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HYPERGRAPH-PARTITIONING-BASED MODELS AND METHODS FOR
EXPLOITING CACHE LOCALITY IN SPARSE-MATRIX VECTOR

MULTIPLICATION

KADİR AKBUDAK∗, ENVER KAYAASLAN†, AND CEVDET AYKANAT‡

Abstract. The sparse matrix-vector multiplication (SpMxV) is a kernel operation widely used in iterative linear
solvers. The same sparse matrix is multiplied by a dense vector repeatedly in these solvers. Matrices with irregular
sparsity patterns make it difficult to utilize cache locality effectively in SpMxV computations. In this work, we
investigate single- and multiple-SpMxV frameworks for exploiting cache locality in SpMxV computations. For the
single-SpMxV framework, we propose two cache-size-aware top-down row/column-reordering methods based on 1D
and 2D sparse matrix partitioning by utilizing the column-net and enhancing the row-column-net hypergraph models
of sparse matrices. The multiple-SpMxV framework depends on splitting a given matrix into a sum of multiple
nonzero-disjoint matrices so that the SpMxV operation is computed as a sequence of multiple input- and output-
dependent SpMxV operations. For an effective matrix splitting required in this framework, we propose a cache-size-
aware top-down approach based on 2D sparse matrix partitioning by utilizing the row-column-net hypergraph model.
For this framework, we also propose a TSP formulation for an effective ordering of individual SpMxV operations.
The primary objective in all of the three methods is to maximize the exploitation of temporal locality. We evaluate
the validity of our models and methods on a wide range of sparse matrices. Experimental results show that proposed
methods and models outperform state-of-the-art schemes.

Key words. cache locality, sparse matrix, matrix-vector multiplication, matrix reordering, computational hy-
pergraph model, hypergraph partitioning, traveling salesman problem

AMS subject classifications. 65F10, 65F50, 65Y20

1. Introduction. Sparse matrix-vector multiplication (SpMxV) is an important kernel
operation in iterative linear solvers used for the solution of large, sparse, linear systems of
equations. In these iterative solvers, the SpMxV operation y←Ax is repeatedly performed
with the same large, irregularly sparse matrix A . Irregular access pattern during these re-
peated SpMxV operations causes poor usage of cpu caches in today’s deep memory hierar-
chy technology. However, SpMxV operation has a potential to exhibit very high performance
gains if temporal and spatial localities are respected and exploited properly.

In this work, we investigate two distinct frameworks for cache-oblivious SpMxV: single-
SpMxV and multiple-SpMxV frameworks. In the single-SpMxV framework, the y -vector
results are computed by performing a single SpMxV operation y ← Ax , whereas in the
multiple-SpMxV framework, y←Ax operation is computed as a sequence of multiple input-
and output-dependent SpMxV operations. For the single-SpMxV framework, we propose
two cache-size-aware row/column reordering methods based on top-down 1D and 2D parti-
tioning of a given sparse matrix. The 1D-partitioning-based method relies on transforming
a sparse matrix into a singly-bordered block-diagonal form by utilizing the column-net hy-
pergraph model [7, 8, 9]. The 2D-partitioning-based method relies on transforming a sparse
matrix into a doubly-bordered block-diagonal form by utilizing the row-column-net hyper-
graph model [7, 11]. We provide upper bounds on the total number of cache misses based
on these transformations, and show that the objectives in the transformations based on parti-
tioning the respective hypergraph models correspond to minimizing these upper bounds. In
the 1D-partitioning-based method, the column-net hypergraph model correctly encapsulates
the minimization of the respective upper bound. For the 2D-partitioning-based method, we
propose an enhancement to the row-column-net hypergraph model to encapsulate the mini-
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mization of the respective upper bound on cache misses. The primary objective in both meth-
ods is to maximize the exploitation of the temporal locality due to the access of x -vector
entries, whereas exploitation of the spatial locality due to the access of x -vector entries is a
secondary objective. In this paper, we claim that exploiting temporal locality is more impor-
tant than exploiting spatial locality (for practical line sizes) in SpMxV operations that involve
irregularly sparse matrices.

The multiple-SpMxV framework depends on splitting a given matrix into a sum of mul-
tiple nonzero-disjoint matrices so that the SpMxV operation is computed as a sequence of
multiple dependent SpMxV operations. For an effective matrix splitting required in this
framework, we propose a cache-size-aware top-down approach based on 2D sparse matrix
partitioning by utilizing the row-column-net hypergraph model [7, 11]. We provide an upper
bound on the total number of cache misses based on this matrix-splitting, and show that the
objective in the hypergraph-partitioning (HP) based matrix partitioning exactly corresponds
to minimizing this upper bound. The primary objective in this method is to maximize the ex-
ploitation of the temporal locality due to the access of both x -vector and y -vector entries.
For this framework, we also propose a traveling salesman problem (TSP) formulation for an
effective ordering of individual SpMxV operations. We provide a lower bound on the total
number of cache misses based on the ordering of individual SpMxV operations, and show
that the objective in the proposed TSP formulation exactly corresponds to minimizing this
lower bound.

We evaluate the validity of our models and methods on a wide range of sparse matri-
ces. Experimental results show that proposed methods and models outperform state-of-the-
art schemes and also these results conform to our expectation that temporal locality is more
important than spatial locality in SpMxV operations that involve irregularly sparse matrices.

The rest of the paper is organized as follows: Background material is introduced in Sec-
tion 2. In Section 3, we review some of the previous works about iteration/data reordering
and matrix transformations for exploiting locality. The two frameworks along with our con-
tributed models and methods are described in Sections 4 and 5. We present the experimental
results in Section 6. Finally, the paper is concluded in Section 7.

2. Background. Several sparse-matrix storage schemes utilized in SpMxV are summa-
rized in Section 2.1. Data locality issues during SpMxV operations are discussed in Sec-
tion 2.2. Section 2.3 summarizes the HP problem, whereas Section 2.4 discusses hypergraph
models and methods for sparse-matrix partitioning. Finally, bipartite graph model for sparse
matrices is given in Section 2.5.

2.1. Sparse-matrix storage schemes. There are two standard sparse-matrix storage
schemes for SpMxV operation: Compressed Storage by Rows (CSR) and Compressed Stor-
age by Columns (CSC) [14, 33]. In this paper, we restrict our focus on cache-oblivious
SpMxV operation using the CSR storage scheme without loss of generality. In the following
paragraphs, we review the standard CSR scheme and two CSR variants.

The compressed Storage by Rows (CSR) scheme contains three 1D arrays: nonzero,
colIndex and rowStart. The values and the column indices of nonzeros are respectively stored
in row-major order in the nonzero and colIndex arrays in a one-to-one manner. That is,
colIndex[k] stores the column index of the nonzero stored in nonzero[k] . The rowStart
array stores the index of the first nonzero of each row in the nonzero and colIndex arrays.
Algorithm 1 shows SpMxV utilizing the CSR storage scheme for an m × n sparse matrix.
Each outer for-loop iteration of Algorithm 1 corresponds to the inner product of the respective
sparse row with the dense input vector x .

The Zig-zag CSR (ZZCSR) scheme is recently proposed to reduce end-of-row cache
misses [42]. In this scheme, nonzeros are stored in increasing column index order in even-
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Algorithm 1 SpMxV using CSR scheme
Require: nonzero , colIndex and rowStart arrays of an m× n sparse matrix A

a dense input vector x
Output: dense vector y

1: for i← 1 to m do
2: sum← 0.0
3: for k ← rowStart [i] to rowStart [i+ 1]− 1 do
4: sum← sum+ nonzero[k] ∗ x[ colIndex [k]]
5: end for
6: y[i]← sum
7: end for
8: return y

numbered rows, whereas they are stored in decreasing index order in odd-numbered rows, or
vice versa.

The Incremental Compressed Storage by Rows (ICSR) scheme [27] which is given in
Algorithm 2 is reported to decrease instruction overhead by using pointer arithmetic. In
ICSR, the colIndex array is replaced with the colDi ff array, which stores the increments
in the column indices of the successive nonzeros stored in the nonzero array. The rowStart
array is replaced with the rowJump array which stores the increments in the row indices of
the successive nonzero rows. The beginning of a new row is signalled by causing an increment
value j to overflow n so that j − n shows the column index of the first nonzero in the next
row. For this purpose, nonzeros of each row are stored in increasing column index order. The
ICSR scheme has the advantage of handling zero rows efficiently since it avoids the use of
the rowStart array. Consequently, this feature of ICSR is exploited in our multiple-SpMxV
framework since this scheme introduces many zero rows in the individual sparse matrices.

Algorithm 2 SpMxV using ICSR scheme [27]
Require: nonzero , colDi ff and rowJump arrays of an m×n sparse matrix A with nnz nonzeros,

a dense input vector x
Output: dense vector y

1: i← rowJump
2: j ← colDi ff [0]
3: k ← 0
4: r ← 1
5: sum← 0.0
6: for k ← 1 to nnz do
7: sum← sum+ nonzero[k] ∗ x[j]
8: k ← k + 1
9: j ← j+ colDi ff [k]

10: if j ≥ n then
11: y[i]← sum
12: sum← 0.0
13: j ← j − n
14: i← i+ rowJump [r]
15: r ← r + 1
16: end if
17: end for
18: return y

2.2. Data locality in SpMxV. Here, we will briefly mention about the data locality
characteristics of the SpMxV operation y ←Ax using the CSR scheme as also discussed
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in [41]. In terms of the A -matrix stored in CSR format, temporal locality is not feasible
since the elements of each of the nonzero , colIndex (colDi ff in ICSR) and rowStart
(rowJump in ICSR) arrays are accessed only once. Spatial locality is feasible and it is
achieved automatically by nature of the CSR scheme since the elements of each of the three
arrays are stored and accessed consecutively.

In terms of output vector y , temporal locality is not feasible since each y -vector result is
written only once to the memory. As a different view, temporal locality can be considered as
feasible but automatically achieved especially at the register level because of the summation
of scalar nonzero and x -vector entry product results to the temporary variable sum . Spatial
locality is feasible and it is achieved automatically since the y -vector entry results are stored
consecutively.

In terms of input vector x , both temporal and spatial locality are feasible. Temporal
locality is feasible since each x -vector entry may be accessed multiple times. However,
exploiting the temporal and spatial locality for the x -vector is the major concern in the CSR
scheme since x -vector entries are accessed through a colIndex array (colDi ff in ICSR) in
a non-contiguous and irregular manner.

