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________________________________________________________________________ 
 
Static index pruning techniques permanently remove a presumably redundant part of an inverted file, to reduce 
the file size and query processing time. These techniques differ in deciding which parts of an index can be 
removed safely; i.e., without changing the top-ranked query results. As defined in the literature, the query view 
of a document is the set of query terms that access to this particular document, i.e., retrieves this document 
among its top results. In this study, we first propose using query views to improve the quality of the top results 
compared against the original results. We incorporate query views in a number of static pruning strategies, 
namely term-centric, document-centric, term popularity based and document access popularity based 
approaches, and show that the new strategies considerably outperform their counterparts especially for the 
higher levels of pruning and for both disjunctive and conjunctive query processing. Additionally, we combine 
the notions of term and document access popularity to form new pruning strategies, and further extend these 
strategies with the query views. The new strategies improve the result quality especially for the conjunctive 
query processing, which is the default and most common search mode of a search engine. 
 
Categories and Subject Descriptors: Categories and Subject Descriptors: H.3.1 [Information Storage and 
Retrieval]: Content Analysis and Indexing –indexing methods; H.3.3 [Information Storage and Retrieval]: 
Information Search and Retrieval –search process 

General Terms: Algorithms, Performance, Experimentation. 

Additional Key Words and Phrases: Query view, static inverted index pruning. 
________________________________________________________________________ 
 
1. INTRODUCTION  

An inverted index is the state-of-the-art data structure for query processing in large scale 

information retrieval systems and Web search engines (SEs). In the last decades, several 

optimizations have been proposed to store and access inverted index files efficiently, 

while keeping the quality of the search relatively stable [Zobel and Moffat 2006]. One 

particular method is static index pruning, which aims to reduce the index file size and 

query execution time.  
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The sole purpose of a static pruning strategy is staying loyal to the original ranking of 

the underlying search system for most queries, while reducing the index size, to the 

greatest extent possible. This is a non-trivial task, as it would be impossible to generate 

exactly the same results as produced by the full (unpruned) index for all possible queries. 

Therefore, pruning strategies attempt to provide quality guarantees for only top-ranked 

results, and try to keep in the pruned index those terms or documents that are the most 

important according to some measure, hoping that they would contribute to the future 

query outputs uttermost. The heuristics and measures used for deciding which items 

should be kept in the index and which of them should be pruned distinguish the static 

pruning strategies. Many proposals in the literature are solely based on the features of the 

collection and search system. For instance, in one of the pioneering works, Carmel et al. 

[2001] sort the postings in each term’s list with respect to the search system’s scoring 

function and remove those postings with the scores under a threshold. This is said to be a 

term-centric approach. In an alternative document-centric strategy, instead of considering 

posting lists, pruning is carried out for each document [Büttcher and Clarke 2006]. These 

two strategies, as well as some others reviewed in the next section essentially take into 

account the collection-wide features (such as term frequency) and search system features 

(such as scoring functions). 

However, in the case of Web search, additional sources of information are also 

available that may enhance the pruning process and final result quality, which is the most 

crucial issue for search engines. In particular, query logs can serve as an invaluable 

source of information and provide further evidence for deciding which terms or 

documents should be kept in a pruned index to answer the future queries. A simple yet 

very effective index pruning strategy is based on the popularity of the terms in the 

queries, which can be determined from past query logs [Ntoulas and Cho 2007; 

Skobeltsyn et al. 2008; Baeza-Yates et al. 2007]. Clearly, such an approach depends on 

the frequency of the terms in the queries; however, it does not take into account the 

frequency of access to documents.  In contrary, another approach proposed by Garcia 

[2007] exploits the notion of access popularity of documents, but neglects the term 

dimension. This latter pruning strategy is guided by the number of appearances of a 

document in the top results of the previous queries.  

In the literature, for the purposes other than index pruning, query logs are also used to 

construct query views; i.e., a representation of a document in terms of the query terms 

[Castellanos 2003].  In the scope of our work, for a given document, all queries that rank 

this particular document among their top-ranked results constitute the query view of that 



document. For static pruning purposes, we exploit the query views in the following sense. 

We envision that, for a given document d and a term t in d, the appearance of t in d’s 

query view is the major evidence of its importance for d; i.e., it implies that t is a 

preferred way of accessing document d in the search system. Thus, any pruning strategy 

should avoid pruning the index entry <d> from the posting list of term t to the greatest 

extent possible. 

In this study, our goal is to improve the quality1 of the results obtained from a pruned 

index, which has vital importance for the SEs in a competitive market. Two key 

contributions of this work (besides many others as listed in the next section) are as 

follows. First, we propose to incorporate query views into the previous techniques that 

are using only collection and system features, like term- and document-centric strategies, 

as well as those that make use of query logs (i.e., to determine most popular terms and 

most frequently accessed documents, as discussed above). We show that, the pruning 

strategies coupled with the query views significantly improve the quality of the top-

ranked results, especially at the higher levels of pruning.  

Second, we combine the notions of term and document access popularity to form new 

pruning strategies, and further extend these strategies again with the query view idea. The 

new strategies improve the result quality especially for the conjunctive query processing, 

which is the default and most common search mode of a SE. For instance, such a 

combined strategy yields twice as good performance than solely using term popularity 

based pruning at a very high pruning level, namely, when 90% of the index is pruned. 

 
1.1 Contributions 

In addition to the key contributions mentioned above, our work provides a detailed 

comparison of several static index pruning approaches in the literature, proposes 

extensions to them and describes a realistic experimental framework. More concretely, 

the contributions and findings of this study are listed in detail as follows:  

• An exhaustive coverage of baseline static pruning approaches: We fully explore the 

potential of previous pruning strategies, with special emphasis on the document 

access-based pruning. To this end, we provide an adaptive version of the term-

centric pruning algorithm provided in [Garcia 2007]. We also introduce a new 

document-centric version of the access-based algorithm, and show that the latter 

outperforms its term-centric counterpart. Thus, with the addition of the term-centric 

                                                           
1 In the scope of this work, by “result quality” we broadly mean the overlap between the 
results provided from the full (i.e., unpruned) index and from a pruned index. 



[Carmel et al. 2001], document-centric [Büttcher and Clarke 2006] and term 

popularity based algorithms [Ntoulas and Cho 2007], we consider five baseline 

approaches in this study.  

