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Abstract

In a shared-nothing, parallel text retrieval system, queries are processed over
an inverted index that is partitioned among a number of index servers. In
practice, the inverted index is either document-based or term-based parti-
tioned, depending on properties of the underlying hardware infrastructure,
query traffic, and some performance and availability constraints. In query
processing on term-based-partitioned indexes, the high communication over-
head incurred due to transfer of large amounts of information from index
servers to the central broker forms a major performance bottleneck, deteri-
orating the scalability of the parallel text retrieval system. In this work, to
alleviate this problem, we propose a novel combinatorial model that tries to
assign concurrently accessed index entries to the same index servers, based on
the inverted index access patterns extracted from past query logs. The model
aims to minimize the communication overhead incurred by future queries,
also enforcing a balance on workloads of index servers. We evaluate the per-
formance of this model over a real-life text collection and a query log obtained
from Yahoo!. Our results indicate significant reduction in the communication
overhead, relative to a baseline strategy that only balances query workloads.

Keywords: parallel text retrieval, inverted index, term-based partitioning,
parallel query processing, hypergraph partitioning

Email addresses: enver@cs.bilkent.edu.tr (Enver Kayaaslan),
aykanat@cs.bilkent.edu.tr (Cevdet Aykanat)

1



1. Introduction

The massive size of today’s document collections when coupled with the
ever-growing number of users querying these collections necessitates dis-
tributed data storage and query processing. Large-scale search services con-
struct and maintain several search clusters composed of many compute nodes
in order to increase their query processing throughputs and maintain reason-
able query response times. Typically, the query processing throughput of
the system is increased by replicating search clusters to exploit inter-query
parallelization. Processing of a query is carried out in parallel on the nodes
of the search cluster. The number of nodes in the cluster and the size of the
document collection together determine the response time to queries.

The most efficient way to process queries is to built an inverted index on
the entire document collection and to process queries over this index. An
inverted index maintains an inverted list for each term in the collection vo-
cabulary. Each inverted list keeps the ids of documents in which the term
corresponding to the list appears, together with some other auxiliary infor-
mation (e.g., the frequency of the term in the document).

In case of a parallel text retrieval system, the inverted index is stored in
the nodes of a search cluster, in a distributed manner. Each node runs an
index server that facilitates access to the index stored in the node. A dis-
tributed index can be created based on documents or terms in the collection.

In document-based index partitioning, each index server is assigned a non-
overlapping subset of documents, on which the server builds a local inverted
index. A query is evaluated, in parallel, over all local indexes and a small
number of best-matching results are returned by the index servers to a central
broker, which then merges them into a final answer set for the query. In
general, query processing on document-based-partitioned indexes yields good
load balance, low query response times, and high fault tolerance. However,
the number of disk accesses incurred by a query grows linearly with the
number of nodes in the search cluster. This may form a bottleneck for query
processing throughput if the inverted index is mostly stored on the disk.

In term-based partitioning, the terms in the collection vocabulary are
partitioned into a number of non-overlapping subsets, and each index server
becomes responsible for a different subset of terms. The inverted index hosted
by a server consists of the posting lists corresponding to the terms assigned
to the server. A query is processed only on the index servers that host
at least one posting list associated with a query term. The index servers
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involved in processing the query return to the central broker their entire
lists of documents matching the query terms they host. Since queries are
typically very short, few index servers are involved in processing the query.
Hence, term-based partitioning allows high concurrency, as multiple queries
can be processed at the same time by different index servers. However, the
large amounts of data transferred from index servers to the central broker
forms a performance bottleneck, together with the poor load balance in query
workloads of index servers.

The focus of this work is on term-based inverted index partitioning for
the sake of efficient query processing. We propose a novel combinatorial
model, based on hypergraph partitioning, to distribute the posting lists of
an inverted index over a parallel text retrieval system. The proposed model
assigns to the same index server posting lists that are likely to be accessed
together1, also trying to minimize the communication overhead that will be
incurred by queries. In the mean time, the model tries to keep the load
imbalance in query workloads of index servers as low as possible.

