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Abstract— Indoor scene recognition is a challenging problem in the classical scene 

recognition domain due to the severe intra-class variations and inter-class similarities of man-

made indoor structures. State-of-the-art scene recognition techniques such as capturing holistic 

representations of a scene demonstrate low performance on indoors. Other methods that 

introduce intermediate steps such as identifying objects and associating them to scenes have 

the handicap of successfully localizing and recognizing the objects in a highly cluttered and 

sophisticated environment.   

We propose a classification method that can handle such difficulties of the problem domain 

by employing a metric function based on the nearest-neighbor classification procedure using 

the bag-of-visual words scheme, the so-called codebooks. Considering the codebook 

construction as a Voronoi tessellation of the feature space, we have observed that, given an 

image, a learned weighted distance of the extracted feature vectors to the center of the Voronoi 

cells gives a strong indication of its category. Our method outperforms state-of-the-art 
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approaches on an indoor scene recognition benchmark and achieves competitive results on a 

general scene dataset, using a single type of descriptor.  

Keywords: scene classification; indoor scene recognition; nearest neighbor classifier; bag-of-

visual words. 

1   Introduction 

Scene classification is an active research area among research scientists. Many classification 

methods have been proposed in the past that aim to solve different aspects of the problem such as 

topological localization, indoor-outdoor classification and scene categorization [1], [2], [3], [4], 

[5], [6], [7], [8], [9]. In scene categorization the problem is to associate a semantic label to a 

scene image.  Although the categorization methods address the problem of categorizing any type 

of a scene, they usually perform well on outdoors only [10]. In contrast, classification of indoor 

images has remained a further challenging task due to the more difficult nature of the problem. 

The intra-class variations and inter-class similarities of indoor scenes are the biggest barriers for 

many recognition algorithms to achieve satisfactory performance on never seen images, i.e., test 

data. On the other hand, recognizing indoors is very important for many fields. For example, in 

the field of robotics, the perceptual capability of a robot for identifying its surroundings is a 

highly crucial ability. 

Earlier works on scene recognition are based on extracting low-level features such as color, 

texture and shape properties of the image [1], [3], [5]. Such simple global descriptors are not 

powerful enough to perform well on large datasets with sophisticated environmental settings. 

Olivia and Torralba [4] introduce a more compact and robust global descriptor, the so-called gist, 

which captures the holistic representation of an image using spectral analysis.  Their descriptor 
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performs well on categorizing outdoor images such as forests, mountains and suburban 

environments but has difficulties in recognizing indoors.  

 Borrowing ideas from the human perceptual system, recent work on indoor scene recognition 

focuses on classifying images by using representations of both global and local image properties 

and integrating intermediate steps such as object detection [10], [11]. This is not surprising since 

indoors are usually characterized by the objects they contain. Consequently, indoor scene 

recognition can be mainly considered as a problem of identifying the objects first, and then, 

classifying the scene accordingly. Intuitively, this idea seems reasonable but with state-of-the-art 

object recognition methods [12], [13], [14], it is very unlikely to successfully localize and 

identify unknown number of objects in such a cluttered and sophisticated indoor image. Hence, 

classifying a particular scene via objects becomes yet a more challenging issue to handle. 

A solution to this problem is to classify the indoor image by implicitly modeling objects with 

densely sampled local cues.  These cues will then give indirect evidence of a presence of an 

object. Although this solution seems contrary to the methodology of recognizing indoors by the 

human visual system, i.e., explicitly identifying objects and associating them to scenes, it 

provides a successful alternative way by bypassing the drawbacks of trying to successfully 

localize objects in highly intricate environments. 