• Query-view based static pruning approaches: We couple the query view notion with 

all of these five pruning approaches. More specifically, the baseline algorithms are 

modified in such a way that the terms of a document that appear in the query view of 

this particular document are considered to be privileged and preserved in the index to 

the greatest possible extent during the pruning.  

• Evaluation of the pruning algorithms with and w/o query views: We provide an 

effectiveness comparison of these baseline approaches (for their best performing 

setup in the literature) in a uniform framework for both disjunctive and conjunctive 

query processing; i.e., the most common query processing modes in SEs [de Moura 

et al. 2005]. To our knowledge, even this comparison alone adds value to the 

literature. Our experimental findings reveal that among the baseline strategies, the 

simple term popularity based method yields the best results for most of the cases; but 

document-centric version of the access-based algorithm can outperform it for 

conjunctive query processing at very high pruning levels. Then, of course, query 

view based approaches are compared with the baselines. We show that almost all 

strategies significantly benefit from the query views for the majority of the 

experiments.  

• Static pruning approaches that combine term popularity with document access 

popularity and query views: As the term popularity and document access based 

approaches arise as the most competitive ones in our experiments, we propose new 

pruning algorithms that combine these two approaches. During pruning, the 

combined strategies first select the most popular terms to keep in the index, and then 

select their most popular documents, i.e., retrieved most frequently in top results of 

the queries. To our knowledge, there is no other strategy in the literature that 

combines these two dimensions, namely, term popularity and document access 

popularity. For the sake of completeness, we also combine term popularity strategy 

with term-centric and document-centric approaches, as sometimes used in the 

literature (e.g., [Ntoulas and Cho 2007; Skobeltsyn et al. 2008]). Furthermore, we 

incorporate query views into all of these strategies. 

We also provide experiments to better understand the nature of term popularity 

and document access popularity. Our findings shed light on why combining both 

approaches can yield better results.  



The rest of the paper is organized as follows. In the next section, we review the 

related work in the literature. In Section 3, we describe the baseline index pruning 

algorithms and in Section 4, we introduce the new pruning strategies that exploit the 

query views. Section 5 provides an experimental evaluation of all strategies in terms of 

top-ranked result quality. In Section 6, we first introduce new pruning strategies that 

combine the most important features as identified in our experiments; namely, term 

popularity, document access popularity and query views.  Then, we provide an 

experimental comparison of the latter algorithms with several other combinations of 

pruning strategies. Finally, we summarize our main findings and point to future research 

directions in Section 7. 

 
2. RELATED WORK  

2.1 Static Inverted Index Pruning  

In the last decade, a number of different approaches have been proposed for the static 

index pruning. In this study, as in [Büttcher and Clarke 2006], we use the expressions 

term-centric and document-centric to indicate whether the pruning process iterates over 

the terms (or, equivalently, the posting lists) or the documents at the first place, 

respectively. Note that, this terminology is slightly different than that of [Carmel et al. 

2001]. Additionally, we call a strategy adaptive if its pruning criteria (e.g., a threshold) 

dynamically changes for different terms or documents. In contrast, a uniform strategy 

applies pruning with a fixed threshold for all documents or terms. 

In one of the earliest works in this field, Carmel et al. proposed term-centric 

approaches with uniform and adaptive versions [2001]. In this work, an idealized top-k 

pruning algorithm is introduced, which is guaranteed to generate the same answers 

(within an error of ε) as the original index for queries including less than 1/ε terms. It is 

observed that this idealized algorithm provides only negligible pruning effects, and thus it 

is relaxed by a score-shifting operation. After this modification, which also relaxes the 

theoretical guarantees, the adaptive version of the algorithm is reported to provide 

substantial pruning of the index and exhibit excellent performance at keeping the top-

ranked results intact in comparison to the original index. Roughly, adaptive top-k 

algorithm sorts the posting list of each term according to some scoring function (e.g., 

Smart's TF-IDF in [Carmel et al. 2001]) and removes those postings that have scores 

under a threshold determined for that particular term. In our study, this algorithm, which 

is referred to as term-centric pruning (TCP) strategy hereafter, is employed as a baseline 

pruning strategy and its further details are discussed in Section 3.1. 



In [de Moura et al. 2005], the authors propose an index pruning approach that is 

tailored to support conjunctive and phrase queries, which requires a positional index. In 

this strategy, the term co-occurrence information is used to guide the pruning. In a 

nutshell, this strategy has three stages. First, the most significant sentences of the 

documents are determined. Next, these sentences are ranked and a fixed number of them 

are selected. Finally, the frequency and positional index files are constructed so that they 

only consider those terms and their positional information that appear in the selected 

sentences. In a follow-up work, a more sophisticated algorithm with the same goals is 

proposed [de Moura et al. 2008].  

In [Blanco and Barreiro 2007b], another term-centric pruning strategy is suggested. In 

this work, the collection dependent stop-words are identified and totally removed from 

the index. To determine those terms to be pruned, several measures like inverse 

document frequency (idf), residual idf and term discriminative value are used. Their 

findings indicate that, although this approach can outperform the TCP strategy for some 

cases, the latter is better for short queries and obtaining high P@10 scores. This justifies 

our choice of TCP to be used in this work, as we essentially focus on improving the result 

quality for Web queries over a pruned index. 

Another recently proposed term-centric pruning approach is based on the probability 

ranking principle [Blanco 2008]. Briefly, for each document in a term's posting list, this 

strategy computes a score that represents the significance of that term to the document, 

and prunes those that are below a global threshold. This approach is shown to be superior 

to TCP in terms of MAP results; however its performance for P@10 is less stable, but 

still comparable with TCP. 

Finally, the access-based static pruning strategy discussed in [Garcia 2007] employs a 

query log and computes the number of appearances of each document in top-1000 results 

of the queries. These access-counts are then used to guide the pruning of posting lists for 

each term in the lexicon; i.e., in a term-centric fashion. This strategy is uniform, in the 

sense that for each term, a fixed number of postings that belong to the documents with 

highest access-count scores are stored in the pruned index, and the rest is pruned. In 

[Garcia 2007], the performance of this algorithm is shown to be somewhat discouraging, 

and as a remedy, the authors devise a mechanism to predict the query difficulty. Then, 

“simple” queries are processed by the pruned index whereas “difficult” ones are 

forwarded to the original index, which should also be stored. In this study, we provide an 

adaptive version of the term-centric approach outlined above. We also propose a 



document-centric version, which outperforms the former one. Further details of this 

approach are discussed in Section 3.2. 