These locality issues can be solved by reordering rows/columns of matrix A and the
exploitation level of these data localities depends both on the existing sparsity pattern of
matrix A and the effectiveness of reordering heuristics.

2.3. Hypergraph partitioning. A hypergraph H = (V,N ) is defined as a set V of
vertices and a set N of nets (hyperedges). Every net nj ∈ N connects a subset of vertices,
i.e., nj⊆V . Weights and costs can be associated with vertices and nets, respectively. We use
w(vi) to denote the weight of vertex vi and cost(nj) to denote the cost of net nj .

Given a hypergraph H = (V,N ) , Π={V1, . . . ,VK} is called a K -way partition of the
vertex set V if parts of Π are mutually disjoint and exhaustive. A K -way vertex partition of
H is said to satisfy the partitioning constraint if

Wk ≤Wavg(1 + ε), for k = 1, 2, . . . ,K (2.1)

Here, the weight Wk of a part Vk is defined as the sum of weights of vertices in that part (i.e.,
Wk =

∑
vi∈Vk w(vi) ), Wavg is the average part weight (i.e., Wavg = (

∑
vi∈V w(vi))/K ),

and ε represents a predetermined, maximum allowable imbalance ratio.
In a partition Π of H , a net that connects at least one vertex in a part is said to connect

that part. Connectivity set Λ(nj) of a net nj is defined as the set of parts connected by nj .
Connectivity λ(nj) = |Λ(nj)| of a net nj denotes the number of parts connected by nj .
A net nj is said to be cut if it connects more than one part (i.e., λ(nj) > 1 ), and uncut
otherwise (i.e., λ(nj) = 1). The set of cut nets of a partition Π is denoted as Ncut . The
partitioning objective is to minimize the cutsize defined over the cut nets. There are various
cutsize definitions. Two relevant definitions are the cut-net metric

cutsize(Π) =
∑

nj∈Ncut

cost(nj) (2.2)

and the connectivity metric ([6]):

cutsize(Π) =
∑

nj∈Ncut

(λ(nj)− 1) cost(nj) (2.3)

In the cut-net metric, each cut net nj incurs the cost of cost(nj) to the cutsize, whereas in
the connectivity metric, each cut net incurs the cost of (λ(nj) − 1) cost(nj) to the cutsize.
The HP problem is known to be NP-hard [28]. There exists several successful HP tools such
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as hMeTiS [26], PaToH [10] and Mondriaan [40], all of which apply the multilevel frame-
work. The recursive bisection (RB) paradigm is widely used in K -way HP and known to be
amenable to produce good solution qualities. In the RB paradigm, first, a two-way partition
of the hypergraph is obtained. Then, each part of the bipartition is further bipartitioned in a
recursive manner until the desired number K of parts is obtained or part weights drop below
a given part-size threshold Wmax . In RB-based HP, the cut-net removal and cut-net splitting
schemes [9] are used to capture the cut-net and connectivity cutsize metrics, respectively.
The RB paradigm is inherently suitable for partitioning hypergraphs when K is not known
in advance. Hence, the RB paradigm can be successfully utilized in clustering rows/columns
for cache-size-aware row/column reordering.

2.4. Hypergraph models for sparse matrix partitioning. Recently, several successful
hypergraph models and methods are proposed for efficient parallelization of SpMxV opera-
tions [9, 7]. The relevant ones are row-net, column-net, and row-column-net models.

In the row-net hypergraph model [8, 9, 7] HRN(A)=(VC ,NR) of matrix A , there exist
one vertex vj ∈ VC and one net ni ∈ NR for each column cj and row ri , respectively.
The weight w(vj) of a vertex vj is set to the number of nonzeros in column cj . The net ni
connects the vertices corresponding to the columns that have a nonzero entry in row ri . Every
net ni ∈ NR has unit cost, i.e., cost(ni) = 1 . In the column-net hypergraph model [8, 9, 7]
HCN (A) = (VR,NC) of matrix A , there exist one vertex vi ∈ VR and one net nj ∈ NC
for each row ri and column cj , respectively. The weight w(vi) of a vertex vi is set to the
number of nonzeros in row ri . Net nj connects the vertices corresponding to the rows that
have a nonzero entry in column cj . Every net nj has unit cost, i.e., cost(nj)=1 .

In the row-column-net model [11] HRCN (A)=(VZ ,NRC) of matrix A , there exists one
vertex vij ∈ VZ corresponding to each nonzero aij in matrix A . In net set NRC , there exists
a row-net nri for each row ri , and there exists a column-net nci for each column cj . Every
row net and column net have unit cost. Row-net nri connects the vertices corresponding to the
nonzeros in row ri , and column-net ncj connects the vertices corresponding to the nonzeros
in column cj . Note that each vertex is connected by exactly two nets. HRCN (A) is also
called as the fine-grain model.

The use of these three hypergraph models in sparse-matrix partitioning for parallelization
of SpMxV operations is described into detail in [7, 9]. The row-net and colum-net models
are used for 1D columnwise and 1D rowwise partitioning of sparse matrices, whereas row-
column-net model is used for 2D nonzero-based (fine-grain) partitioning. It has been shown
that the partitioning objective (2.3) corresponds to the total communication volume when the
point-to-point interprocessor communication scheme is used, whereas the partitioning objec-
tive (2.2) corresponds to the total communication volume when the collective communication
scheme is used. In these models, the partitioning constraint (2.1) corresponds to maintaining
a computational load balance for a given number K of processors.

In [3], it is shown that row-net and colum-net models can also be used for transforming
a sparse matrix into a K -way singly-bordered block-diagonal (SB) form through row and
column reordering. In particular, the row-net model can be used for permuting a matrix into
a rowwise SB form, whereas the column-net model can be used for permuting a matrix into
a columnwise SB form. Here we will briefly describe how a K -way partition of the column-
net model can be decoded as a row/column reordering for this purpose and a dual discussion
holds for the row-net model.

A K -way vertex partition Π = {V1, . . . ,VK} of HCN (A) is considered as inducing a
(K+1)-way partition {N1, . . . ,NK ;Ncut} on the net set of HCN (A) . Here Nk denotes the
set of uncut nets of vertex part Vk , for each k = 1, 2, . . . ,K , whereas Ncut denotes the set
of cut nets. The vertex partition is decoded as a partial row reordering of matrix A such that
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the rows associated with vertices in Vk+1 are ordered after the rows associated with vertices
Vk , k = 1, 2, . . . ,K − 1 . The net partition is decoded as a partial column reordering of
matrix A such that the columns associated with nets in Nk+1 are ordered after the columns
associated with nets in Nk , k = 1, 2, . . . ,K − 1 , whereas the columns associated with the
cut nets are ordered last to constitute the column border.

2.5. Bipartite graph model for sparse matrices. In the bipartite graph model B(A) =
(V, E) of matrix A , there exists one row vertex vri ∈ R representing row ri , and there exists
one column vertex vci ∈ C representing column cj , where R is the set of row vertices
and C is the set of column vertices. These vertex sets R and C form the vertex bipartition
V = R ∪ C . There is an edge between vertices vri ∈ R and vci ∈ C if and only if the
respective matrix entry aij is nonzero.

3. Related work. The main focus of this work is to perform iteration and data reorder-
ing, without changing the conventional CSR-based SpMxV codes, whereas cache aware tech-
niques such as prefetching, blocking, etc. are out of the scope of this paper. So we summarize
the related work on iteration and data reordering for irregular applications which usually use
index arrays to access other arrays. Iteration and data reordering approaches can also be
categorized as dynamic and static. Dynamic schemes [13, 15, 12, 35, 19] achieve runtime re-
ordering transformations by analyzing the irregular memory access patterns through adopting
inspector/executor strategy [29]. Reordering rows/columns of irregularly sparse matrices to
exploit locality during SpMxV operations can be considered as a static case of such general
iteration/data reordering problem. We call it a static case [38, 41, 32, 42] since the sparsity
pattern of matrix A together with the CSR- or CSC-based SpMxV scheme determines the
memory access pattern. In the CSR scheme, iteration order corresponds to row order of ma-
trix A and data order corresponds to column order, whereas a dual discussion applies for
CSC.

Dynamic and static transformation heuristics mainly differ in the preprocessing times.
Fast heuristics are usually used for dynamic reordering transformations, whereas much more
sophisticated heuristics are used for static case. The preprocessing time for the static case can
amortize the performance improvement during repeated computations with the same memory
access pattern. Repeated SpMxV computations involving the same matrix or matrices with
the same sparsity pattern constitute a very typical case of such static case.

Ding and Kennedy [15] propose the locality grouping and consecutive packing (CPACK)
heuristics for runtime iteration and data reordering, respectively. The locality grouping heuris-
tic traverses the data objects in a given order and clusters all the iterations that access the first
data item, then the second, and etc. The CPACK heuristic reorders the data objects on a first-
touch-first basis. The locality grouping heuristic is also referred to as consecutive packing
for iterations (CPACKIter) in [35] and this heuristic is equivalent to the iteration reordering
heuristic proposed by Das et al. [13] As also mentioned in [15, 19], these heuristics suffer
from not explicitly considering different reuse patterns of different data objects because the
data objects and iterations are traversed in a given order.

Space-filling curves such as Hilbert and Morton as well as recursive storage schemes
such as quadtree are used for iteration reordering in improving locality in dense matrix oper-
ations [16, 24, 17] and in sparse matrix operations [18]. Space-filling curves [12] and hierar-
chical graph clustering algorithms (GPART) [19] are utilized for data reordering in improving
locality in n-body simulation applications.

Strout et al. [34] integrate run-time data and iteration reordering transformations such as
lexicographically grouping, CPACK and GPART into a compile time framework and they
show that sparse tiling may improve performance of these transformations depending on
the underlying architecture. Strout and Hovland [35] extend the work in [34] and propose
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hypergraph-based models for data and iteration reordering transformations. They introduce a
temporal locality hypergraph model for ordering iterations to exploit temporal locality. They
also generalize spatial locality graph model to spatial locality hypergraph model to encompass
the applications having multiple arrays that are accessed irregularly. Additionally, they pro-
pose a modified algorithm like Breadth-First Search (BFS) for ordering data and iterations
simultaneously, whereas Breadth-First Search is used for only data ordering in [2]. Strout
and Hovland [35] also propose metrics to determine which reordering heuristic is expected to
yield better performance.