To verify the validity of the model, we conduct simulations using a real-
life web document collection and a web query log obtained from Yahoo!.
According to the results, the proposed index partitioning model achieves
significant reduction in the fraction of queries processed by a single index
server. We observe similar gains in the communication overhead, relative to
a baseline partitioning strategy that only captures the workload balance.

The rest of the paper is organized as follows. Section 2 provides some
background material. Term-based index partitioning techniques used in pre-
vious works are summarized in Section 3. Section 4 provides a formal problem
definition. The proposed index partitioning model is presented in Section 5.
The details of our experimental setup and dataset are given in Section 6.
Experimental results are presented in Section 7. Section 8 concludes the
paper.

2. Background

2.1. Term-based index partitioning

An inverted index contains a set of term and corresponding inverted list
pairs L = {(t1, I1), (t2, I2), . . . (tT , IT )}, where T = |T | is the size of the

1This information can be obtained from past query logs.
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vocabulary T of the indexed document collection. Each posting p∈Ii keeps
information about a document dj in which term ti appears. This information
is used for ranking. In the simplest case, it includes a document id and the
term’s frequency in the document. In a parallel text retrieval system with
K-processors, the postings of an inverted index is partitioned among a set of
K index servers S = {S1, S2, . . . , SK}. The partitioning is performed taking
into account the computational load distribution on index servers.

In the term-based partitioning approach, each index server Sk locally
keeps a subset Lk of the set L of all term and corresponding inverted list
pairs, where

L1 ∪ L2 ∪ . . . ∪ LK = L (1)

with the condition that

Lk ∩ L` = ∅, for 1 ≤ k, ` ≤ K, k 6= `. (2)

In this partitioning technique, all processors are responsible for maintaining
their own sets of terms, i.e., inverted lists are assigned to index servers as a
whole. In the rest of the section, we provide some background on two alter-
native query processing schemes for term-based-partitioned inverted indexes.

2.2. Traditional query processing scheme

The traditional query processing scheme considered in many works (Toma-
sic and Garcia-Molina, 1993; Ribeiro-Neto and Barbosa, 1998; MacFarlane
et al., 2000; Badue et al., 2001) involves a central broker, responsible for pre-
processing the user query and issuing it to index servers in the search cluster.
In this scheme, queries are processed as follows. First, the broker separates
the user query q={t1, t2, . . . , t|q|} into a set {q̂1, q̂2, . . . , q̂K} of K subqueries,
in compliance with the way the index is partitioned. Each subquery q̂k con-
tains the query terms whose responsibility is assigned to index server Sk, i.e.,
q̂k ={ti ∈ q : (ti, Ii)∈Lk}. Then, the central broker issues the subqueries to
index servers. Depending on the terms in the query, it is possible to have
qk =∅, in which case no subquery is issued to Sk.

When an index server Sk receives a subquery q̂k, it accesses the disk
and reads the inverted lists associated with the terms in q̂k, i.e., for each
query term ti∈ q̂k, inverted list Ii is fetched from the disk. The information
in the postings of fetched lists are used to first determine some documents
that match q̂k. Typically, the matching may be performed in two different
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ways, based on the AND (disjunctive mode) or OR (conjunctive mode) logic.
In case of the AND logic, documents that appear in at least one of the
inverted lists related to the query is considered to be be a match, whereas
a document is a match, in case of the OR logic, only if it appears in all
inverted lists related to the query. Once the matching documents are found,
they are scored by some relevance function (e.g., BM25) using the statistical
information stored in the postings. This typically involves summing up for a
document the score contributions of query terms. Finally, the documents are
ranked in decreasing order of scores. We note that the techniques discussed
in our work are independent of the scoring function used.