Note that, the access-based pruning approach is also adapted for dynamic pruning 

[Garcia et al. 2004; Garcia and Turpin 2006]. In that case, the query processing 

dynamically stops when a threshold is reached while processing a query term’s posting 

list, which is sorted in access-count order. This approach is out of the scope of our work 

presented here and not elaborated further. 

As an alternative to term-centric pruning, Büttcher et al. proposed a document-centric 

pruning (referred to as DCP hereafter) approach with uniform and adaptive versions 

[Büttcher and Clarke 2006]. In the DCP approach, only the most important terms are left 

in a document, and the rest are discarded. The importance of a term for a document is 

determined by its contribution to the document’s Kullback-Leibler divergence (KLD) 

from the entire collection. However, the experimental setup in this latter work is 

significantly different than that of [Carmel et al. 2001]. That is, only the most frequent 

terms of the collection are pruned and the resulting (relatively small) index is kept in the 

memory, whereas the remaining unpruned body of index resides on the disk. During 

retrieval, if the query term is not found in the pruned index in memory, the unpruned 

index is consulted. In a more recent study [Altingovde et al. 2009a], a comparison of TCP 

and DCP for pruning the entire index is provided in a uniform framework. It is reported 

that for disjunctive query processing TCP mostly outperforms DCP for various parameter 

selections. In this study, we also use the DCP strategy to prune the entire index, and 

employ it as one of the baseline strategies (see Section 3.1). 

In most of the above works, it is either explicitly or implicitly assumed that the 

pruned index will replace the original one (e.g., at the back-end servers in a SE), and the 

pruning strategies are optimized for providing the most similar results to the original 

result. In this sense, these pruning approaches can be considered as lossy. In another line 

of research, it is proposed to use a pruned index while also keeping the full index at the 

back-end, so that the correctness of the queries can be always guaranteed. To this end, 

Ntoulas and Cho [2007] describe term and document pruning strategies with correctness 

guarantees. In Section 6, we further discuss the issues related to employing our pruning 

algorithms in such a lossless pruning architecture. 

A similar approach is also taken in the ResIn framework [Skobeltsyn et al. 2008]. In 

ResIn, it is assumed that a pruned index is placed between the SE front-end and the 

broker, which is responsible for sending the queries to the back-end servers with the full 

index. In this case, the pruned index serves as a posting list cache, and the queries are 



passed to the broker and the back-end only when it is deduced that the query cannot be 

answered correctly. The originality of ResIn lies in its realistic architecture that also takes 

into account a dynamic result cache placed in front of the pruned index and the back-end. 

That is, all queries are filtered through the result cache, and only the misses are sent to 

the pruned index and/or back-end servers. Thus, the pruning algorithms employed in such 

an architecture should perform well essentially for the miss-queries. Their experiments 

show that term popularity based pruning serves well for the miss queries, whereas 

pruning lists (as in TCP) performs worse. A combination of both techniques is shown to 

provide a moderate increase in the hit rates, or equivalently, in the number of queries that 

can be answered correctly with the pruned index. In this work, we also consider a result 

cache and evaluate the pruning strategies using a test query stream that exhibits the same 

characteristics as the miss-queries of ResIn. 

 
2.2 Query Views for Representing Documents  

Query logs are exploited in several ways in the information retrieval literature. In the 

scope of this paper, we only focus on the related work for their usage as a representation 

model for documents. The concept of “query view” is first defined in [Castellanos 2003]. 

In this work, queries are used as features for modeling documents in a web site. Other 

works also use queries for document representation (called “query vector model”) in the 

context of document selection algorithms for parallel information retrieval systems 

[Puppin et al. 2006; Puppin et al. 2010]. In this work, each query is associated with its 

top-k resulting documents and no click information is used. This is similar to our case, as 

we also restrict the notion of the query view only to the output of the underlying search 

engine and disregard the click through information. This choice makes sense for the 

purposes of pruning, as the aim of a static pruning algorithm is generating the same or 

most similar output with the underlying search system. 

In a recent work [Poblete and Baeza-Yates 2008], the query log is mined to find 

“frequent query patterns” which form the “query-set model”. Then each document is 

represented by the query-set model for clustering documents in a web site. This work 

suggests that query based representation dramatically improves the quality of the results. 

Another recent work [Antonellis et al. 2009] uses query terms as tags to label the 

documents that appear in the top-k results and are clicked by the users. 

In our preliminary study [Altingovde et al. 2009b], we provided the first results for 

incorporating query views with four static index pruning algorithms (namely, TCP, DCP, 

aTCP and aDCP). Our current study significantly extends this prior work in many ways, 



such as the inclusion of popularity-based pruning (PP) algorithm, introduction of 

combined pruning algorithms, and an extensive experimental setup using various training 

and test query sets as well as an additional very large collection (i.e., ClueWeb09 

Category B).  

 
2.3 Other Mechanisms for Search Efficiency: Dynamic Pruning and Caching 

While our focus in this study is on static index pruning, another complementary method 

for enhancing the search performance is dynamic pruning. These techniques do not 

remove any part of the index permanently; but aim to use only the most promising parts 

of posting lists during the query processing for increasing efficiency without deteriorating 

the retrieval effectiveness. For instance, quit and continue techniques as proposed by 

Moffat and Zobel [1996] enforce a limit on the number of accumulator entries that can be 

updated during query evaluation. This reduces the memory consumption for 

accumulators, which store partial similarities. Furthermore, these two strategies coupled 

with a skipping index are shown to improve Boolean and ranking-query efficiency. 

Similarly, a cluster-skipping index is proposed by Altingovde et al. [2008] to improve 

efficiency in a framework that includes document clusters. Persin et al. [1996] propose to 

use frequency-sorted indexes to avoid reading entire posting lists from the disk and then 

processing them. More recently, Anh et al. [2001] introduce the impact-sorted indexes 

and dynamic pruning techniques that operate on top of this data structure. In this 

approach, posting lists are reorganized so that blocks of higher impact documents are 

stored first. The integration of proximity weighting models into dynamic pruning 

techniques is discussed in [Tonellotto et al. 2010]. 

An orthogonal mechanism to pruning is caching, which can totally eliminate the cost 

of query processing (i.e., by result caching), or significantly reduce it (i.e., by list 

caching). The former case is important, because a result cache can significantly alter the 

properties of a query stream that is directed to a pruned index, as discussed above. The 

latter case is also important, as the pruned index can indeed serve as a list cache 

[Skobeltsyn et al. 2008]. In the literature, the term based pruning mechanism of [Ntoulas 

and Cho 2007] is also used for filling a list cache in [Baeza-Yates et al. 2007]. 