Das et al. [13] use reordering techniques in their implementation of three-dimensional
unstructured grid Euler-solver to improve cache utilization. They reorder unstructured mesh
edges incident on the same node consecutively. They also use Reverse Cuthill McKee (RCM)
method to reorder nodes of the mesh. Burgess and Giles [5] examine effects of reordering
techniques in unstructured grid applications They report that reordering meshes that are gen-
erated without any cache optimization may result increase in performance according to appli-
cation: Original orderings give better results in Jacobi solver, whereas reordered meshes give
better results in conjugate gradients method.

Al-Furaih and Ranka [2] introduce interaction graph model to investigate optimizations
for unstructured iterative applications in which the computational structure remains static or
changes only slightly through iterations. They compare several methods to reorder data el-
ements through reordering the vertices of the interaction graph. They report that BFS, as
a fast reordering heuristic, can be applied to a static structure once or to a dynamic struc-
ture between tens of iterations. The other reordering methods are based on top-down graph
partitioning, BFS ordering after graph partitioning and reordering via finding connected com-
ponents that can fit into cache.

In the rest of this section, we discuss the related work on improving locality in SpMxV
operations. Agarwal et al. [1] try to improve SpMxV by extracting dense block structures.
Their methods consist of examining row blocks to find dense subcolumns and reorder these
subcolumns consecutively. Temam and Jalby [36] analyze the cache miss behaviour of Sp-
MxV. They report that cache hit ratio decreases as bandwidth of sparse matrix increases be-
yond the cache size and conclude that bandwidth reduction algorithms improve cache utiliza-
tion.

Toledo [38] compares several techniques to reduce cache misses in SpMxV. He uses
graph theoretic methods such as Cuthill McKee (CM), RCM and top-down graph partition-
ing for reordering matrices and other improvement techniques such as blocking, prefetching
and instruction-level-related optimization. They report that they cannot improve SpMxV per-
formance through row/column reordering over original matrices. White and Sadayappan [41]
discuss data locality issues in SpMxV in detail. They compare SpMxV performance of CSR,
CSC and blocked versions of CSR and CSC. They also propose a graph-partitioning-based
row/column reordering method which is similar to that of Toledo. They report that they
can not achieve performance improvement over the original ordering as also reported by
Toledo [38]. Haque and Hossain [20] propose a column reordering method based on Gray
Code.

There are several works on row/column reordering based on similar TSP formulations.
Heras et al. [23] define four distance functions for edge weighting depending on the similarity
of sparsity patterns between row/columns. Pichel et al. [30] use TSP-based reordering and
blocking technique to show improvements in both single processor performance and multi-
computer performance. Pichel et al. [31] compare the performance of a number of reordering
techniques which utilize TSP, top-down graph partitioning, RCM, Approximate Minimum
Degree on simultaneous multithreading architectures. Pınar and Heath [32] propose a TSP-
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based column reordering for permuting nonzeros of a given matrix into contiguous blocks
with the objective of decreasing the number of indirections in the CSR-based SpMxV. They
compare the performance of their method to that of the RCM technique.

In a very recent work, Yzelman and Bisseling [42] propose a row/column reordering
scheme based on partitioning row-net hypergraph representation of a given sparse matrix
for CSR-based SpMxV. They achieve spatial locality on x -vector entries by clustering the
columns with similar sparsity pattern. They also exploit temporal locality for x -vector en-
tries by using zig-zag property of ZZCSR and ZZICSR schemes mentioned in Section 2.1.

4. Single-SpMxV framework. In this framework, the y -vector results are computed
by performing a single SpMxV operation, i.e., y ←Ax . The objective in this scheme is
to reorder the columns and rows of matrix A for maximizing the exploitation of temporal
and spatial locality in accessing x -vector entries. That is, the objective is to find row and
column permutation matrices Pr and Pc so that y←Ax is computed as ŷ← Âx̂ , where
Â = PrAPc , x̂ = xPc and ŷ = Pr y . For the sake of simplicity of presentation, reordered
input and output vectors x̂ and ŷ will be referred to as x and y in the rest of the paper.

Recall that temporal locality in accessing y -vector entries is not feasible, whereas spa-
tial locality is achieved automatically because y -vector results are stored and processed
consecutively. Reordering the rows with similar sparsity pattern nearby increases the possi-
bility of exploiting temporal locality in accessing x -vector entries. Reordering the columns
with similar sparsity pattern nearby increases the possibility of exploiting spatial locality in
accessing x -vector entries. This row/column reordering problem can also be considered as
a row/column clustering problem and this clustering process can be achieved in two distinct
ways: top-down and bottom-up. In this section, we propose and discuss cache-size-aware top-
down approaches based on 1D and 2D partitioning of a given matrix. Although a bottom-up
approach based on hierarchical clustering of rows/columns with similar patterns is feasible,
such a scheme is not discussed in this work.

4.1. Row/column reordering based on 1D matrix partitioning. We consider a row/col-
umn reordering which permutes a given matrix A into a K -way columnwise singly-bordered
block-diagonal (SB) form

Â = ASB = PrAPc =


A11 A1B

A22 A2B

. . .
...

AKK AKB

 =


R1

R2

...
RK


=
[
C1 C2 . . . CK CB

]
. (4.1)

Here, Akk denotes the k th diagonal block of ASB . Rk = [0 . . . 0 Akk 0 . . . 0 AkB ] denotes
the k th row slice of ASB , for k = 1 . . .K . Ck =

[
0 . . . 0 AT

kk 0 . . . 0
]T

denotes the k th
column slice of ASB , for k = 1 . . .K , and CB denotes the column border as follows

CB =


A1B

A2B

...
AKB

 . (4.2)

Each column in the border CB is called a row-coupling column or simply a coupling column.
Let λ(cj) denote the number of submatrices that contain at least one nonzero of column cj
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of matrix ASB , i.e.,

λ(cj) = |{Rk : cj ∈ Rk}| (4.3)

In other words, λ(cj) denotes the row-slice connectivity or simply connectivity of column cj
in ASB . In this notation, a column cj is a coupling column if λ(cj) > 1 .

The individual y←Ax can be equivalently represented as K output-independent but
input-dependent SpMxV operations, i.e., yk ← Rk x for k = 1 . . .K , where each submatrix
Rk is assumed to be stored in CSR scheme. These SpMxV operations are input dependent
because of the x -vector entries corresponding to the coupling columns. The following the-
orem gives the guidelines for a “good” cache-size-aware row/column reordering based on 1D
partitioning.

THEOREM 1. Given a K -way SB form of matrix A such that every submatrix Rk fits into
the cache, then the number Φ(ASB) of cache misses due to the access of x -vector entries
can be upperbounded as

Φ(ASB) ≤
∑

cj∈ASB

λ(cj) (4.4)

under the fully-associative cache assumption.
Proof. Since each submatrix Rk fits into the cache, each x -vector entry correspond-

ing to a nonzero column of matrix Rk will be loaded to the cache at most once during the
yk ← Rk x multiply, under the full-associativity assumption. Therefore for a column cj ,
the maximum number of cache misses that can occur is bounded above by λ(cj) due to the
access of the corresponding x -vector entry xj . Thus, the number Φ(ASB) of cache misses
due to the access of x -vector entries cannot exceed

∑
cj
λ(cj) .

Theorem 1 leads us to a cache-size-aware top-down row/column reordering through an
A -to-ASB transformation that minimizes the sum

∑
cj
λ(cj) of the connectivity values of

columns. Here, minimizing this sum relates to minimizing the cache misses due to the loss of
temporal locality. More precisely, under the assumption that there is no empty column, since
there has to be at least one cache miss for each column cj , the column cj brings λ(cj) − 1
extra cache misses due to temporal locality in the worst case.

COROLLARY 1. Given a K -way SB form of matrix A such that every submatrix Rk

fits into the cache, then the number Φadditional(ASB) of additional cache misses due to the
access of x -vector entries can be upperbounded as

Φadditional(ASB) ≤
∑

cj∈ASB

(λ(cj)− 1) (4.5)

under the fully-associative cache assumption.
As discussed in [3], this A -to-ASB transformation problem can be formulated as an

HP problem using the column-net model of matrixA with the part size constraint of cache
size and the partitioning objective of minimizing cutsize according to the connectivity metric
definition given in Equation 2.3.

4.2. Row/column reordering based on 2D matrix partitioning. We consider a row/col-
umn reordering which permutes a given matrix A into a K -way doubly-bordered block-
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diagonal (DB) form

Â = ADB = PrAPc =


A11 A1B

A22 A2B

. . .
...

AKK AKB

AB1 AB2 . . . ABK ABB

 =


R1

R2

...
RK

RB

 =

[
A′SB

RB

]

=
[
C1 C2 . . . CK CB

]
. (4.6)

Here, RB = [AB1 AB2 . . . ABK ABB ] denotes the row border. Each row in RB is called
a column-coupling row or simply a coupling row. A′SB denotes the columnwise SB part
of ADB excluding the row border RB . Rk denotes the k th row slice of both A′SB and
ADB . λ′(cj) denotes the connectivity of column cj in A′SB . C ′B denotes the column
border of A′SB , whereas CB = [C ′TB AT

BB ]T denotes the column border of ADB . Ck =[
0 . . . 0 AT

kk 0 . . . 0 AT
Bk

]T
denotes the k th column slice of ADB .

The following theorem gives the guidelines for a “good” cache-size-aware row/column
reordering based on 2D partitioning.

THEOREM 2. Given a K-way DB form of matrix A such that every submatrix Rk of A′SB

fits into the cache, then the number Φ(ADB) of cache misses due to the access of x -vector
entries can be upperbounded as

Φ(ADB) ≤
∑

cj∈A′
SB

λ′(cj) +
∑

ri∈RB

nnz(ri) (4.7)

under the fully-associative cache assumption.
Proof. We can consider the y ← Ax multiply as two output-independent but input-

dependent SpMxVs: ySB ← A′SB x and yB ← RB x , where y = [yTSB yTB ]T . Thus
Φ(ADB) ≤ Φ(A′SB) + Φ(RB) . By proof of Theorem 1, we already have Φ(A′SB) ≤∑

cj
λ′(cj) . In the yB ← RB x multiply, we have at most nnz(ri) x -vector access for each

column-coupling row ri of RB . Hence, Φ(RB) ≤
∑

ri∈RB
nnz(ri) thus concluding the

proof.
Theorem 2 leads us to a cache-size-aware top-down row/column reordering through an

A -to-ADB transformation that minimizes the right-hand side of the inequality given in (4.7).
Here, minimizing this sum relates to minimizing the cache misses due to temporal locality.
More precisely, under the assumption that there is no empty column, there has to be at least
one cache miss for each column cj , which concludes the following corollary.