After Sk computes its partial ranking Ak (this typically contains docu-
ment ids and scores), it transfers this information to the central broker. Ak

is only a partial ranking because the document scores are not yet fully com-
puted, as some terms that can contribute to the score of a document may be
remotely stored by other index servers. To generate a global ranking of doc-
uments for the query, all partial rankings related to the query are gathered
at the central broker. The central broker then merges the received partial
rankings. In case of the OR logic, merging involves summing up the score
entries corresponding to the same document and sorting the final scores in
decreasing order. In case of the AND logic, only the documents that appear
in all partial rankings are considered for the final ranking. Finally, the broker
returns to the user the highest ranked k document ids, potentially together
with some additional information (e.g., snippets).

There are three performance problems in this type of query processing.

• High communication volume: If the processing of a query is carried out
by more then one index servers, the servers have to transfer their entire
partial ranking information to the central broker. Especially, if the
document matching is performed in the conjunctive mode, this implies
that large volumes of data need to be transferred over the network.,
which implies a significant increase in query response times.

• Bottleneck at the central broker: Due to the high volume of data com-
municated to the central broker, the result merging step in the broker
may form a bottleneck, especially under high query traffic volumes or
when K is large. In those cases, the broker queue that stores partial
ranking information received from index servers may start infinitely
growing, limiting the peak sustainable query processing throughput.
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• Imbalance in workloads of index servers: If the posting entries are not
evenly distributed among the index servers, some index servers may be
overloaded with processing queries while others are mostly idle. This,
in turn, causes a throughput bottleneck in overloaded index servers,
eventually degrading the performance of the entire system.

2.3. Pipelined query processing scheme

The pipelined query processing scheme is originally proposed by Moffat
et al. (2007), as a remedy to the bottleneck problem at the central broker and
also to achieve better workload balance in the system. In this scheme, for a
given query, the set of index servers that are responsible for processing the
query are determined as in the traditional scheme. One of the selected index
servers is given the broker role. This broker server determines a routing se-
quence for remaining index servers, on which the query will be executed. The
same server is also responsible for obtaining the final top k results and trans-
ferring them to the user or the part of the system responsible for presenting
search results.

The processing of the query proceeds by obtaining the local partial scores
of a server and combining them with the scores received from the previous
server in the routing sequence. The computation of local scores is similar to
that in the traditional scheme. They are combined with the previous scores
in different ways, depending on the matching logic. In case of OR logic, each
server simply updates the received document scores using the information
in the information in the posting entries the server maintains and/or inserts
new entries, forming a new partial ranking with potentially more entries. In
case of AND logic, the server intersects the received partial ranking with its
local partial ranking, forming a new partial ranking with potentially fewer
entries. The generated partial score information is then passed to the next
index server in the sequence. The final server in the sequence extracts the
top-ranked k documents and returns them to the broker, which initiated
query processing.

In a sense, the pipelined scheme sacrifices inter-query parallelism in ex-
change of intra-query concurrency. Since the role of the central broker is
distributed across the index servers, the result merging bottleneck in the
traditional scheme is mostly avoided. Moreover, pipelined query processing
allows for more fine-grained load balancing. Finally, in case of the AND
logic, the total volume of communication may be reduced, relative to the
traditional scheme. Unfortunately, when the pipelined scheme is compared
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to query processing on document-based-partitioned indexes, the following
continues to be problems.

• High communication volume: In case of the OR logic, the volume of
data transferred between the index servers can be quite high. In prac-
tice, the volume is identical to that observed in the traditional scheme.

• High number of network hops: In case of long queries, the routing
sequence may involve many index servers. The high number of network
hops and messages may increase query processing times.

• Workload imbalance: THe pipelined scheme significantly improves the
workload balance of the system, relative to the traditional approach.
However, the imbalance remains as a problem at the micro-scale.