 

3. STATIC PRUNING APPROACHES 

We start with describing how exactly TCP and DCP algorithms are implemented in our 

framework. Next, we describe access-based TCP, as a slightly modified version of 

Garcia’s uniform pruning algorithm [2007]. Then we introduce a document-centric 



version of the latter strategy. As a final baseline strategy, we discuss term popularity 

based pruning.  

 
3.1 Static Pruning Strategies Exploiting Collection and Search System Features 

Term-Centric Pruning (TCP) strategy. As it is mentioned in the previous section, TCP, 

the adaptive version of the top-k algorithm proposed in [Carmel et al. 2001], is reported 

to be very successful in static pruning especially for disjunctive processing of the queries. 

In this strategy, for each term t in the index I, first the postings in t’s posting list are 

sorted by a scoring function (e.g, TF-IDF). Next, the kth highest score, zt, is determined 

and all postings that have scores less than zt * ε are removed, where ε is a user defined 

parameter to govern the pruning level. As in [Blanco and Barreiro 2007b], we disregard 

any theoretical guarantees and determine ε values according to the desired pruning level. 

Following the recommendations in a recent study [Blanco and Barreiro 2007a], we 

employ BM25 as the scoring function for TCP and entirely discard the terms with 

document frequency ft > N/2 (where N is the total number of documents) as their BM25 

score turns out to be negative. Figure 1 shows the TCP strategy as adapted in our setup. 

 
Algorithm Term-Centric Pruning (TCP) 
Input: I, k, ε, N 
1:  for each term t in I 
2:       fetch the postings list It from I  
3:       if |It| > N / 2 
4:   remove It entirely from I 
5:       if |It| > k 
6:           for each posting entry <d>, 
7:     compute Score(t, d) with BM25 
8:           let zt be the kth highest score among the scores 
9:           τt  zt * ε 
10:         for each posting entry <d> 
11:     if Score(t, d) ≤ τt 
12:                    remove entry <d> from It 

Fig. 1. Pseudocode for term-centric pruning (TCP). 

 
Document-Centric Pruning (DCP) strategy. In this study, we apply the DCP strategy 

for the entire index, which is slightly different than pruning only the most frequent terms 

as originally proposed by [Büttcher and Clarke 2006]. Additionally, instead of scoring 

each term of a document with KLD, we prefer to use BM25, to be compatible with TCP. 

In a recent work, BM25 is reported to perform better than KLD for DCP [Altingovde et 

al. 2009a]. Finally, in [Büttcher and Clarke 2006] it is again shown that the uniform 

strategy; i.e., pruning a fixed number of terms from each document, is inferior to the 



adaptive strategy, where a fraction (λ) of the total number of unique terms in a document 

is pruned. Figure 2 shows the algorithm for the DCP strategy. 

 
Algorithm Document-Centric Pruning (DCP) 
Input: D, λ  
1:  for each document d ∈ D 
2:       sort t ∈ d in descending order w.r.t. Score(d, t) 
3:       remove the last |d|*λ terms from d 

Fig. 2. Pseudocode for document-centric pruning (DCP). 

 
3.2 Static Pruning Strategies Exploiting Previous Query Logs 

Access-based Term-Centric Pruning (aTCP) strategy. In the literature, the strategy of 

Garcia [2007] is one of the earliest works that use the search engine query logs to guide 

the static index pruning process. However, this work does not use the actual content of 

the queries, but just makes use of the access count of a document; i.e., the number of 

times a document appears in top-k results of queries, where k is set to 1000. The proposed 

static pruning algorithm applies the, so-called, MAXPOST heuristic, which simply keeps 

a fixed number of postings with the highest access counts in each term’s posting list. 

The result of the MAXPOST approach is not very encouraging. Despite considerable 

gains (up to 75%) in the query processing time, the reduction in accuracy is significant; 

i.e., up to 22% drop in MAP is observed when only 35% of the index is pruned (see 

p.114, Figure 5.2 in [Garcia 2007]). We attribute this result to the uniform pruning 

heuristic, which is shown to be a relatively unsuccessful approach for other strategies 

(e.g., TCP and DCP) as discussed above.  

For this study, we decide to implement an adaptive version of the MAXPOST 

approach. Since it iterates over each term and removes some postings, we classify this 

approach as term-centric, and call the adaptive version access-based TCP (aTCP). In this 

case, instead of keeping a fixed number of postings in each list, we keep a fraction (μ) of 

the number of postings in each list. Figure 3 shows aTCP strategy. 

 
Algorithm Access-based Term-Centric Pruning (aTCP) 
Input: I, μ, AccessScore[] 
1:  for each term t in I 
2:       fetch the postings list It from I  
3:       sort d ∈ It in descending order w.r.t. AccessScore[d] 
4:       remove the last |It|*μ postings from It     

Fig. 3. Pseudocode for access-based term-centric pruning (aTCP). 

 



Access-based Document-Centric Pruning (aDCP) strategy. In this study, we propose a 

new access-based strategy. Instead of pruning the postings from each list, we propose to 

prune documents entirely from the collection, starting from the documents with the 

smallest access counts. The algorithm is adaptive in that, for an input pruning fraction 

(μ), the pruning iterates while the total length of pruned documents is less than |D|*μ, 

where |D| is the collection length; i.e., sum of the number of unique terms in each 

document. Figure 4 presents this strategy, which we call access-based DCP (aDCP). 

Note that, for both of the access-based approaches (aTCP and aDCP) many 

documents may have the same access count. To break the ties, we need a secondary key 

to sort these documents. In this study, we simply use the URL of the Web pages and sort 

those documents with the same access count in lexicographical order. It is also possible 

to consider the length of a document or document URL, which are left as a future work. 

 

Algorithm Access-based Document-Centric Pruning (aDCP) 
Input: D, μ, AccessScore[] 
1:  sort d ∈ D in descending order w.r.t. AccessScore[d] 
2:  NumPrunedPostings  0 
3:  while NumPrunedPostings < |D|*μ 
4:       remove the document d with the smallest access score  
5:       NumPrunedPostings  NumPrunedPostings + |d| 

Fig. 4. Pseudocode for access-based document-centric pruning (TCP). 