COROLLARY 2. Given a K-way DB form of matrix A such that every submatrix Rk

of A′SB fits into the cache, then the number Φadditional(ADB) of cache misses due to the
access of x -vector entries can be upperbounded as

Φadditional(ADB) ≤
∑

cj∈A′
SB

(λ′(cj)− 1) +
∑

ri∈RB

nnz(ri) (4.8)

under the fully-associative cache assumption.
Here we propose to formulate the above-mentioned A -to-ADB transformation problem

as an HP problem using the row-column-net model of matrix A with a part size constraint
of cache size. In the proposed formulation, column nets are associated with unit cost (i.e.,
cost(ncj) = 1 for each column cj ) and the cost of each row net is set to the number of
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nonzeros in the respective row (i.e., cost(nri ) = nnz(ri) ). However, existing HP tools
do not handle the cutsize definition given in Equation 4.7, because the connectivity metric
should be enforced for column nets, whereas the cut-net metric should be enforced for row
nets. In order to encapsulate this different cutsize definition, we adapt and enhance the cut-
net removal and cut-net splitting techniques adopted in RB algorithms utilized in HP tools.
The connectivity of a column net should be calculated in such a way that it is as close as
possible to the connectivity of the respective coupling column in the A′SB part of ADB .
For this purpose, after each bipartitioning step, each cut row-net is removed together with
all of its vertices in both sides of the bipartition. Recall that the vertices of a cut net are
not removed in the conventional cut-net removal scheme [9]. After applying the proposed
removal scheme on the row nets on the cut, the conventional cut-net splitting technique [9]
is applied to the column nets on the cut of the bipartition. This enhanced row-column-net
model will be abbreviated as the “eRCN” model and the resulting reordering method will be
referred to as “sHPeRCN ”.

The K-way partition Π={V1, . . . ,VK} of HRCN (A) obtained as a result of the above-
mentioned RB process is decoded as follows to induce the desired DB form of matrix A . The
rows corresponding to the cut row-nets are permuted to the end to constitute the coupling rows
of the row border RB . The rows corresponding to the uncut row-nets of part Vk are permuted
to the k th row slice Rk . The columns corresponding to the uncut column-nets of part Vk are
permuted to the k th column slice Ck . It is clear that the columns corresponding to the cut
column-nets remain in the column border CB of ADB and hence only those columns have
the potential to remain in the column border C ′B of A′SB . Some of these columns may be
permuted to a column slice Ck if all of its nonzeros become confined to row slice Rk and row
border RB . Such cases may occur as follows: Consider a cut column-net ncj of a bipartition
obtained at a particular RB step. If the row nets corresponding to the rows that contain the
nonzeros corresponding to ncj ’s vertices that lie on one part of the bipartition all become cut
nets in the following RB steps, then column cj is no longer a coupling column and it can be
safely permuted to column slice Ck . For such cases, the proposed scheme fails to correctly
encapsulate the column connectivity cost in A′SB . The proposed cut row-net removal scheme
avoids such column-connectivity miscalculations that may occur in the future RB steps due
the cut row-nets of the current bipartition. However, it is clear that our scheme cannot avoid
such possible errors (related to the cut column-nets of the current bipartition) that may occur
due to the row nets to be cut in the future RB steps.

5. Multiple-SpMxV framework. In this framework, we assume that the nonzeros of
matrix A are partitioned arbitrarily among K Ak matrices such that each matrix Ak matrix
contains a mutually disjoint subset of nonzeros. Then matrix A can be written as the sum

A = A1 +A2 + · · ·+AK . (5.1)

In this framework, y←Ax operation is computed as a sequence of K input- and output-
dependent SpMxV operations as shown in Algorithm 3. This splitting of matrix A is not
necessarily row disjoint or column disjoint. Thus, the individual SpMxV operations are input
dependent because of the shared columns among the Ak matrices, whereas they are output
dependent because of the shared rows among the Ak matrices.

Since a global row and column ordering is assumed in Algorithm 3, Ak matrices are
likely to contain empty rows. Hence, each individual SpMxV operation y ← y + Akx is
performed using the ICSR scheme. As seen in Algorithm 3, individual SpMxV results are
accumulated in the output vector y on the fly in order to avoid additional write operations.

The partitioning of matrix A into Ak matrices should be done in such a way that the
temporal and spatial locality of individual SpMxVs are exploited in order to minimize cache
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Algorithm 3 SpMxV algorithm utilizing the multiple-SpMxV framework
Require: A = A1 +A2 + · · ·+AK partitioning of matrix A and dense input vector x
Output: dense vector y

1: y ← 0T

2: for k ← 1 toK do
3: y ← y +Akx
4: end for
5: return y

misses. This goal is similar to that of the single-SpMxV framework discussed in Section 4.
On the contrary, this framework requires the splitting of matrix A into Ak matrices, whereas
the single-SpMxV framework uses the method of reordering rows and columns. We discuss
pros and cons of this framework compared to the single-SpMxV framework in Section 5.1.
In Section 5.2, we also show that splitting matrix A into Ak matrices can be formulated as
2D partitioning of matrix A by utilizing the row-column-net hypergraph model. The order
of individual SpMxV operations is also important to exploit temporal locality. We state this
ordering problem as an instance of TSP in Section 5.3.

5.1. Pros and cons compared to single-SpMxV framework. The single-SpMxV frame-
work can be considered as a special case of multiple-SpMxV framework in which Ak ma-
trices are restricted to be row disjoint. Thus, the multiple-SpMxV framework brings an
additional flexibility for exploiting the temporal and spatial locality. Clustering A -matrix
rows/subrows with similar sparsity pattern into the same Ak matrices increases the possi-
bility of exploiting temporal locality in accessing x -vector entries. Clustering A -matrix
columns/subcolumns with similar sparsity pattern into the same Ak matrices increases the
possibility of exploiting spatial locality in accessing x -vector entries as well as temporal
locality in accessing y -vector entries.

It is clear that single-SpMxV framework utilizing the CSR scheme severely suffers from
dense rows. Dense rows causes loading large number of x -vector entries to the cache thus
disturbing the temporal locality of accessing x -vector entries. The multiple-SpMxV frame-
work may overcome this deficiency of the single-SpMxV framework through utilizing the
flexibility of distributing the nonzeros of dense rows among multiple Ak matrices in such a
way to exploit the temporal locality in the respective y← y +Akx operations.

However, this additional flexibility comes at a cost of disturbing the following localities
compared to single SpMxV approach. There is some disturbance in the spatial locality in
accessing the nonzeros of the A matrix due to the division of three arrays associated with
nonzeros into K parts. However, this disturbance in spatial locality is negligible since ele-
ments of each of the three arrays are stored and accessed consecutively during each SpMxV
operation. That is, at most 3(K−1) extra cache misses occur compared to the single SpMxV
scheme due to the disturbance of spatial locality in accessing the nonzeros of A -matrix. More
importantly, multiple read/writes of the individual SpMxV results might bring some disad-
vantages compared to single SpMxV scheme. These multiple read/writes disturb the spatial
locality of accessing y -vector entries as well as introducing a temporal locality exploitation
problem in y -vector entries.

The following theorem gives the guidelines for a “good” matrix splitting based on 2D
partitioning.

THEOREM 3. Consider a partition Π(A) of matrix A into K nonzero-disjoint matrices
A1, A2, . . . , AK . Let λ(ri) denote the number of Ak matrices that contain at least one
nonzero of row ri of matrix A , i.e., λ(ri) = |{Ak : ri ∈ Ak}| . Similarly let λ(cj) denote
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the number of Ak matrices that contain at least one nonzero of column cj of matrix A , i.e.,
λ(cj) = |{Ak : cj ∈ Ak}| . Let q denote the size of the largest Ak matrix in terms of the
number of caches it can fit into. Then the number Φ(Π(A)) of cache misses due to the access
of x -vector and y -vector entries can be upperbounded as

Φ(Π(A)) ≤
∑
ri∈A

λ(ri) + q
∑
cj∈A

λ(cj) (5.2)

under the fully-associative cache assumption.
Proof. For each matrix Ak , each y -vector result of Ak is written only once to the

memory. For the sake of simplicity, we refer Φ(Π(A)) as Φ . Let Φx and Φy respectively
denote the number of cache misses due to the access of x -vector and y -vector entries for
Π(A) . Then, Φ = Φx + Φy . The number of cache misses due to the access of yi is at most
λ(ri) which happens when no cache-reuse occurs in accessing yi , that is,

Φy ≤
∑
ri∈A

λ(ri). (5.3)

Let qk denote the minimum number of caches that matrix Ak can fit into. Since full-
associativity is assumed, for each matrix Ak , each x -vector entry of Ak is accessed at
most qk times. Therefore, the number of cache misses due to the access of xj is at most qk
for each matrix Ak that requires xj to be accessed. Then,

Φx ≤
∑
cj∈A

∑
k:cj∈Ak

qk ≤
∑
cj∈A

∑
k:cj∈Ak

q ≤ q
∑
cj∈A

λ(cj) (5.4)

Equations 5.3 and 5.4 together lead to Equation 5.2.
COROLLARY 3. If each Ak matrix fits into the cache then the number Φ(Π(A)) of

cache misses due to the access of x -vector and y -vector entries can be upperbounded as

Φ(Π(A)) ≤
∑
ri∈A

λ(ri) +
∑
cj∈A

λ(cj) (5.5)

in case of unit cache-line size and full-associativity of cache is assumed.

5.2. Splitting A into Ak matrices. Corollary 3 leads us to a cache-size-aware top-
down matrix splitting which minimizes the sum

∑
ri
λ(ri) +

∑
cj
λ(cj) of λ values of rows

and columns such that the storage of each Ak matrix fits into the cache. Here, the minimiza-
tion objective relates to minimizing the cache misses due to temporal locality. More precisely,
under the assumption that there is no empty column, there is at least one cache miss for each
row ri and each column cj . Thus, row ri and column cj , respectively, incurs λ(ri)− 1 and
λ(cj)− 1 additional cache misses due to the loss of temporal locality in the worst case.

