Jagadish. Schema-free xquery. In Proceedings of

the 30th International Conference on Very Large Data Bases, pages 72–83,

2004.

BIBLIOGRAPHY 66

[26] Z. Liu and Y. Chen. Reasoning and identifying relevant matches for xml

keyword search. Proceedings of the VLDB Endowment, 1(1):921–932, 2008.

[27] A. Ntoulas and J. Cho. Pruning policies for two-tiered inverted index with

correctness guarantee. In Proceedings of the 30th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval,

pages 191–198, 2007.

[28] B. Sigurbjörnsson and J. Kamps. The effect of structured queries and selec-

tive indexing on xml retrieval. In Advances in XML Information Retrieval

and Evaluation, 4th International Workshop of the Initiative for the Evalua-

tion of XML Retrieval, INEX 2005, Revised Selected Papers, pages 104–118,

2006.

[29] G. Skobeltsyn, F. Junqueira, V. Plachouras, and R. A. Baeza-Yates. Resin:

a combination of results caching and index pruning for high-performance

web search engines. In Proceedings of the 31st Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval,

pages 131–138, 2008.

[30] A. Soffer, D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Herscovici, and

Y. S. Maarek. Static index pruning for information retrieval systems. In

Proceedings of the 24th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 43–50, 2001.

[31] I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J. Shekita,

and C. Zhang. Storing and querying ordered xml using a relational database

system. In Proceedings of the 2002 ACM SIGMOD International Conference

on Management of Data, pages 204–215, 2002.

[32] The dblp computer science bibliography, 2010. http://www.informatik.uni-

trier.de/ ley/db/.

[33] T. Tran, S. Kutty, and R. Nayak. Utilizing the structure and content in-

formation for xml document clustering. In Advances in Focused Retrieval,

7th International Workshop of the Initiative for the Evaluation of XML Re-

trieval, INEX 2008, Revised and Selected Papers, pages 460–468, 2009.

BIBLIOGRAPHY 67

[34] H. R. Turtle and J. Flood. Query evaluation: Strategies and optimizations.

Information Processing and Management, 31(6):831–850, 1995.

[35] C. M. D. Vries and S. Geva. Document clustering with k-tree. In Advances in

Focused Retrieval, 7th International Workshop of the Initiative for the Eval-

uation of XML Retrieval, INEX 2008, Revised and Selected Papers, pages

420–431, 2009.

[36] Y. Xu and Y. Papakonstantinou. Efficient keyword search for smallest lcas

in xml databases. In Proceedings of the 2005 ACM SIGMOD International

Conference on Management of Data, pages 537–538, 2005.

[37] C. Yi, W. Wei, L. Ziyang, and L. Xuemin. Keyword search on structured

and semi-structured data. In Proceedings of the 2009 ACM SIGMOD Inter-

national Conference on Management of Data, pages 1005–1010, New York,

NY, USA, 2009. ACM.

[38] Zettair search engine, 2009. http://www.seg.rmit.edu.au/zettair/.

[39] S. Zhang, M. Hagenbuchner, A. C. Tsoi, and A. Sperduti. Self organizing

maps for the clustering of large sets of labeled graphs. In Advances in Focused

Retrieval, 7th International Workshop of the Initiative for the Evaluation of

XML Retrieval, INEX 2008, Revised and Selected Papers, pages 469–481,

2009.