 
Popularity-based Pruning (PP) strategy. This is a simple yet very effective pruning 

strategy employed in the previous studies2 for the purposes of index pruning and caching 

[Ntoulas and Cho 2007; Skobeltsyn et al. 2008; Baeza-Yates et al. 2007]. In this method, 

the terms that appear in the query log are sorted in descending order of the term gain 

score. Term gain score is simply computed as the ratio of the total number of queries that 

include a term t (popularity(t)) to the length of this term’s posting list (|It|). Then, we keep 

the posting lists of the terms with the highest gain scores so that the total size of these 

lists does not exceed the required size of the pruned index. In Figure 5, this greedy 

strategy is shown. For the purposes of presentation, we assume that each term t in the 

index is associated with a value Pt, which is set to 1 if t would be pruned, and 0 

otherwise. For an input pruning fraction (μ), the algorithm iterates over term gain score 

sorted list L of terms and sets Pt to 1, as long as the total length of these lists is less than 

|I|*(1-μ), where |I| is the index size, i.e., sum of the lengths of all posting lists. 

                                                           
2 Note that, this strategy is also called as keyword or term pruning in some of the previous works. Here, to 
prevent confusion with TCP, we call it popularity-based pruning.   



Algorithm Popularity-based Pruning (PP) 
Input: I, μ, popularity[] 
1:  L  sort terms in I the descending order of TermGain(t) = popularity[t]/|It| 
2:  NumRemainingPostings  0 
3:  ∀t Pt  0 
4:  while NumRemainingPostings < |I| * (1-μ)  
5:       extract term t with the highest gain from L 
6:       Pt  1 
7:       NumRemainingPostings  NumRemainingPostings + |It| 
8:  for each term t in I      
9:       if Pt = 0 
10:          remove It from I 

Fig. 5. Pseudocode for popularity-based pruning (PP). 

 
4. STATIC INDEX PRUNING USING QUERY VIEWS   

In this section, we first define the notion of query view (QV) for a document, and then 

introduce the pruning strategies that incorporate the query view heuristic. Let’s assume a 

document collection D= {d1,…,dN} and a query log Q = {Q1, …,QM}, where Qi = 

{t1,…,tq}. After this query log Q is executed over D, the top-k documents (at most) are 

retrieved for each query Qi, which is denoted as RQi,k. Now, we define the query view of a 

document d as follows: 

QVd = ∪ Qi, where d ∈ RQi,k 

That is, each document is associated with a set of terms that appear in the queries 

which have retrieved this document within the top-k results. Without loss of generality, 

we assume that during the construction of the query views, queries in the log are executed 

in the conjunctive mode; i.e., all terms that appear in the query view of a document also 

appear in the document. 

The set of query views for all documents, QVD, can be computed efficiently either 

offline or online. In an offline computation mode, the search engine can execute a 

relatively small number of queries on the collection and retrieve, say, top-1000 results per 

query. Note that, as discussed in [Garcia and Turpin 2006], it may not be necessary to use 

all of the previous log files; the most recent log and/or sampling from the earlier logs can 

be sufficiently representative. In Section 5, we show that even small query logs (e.g., of 

10K queries with top-1000 results) provide gains in terms of effectiveness. On the other 

hand, in the online mode, each time a query response is computed, say, top-10 results 

(i.e., only document ids) for this query can also be stored in the broker (or, sent to a 

dedicated query view server). Note that, such a query view server can store results for 

millions of queries in its secondary storage to be used during the index pruning, which is 



actually an offline process. In the experiments, we also provide the effectiveness figures 

obtained for the query views that are created by using only top-10 results. 

We exploit the notion of query views for static index pruning, as follows. We 

envision that for a given document, the terms that appear as query terms to rank this 

document within top results of these queries should be privileged, and should not be 

pruned to the greatest extent possible. That is, as long as the target pruned index size is 

larger than the total query view size, all query view entries are kept in the index. In what 

follows, we introduce five pruning strategies that exploit the query views, based on the 

TCP, DCP, aTCP, aDCP and PP strategies, respectively. 

 

Term-Centric Pruning with Query Views (TCP-QV). This strategy is based on TCP, 

but employs query views during pruning. In particular, once the pruning threshold (τt) is 

determined for a term t’s posting list, the postings that have scores below the threshold 

are not directly pruned. That is, given a posting d in the list of term t, if t ∈ QVd, this 

posting is preserved in the index, regardless of its score. This modification is presented in 

Figure 6. Note that, by only modifying line 11, the query view heuristic is taken into 

account to guide the pruning. 

 
Algorithm Term-Centric Pruning with Query Views (TCP-QV) 
Input: I, k, ε, N, QVD 
1-9:  // The same as Figure 1 and not repeated  here to save space 
10:         for each posting entry <d>, 
11:   if Score(t, d) ≤ τt and t ∉ QVd 
12:                          remove entry <d> from It 
Fig. 6. Pseudocode for term-centric pruning with query views (TCP-QV). 

 

Document-Centric Pruning with Query Views (DCP-QV). In this case, for the purpose 

of discussion, let’s assume that each term t in a document d is associated with a priority 

score Prt, which is set to 1 if t ∈ QVd and 0 otherwise. The terms of a document d are 

now sorted (in descending order) according to these two keys, first the priority score and 

then score function output. During the pruning, last |d|*λ terms are removed, as before. 

This strategy is demonstrated in Figure 7.  

 
 
 
 
 
 
 



Algorithm Document-Centric Pruning with Query Views (DCP-QV) 
Input: D, λ, QVD 
1:  for each document d in D 
2:       for each term t ∈ d 
3:            if t ∈ QVd then Prt 1 else Prt  0 
4:       sort t ∈ d in descending order wrt. first Prt, then Score(d, t) 
5:       remove the last |d|*λ terms from d 

Fig. 7. Pseudocode for document-centric pruning with query views (DCP-QV). 

 

Access-based Term-Centric Pruning (aTCP) with Query Views (aTCP-QV). In aTCP 

strategy, again for the purposes of discussion, we assume that each posting d in the list of 

a term t is associated with a priority score Prd, which is set to 1 if t ∈ QVd and 0 

otherwise. Then, the postings in the list are sorted in the descending order of the two 

keys, first the priority score and then the access count. During the pruning, last |It|*μ 

postings are removed (Figure 8). 