COROLLARY 4. Given a K -way matrix splitting Π(A) of matrix A such that every Ak

matrix fits into the cache, then the number Φadditional(Π(A)) of additional cache misses due
to the access of x -vector and y -vector entries can be upperbounded as

Φadditional(Π(A)) ≤
∑
ri∈A

(λ(ri)− 1) +
∑
cj∈A

(λ(cj)− 1) (5.6)

The matrix partitioning problem can be formulated as an HP problem using the row-
column-net model [7, 11] of matrix A with a part size constraint of cache size and partition-
ing objective of minimizing cutsize according to the connectivity metric definition given in
Equation 2.3.
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5.3. Ordering individual SpMxV operations. The above-mentioned objective in par-
titioning matrix A into Ak matrices is to exploit temporal and spatial locality of individual
SpMxVs in order to minimize cache misses. However, when all SpMxVs are considered,
data reuse between two consecutive SpMxVs must also be considered to exploit temporal
locality. We give an exact lower bound for the cache misses due to the access of x -vector
and y -vector entries for a given order of Ak matrices.

THEOREM 4. Consider a splitting Π̂(A) of matrix A into K nonzero-disjoint matrices
A1, A2, . . . , AK with a given ordering of the Ak matrices. A subchain of Ak matrices is
said to cover a row ri and a column cj if each matrix in the subchain contains at least one
nonzero of row ri and column cj , respectively. Let γ(ri) and γ(cj) denote the number
of maximal Ak-matrix subchains that cover row ri and column cj , respectively. If no Ak

matrix can fit into one cache, then the number Φ(Π̂(A)) of cache misses due to the access of
x -vector and y -vector entries can be lowerbounded as

Φ(Π̂(A)) ≥
∑
ri∈A

γ(ri) +
∑
cj∈A

γ(cj) (5.7)

under the fully-associative cache and unit cache-line-size assumption.
Proof. We will give the proof only for the columns, since a similar proof applies for the

rows; then total number of cache misses can be written as a sum of cache misses due to access
of y -vector entries and x -vector entries and can be formulated as

Φ(Π̂(A)) = Φr(Π̂(A)) + Φc(Π̂(A)) (5.8)

Consider a column cj of matrix A . Then there exists γ(cj) maximal Ak-matrix subchains
that cover column cj . Since no Ak matrix can fit into one cache, it is guaranteed that there
will be no cache reuse of column cj between two different maximal Ak-matrix subchains that
cover cj . Therefore, at least γ(cj) cache misses will occur for each column cj which means
that the number Φc(Π̂(A)) of cache misses due to the access of x -vector entries is greater
than or equal to

∑
cj
γ(cj) in the case of unit cache-line size.

THEOREM 5. Consider the TSP Instance (G = (V, E), w ), where vertex set V denotes the K
Ak matrices. The weight w(k, `) of edge ek` ∈ E is set to be equal to the sum of the number
of shared rows and the number of shared columns between Ak and A` . Then, finding an
order on V that maximizes the path weight corresponds to finding an order of Ak matrices
which minimizes Ψ =

∑
ri
γ(ri) +

∑
cj
γ(cj) .

Proof. Below, let AΓ(`) denote the ` th Ak matrix in the ordering Γ of Ak matrices and
let Ak also denote the set of rows and columns that belong to the matrix Ak .

Ψ =
∑
ri

[
|AΓ(1) ∩ {ri}|+

K∑
`=2

|(AΓ(`) −AΓ(`−1)) ∩ {ri}|
]

+
∑
cj

[
|AΓ(1) ∩ {cj}|+

K∑
`=2

|(AΓ(`) −AΓ(`−1)) ∩ {cj}|
]

= |AΓ(1)|+
K∑
`=2

|(AΓ(`) −AΓ(`−1))| = |AΓ(1)|+
K∑
`=2

(|AΓ(`)| − |AΓ(`) ∩AΓ(`−1)|)

=

K∑
`=1

|AΓ(`)| −
K∑
`=2

|AΓ(`) ∩AΓ(`−1)| =

K∑
`=1

|AΓ(`)| −
K∑
`=2

w(Γ(`),Γ(`− 1))
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The maximum value of
∑K

`=2 w(Γ(`),Γ(`− 1)) will yield the minimum value of
∑

ri
γ(ri)+∑

cj
γ(cj) . Then, finding an order on V that maximizes the path weight

∑K
`=2 w(Γ(`),Γ(`− 1))

corresponds to finding an order of submatrices that minimizes
∑

ri
γ(ri) +

∑
cj
γ(cj) .

According to Theorem 5, the lower bound
∑

ri
γ(ri) +

∑
cj
γ(cj) is equal to the objec-

tive function of the TSP instance constructed in the theorem. So, the maximization objective
in the proposed TSP formulation exactly corresponds to minimizing the lower bound on the
number of cache misses due to the access of x -vector and y -vector entries.

6. Experimental results. We tested the performance of the proposed methods against
three state-of-the-art methods: sBFS [35], sRCM [13, 38, 25] and sHPRN [42]. The small
letter “s” used as the first letter in these abbreviations refer to the fact that all of them belong
to the single-SpMxV framework described in Section 4. Here, sBFS refers to our adaptation
of BFS-based simultaneous data and iteration reordering method of Strout et al. [35] to ma-
trix row and column reordering. Strout et al.’s method depends on implementing breadth-first
search on both temporal and spatial locality hypergraphs simultaneously. In our adaptation,
we apply BFS on the bipartite graph representation of the matrix, so that the resulting BFS
orders on the row and column vertices determine row and column reorderings, respectively.
sRCM refers to applying the RCM method, which is widely used for envelope reduction of
symmetric matrices, on the bipartite graph representation of the given sparse matrix. Ap-
plication of the RCM method to bipartite graphs has also been used by Berry et al. [4] to
reorder rectangular term-by-document matrices for envelope minimization. sHPRN refers to
the work by Yzelman and Bisseling [42] which utilizes top-down HP using the row-net model
for CSR-based SpMxV.

The following abbreviations will be used for the proposed methods: sHPCN , sHPeRCN

and mHPRCN . Here sHPCN and sHPeRCN respectively refer to the 1D and 2D matrix parti-
tioning schemes which are described in Sections 4.1 and 4.2 for the single-SpMxV frame-
work. Recall that sHPCN utilizes the column-net model for A -to-ASB transformation,
whereas sHPeRCN utilizes the enhanced row-column-net model that encapsulates a differ-
ent cutsize metric given in (4.7) for the desired A -to-ADB transformation. mHPRCN refers
to the method proposed in Section 5 for multiple-SpMxV framework. Note that the small
letter “m” is used to indicate the multiple-SpMxV framework. Recall that mHPRCN utilizes
the row-column-net model for splitting A into multiple Ak matrices and a TSP model for
ordering y← y +Akx multiplies which are described in Sections 5.2 and 5.3, respectively.

The HP-based top-down reordering methods sHPRN , sHPCN , sHPeRCN and mHPRCN

are implemented using the state-of-the-art HP tool PaToH [10]. In these implementations, Pa-
ToH is used as a 2-way HP tool within the RB paradigm. The hypergraphs representing sparse
matrices according to the respective models are recursively bipartitioned into parts until the
CSR-storage size of the submatrix (together with the x and y vectors) corresponding to a part
drops below the cache size. That is, the part-size threshold Wmax is set to the cache size (64
KB) and the reordering results for this value of Wmax are reported in Tables 6.2–6.6 where
Table 6.7 displays the performance variation of HP-based reordering methods with varying
Wmax . PaToH is used with default parameters except the use of heavy connectivity clustering
( PATOH CRS HCC=9) in the sHPRN , sHPCN and sHPeRCN methods that belong to the single-
SpMxV framework, and the use of absorption clustering using nets (PATOH CRS ABSHCC=11)
in the mHPRCN method that belong to the multiple-SpMxV framework. Since PaToH con-
tains randomized algorithms, the reordering results are reported by averaging the values ob-
tained in 10 different runs, each randomly seeded.

Performance evaluations are carried out on a wide range of matrices obtained from the
University of Florida Sparse Matrix Collection [37]. Properties of these matrices are pre-



CACHE LOCALITY IN SPARSE-MATRIX VECTOR MULTIPLY 17

TABLE 6.1
Properties of test matrices

number of nnz’s in a row nnz’s in a column
Name rows cols nonzeros avg max cov avg max cov

Symmetric Matrices
ncvxqp9 16,554 16,554 54,040 3 9 0.5 3 9 0.5
tuma1 22,967 22,967 87,760 4 5 0.3 4 5 0.3
bloweybl 30,003 30,003 120,000 4 10,001 14.4 4 10,001 14.4
bloweya 30,004 30,004 150,009 5 10,001 11.6 5 10,001 11.6
brainpc2 27,607 27,607 179,395 7 13,799 20.2 7 13,799 20.2
a5esindl 60,008 60,008 255,004 4 9,993 12.7 4 9,993 12.7
dixmaanl 60,000 60,000 299,998 5 5 0.0 5 5 0.0
shallow water1 81,920 81,920 327,680 4 4 0.0 4 4 0.0
c-65 48,066 48,066 360,528 8 3,276 2.5 8 3,276 2.5
finan512 74,752 74,752 596,992 8 55 0.8 8 55 0.8
copter2 55,476 55,476 759,952 14 45 0.3 14 45 0.3
msc23052 23,052 23,052 1,154,814 50 178 0.2 50 178 0.2

Square Nonsymmetric Matrices
poli large 15,575 15,575 33,074 2 491 4.2 2 18 0.2
powersim 15,838 15,838 67,562 4 40 0.6 4 41 0.8
memplus 17,758 17,758 126,150 7 574 3.1 7 574 3.1
Zhao1 33,861 33,861 166,453 5 6 0.1 5 7 0.2
mult dcop 01 25,187 25,187 193,276 8 22,767 18.7 8 22,774 18.8
jan99jac120sc 41,374 41,374 260,202 6 68 1.1 6 138 2.3
circuit 4 80,209 80,209 307,604 4 6,750 7.8 4 8,900 10.5
ckt11752 dc 1 49,702 49,702 333,029 7 2,921 3.5 7 2,921 3.5
poisson3Da 13,514 13,514 352,762 26 110 0.5 26 110 0.5
bcircuit 68,902 68,902 375,558 6 34 0.4 6 34 0.4
g7jac120 35,550 35,550 475,296 13 153 1.7 13 120 1.7
e40r0100 17,281 17,281 553,562 32 62 0.5 32 62 0.5