3. Previous Work

The index partitioning problem is investigated by a number of works.
These works mainly differ in their assumptions about the underlying archi-
tecture, matching logic, and partitioning model. There are also differences in
adopted ranking models, datasets, and experimental methodologies. Herein,
we specifically focus on works related to term-based partitioning (Tomasic
and Garcia-Molina, 1993; Jeong and Omiecinski, 1995; Ribeiro-Neto and Bar-
bosa, 1998; MacFarlane et al., 2000; Badue et al., 2001; Cambazoglu et al.,
2006; Moffat et al., 2006, 2007; Lucchese et al., 2007), omitting the find-
ings about document-based partitioning (Tomasic and Garcia-Molina, 1993;
Jeong and Omiecinski, 1995; Ribeiro-Neto and Barbosa, 1998; MacFarlane
et al., 2000; Badue et al., 2001; Cambazoglu et al., 2006; Badue et al., 2007).

Tomasic and Garcia-Molina (1993) evaluate a simple term-based parti-
tioning approach on a share-nothing parallel architecture where each node is
assumed to have multiple I/O buses with multiple disks attached to each bus.
In their approach, terms are evenly partitioned across the disks (though it is
not explicitly stated how partitions are obtained) and queries are processed
using the AND logic. The traditional query processing scheme is extended
by a novel prefetching technique, composed of two phases. In the first phase,
an initial partial ranking is obtained from the index server that hosts the
query term with the shortest posting list or from the index server that cov-
ers the largest number of query terms. In the second phase, subqueries are
issued to remaining index servers together with this initial ranking. In each
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contacted index server, the generated partial rankings are intersected with
the provided initial ranking so that the volume of data communicated to the
central broker is reduced.

Jeong and Omiecinski (1995) investigate the performance of different
term-based partitioning schemes for a shared-everything multiprocessor sys-
tem with multiple disks. In their main experiments, they use synthetically
created document collections with varying posting list size skewness and ob-
serve the impact of this skewness on query processing performance. They pro-
pose two load balancing heuristics for term-based index partitioning. Their
first heuristic distributes the lists to servers taking into account the number of
postings in lists so that each server keeps similar amounts of posting entries.
The second heuristic, in addition to posting list sizes, takes into account the
access frequencies of lists. Their simulations indicate that, in terms of query
processing throughput, term-based partitioning scales well with query traffic,
especially in case of low skewness.

Ribeiro-Neto and Barbosa (1998) evaluate term-based partitioning for
batch query processing on a shared-nothing parallel system. This work
adopts a simple partitioning strategy where terms are evenly distributed to
index servers in lexicographical order. The results confirm the previous work
in that term-based partitioning is more feasible in case of a fast network.

MacFarlane et al. (2000) evaluate the term-based partitioning scheme
on a shared-nothing parallel architecture. In their experiments, they use a
real-life document collection with an index supporting position information.
For posting list assignment, they try three different frequency criteria, which
are tried to be balanced. This work is the first to observe the performance
bottleneck in the central broker. Badue et al. (2001) repeats on a small
number of processors a similar study to that of MacFarlane et al. (2000).
The results favor term-based partitioning, especially when the number of
processors is larger than the average number of terms in queries. Cambazoglu
et al. (2006) conduct yet another study, with the assumption that the index
is completely stored on the disk. It is shown that term-based partitioning has
better throughput scalability with increasing number of processors, relative
to document-based partitioning.

Moffat et al. (2007) propose a novel query processing approach for term-
based-partitioned indexes. In the proposed approach, partial rankings are
computed and passed among the set of nodes that host the query terms, in a
pipelined fashion. This approach, although it may increase query processing
times, is shown to achieve good throughput values relative to the traditional
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query processing approach, which relies on passing posting lists to a central
broker, on term-based-partitioned indexes.

Moffat et al. (2006) conduct a separate study to investigate the load
imbalance problem in pipelined query evaluation (Moffat et al., 2007) on
term-based partitioned indexes. That work evaluates a few alternatives for
estimation of nodes’ workloads and used a simple “smallest fit” heuristic
for load balancing, coupled with replication of most popular posting lists
on multiple nodes. Although simulations indicate improved load balancing,
in practice, the throughput values remained inferior to query processing on
document-based-partitioned indexes due to unexpected peaks in load imbal-
ance at micro-scale, i.e., the load balance problem is not completely solved.