The most successful and popular descriptor that captures the crucial information of an image 

region is the Scale-Invariant Feature Transform (SIFT) [15], [16]. [16]. This brings the idea that 

SIFT-like features extracted densely from images of a certain class have to be more similar in 

some manner than image descriptors of irrelevant classes. This similarity measure can be 

achieved by first defining a set of categorical words (the so-called visual words) for each class 

and then using a learned metric function to measure the distance between local cues and these 

visual words. 
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 Thus, we introduce a novel non-parametric weighted metric function with a spatial extension 

based on the approach described in [17]. In their work, Bolman et al. show that a Nearest-

Neighbor (NN) based classifier which computes direct Image-to-Class distances without any 

quantization step achieves performance rates among the top leading learning-based classifiers. 

We show that a NN-based classifier is also well suited for categorizing indoors since: i) It 

incorporates image-to-class distances which is extremely crucial for classes with high variability; 

ii) Considering the insufficient performance of state-of-the-art recognition algorithms on a large 

object dataset [12], it successfully allows classifying indoor sceneries directly from local cues 

without having to incorporate any intermediate steps such as categorizing via objects; iii) Given a 

query image, it allows ranked results and thus can be employed for a preprocessing step to 

successfully narrow down the size of possible categories for subsequent analyses. 

Bolman et al. also show that a descriptor quantization step, i.e., codebook generation, severely 

degrades the performance of the classifier by causing information loss in the feature space. They 

argue that a non-parametric method such as the Nearest-Neighbor classifier has no training phase 

like the learning-based methods to compensate this loss of information. They evaluate their 

approach on Caltech101 [18] and Caltech256 datasets [19], where each image contains only one 

object and maintains a common position, and on the Graz-01 dataset [20], which has three classes 

(bikes, persons and a background class) with a basic class vs. no-class classification task.  On the 

other hand, for a multi-category recognition task of scenes where multiple objects co-exist in a 

highly cluttered, varied and complicated form, we observe that our NN-based classifier with a 

descriptor quantization step outperforms the state-of-the-art learning-based methods. The 

additional quantization step allows us to incorporate spatial information of the quantized vectors, 

and more importantly, it significantly reduces the performance gap between our method and other 

learning-based approaches. It is computationally inefficient for a straightforward NN-based 
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method without a quantization step to perform classification, considering the datasets with large 

amount of training images. 

 The rest of this paper is organized as follows: Section 2 discusses related work. In Section 3 

we describe the framework of our proposed method. We present experimental results and 

evaluate the performance in Section 4. Section 5 gives conclusions and future work. 

2   Related Work 

Earlier works on scene classification are based on extracting low-level features such as color, 

texture and shape properties of the image. Szummer and Picard [1] use such features to determine 

whether an image is an outdoor or an indoor scene. Vailaya et al. [3] use color and edge 

properties for the city vs. landscape classification problem. Ulrich and Nourbakhsh [5] employ 

color-based histograms for mobile robot localization. Such simple global features are not 

discriminative enough to perform well on a difficult classification problem, such as recognizing 

scene images. To overcome this limitation, Olivia and Torralba [4] introduce the gist descriptor, a 

technique that attempts to categorize scenes by capturing the spatial structure properties, such as 

the degree of openness, roughness, naturalness, using spectral analysis of the image.  Although a 

significant improvement over earlier basic descriptors, it has been shown in [10] that it performs 

poorly in recognizing indoor images. One other popular descriptor is SIFT [16]. Due to its strong 

discriminative power even under severe image transformations, noise and illumination changes, it 

has been the most preferred visual descriptor in many scene recognition algorithms [6], [7], [21], 

[22], [23].  

Such local descriptors have been successfully used with the bag-of-visual words scheme for 

constructing codebooks. This concept has proven to provide good results in scene categorization 

[23]. Fei-Fei and Perona [22] represent each category with such a codebook and classify scene 
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images by using Bayesian hierarchical models. Lazebnik et al. [7] use the same concept with 

spatial extensions. They hierarchically divide an image into sub-regions, which they call the 

spatial pyramid, and compute histograms based on quantized SIFT vectors over these regions. A 

histogram intersection kernel is then used to compute a matching score for each quantized vector. 

The final spatial pyramid kernel is implemented as concatenating weighted histograms of all 

features at all sub-regions. The traditional bag-of-visual words scheme discards any spatial 

information; hence many methods utilizing this concept also introduce different spatial 

extensions [7], [24].  