Rectangular Matrices
lp dfl001 6,071 12,230 35,632 6 228 1.3 3 14 0.4
ge 10,099 16,369 44,825 4 48 0.8 3 36 0.9
ex3sta1 17,443 17,516 68,779 4 8 0.4 4 46 1.4
lp stocfor3 16,675 23,541 76,473 5 15 0.7 3 18 1.0
cq9 9,278 21,534 96,653 10 391 3.5 5 24 1.0
psse0 26,722 11,028 102,432 4 4 0.1 9 68 0.7
co9 10,789 22,924 109,651 10 441 3.6 5 28 1.1
baxter 27,441 30,733 111,576 4 2,951 8.7 4 46 1.6
graphics 29,493 11,822 117,954 4 4 0.0 10 87 1.0
fome12 24,284 48,920 142,528 6 228 1.3 3 14 0.4
route 20,894 43,019 206,782 10 2,781 7.1 5 44 1.0
fxm4 6 22,400 47,185 265,442 12 57 1.0 6 24 1.1

sented in Table 6.1. As seen in the table, test matrices are categorized into three groups as
symmetric, square nonsymmetric and rectangular. In each group, the test matrices are listed
in the order of increasing number of nonzeros (nnz). In the table, avg, max and cov represent
the average number, the maximum number and the coefficient of variation of nonzeros per
row and column. The cov value of a matrix can be considered as an indication of the level of
irregularity in the number of nonzeros per row and column.

The single-level cache simulator developed by Yzelman and Bisseling [42] is used for
performance evaluation. The simulator is configured to have 64 KB, 2-way set-associative
cache with a line size of 64 bytes (8 words). Some of the experiments are conducted to
show the sensitivities of the methods to the cache-line size without changing the other cache
parameters. Double precision arithmetic is used during SpMxVs computations. In the simu-
lations, since the ICSR [27] storage scheme is to be used in the multiple-SpMxV framework
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TABLE 6.2
Average simulation results to display the merits of enhancement of the row-column-net model in sHPeRCN

sHPRCN sHPeRCN

x x
Symmetric 0.54 0.47
Nonsymmetric 0.45 0.40
Rectangular 0.44 0.43
Overall 0.48 0.43

TABLE 6.3
Average simulation results to display the merits of TSP ordering in mHPRCN

Random Ordering TSP Ordering
x y x+y x y x+y

Symmetric 0.43 1.34 0.61 0.41 1.30 0.59
Nonsymmetric 0.37 1.63 0.54 0.36 1.59 0.53
Rectangular 0.28 1.43 0.41 0.27 1.39 0.40
Overall 0.35 1.46 0.52 0.34 1.42 0.50

as discussed in Section 5, ICSR is also for all other methods. The ZZCSR scheme proposed
by Yzelman and Bisseling [42] is not used in the simulations, since the main purpose of this
work is to show the cache miss effects of the six different reordering methods. In the fol-
lowing tables, the performances of the existing and proposed methods are displayed in terms
of cache miss ratios. The cache miss ratios are calculated through dividing the number of
cache misses for the reordered matrix by the number of cache misses for the original matrix.
Only cache misses due to the access of x -vector and y -vector entries are reported, whereas
compulsory cache misses due to the access of matrix nonzeros are not reported in order to
better show the performance differences among the methods.

We introduce Table 6.2 to show the validity of the enhanced row-column-net model pro-
posed in Section 4.2 for the sHPeRCN method. In the table, sHPRCN refers to a version of
the sHPeRCN method that utilizes the conventional row-column-net model instead of the en-
hanced row-column-net model. Table 6.2 displays average performance results of sHPRCN

and sHPeRCN over the three different matrix categories as well as the overall averages. As
seen in the table, sHPeRCN performs considerably better than sHPRCN , thus showing the
validity of the proposed cutsize definition given in (4.7) according to Theorem 2.

We introduce Table 6.3 to show the merits of the TSP formulation proposed in Theo-
rem 5 for ordering individual SpMxV operations in the mHPRCN method. Table 6.3 displays
average performance results of mHPRCN for the random and TSP orderings over the three
different matrix categories as well as the overall averages. As seen in the table, TSP ordering
leads to considerable performance improvement in the mHPRCN method compared to the
random ordering. In the following tables, we display the performance results of the mHPRCN

method that utilizes the TSP ordering. The TSP implementation given in [21] is used in these
experiments.

Table 6.4 displays the performance comparison of the existing and proposed methods for
each test matrix. The bottom part of the table shows the geometric means of the performance
results of the methods over the three different matrix categories as well as the overall aver-
ages. Among the existing methods, sHPRN performs considerably better than both sBFS and
sRCM, whereas sRCM perform better than sBFS. sHPRN performs better than both sBFS
and sRCM in reordering 17 test matrices out of 36 in terms of cache misses due to the ac-
cess of x -vector and y -vector entries. However there are test matrices such as bloweya,
brainpc, memplus and Zhao1 for which sHPRN performs significantly worse than both
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TABLE 6.4
Simulation results for all test matrices (cache size = part-size threshold = 64 KB)

Existing Methods Proposed Methods
Single SpMxV Multiple SpMxVs

sBFS [35] sRCM [25] sHPRN [42] sHPCN sHPeRCN mHPRCN

Modified (1D Part.) (1D Part.) (2D Part.) (2D Partioning)
x x+y x x+y x x+y x x+y x x+y x y x+y

Symmetric Matrices
ncvxqp9 0.51 0.59 0.48 0.57 0.37 0.48 0.28 0.40 0.28 0.40 0.31 1.24 0.47
tuma1 0.42 0.59 0.49 0.64 0.62 0.73 0.56 0.69 0.56 0.69 0.52 1.10 0.69
bloweybl 1.00 1.00 1.00 1.00 0.88 0.92 0.68 0.77 0.63 0.74 0.62 1.01 0.74
bloweya 1.00 1.00 1.00 1.00 1.18 1.12 0.65 0.75 0.73 0.81 0.45 1.02 0.62
brainpc2 0.88 0.90 0.87 0.90 1.33 1.27 1.08 1.06 0.66 0.73 0.27 1.05 0.42
a5esindl 1.11 1.09 0.83 0.86 0.84 0.87 1.12 1.10 0.40 0.52 0.27 1.01 0.42
dixmaanl 0.33 0.50 0.33 0.50 0.34 0.51 0.34 0.50 0.34 0.50 0.35 1.01 0.51
shallow water1 1.45 1.28 1.39 1.24 1.10 1.07 0.90 0.94 0.89 0.94 0.70 1.01 0.80
c-65 0.90 0.91 0.91 0.92 0.61 0.67 0.38 0.47 0.35 0.44 0.26 1.45 0.42
finan512 1.57 1.40 1.44 1.30 0.65 0.75 0.56 0.68 0.55 0.68 0.75 1.37 0.95
copter2 0.44 0.49 0.42 0.47 0.41 0.47 0.26 0.33 0.26 0.33 0.36 2.76 0.59
msc23052 0.46 0.51 0.45 0.51 0.52 0.57 0.40 0.46 0.44 0.49 0.41 2.78 0.64

Square Nonsymmetric Matrices
poli large 1.12 1.08 1.09 1.06 0.86 0.91 0.62 0.75 0.64 0.77 0.60 1.05 0.76
powersim 1.02 1.01 1.02 1.01 0.55 0.69 0.51 0.66 0.51 0.66 0.50 1.04 0.67
memplus 0.87 0.90 1.05 1.04 1.39 1.30 0.91 0.93 0.87 0.90 0.50 1.26 0.67
Zhao1 0.55 0.65 0.52 0.63 0.72 0.79 0.48 0.60 0.49 0.60 0.63 1.61 0.85
mult dcop 01 0.98 0.98 0.83 0.84 0.70 0.71 0.45 0.48 0.18 0.23 0.13 1.42 0.21
jan99jac120sc 1.20 1.15 1.14 1.11 0.92 0.94 0.51 0.62 0.52 0.63 0.73 1.45 0.92
circuit 4 1.52 1.39 1.68 1.51 1.45 1.34 0.94 0.95 0.87 0.91 0.43 1.19 0.62
ckt11752 dc 1 0.79 0.83 0.85 0.88 0.58 0.66 0.40 0.52 0.42 0.54 0.32 1.14 0.49
poisson3Da 0.09 0.11 0.10 0.11 0.14 0.15 0.09 0.10 0.09 0.10 0.11 7.14 0.21
bcircuit 0.60 0.67 0.59 0.67 0.32 0.44 0.26 0.39 0.26 0.39 0.27 1.12 0.43
g7jac120 0.75 0.76 0.29 0.33 0.44 0.47 0.21 0.25 0.23 0.28 0.21 2.62 0.34
e40r0100 0.82 0.86 0.81 0.85 0.76 0.81 0.63 0.71 0.66 0.73 0.62 1.99 0.90

Rectangular Matrices
lp dfl001 0.30 0.33 0.28 0.31 0.34 0.36 0.18 0.21 0.20 0.23 0.10 2.70 0.20
ge 0.40 0.47 0.38 0.44 0.30 0.37 0.25 0.33 0.25 0.33 0.21 1.24 0.32
ex3sta1 1.75 1.47 1.08 1.05 1.23 1.14 0.86 0.91 0.81 0.88 0.82 1.09 0.92
lp stocfor3 1.74 1.48 1.65 1.42 0.79 0.86 0.80 0.87 0.80 0.87 0.81 1.02 0.89
cq9 0.40 0.44 0.39 0.43 0.45 0.48 0.30 0.34 0.38 0.42 0.18 1.62 0.28
psse0 0.45 0.64 0.44 0.64 0.44 0.64 0.41 0.62 0.41 0.62 0.29 1.00 0.54
co9 0.43 0.47 0.40 0.44 0.46 0.50 0.34 0.39 0.41 0.46 0.18 1.58 0.28
baxter 0.69 0.75 0.68 0.74 0.47 0.57 0.45 0.56 0.43 0.54 0.32 1.10 0.47
graphics 0.74 0.87 0.72 0.86 0.68 0.84 0.48 0.75 0.49 0.75 0.56 1.00 0.79
fome12 0.29 0.31 0.28 0.31 0.32 0.35 0.18 0.21 0.19 0.22 0.10 2.86 0.21
route 0.34 0.36 0.44 0.45 0.37 0.39 0.62 0.64 0.59 0.61 0.08 1.44 0.13
fxm4 6 1.54 1.41 1.17 1.13 0.86 0.89 0.70 0.77 0.71 0.78 0.76 1.19 0.86