Lucchese et al. (2007) propose a greedy heuristic that tries to assign
terms co-occurring in queries to the same index servers to construct a term-
based-partitioned index. In their heuristic, the terms are iteratively assigned
to parts trying to optimize a performance objective function that combines
query throughput and average query processing time, scaled by a relative
importance factor. Compared to the baseline random assignment and bin
packing approaches (Moffat et al., 2006), some improvement is observed in
query locality, i.e., the number of index servers involved in processing is
reduced, on average.

Zhang and Suel (2007) describe heuristics for term-based index partition-
ing and posting list replication, assuming the AND logic in query processing.
The evaluated heuristics, based on graph partitioning and greedy assignment
of terms to index servers, tried to assign posting lists that are likely to pro-
duce short intersections to the same processor. This approach is shown to
reduce the volume of data communicated to the central broker during query
processing.

4. Formal problem definition

Let f be a matching function that maps a query to a set of docu-
ments. That is, f(q) represents the set of documents matching to query
q. We are given a set S = {S1, S2, . . . , SK} of K servers, a vocabulary
T = {t1, t2, . . . , tn} of n terms and a stream Q = {q1, q2, . . . , qm} of m
queries. Each term ti ∈ T is associated with a posting list Ii and each
query qj ∈ Q is composed of terms in vocabulary, i.e., qj ⊆ T . Given these
definitions, we define a term partition Φ as follows.
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Definition 1 (Term partition). A term partition Φ = {T1, T2, . . . , TK} is
a partition of vocabulary T , where Tk refers to the set of terms assigned to
server Sk and the local index Lk at Sk can be formulated as,

Lk = {(ti, Ii) : ti ∈ Tk} (3)

Definition 2 (Hitting set of a query Lucchese et al. (2007)). For a term
partition Φ, the hitting set h(q,Φ) of a query q ∈ Q is defined as the set of
servers to which there are some terms assigned in q, i.e.,

h(q,Φ) = {Sk ∈ S : q ∩ Tk 6= ∅} (4)

Let c(q,Φ) denote the communication overhead in processing q with respect
to term partition Φ. Moreover, Let q̂jk denote the subquery to be processed in
server Sk for a query qj ∈ Q, i.e., q̂jk = qj∩Tk. For latency dominant systems,
the communication overhead is determined by the number of messages and
can be formulated as,

c(q,Φ) = 2|h(q,Φ)| (5)

In systems, where communication volume is more determinant, the network
overhead depends on the parallel query processing scheme. In the naive
approach, the communication overhead can be modeled as,

c(q,Φ) =

{
0 |h(q,Φ)| = 1∑

k |f(q̂k,D)| o.w.
(6)

whereas for pipeline query processing scheme the network overhead can be
approximated as the minimum size of the shortest matching set of sub-
queries Zhang and Suel (2007), i.e.,

c(q,Φ) =

{
0 |h(q,Φ)| = 1

mink |f(q̂k,D)| o.w.
(7)

In processing of every subquery q̂, each term t ∈ q̂ incurs a load propor-
tional to its posting list size. This implies that each term ti ∈ T introduces
load pi × |Ii|, where pi is the count how many times ti occurs in the query
stream Q. Hence, the overall load Lk(Φ) of a server Sk with respect to a
given term partition Φ can be formulated as,

Lk(Φ) =
∑
ti∈Tk

pi × |Ii| (8)
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Definition 3 (ε-balance on workload). Given sets S, T and Q, a term
partition Φ is said to achieve an ε-balance on workload if overall load Lk(Φ)
of each server Sk satisfies following constraint,

Lk(Φ) ≤ Lavg(Φ)(1 + ε) (9)

where Lavg(Φ) refers to the average overall load of servers.

Problem 1 (Term-based index partitioning problem). Given a set S
of servers, a vocabulary T of terms with associated posting lists, a query
stream Q and an balance parameter ε ≥ 0, find a term partition Φ =
{T1, T2, . . . , TK}, which induces the index partitioning {L1,L2, . . . ,LK} such
that the ε-balance on workload is achieved while the total communication
overhead Ψ(Φ) is minimized, where

Ψ(Φ) =
∑
qj∈Q

c(qj,Φ) (10)

5. Term-based Index Partitioning Model

The proposed model formulates the term-based index partitioning prob-
lem as a hypergraph partitioning problem. Hence, we first provide an overview
of hypergraph partitioning basics before presenting the proposed model.