Bosch et al. [25] present a review of the most common scene recognition methods. However, 

recognizing solely indoors is a more challenging task than recognizing outdoor scenes owing to 

severe intra-class variations and inter-class similarities of man-made indoor structures. 

Consequently, it has been investigated separately within the general scene classification problem. 

Quattoni and Torralba [10] brought attention to this challenging task by introducing a large 

indoor scene dataset consisting of 67 categories. They argue that together with the global 

structure of a scene which they capture via the gist descriptor, the presences of certain objects 

described by local features are strong indications of its category. Espinace et al. [11] suggest 

using objects as an intermediate step for classifying a scene. Such approaches are coherent with 

the human vision system since we identify and characterize scenes with the objects they contain. 

However, with the state-of-the-art object recognition methods [12], [13], [14], [26], it is very 

unlikely to successfully identify multiple objects in such a cluttered and sophisticated 

environmental setting. Instead of explicitly modeling the objects, we can use local cues as 

indirect evidence about the presence of them and thus bypass the drawbacks of having to 

successfully recognize it, which is a very difficult problem considering the intricate nature of 

indoors.  
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3   Nearest-Neighbor based Metric Functions (NNbMF) 

3.1  Baseline Problem Formulation 

The popular bag-of-visual words paradigm introduced in [27] has become commonplace in 

various image analysis tasks. It has proven to provide powerful image representations for image 

classification and object/scene detection. To summarize the procedure, consider   to be a set of 

feature descriptors in  -dimensional space, i.e.,   ,          -        . A vector 

quantization or a codebook formation step involves the Voronoi tessellation of the feature space 

by applying k-means clustering to set   to minimize the cost function  
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where   ,         -  correspond to centers of the Voronoi cells, i.e. the visual words of 

codebook  , and ‖   ‖ denotes the   -norm. After forming a codebook for each class using 

Equation 1, a set    ,          -  denoting the extracted feature descriptors from a query 

image can be categorized to class    by employing the Nearest-Neighbor classification function 

        *     + given as 
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where    ( ) denotes the nearest visual word of   , i.e., nearest Voronoi cell center, in the 

Voronoi diagram of class   and    *     + refers to class labels.  It should be noted that 

Equation (2) does not take into account unquantized descriptors, as in [17]. There is a trade-off 
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between information loss and computational efficiency because of the quantization of the feature 

space. 

3.2 Incorporating Spatial Information 

  The classical bag-of-visual words approach does not take into account spatial information 

and thus loses crucial information about the spatial distribution of the feature descriptors within 

an image. Hence, this is an important aspect to be considered for achieving satisfactory results in 

a classification framework. We incorporate spatial information as follows. Given extracted 

descriptors in  -dimensional space,   ,          -            and their spatial 

locations   ,(     ) (     )   (     )-, during the codebook generation step, we also 

calculate their relative position with respect to the corresponding image boundaries in which they 

are extracted. Hence their relative locations are     ,(  
    

 ) (  
    

 )   (  
    

 )-  

 0.
  

  
 
  

  
/  .

  

  
 
  

  
/    .

  

  
 
  

  
/1 where (     ), (     )     (     ) pairs represent the width 

and height values of the corresponding images. After applying clustering to the set  , we obtain 

the visual word set   as described in the previous section. Since similar feature descriptors of   

are expected to be assigned to the same visual word, their corresponding coordinate values 

described in set    should have similar values. Figure 1 shows the spatial layout of the descriptors 

assigned to several visual words.  