 
Algorithm Access-based Term-Centric Pruning with QV (aTCP-QV) 
Input: I, μ, AccessScore[], QVD 
1:  for each term t in I 
2:       fetch the postings list It from I  
3:       for each posting entry <d>, 
4:            if t ∈ QVd then Prd 1 else Prd  0  
5:       sort d ∈ It in desc. order w.r.t. first Prd then AccessScore[d] 
6:       remove the last |It|*μ postings from It     

Fig. 8. Pseudocode for access-based term-centric pruning with query views (aTCP-QV). 

 

Access-based Document-Centric Pruning (aDCP) with Query Views (aDCP-QV). In 

this case, we again prune the documents starting from those with the smallest access 

counts until the pruning threshold μ is reached. But, while pruning documents, those 

terms that appear in the query view of these documents are kept in the index. This is 

shown in Figure 9.  

Note that, for all algorithms described in this section, if the desired size of the pruned 

index is less than the total size of the query views (|QVD|) it is obligatory to prune some 

of the postings that appear in the query views, as well. In this case, we first remove all 

posting that are not in the query views, and then apply the original algorithm (i.e., either 

one of TCP, DCP, aTCP or aDCP) to the remaining postings. In effect, we apply the 

original algorithm over the index that only includes postings in QVD. This stage is not 

shown in the algorithms for the sake of simplicity. 

 



Algorithm Access-based Document-Centric Pruning with QV (aDCP-QV) 
Input: D, μ, AccessScore[], QVD 
1:  sort d ∈ D in descending order w.r.t. AccessScore[d] 
2:  NumPrunedPostings  0 
3:  while NumPrunedPostings < |D|*μ 
4:       fetch d with the smallest score 
5:       for each term t ∈ d 
6:            if t ∉ QVd 
7:                remove t from d 
8:                NumPrunedPostings  NumPrunedPostings + 1 

Fig. 9. Pseudocode for access-based document-centric pruning with query-views. 

 
Popularity-based Pruning (PP) strategy with Query Views (PP-QV). In this strategy, 

again starting from the terms with the highest gain scores, we first attempt to keep the 

query view of each term in the pruned index. If all postings in QVD are stored in the 

pruned index and there is still some space available (i.e., |QVD| < |I|*μ), then we make 

another pass on terms again in descending order of gain scores (lines 8-11 in Figure 10). 

This second pass aims to keep the full lists of the terms with highest gain scores, instead  

Algorithm Popularity-based Pruning with QV (PP-QV) 
Input: I, μ, popularity[] 
1:  L  sort terms in I the descending order of TermGain(t) = popularity[t]/|It| 
2:  ∀t Pt  0, Qt  0 
3:  NumRemainingPostings  0 
4:  while NumRemainingPostings < |I| * (1-μ) and L is not empty 
5:       extract term t with the highest gain from L 
6:       NumRemainingPostings  NumRemainingPostings + |QVt| 
7:       Qt  1  
8:  reset L as in line (1) 
9:  while NumRemainingPostings < |I| * (1-μ)  
10:     extract term t with the highest gain from L 
11:     NumRemainingPostings  NumRemainingPostings + (|It|- |QVt|)  
12:     Pt  1 
13: for each term t in I      
14:       if Pt = 0 and Qt = 0 
15:            remove It from I 
16:       else if Pt = 0 and Qt = 1 
17:            remove It-QVt from I 
Fig. 10. Pseudocode for popularity-based pruning with query views (PP-QV). 

 
of solely keeping the query views, till the desired size of the pruned index is reached. 

This approach is presented in Figure 10. As in PP (Figure 5), Pt indicates whether the full 

list of term t would be pruned, or not. Qt indicates whether the query view of the term t 

would be pruned or not. QVt denotes all postings <d> in It such that t ∈ QVd. 



As a final remark, in Figures 6 to 10, we show the use of query views in a simplistic 

manner for the purposes of discussion, without considering the actual implementation. 

For instance, for TCP-QV case, it would be more efficient to first create an inverted 

index of the QVD and then process the original index and query view index together; i.e., 

in a merge-join fashion, for each term in the vocabulary. We presume that for all five 

approaches employing query views, the additional cost of accessing an auxiliary data 

structure for QVD (either the actual or inverted data) would be reasonable, given that the 

query terms highly overlap and only a fraction of documents in the collection have high 

access frequency [Garcia et al. 2004]. Furthermore, it is not necessary to use all previous 

query logs, as discussed above [Garcia and Turpin 2006]. That is, the size of these data 

structures would be much smaller when compared to the actual collection; i.e., Web. 

 

5. EXPERIMENTAL EVALUATION 

5.1 Experimental Setup 

Document collection and indexing. For this study, we obtained the list of URLs that are 

categorized at the Open Directory Project (ODP) Web directory (www.dmoz.org). 

Among these links, we successfully downloaded around 2.2 million pages, which take 37 

GBs of disk space in uncompressed HTML format. This ODP dataset constitutes our 

primary document collection for this study. Additionally, we use a second and larger 

collection, namely ClueWeb09-B [Clarke et al. 2010], for a subset of experiments 

involving the best performing pruning strategies. 

We indexed both datasets using the publicly available Zettair IR system 

(www.seg.rmit.edu.au/zettair/). During the indexing, Zettair is executed with the “no 

stemming” option. All stop-words and numbers are included in the index, yielding 

vocabularies of around 20 and 160 million terms for ODP and ClueWeb09-B collections, 

respectively. Once the initial indexes are generated, we used our homemade IR system to 

create the pruned index files and execute the training and test queries over them. The 

resulting index files are document-level, i.e., each posting involves document identifier 

and term frequency fields (adding up to 8 bytes per posting).  
 
Query log normalization. We use a subset of the AOL Query Log 

(http://imdc.datcat.org/collection/1-003M-5) that contains 20 million queries of about 

650K people for a period of 12 weeks. The query terms are normalized by case-folding, 

sorting in the alphabetical order and removing the punctuation and stop-words. We 



consider only those queries, of which all terms appear in the collection vocabularies. This 

restriction is forced to guarantee that the selected queries are sensible for the datasets. 

 
Training and test query sets. From the normalized query log subset, we construct 

training and test sets. Training query sets are used to compute the term popularities as 

well as the access counts and query views for the documents, and they are created from 

the first half (i.e., 6 weeks) of the log. The test sets that are used to evaluate the 

performance for different pruning strategies are constructed from the second half (last 6 

weeks) of the log. During the query processing with both training and test sets, a version 

of BM25 scoring function as described in [Büttcher and Clarke 2006], is used. 