Geometric Means
Symmetric 0.74 0.80 0.72 0.78 0.67 0.74 0.54 0.64 0.47 0.58 0.41 1.30 0.59
Nonsymmetric 0.74 0.76 0.69 0.72 0.63 0.68 0.43 0.51 0.40 0.48 0.36 1.59 0.53
Rectangular 0.60 0.64 0.56 0.61 0.51 0.57 0.41 0.49 0.43 0.51 0.27 1.39 0.40
Overall 0.69 0.73 0.65 0.70 0.60 0.66 0.45 0.54 0.43 0.52 0.34 1.42 0.50

sBFS and sRCM.
The comparison of the existing sHPRN [42] and the proposed sHPCN methods needs

special attention. Both sHPRN and sHPCN belong to the single-SpMxV framework and uti-
lize 1D matrix partitioning for row/column reordering. For the CSR-based SpMxV operation,
the row-net model utilized by sHPRN corresponds to the spatial locality hypergraph model
proposed by Strout et al. [35] for data reordering of unstructured mesh computations. On the
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other hand, the column-net model utilized by sHPCN corresponds to the temporal locality
hypergraph proposed by Strout et al. [35] for iteration reordering. Note that in the CSR-based
SpMxV, the inner products of sparse rows with the dense input vector x correspond to the it-
erations to be reordered. So the major difference between the sHPRN and sHPCN methods is
that sHPRN primarily considers exploiting spatial locality and secondarily temporal locality,
whereas sHPCN considers vice versa. This difference can also be observed by investigating
the row-net and column-net models used in these two HP-based methods sHPRN and sHPCN ,
respectively. For cutsize minimization, HP tool PaToH [10] used in sHPRN clusters columns
with similar sparsity patterns to the same vertex parts for partial column reordering thus ex-
ploiting spatial locality, whereas PaToH used in sHPCN clusters rows with similar sparsity
patterns to the same vertex parts for partial row reordering thus exploiting temporal locality
primarily. In sHPRN , the uncut and cut nets of a partition are used to decode the partial row
reordering thus exploiting temporal locality secondarily. In sHPCN , the uncut and cut nets
of a partition are used to decode the partial column reordering thus exploiting spatial locality
secondarily.

We should also note that the row-net and column-net models become equivalent for sym-
metric matrices. So, sHPRN and sHPCN obtain the same vertex partitions for symmetric
matrices. The difference between these two methods in reordering matrices stems from the
difference in the way that they decode the resultant partitions. sHPRN reorders the columns
corresponding to the vertices in the same part of a partition successively, whereas sHPCN

reorders the rows corresponding to the vertices in the same part of a partition successively.
As seen Table 6.4, sHPCN performs significantly better than sHPRN , on the overall

average. sHPCN performs better than sHPRN in all of the 36 reordering instances except
a5esindl, lp stocfactor3 and route. The significant performance gap between
sHPRN and sHPCN in favor of sHPCN even for symmetric matrices confirm our expecta-
tion that temporal locality is more important than spatial locality in SpMxV operations that
involve irregularly sparse matrices.

We introduce Table 6.5 to experimentally investigate the sensitivity of the sHPRN and
sHPCN methods to the cache-line size. In the construction of the averages reported in this
table, simulation results of every method are normalized with respect to those of the original
ordering with the respective cache-line size. We also utilize Table 6.5 to provide fairness
in the comparison of sHPRN and sHPCN methods for nonsymmetric square and rectangular
matrices. Some of the nonsymmetric square and rectangular matrices may be more suitable
for rowwise partitioning by the column-net model, whereas some other matrices may be more
suitable for columnwise partitioning utilizing the row-net model. This is because of the dif-
ferences in row and column sparsity patterns of a given nonsymmetric or rectangular matrix.
Hendrickson and Kolda [22] and Ucar and Aykanat [39] provide discussions on choosing par-
titioning dimension depending on the individual matrix characteristics in the parallel SpMxV
context. In the construction of Table 6.5, each of the sHPRN and sHPCN methods are applied
on both A and AT matrices and the better result is reported for the respective method on the
reordering of matrix A . Here the performance of CSR-based SpMxV y←ATx is assumed
to simulate the performance of CSC-based y←Ax . Comparison of the results in Table 6.5
for the line size of 64 bytes and the average results in Table 6.4 shows that the performance
of both methods increase due to the selection of better partitioning dimension (especially for
rectangular matrices) while the performance gap remaining almost the same.

As seen in Table 6.5, the performance of sHPRN is considerably more sensitive to the
cache-line size than that of sHPCN . For nonsymmetric matrices, as the line size is increased
from 8 bytes (1 word) to 512 bytes, the average normalized cache-miss count decreases from
0.70 to 0.33 in the sHPRN method, whereas it decreases from 0.53 to 0.30 in the sHPCN
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TABLE 6.5
Sensitivity of sHPRN [42] and sHPCN to cache-line size

Line Nonsymmetric Rectangular
Size sHPRN sHPCN sHPRN sHPCN

(Byte) x x x x
8 0.70 0.53 0.62 0.52
16 0.68 0.49 0.58 0.47
32 0.65 0.45 0.52 0.41
64 0.61 0.41 0.44 0.34

128 0.57 0.38 0.39 0.28
256 0.52 0.33 0.36 0.23
512 0.33 0.30 0.23 0.23

method. Similarly, for rectangular matrices, the average normalized cache-miss count de-
creases from 0.62 to 0.23 in the sHPRN method, whereas it decreases from 0.52 to 0.23 in the
sHPCN method. As seen in Table 6.5, the performance of these two methods become very
close for the largest line size of 512 bytes (64 words). This experimental finding conforms
to our expectation that sHPRN exploits spatial locality better than sHPCN , whereas sHPCN

exploits temporal locality better than sHPRN .
We proceed with the relative performance comparison of the proposed methods. As seen

in Table 6.4, on the average, 2D-partitioning-based methods sHPeRCN and mHPRCN perform
better than the 1D-partitioning-based method sHPCN . The performance gap between the
2D and 1D methods is considerably higher in reordering symmetric matrices in favor of 2D
methods. This experimental finding may be attributed to the relatively restricted search space
of the column-net model (as well as the row-net model) in 1D partitioning of symmetric
matrices. The relative performance comparison of 2D methods shows that sHPeRCN and
mHPRCN display comparable performance. mHPRCN performs better than sHPeRCN in 18
out of 36 reordering instances, whereas sHPeRCN performs better in 16 reordering instances.
On the overall average, mHPRCN performs 4.3% better than sHPeRCN in terms of cache
misses due to the access of x -vector and y -vector entries.

As seen in Table 6.4, mHPRCN incurs significantly less x -vector entry misses than
sHPeRCN on the overall average. This is expected because the multiple-SpMxV framework
utilized in mHPRCN enables better exploitation of temporal locality in accessing x -vector
entries. However the increase in the y -vector entry misses, which is introduced by the
multiple-SpMxV framework, does not amortize in some of the reordering instances. As ex-
pected, mHPRCN performs better than sHPeRCN in the reordering of matrices that contain
dense rows. For example, in the reordering of symmetric matrices a5esindl, bloweya,
and brainpc2, which respectively contain dense rows with 9993, 10001, and 13799 nonze-
ros, mHPRCN performs significantly better than sHPeRCN . Similar experimental findings can
be observed in Table 6.4 for the following matrices that contain dense rows: square nonsym-
metric matrices circuit 4, ckt11752 dc 1, mult dcop 01 and rectangular matrices
baxter, co9, cq9 and route. Although shallow water and psse0 do not contain
dense rows (maximum number of nonzeros in a row is only 4 in both matrices), mHPRCN per-
forms significantly better than sHPeRCN in reordering these two matrices. mHPRCN incurs
significantly less cache misses in the access of x -vector entries while incurring very small
number of additional cache misses due to the access of y -vector entries. The reason behind
the latter finding is the very small number of shared rows among the Ak matrices obtained
by mHPRCN in splitting these two matrices. For example, in one of the splittings generated
by mHPRCN , among the 81920 rows of shallow water, only 785 rows are shared and all
of them are shared between only two distinct Ak matrices.
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TABLE 6.6
Sensitivity of sHPCN , sHPeRCN , and mHPRCN to cache-line size

Line Single SpMxV Multiple SpMxVs
Size sHPCN sHPeRCN mHPRCN

(byte) x x+y x x+y x y x+y
8 0.59 0.69 0.59 0.69 0.48 1.11 0.63
16 0.55 0.64 0.55 0.64 0.44 1.19 0.59
32 0.50 0.59 0.49 0.59 0.39 1.28 0.55
64 0.45 0.54 0.43 0.52 0.34 1.42 0.50

128 0.41 0.49 0.38 0.46 0.30 1.55 0.45
256 0.37 0.44 0.33 0.40 0.27 1.70 0.42
512 0.36 0.42 0.30 0.36 0.27 1.82 0.40

Table 6.6 shows the comparison of the sensitivities of the proposed methods sHPCN ,
sHPeRCN and mHPRCN to the cache-line size. In the construction of the averages reported
in this table, simulation results of every method are normalized with respect to those of the
original ordering with the respective cache-line size. In terms of cache misses due to access
of x -vector entries, the performance of each method compared to the original ordering in-
creases with increasing cache-line size. However, in terms of cache misses due to access of
y -vector entries, the performance of mHPRCN compared to the original ordering decreases
with increasing cache-line size. So, with increasing cache-line size, the performance gap be-
tween mHPRCN and the other two methods sHPCN and sHPeRCN increases so that sHPeRCN

performs better than mHPRCN for larger cache-line sizes of 256 and 512 bytes. This ex-
perimental finding can be attributed to the deficiency of the multiple-SpMxV framework in
exploiting spatial locality in accessing y -vector entries. We believe that models and meth-
ods need to be investigated for intelligent global row ordering to overcome this deficiency of
the multiple-SpMxV framework.