To incorporate this information into Equation (2), we consider the density estimation methods 

that are generally used for determining unknown probabilistic density functions. It should be 

noted that we do not consider a probabilistic model; thus obtaining and using a legitimate density 

function is irrelevant in our case. We can assign weights for each grid on the spatial layout of 

every visual word using a histogram counting technique (cf. Figure 1). Suppose we geometrically 
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partition this spatial layout into     grids. Then for the     visual word of class  ,      the 

weight of a grid can be calculated as 

     [   
  ]  

 

 
 (3) 

 

where   is the number of descriptors assigned to     that fall into that particular grid and   is the 

total amount of descriptors assigned to    . During the classification of a query image, the indices 

    correspond to the respective grid location of an extracted feature descriptor. One alternative 

way for defining weights is to firstly considering     [   
  ]    and then scaling this matrix 

as 

     
 

[   
  ]

    (   )
 (4) 

 

where     ( ) describes the largest element. Equation (4) does not provide weight consistency of 

the visual words throughout a codebook. It assigns larger weights to visual words that have a 

sparse distribution in the spatial layout while attenuates the weights of the visual words that are 

more spatially compact. The choice of a weight matrix assignment is directly related to the 

problem domain, as we have found Equation (3) more suitable for the 67-indoor benchmark and 

Equation (4) suitable for the 15-scenes benchmark.  

We calculate the weight matrices for all visual words of every codebook. The function  ( ) 

described in Equation (2) now can be improved as 

 ∑(       
  )  ‖      (  )‖
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(a) 

 

(b) 

 

(c) 

Figure 1: Left of (a), (b) and (c) represent the spatial layout of three different visual words that 

represent the relative positions of the extracted descriptors to its image boundaries. These layouts 

are then geometrically partitioned into     bins and a weight matrix   is computed as shown 

in right hand side of (a), (b) and (c). 
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Figure 2: Flow chart of the testing phase of our method. 

 

 

where    (  )     . Obviously    operates as a scale operator for a particular class, e.g., if 

      then the spatial location for class   is entirely omitted when classifying an image, i.e., 

only the sum of the descriptors Euclidean distance to their closest visual words is considered.  

This scale operator can be determined manually or by using an optimization model. Now 

assume a vector       that holds the    norm of every extracted descriptor   of an image to 

the nearest visual word of codebook   as its elements; i.e.,   
  ‖      (  )‖, where   

,   - corresponds to the extracted descriptor indices and    (  ) refers to the nearest visual 

word to    (   (  )       ).   
  denotes the corresponding spatial weights assigned to   

 ; i.e., 

  
       

  
. Referring to the vector of these spatial weights as      , Equation (5) can now 

be redefined as (    )     and an image can be classified to class   by using the function 
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Figure 3: Flow chart of the training phase of our method. 
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Consider an image   that belongs to class   with an irrelevant class  . We would like to satisfy the 

inequalities (    
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set of        (   ) inequality constraints where      . Since we will not be able to 

find a scale vector that satisfies all such constraints, we introduce slack variables,     , and try to 

minimize the sum of slacks allowed. We also aim to select a scale vector   such that Equation (5) 

remains as close to Equation (2) as possible. Hence we minimize the    norm of  . 

Consequently, finding the scale vector   ,       - can now modeled as an optimization 

problem as follows: 
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where   is a penalizing factor. We choose   from *   +, resulting in a linear and quadratic 

programming problem, respectively. One may prefer the    norm, since sparsity is not desirable 

in our case due to the fact that sparse solutions may heavily bias categories associated with large 

scale weights. An alternative model is to define one weight value associated to all categories. 

This model is less flexible but it prevents a possible degradation in recognition performance 

caused by sparsity. The scale vector can also be manually chosen. Figures 2 and 3 depict the 

testing and training phase of the proposed method, respectively. 

4   Experimental Setup and Results 

4.1 Training Data and Parameter Selections 

This section presents the training setup of our NN-based metric function on the 15 scenes [7] 

and 67 indoors datasets [10]. The 15-scenes dataset contains 4485 images spread over 15 indoor-

outdoor categories containing 200 to 400 images each. We use the same experimental setup as in 

[7] and select randomly chosen 100 images for training, i.e., for codebook generation and 

learning the scale vector  .   

The 67-indoors dataset contains images solely from indoors with very high intra-class 

variations and inter-class similarities. We use the same experimental setup, as in [10].  