5.1. Hypergraph partitioning

A hypergraph H = (V ,N ) consists of a set of vertices V and a set of
nets N Berge (1985). Each net nj ∈ N connects a subset of vertices in
V . The set of vertices connected by a net nj are called the pins of net
nj and represented as Pins(nj). The degree of a net nj is equal to the
number of vertices it connects, i.e., deg(nj) = |Pins(nj)|. Similarly, the nets
connecting a vertex vi are called the nets of a vertex. Each vertex vi ∈ V
is associated with a weight wi and each net nj ∈ N is associated with a
cost cj.Π = {V1,V2, . . . ,VK} is a K-way vertex partition if each part Vk is
nonempty, parts are pairwise disjoint, and the union of parts gives V . In
Π, a net is said to connect a part if it has at least one pin in that part.
The connectivity set Λj of a net nj is the set of parts connected by nj. The
connectivity λj = |Λj| of a net nj is equal to the number of parts connected
by nj. A net nj with connectivity λj = 1 is an internal net, whereas it is an
external (or cut) net if its connectivity is more than one.
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In Π, the weight of a part is equal to the sum of the weights of vertices in
that part. A partition Π is said to be balanced if each part Vk satisfies the
balance criteria

Wk ≤ Wavg(1 + ε), for k=1, 2, . . . , K, (11)

where the weight Wk of a part Vk is defined as the sum of the weights wi of
the vertices in that part, Wavg is the weight that each part should have in
case of perfect balance, and ε is the maximum imbalance ratio allowed.

Given all these definitions, the K-way hypergraph partitioning prob-
lem Alpert and Kahng (1995) can be defined as finding a partition Π for
a hypergraph H = (V ,N ) such that the balance criteria on part weights
(Equation 11) is maintained while a function defined over the nets is op-
timized. There are several objective functions developed and used in the
literature. The metrics used by the term-based partitioning model are the
cutnet and λ connectivity metric defined as follows.

χ(Π) =
∑

ni∈Ncut

ci, (12)

χ(Π) =
∑
ni∈N

ciλi, (13)

5.2. Model

We represent the query set as a hypergraphH = (U ,N ). In this represen-
tation, each term ti ∈ T is represented by a vertex ui ∈ U . There introduced
a net nj ∈ N for each query qj ∈ Q. A vertex ui is a pin of a net nj if
and only if term ti appears in query qj, i.e. ti ∈ qj, Note that the degrees of
nets are quite small due to less number of terms appearing in a query (2.76
in average). Each vertex ui is associated with a weight wi = pi × |Ii| which
refers to the load to be introduced by ti. We assign a unit cost to each net
nj, i.e., cj = 1.

In a K-way partition Π = (U1,U2, . . . ,UK) of hypergraph H, each ver-
tex part Uk corresponds to the subset Tk of terms assigned to index server
Sk. If a net nj is cut, then query qj incurs transfer cost of partial scores,
otherwise it does not incur such network cost. In this model, balancing the
part weights Wk according to the balance criteria in Eq. 11 effectively bal-
ances the workload among index servers in order to achieve ε-balance as
discussed in Eq. 9. Minimizing the cost according to cutnet metric (Eq. 12)
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Table 1: Fraction of queries
Avg Uniq 1 2 3 4 ≥ 5

S2 2.76 0.15 0.12 0.36 0.31 0.14 0.08
S3 2.76 0.15 0.12 0.36 0.31 0.14 0.08

accurately captures minimizing number of queries incurring transfer cost of
partial scores and thus approximates minimization of total communication
overhead Ψ(Φ) when communication is modeled as in Equations 6 and 7.
Whereas, in order to minimize the number of messages (when the communi-
cation overhead is modeled using Equation 5), minimizing the cost according
to connectivity metric (Eq. 13) happens to correctly minimize total commu-
nication overhead.