We introduce Table 6.7 to display the sensitivities (as overall averages) of the top-down
HP-based reordering methods to the part-size threshold (Wmax ) used in terminating the RB
process. The performance of each method increases with decreasing part-size threshold until
the part-size threshold becomes equal to the cache size. For each method, the rate of per-
formance increase begins to decrease as the part-size threshold becomes closer to the cache
size. The performance of each method remains almost the same with decreasing part-size
threshold below the cache size except mHPRCN . The slight decrease in the performance of
mHPRCN with decreasing part-size threshold below the cache size can be attributed to the
increase in the number of y misses with increasing number of Ak matrices because of the
deficiency of the multiple-SpMxV framework in exploiting spatial locality in accessing y -
vector entries. These experimental findings show the validity of Theorems 1, 2, and 3 for
the effectiveness of the proposed sHPCN , sHPeRCN , and mHPRCN methods, respectively.
Although the proposed HP-based methods are cache-size aware methods, they can easily be
modified to become cache oblivious methods by continuing the RB process until the parts
become sufficiently small or the qualities of the bipartitions drop below a predetermined
threshold.

Table 6.8 displays the running times of the existing and proposed methods on a PC
equipped with quad 2.1 GHz 6-core AMD Opteron processors with 128 GB memory. For
each test matrix A , the running times of all methods are normalized with respect to that of
the SpMxV operation y←Ax using the unordered A matrix and geometric averages of these
normalized values are displayed in the table. As seen in the table, top-down HP-based meth-
ods are significantly slower than the bottom-up reordering algorithms sBFS and sRCM. As
also seen in the table, the 2D-partitioning-based methods are considerably slower than the
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TABLE 6.7
Sensitivity of HP-based reordering methods to the part-size threshold (cache size = 64 KB)

Part 1D Partitioning 2D Partitioning
Size sHPRN [42] sHPCN sHPeRCN mHPRCN

(KB) x x+y x x+y x x+y x y x+y
512 0.79 0.81 0.71 0.75 0.69 0.73 0.63 1.08 0.69
256 0.68 0.72 0.61 0.67 0.57 0.63 0.49 1.15 0.58
126 0.62 0.68 0.51 0.59 0.48 0.56 0.39 1.28 0.52
64 0.60 0.66 0.45 0.54 0.43 0.52 0.34 1.42 0.50
32 0.59 0.66 0.43 0.52 0.42 0.51 0.33 1.53 0.51
16 0.60 0.66 0.43 0.52 0.42 0.51 0.34 1.57 0.52
8 0.61 0.67 0.43 0.52 0.42 0.51 0.35 1.61 0.54

TABLE 6.8
Running times of the reordering methods in terms of SpMxV times

Existing Methods Proposed Methods
Single SpMxV Multiple SpMxVs

sBFS [35] sRCM [25] sHPRN [42] sHPCN sHPeRCN mHPRCN

Modified (1D Part.) (1D Part.) (2D Part.) (2D Partioning)
Symmetric 11 10 455 455 1,047 1,960
Nonsymmetric 10 10 497 428 1,305 1,795
Rectangular 11 12 396 359 878 1,213
Overall 11 11 447 412 1,063 1,622

1D-partitioning-based methods as expected. The running time difference between the 1D-
and 2D-partitioning-based methods becomes higher with increasing matrix density in favor
of 1D methods. The running times of two 1D-partitioning-based methods sHPRN and sHPCN

are comparable as expected. There exists a considerable difference in the running times of
two 2D-partitioning-based methods sHPeRCN and mHPRCN in favor of sHPeRCN . This is
because of the removal of the vertices connected by the cut row nets in the enhanced row-
column-net model used in sHPeRCN and the TSP ordering performed as a postprocessing in
mHPRCN . The relatively high preprocessing times of the top-down HP-methods are expected
to amortize for large number of repeated SpMxV computations that involve A matrix with the
same sparsity pattern.

7. Conclusion. Single- and multiple-SpMxV frameworks were investigated for exploit-
ing cache locality in SpMxV computations that involve irregularly sparse matrices. For the
single-SpMxV framework, two cache-size-aware top-down row/column-reordering methods
based on 1D and 2D sparse matrix partitioning were proposed by utilizing the column-net and
enhancing the row-column-net hypergraph models of sparse matrices. The multiple-SpMxV
framework requires splitting a given matrix into a sum of multiple nonzero-disjoint matri-
ces so that the SpMxV operation is computed as a sequence of multiple input- and output-
dependent SpMxV operations. For the multiple-SpMxV framework, a cache-size aware top-
down matrix splitting method based on 2D matrix partitioning was proposed by utilizing the
row-column-net hypergraph model of sparse matrices. The proposed hypergraph-partitioning
(HP) based methods in the single-SpMxV framework primarily aim at exploiting tempo-
ral locality in the access of input-vector entries and the proposed HP-based method in the
multiple-SpMxV framework primarily aims at exploiting temporal locality in the access of
both input- and output-vector entries. The performance and validity of the proposed methods
were tested against three state-of-the-art methods on a wide range of test matrices. Experi-
mental results show that the proposed methods can effectively reduce cache misses in SpMxV
computations.
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Experimental results confirm our expectation that temporal locality is more important
than spatial locality (for practical line sizes) in SpMxV operations that involve irregularly
sparse matrices. The multiple-SpMxV framework is found to be very promising, however it
is suffers from the deficiency in exploiting spatial locality in accessing output-vector entries.
Models and methods need to be investigated for intelligent global row reordering to overcome
this deficiency of the multiple-SpMxV framework.

The sensitivity analysis conducted for the proposed top-down matrix reordering and split-
ting methods to the part-size threshold used in terminating the recursive bipartitioning (RB)
process conforms the validity of the theoretical findings presented in this work. Although the
proposed HP-based methods are cache-size aware, this sensitivity analysis show that they can
easily be modified to become cache oblivious by continuing the RB process until the parts
become sufficiently small or the qualities of the bipartitions drop below a predetermined
threshold.
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[6] Ü. ÇATALYÜREK AND C. AYKANAT, Hypergraph-partitioning-based decomposition for parallel sparse-
matrix vector multiplication, IEEE Trans. Parallel Dist. Systems, 10 (1999), pp. 673–693.
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[23] D. B. HERAS, V. B. PÉREZ, J. C. CABALEIRO, AND F. F. RIVERA, Modeling and improving locality for the
sparse-matrix-vector product on cache memories, Future Generation Comp. Syst, 18 (2001), pp. 55–67.

[24] G. JIN AND M. J. CRUMMEY, Using space-filling curves for computation reordering, in Proceedings of the
Los Alamos Computer Science Institute, 2005.

[25] E. JIN IM AND K. YELICK, Optimizing sparse matrix vector multiplication on SMPs, May 25 1999.
[26] G. KARYPIS, V. KUMAR, R. AGGARWAL, AND S. SHEKHAR, hMeTiS A Hypergraph Partitioning Package

Version 1.0.1, University of Minnesota, Department of Comp. Sci. and Eng., Army HPC Research Center,
Minneapolis, 1998.

[27] J. KOSTER, Parallel Templates for Numerical Linear Algebra, a High-Performance Computation Library,
Master’s thesis, Utrecht University, July 2002.

[28] T. LENGAUER, Combinatorial Algorithms for Integrated Circuit Layout, Willey–Teubner, Chichester, U.K.,
1990.

[29] R. MIRCHANDANEY, J. H. SALTZ, R. M. SMITH, D. M. NICO, AND K. CROWLEY, Principles of run-
time support for parallel processors, in ICS ’88: Proceedings of the 2nd international conference on
Supercomputing, New York, NY, USA, 1988, ACM, pp. 140–152.

[30] J. C. PICHEL, D. B. HERAS, J. C. CABALEIRO, AND F. F. RIVERA, Performance optimization of irregular
codes based on the combination of reordering and blocking techniques, Parallel Computing, 31 (2005),
pp. 858–876.

[31] , Increasing data reuse of sparse algebra codes on simultaneous multithreading architectures, Concur-
rency and Computation: Practice and Experience, 21 (2009), pp. 1838–1856.

[32] A. PINAR AND M. T. HEATH, Improving performance of sparse matrix-vector multiplication, in Supercom-
puting ’99: Proceedings of the 1999 ACM/IEEE conference on Supercomputing (CDROM), New York,
NY, USA, 1999, ACM, p. 30.

[33] Y. SAAD, Iterative Methods for Sparse Linear Systems, Second Edition, Society for Industrial and Applied
Mathematics, April 2003.

[34] STROUT, CARTER, AND FERRANTE, Compile-time composition of run-time data and iteration reorderings,
SPNOTICES: ACM SIGPLAN Notices, 38 (2003).

[35] M. M. STROUT AND P. D. HOVLAND, Metrics and models for reordering transformations, in Proc. of the
Second ACM SIGPLAN Workshop on Memory System Performance (MSP04), Washington DC., June
2004, ACM, pp. 23–34.

[36] O. TEMAM AND W. JALBY, Characterizing the behavior of sparse algorithms on caches, in Proceedings
Supercomputing’92, Minn., MN, Nov. 1992, IEEE, pp. 578–587.

[37] A. D. TIMOTHY, University of florida sparse matrix collection, NA Digest, 92 (1994).
[38] S. TOLEDO, Improving memory-system performance of sparse matrix-vector multiplication, in IBM Journal

of Research and Development, 1997.
[39] B. UCAR AND C. AYKANAT, Partitioning sparse matrices for parallel preconditioned iterative methods,

SIAM Journal on Scientific Computing, 29 (2007), pp. 1683–1709.
[40] B. VASTENHOUW AND R. H. BISSELING, A two-dimensional data distribution method for parallel sparse

matrix-vector multiplication, SIAM Review, 47 (2005), pp. 67–95.
[41] J. WHITE AND P. SADAYAPPAN, On improving the performance of sparse matrix-vector multiplication, in In

Proceedings of the International Conference on High-Performance Computing, IEEE Computer Society,
1997, pp. 578–587.

[42] A. N. YZELMAN AND R. H. BISSELING, Cache-oblivious sparse matrix–vector multiplication by using
sparse matrix partitioning methods, SIAM Journal on Scientific Computing, 31 (2009), pp. 3128–3154.