We use two different scales of SIFT descriptors for evaluation. For the 15-scenes dataset, 

patches with bin sizes of 6 and 12 pixels are used, and for the 67-indoors dataset, the bin sizes are 

selected as 8 and 16 pixels. The SIFT descriptors are sampled and concatenated at every four 

pixels and are constructed from     grids with eight orientation bins (256 dimension in total). 

The training images are first resized to speed the computation and to provide scale consistency. 

The aspect ratio is maintained, but all images are scaled down so their largest resolution does not 
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exceed 500 and 300 pixels and the feature space is clustered using k-means into 500 and 800 

visual words, for the 67-indoors and 15-scenes datasets, respectively. 

The spatial layout of each visual word from each category is geometrically partitioned into 

    bins and a weight matrix is formed for each visual word from Equation (3) and Equation 

(4).  Several settings are used to determine the scale vector  . We first consider assigning 

different weights to all categories (    ). We find the optimal scale vector by setting   

*   + in Equation (7) and solving the corresponding optimization problem. We also use another 

setting for the optimization model where we assign the same weight to all categories (   ). 

Alternatively, we select the scale parameter     manually.  

The constraints in Equation (7) are all formed as described in the previous section with 10 

training images. The rest of the training set are used for codebook construction. However, we 

also show results when all the training images are used for codebook construction and the scale 

parameter   is chosen manually. 

Performance rate is calculated by the ratio of correctly classified test images within each class. 

The final recognition rate is the total correctly classified test images divided by the total number 

of test images used in the evaluation. 

4.2 Results and Discussion 

Table 1 shows recognition rates for both datasets with different scale vector settings.          

and              refers to the method when Equation (2) is used in which no spatial information 

is incorporated. The difference is that              uses all the available training images for 

codebook generation while          leaves 10 images for scale parameter learning. Not 

surprisingly, in both datasets              shows better performance. The results where a 
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TABLE I 

PERFORMANCE COMPARISON WITH DIFFERENT   SETTINGS 

                                               

67-indoors            
 

     
 

     
 

            

15-scenes                                     

  refers to the number of categories in a dataset and Baseline refers to the method when Equation (2) 

is used. Subscripts LP and QP stand for linear and quadratic programming, respectively. They refer to 

the optimization model with different   settings in Equation (7). 

 

 

scale parameter is assigned to every category (  ,          -    ) are slightly better than 

the baseline implementation in the 15-scenes benchmark. Although an insignificant increase, we 

observe that setting     in Equation (7) gives a higher recognition rate compared to    . 

This confirms our previous assertion that dense solutions increase the performance. This effect is 

clearly observed when we assign the same scaling parameter   to all 15 categories. 

On the other hand, assigning a different scale parameter for each category in the 67-indoors 

benchmark decreases the performance values for both the LP and QP programming models. In 

fact we observed that the solutions to these models are identical for our setting. This situation can 

avoided and the overall performance value can be increased by using more training images, 

however this results in the reduction of the amount of available training images for codebook 

construction and this also degrades performance. One other solution is to assign the same scale 

parameter to all categories. This positively affects the performance resulting in a     

recognition rate. One can easily expect that this effect will be much stronger in a problem domain 

where spatial distributions of the visual words are more ordered and compact. More importantly 

when we use all training images for generating codebooks and thus manually select the scale 

parameter we observe the highest results. 
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(a) 

 

(b) 

Figure 4: Recognition rates based on different grid size settings.  

 

Figure 4 shows the recognition rates with different weight matrix ( ) sizes. Geometrically 

partitioning the spatial layout into      and     grids yields the best results for the 15-scenes 

and 67-indoors datasets, respectively. The 15-scenes dataset can be separated as 5 indoor and 9 

outdoor categories. We ignore the industrial category since it contains both indoor and outdoor 

images. Observe that incorporating the spatial information improves the performance rate of the 

outdoor categories by     only. The performance rate for indoor categories is improved by up 

to   . This difference can be explained by the more orderly form of the descriptors extracted 

from indoor images. This improvement is       for the 67-indoors dataset due to further 

difficulty and intra-class variations. 