6. Experimental Setup

We sampled 1.7M web pages predicted by a proprietary classifier as be-
longing to the .fr domain. We also sampled about 6.3M queries from the
France (FR) front-end of Yahoo! web search during three consecutive days
(query sets S1, S2, and S3). Queries in S2 are used as training set to obtain
cooccurrance relations of terms, whereas S3 is used for evaluation.

To create a more realistic setup, we assumed a query result cache with
infinite capacity Cambazoglu et al. (2010), i.e., only unique queries are used
by the model and also in evaluation. Both for training S2 and test S3 sets,
the queries of previous day, S1 and test S2 respectively, is used to warm up
the result cache, where hitrate performs around 69%. Although filtered by
the result cache, the occurance frequencies of terms in queries still present
a clear power-low distribution as shown in (Skobeltsyn et al., 2008, Fig. 5).
The query size distribution, calculated over miss queries, of the train and
test query log is given in Table 1.

We used the hypergraph partitioning tool PaToH Catalyurek and Aykanat
(1999) with its default parameters (except imbalance constraint, which we
set as 5%) to partition the hypergraphs. We varied the number of parts such
that K∈{4, 8, 12, 16} and scaled the number of documents linearly with K,
i.e., K×100K documents are used in a partitioning run with K servers. The
number of unique terms collections are given in Table 2.

We resort to replication in order to moderate the skewed distribution of
term occurences by placing most load-intensive 100 terms to all nodes Moffat
et al. (2006) at a cost of 20%, 47%, 73%, and 100% increase in the total index
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Table 2: Vocabulary size
K index voc
4 124M 4253647
8 249M 6927509

12 368M 9074506
16 492M 11200564

size forK = 1,2,3, and 4, respectively. Whenever a query containes replicated
terms, processing tasks of replicated terms are assigned to servers online.
We employed four different approaches all of which assignes all replicated
terms of a query into one center. First approach (referred as GLB), inherited
from Moffat et al. (2006), pickes the currently least loaded server, which
in turn results in high load balance. This approach has high potantial to
perturb coherency of query terms. Hence, a more conservative approach
(referred as LOC) selects the currently least loaded server among the ones
unreplicated terms of the query are assigned. Additionally, we employ two
other approaches, referred as MAX and MIN, where we select the server to which
the unreplicated query term with highest and lowest amount of postings
is assigned, respectively. Whenever all the terms of a query are those of
replicated ones, four approaches behave like GLB. Some load intensive terms
can cause severe imbalance Moffat et al. (2006). However, replication of most-
load intensive terms, when combined with dynamic load balancing technique,
yields a good workload balance. Replicated terms are not taken into account
when finding partitions.

Training set S2 is used to extract popularity values of terms in order
to calculate estimated workloads. We assume that queries are processed in
conjunctive (AND) mode. Hence, a query is processed only if all its terms
occur in the vocabulary. The fraction of such queries ranges between 83%
and 87% (over missed queries), where the amount differs according to size of
collection. All reported results are given over miss and vocabulary queries.

As the baseline index partitioning technique, we used bin packing ap-
proach, where terms are assigned to servers as in greedy bin packing ac-
cording to their load-intensivities. The baseline technique and the proposed
hypergraph-partitioning-based model are denoted as BIN and HP, respectively.
All reported results, related to HP-based model, are averages of five runs.
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Figure 1: Fraction of locally processed queries (left) and fraction of queries with a given
number of active index servers (right) among all queries.

7. Experimental Results

In the figures presented in this section, BIN represents the baseline ap-
proach based on bin packing, whereas HP implies the hypergraph-partitioning-
based (HP-based) method where the objective is to minimize cutsize accord-
ing to cutnet metric (Eq. 12).