In the training stage, queries are executed in the conjunctive mode and top-k results 

per query are retrieved. To observe the impact of the training set size, we created training 

sets of 10K, 50K, 518K and 1.8M distinct queries that are selected randomly from the 

first half of the log, and obtained top-1000 results per query. To further investigate the 

impact of the result set size, namely, k, we obtained only top-10 results for the latter two 

training sets (i.e., including 518K and 1.8M queries). Thus, we have six different training 

query logs with varying number of queries and results per query. These training sets are 

executed on the ODP dataset. Characteristics of the training sets are provided in Table I. 

 

Table I. Characteristics of the training query sets (wrt. the ODP collection) 

 10K-
top1000 

50K-
top1000 

518K-
top1000 

1.8M-
top1000 

518K-
top10 

1.8M-
top10 

Access % 30% 54% 79% 85% 33% 50% 
QV 
Size (%) 

35MB 
(1%) 

143MB 
(4%) 

647MB 
(20%) 

1,093MB 
(34%) 

53MB 
(2%) 

148MB 
(5%) 

 

In the first row of Table I, we provide the access percentage achieved by each training 

set; i.e., the percentage of documents that appear at least once in a query result. In the 

second row of the table, we report the total size of the query views (|QVD|), which is the 

sum of the number of unique query terms that access to each document. We also provide 

the ratio of |QVD| to the ODP collection size (|D|). Both values increase as the number of 

queries increase, however the increments follow a sub-linear trend. This is due to the 

heavy-tailed distribution of accesses to documents as shown before [Garcia 2007].  

Remarkably, access percentages for 10K-top1000 and 518K-top10 training sets are 

very close, which imply that access counts and query views with similar characteristics 

can be either obtained by using a relatively small query log and larger number of results, 

or using a larger query log but retrieving smaller number of, say only top-10, results. The 



former option can be preferred during an offline computation, whereas the latter can be 

achieved for an online computation. For instance, a search engine can store the top-10 

document identifiers per query (maybe at a dedicated server) on the fly to easily compute 

the query views when required. Note that, these observations are also valid for the 50K-

top1000 vs. 1.8M-top10 sets. In the experiments, we show that these sets also yield 

relatively similar effectiveness figures. 

For the majority of the experiments reported in the next section, we use a test set of 

1000 randomly selected queries from the second half of the AOL log. These queries are 

normalized as discussed above. We keep only those queries that can retrieve at least one 

document from our collections when processed in the conjunctive mode. By definition, 

the test set is temporally disjoint from the training sets. Furthermore, we guarantee that 

train and test sets are query-wise disjoint by removing all queries from the test set that 

also appear in the training sets (after the normalization stage). But, some of the terms in 

the queries in both sets, of course, may overlap. This set is referred to as test-1000 in the 

following sections.  

Furthermore, our test-1000 set includes only singleton queries that appear only once 

in the query log. In this sense, our test set is similar to the miss-queries as described by 

the ResIn architecture [Skobeltsyn et al. 2008]; i.e., those queries that cannot be found in 

the result-cache and should be forwarded to the pruned index. In fact, we observed that 

our test set exhibits the same characteristics of the miss-queries as reported in ResIn (see 

Figure 3 in [Skobeltsyn et al. 2008]). This means that, the algorithms discussed in this 

study are evaluated using a test set of queries that realistically represent the query stream 

sent to a pruned index in a typical SE setup.  
 
Compatibility of the dataset and query sets. As discussed in [Webber and Moffat 

2005], the compatibility of the query log and underlying document collection is a crucial 

issue for the reliability of an experimental framework. Intuitively, we consider that our 

datasets and query log are compatible, since both ODP and ClueWeb datasets include 

general Web pages and AOL log is a general search engine log. We further investigated 

and demonstrated the compatibility of ODP dataset and AOL queries in another study 

[Ozcan et al. 2011]. 
 
Evaluation measure. In this work, we compare the top-k results obtained from the 

original index against the pruned index, where k is 10 (the results for k =2, 100 and 1000 

reveal similar trends and are not reported here to save space). To this end, we employ the 

symmetric difference measure as discussed in [Carmel et al. 2001]. That is, for two top-k 



lists, if the size of their union is y and the size of their symmetric difference is x, 

symmetric difference score s = 1- x/y. The score of 1 means exact overlap, whereas the 

score of 0 implies that two lists are disjoint. The average symmetric difference score is 

computed over the individual scores of 1000 test queries and reported in the following 

experiments.  

Note that, it is also possible to use standard IR metrics (such as P@10 or MAP) for 

evaluating pruned results considering the results obtained from the full index as the 

ground-truth (as in [Garcia 2007]). We observed that both metrics (as computed over top-

10 results) yield exactly the same trends with symmetric difference score measure for 

comparing the pruning algorithms, but absolute scores for traditional metrics are slightly 

higher. In this work, we only report symmetric difference scores, whereas MAP and 

P@10 results are discussed in Appendix 3. 

 
Parameters for the pruning strategies. The pruned index files are obtained at the 

pruning levels ranging from 10% to 90% (with a step value of 10%) by tuning the ε, λ 

and μ parameters in the corresponding algorithms. All index sizes are considered in terms 

of their raw (uncompressed) sizes. For TCP, top-k parameter is set to 10 during pruning.  

 

5.2 Results 

Statistical significance of the results. All results obtained over the ODP collection, 

unless stated otherwise, are tested for statistical significance at 0.05 level. In particular, 

for the results in Tables II-V and Figures 11-12; at each pruning level, the output of 1000 

test queries for a baseline algorithm and its query view based counterpart are compared 

using the paired t-test and Wilcoxon signed rank test. For Tables II and III, all 

improvements greater than 1% are statistically significant. For Tables IV and V, almost 

all improvements (except two cases in Table V) are significant. For the plots in Figures 

11 and 12, there are only a few cases where a query view based strategy yields no 

significant improvements (especially for smaller training sets) and these cases are 

discussed in text as the space permits. Additionally, for the results shown in Tables II-V, 

we made a one-way ANOVA analysis (followed by Tukey’s post hoc test) among the i) 

all baseline strategies, and ii) all query view based strategies, separately. This is because 

we compare the performance of the baseline (or, query view based) algorithms among 

each other to see which one is the most appropriate for certain cases. In the textual 

discussions, we mostly refer to the findings for which differences are found to be 

statistically significant.  