Table 2 compares our method with state-of-the-art scene recognition algorithms. Our method 

achieves more than    improvement over the best published result in the 67-indoor benchmark 

[26] and shows competitive performance in the 15-scenes dataset. Figure 5 and 6 shows the 

confusion matrix of the 67 indoors and 15 scenes datasets, respectively.  

Our method also induces rankings that could naturally be used as a pre-processing step of 

another recognition algorithm. As shown in Figures 7 (a) and (b), our method returns the correct  
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Figure 5: Confusion matrix of the 67 indoors dataset. The horizontal and vertical axes correspond 

to the true and predicted classes, respectively. 

 

 

category within the top ten results by ranking the categories for a query image with     overall 

accuracy in the 67-indoors benchmark. This rate is near      considering the returned top three 

results in the 15-scenes dataset (cf. Figure 7 (b)). Hence one can utilize this aspect of our 

algorithm to narrow down category choices, consequently increasing their final recognition rate 

by analyzing other information channels of the query image with different complementary 

descriptors or classification methods. Figure 8 shows a set of classified images. 

4.3 Runtime Performance 

Compared to the learning-based methods such as the popular Support Vector Machines (SVM), 

the Nearest-Neighbor classifier has a slow classification time, especially when the data points to 
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Figure 6: Confusion matrix of the 15-scenes dataset. The columns and row denote the true and 

predicted classes, respectively. 

 

 

be considered is too large and the dimension is too high.  Several approximation techniques have 

been proposed to increase the efficiency of this method [28], [29]. These techniques involve pre-

processing the search space using data structures, such as KD-trees or BD-trees. These trees are 

hierarchically structured so that only a subset of the data points in the search space is considered 

for a query point. We utilize the Approximate Nearest Neighbors library (ANN) [28]. For the 67 

indoors benchmark, it takes approximately     seconds to form a tree structure of a category 

codebook and about     seconds to search all query points of an image in a tree structure, using 

an Intel Centrino Duo 2.2 GHz CPU. Without quantizing, it takes about     seconds to search all 

the query points. For the 15-scenes benchmark, it takes about 1.5 seconds to construct a search 

tree and 4.0 seconds to search all query points in it. Without quantizing, it takes approximately 

    seconds to search all the query points.  
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TABLE II 

PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS 

Methods  
67 Indoors 

Classification Rate 

15 Scenes 

Classification Rate 

Morioka et al. [26]                       

Quattoni and Torralba [10]     - 

Zhou et al. [31] -       

Yang et al. [13] -            

Lazebnik et al. [7] -            

NNbMF             

 

 

(a) 

 

(b) 

Figure 7: Recognition rates based on rankings. Given a query image, if the true category is 

returned in the top   results, it is considered as a correct classification.  

 

 

The CUDA implementation of the K-nearest neighbor method [30] further increases the 

efficiency by parallelizing the search process. we observed      seconds per class to search the 

query points extracted from an image using a NVIDIA Geforce 310M graphics card. 

 

5   Conclusion  

We propose a simple, yet effective Nearest-Neighbor based metric function for recognizing 

indoor scene images. In addition, given an image our method also induces rankings of categories 
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for a possible pre-processing step for further classification analyses. Our method also 

incorporates the spatial layout of the visual words formed by clustering the feature space. 

Experimental results show that the proposed method effectively classifies indoor scene images 

compared to state-of-the-art methods. 

We are currently investigating to further improve the spatial extension part of our method by 

using other estimation techniques to better capture and model the layout of the formed visual 

words. We are also investigating to apply the proposed method to other problem domains such as 

auto-annotation of images. 
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Figure 8: Classified images for a subset of indoor scene images. Images from the first five row 

are taken from the 67-indoors and the last two rows are from the indoor categories of the 15-

scenes dataset. For every query image the list of ranked categories is shown on the right side. The 

bold name denotes the true category.     
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