Figure 1 (left) presents the fraction of locally processed, i.e., processed
at single index server, queries among all. S3 represents the hypotetical lower
bound of locality due to single-term queries in test set S3. Bin packing ap-
proach (BIN) achieves considerably better locality than lower bound (S3),
since the query sizes are not sufficiently small relative to number of index
servers. Decreasing gap between two with increasing number of index servers
verifies that reason. Locality decreases with increasing number of index
servers, which is a natural result since query size remains same while the
number of index servers increases. As seen in the figure, the HP-based ap-
proach effectively improve locality. We also note that locality relative to
baseline also degrades which is because of that locality converges to theoret-
ical lower bound with increasing number of index servers. Figure 1 (right)
presents the fraction of queries with a given number s of index servers among
all queries, for s = 1, 2, 3, 4 and s > 4 when the number of index servers
is equal to 16. Moreover, S3 represents the fraction of queries with a given
number of terms among all queries (Skobeltsyn et al., 2008, Fig. 3). As
seen in the figure, remarkably more queries process on less number of index
servers when HP-based approch is applied.

Figure 2 illustrates savings (one figure for each cost model) in communi-
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Figure 2: Savings in communication overhead where cost is modeled as in Equation 5
(left most), Equation 6 (middle), and Equation 7 (right most), as normalized to those of
BIN-GLB.

cation overhead as normalized to those of bin packing approach with global
randomization of replicated terms, referred as BIN-GLB. Figures reveal that
huge savings in network overhead can be obtained by preserving term co-
herency of the queries. The savings decreases with increasing number of
index servers for both baseline and HP-based method, which can be ex-
plained by a similar reasoning that of locality. The left most figure shows
the normalized savings in the number of messages (Eq. 5). In this figure,
HP-CON refers to the hypergraph partitioning objected to minimize cutsize
according to connectivity metric (Eq. 13). As seen in the figure, hypergraph-
partitioning-based approaches achieve significant savings in communication
overhead in this scenario.

In Figure 2, the middle and right most ones represent normalized savings
in communication overhead when modeled according to Equations 6 and 7,
respectively. BIN-LOC and HP-LOC refer to the cases that local randomization
of replicated terms is applied. Whereas the cases in which replicated terms of
a query is processed on the index server with query term having most/least
postings are referred as BIN-MAX/MIN and HP-MAX/MIN. The figure in the mid-
dle shows savings when queries are processed in the naive approach, whereas
the right most figure presents how much saving can be foreseen in pipelined
approach. Both figures confirm that important gains can be achieved in
network bandwidth by proposed HP-based approach validating hypergraph
partitioning model.

The improved savings in communication costs come at a cost imbalance
on workloads. Table 3 illustrates how much degredation is observed at work-
load balance. Each row represents experiments with different number of
index servers (K). Former five columns are results related to baseline bin
packing approach whereas latter columns are for hypergraph-partitioning-
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Table 3: Imbalance values
Bin packing Hypergraph Partitioning

K GLB LOC MAX MIN Storage GLB LOC MAX MIN Storage
4 1.00 1.00 1.03 1.01 1.05 1.00 1.04 1.11 1.12 1.12
8 1.00 1.00 1.03 1.01 1.08 1.00 1.06 1.13 1.17 1.26

12 1.00 1.00 1.05 1.02 1.11 1.00 1.06 1.19 1.25 1.32
16 1.00 1.00 1.09 1.04 1.16 1.00 1.08 1.19 1.26 1.32

based method. For each of two groups, we present imbalance values for all
four replicated-term assignment strategies. Fifth column of each group rep-
resents storage imbalance values that are side results of assignments. As
seen in the figure, GLB approaches achieve perfect balance independent of the
method (at a cost of higher communication), which also reflects the domi-
nancy of the replicated-terms. LOC method behave similar to GLB method
in bin packing approach, with conserving any locality that may occur for a
query. Thanks to balancing constraint in the HP model, we observe satisfac-
tory amount of workload imbalance (lower than 10%). Storage imbalances
are important side results and observed at admissable amounts, i.e., up to
16% and 32% for bin packing and HP-based approaches, respectively.

8. Conclusions
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