In what follows, we analyze how the query views improve the performance of the 

baseline strategies for disjunctive and conjunctive query processing modes. Besides, we 

also investigate the effects of different training query set sizes on the algorithms that 

make use of a query log. All of the experiments reported in the rest of this section are 

conducted on the ODP collection. 

 
Performance of the query views: disjunctive mode. In Figure 11, we provide the 

average symmetric difference scores for retrieving top-10 results in disjunctive query 

processing mode (please see Appendix 1 for the corresponding results in tabular format). 

In all plots, it is clear that query-view based strategies considerably improve performance 

of the corresponding baseline algorithms. In Figures 11(a) and 11(b), we see that query-

views almost double the effectiveness of the respective baseline algorithms TCP and 

DCP, especially for the higher levels of pruning. It is also seen that the effectiveness of 

TCP-QV and DCP-QV improves proportionally to the training set size; i.e., higher 

performance is obtained for larger training sets. Still, even a training set of 10K queries 

improves performance in a statistically significant manner. 

For the access and term popularity based strategies, to simplify the plots, we only 

provide the performance for training sets of 1.8M queries with top-10 and 1000 results 

(Figures 11(c) to 11(e)). For all three algorithms –namely aTCP, aDCP and PP, the query 

view based strategies outperform their counterparts for these training sets. Interestingly, 

the effectiveness figures of aTCP and aDCP are higher for the training sets using top-10 

results. This means that for those strategies that actually make use of evidences from a 

query log, using a large result set (e.g., 1000) is not beneficial and indeed, may mislead 

the decision mechanism of the algorithms.  
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Fig. 11. Retrieval performance of index pruning strategies on the ODP collection using 

different training sets in disjunctive querying mode: (a) TCP vs. TCP-QV, (b) DCP vs. 

DCP-QV, (c) aTCP vs. aTCP-QV, (d) aDCP vs. aDCP-QV and (e) PP vs. PP-QV. 

 

 



Note that, in Figures 11(a) to 11(d), we also observe that the performance of an 

algorithm trained with 1.8M-top1000 set gets worse than an algorithm trained with the 

same set but top-10 results, especially after 70% pruning level. We explain this 

phenomenon as follows. For the 1.8M-top1000 training set, the size of the query view is 

as large as 34% of the index (see Table I); so up to 70% pruning, we don’t prune any 

postings that are included in the query views. After this point, we start pruning the query 

views using the original logic of the underlying algorithm (as discussed in Section 4), and 

observe a sharp decrease in the effectiveness figures. On the other hand, for top-10 case, 

the query view size is much smaller (i.e., around 5% of the index) and thus we never 

prune the query views. This implies that, a large query view provides benefits when there 

is enough space to fit it in (as in the case of 50% pruning level). Otherwise, it is better to 

obtain a more compact query view initially, say, using top-10 results only; rather than 

constructing a larger query view and pruning it afterwards. Furthermore, while pruning 

the query view, it may be more useful to devise a specific algorithm for this purpose, 

instead of using the original pruning algorithm. For instance, in addition to using the 

appearance of a term in the query view of a document, it is possible to exploit its access 

frequency; i.e., number of times a document is accessed by a query including that 

particular term. Note that, this is different than the access-based pruning discussed 

before. We leave exploring this direction as a future work. 

Finally, in Figure 11(e), we discuss our findings for the PP and PP-QV algorithms. 

For these algorithms, posting lists of all terms that appear in the training queries 

correspond to 60% of the original index. When only these terms are kept in the index, 

i.e., at 40% pruning, the algorithms yield a very high effectiveness score (96%). Thus, the 

actual pruning is effective after this level, and for smaller pruning levels (between 10%-

30%), we simply repeat the value observed at 40%. The repeated values for these pruning 

levels are shown with asterisks in Figures 11(e) and 12(e); and italicized in Tables II-III. 

Another approach could be filling the remaining available space with the lists of the 

randomly selected terms that don’t appear in the training queries. We expect that this 

would only slightly improve the performance, which is already very high at 40% as 

discussed above, and do not take this path in this paper. 

Our experiments reveal that query view also has the potential to improve the PP 

algorithm, which is the most practical approach that can be used for pruning and caching 

at search engines [Skobeltsyn et al. 2008; Baeza-Yates et al. 2007]. For this case, training 

with 1.8M-top1000 set does not yield any significant changes in the effectiveness. The 



gains are more emphasized especially at higher pruning levels (i.e., when more than 70% 

of the index is pruned) and using 1.8M-top10 training set.  

  
Performance of the query views: conjunctive mode. In Figure 12, we demonstrate the 

behavior of the algorithms for the conjunctive processing mode (please see Appendix 1 

for the corresponding results in tabular format). Again, TCP-QV and DCP-QV achieve 

higher scores when larger number of queries and top-1000 results are used during the 

training (Figures 12(a) and 12(b)). As before, for the highest pruning levels (i.e., more 

than 70%), using top-10 results is better than using top-1000 for the same query set. 

Nevertheless, query views improve the performance in all cases. 

For aDCP and aTCP, trends are also similar to disjunctive case; but for their query 

view based counterparts, now using 1.8M-top1000 queries is better than the 1.8M-top10 

set (see Figures 12(c) and 12(d)). For instance, for aDCP-QV algorithm, the training set 

1.8M-top10 does not yield significantly different results (as also seen from the 

overlapping lines in Figure 12(d)). In this case, the improvements with query views are 

obtained when top-1000 results are used during the training.  

 Finally, in Figure 12(e), we demonstrate the performance of PP in comparison to PP-

QV. Again, PP-QV yields significant improvements at very high pruning percentages and 

when 1.8M-top10 training set is employed. 

 
An overall comparison of the pruning algorithms: disjunctive mode. In this part, we 

discuss and compare the performance of different pruning strategies in more detail. In 

Table II, we provide average symmetric difference results of all of the pruning strategies 

for the top-10 results and disjunctive query processing mode (on the ODP collection). For 

those strategies that make use of a query log –namely, aDCP, aTCP, PP and all query 

view based strategies; we employed our largest training set with top-10 results, i.e., 

1.8M-top10 set. This is a realistic choice, because for a real search engine it would be 

practical to store top-10 document identifiers for a large number of queries. Furthermore, 

in above plots (Figure 11 and 12), this training set yields improvements for most of the 

cases. 
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Fig. 12. Retrieval performance of index pruning strategies on the ODP collection using 

different training sets in conjunctive querying mode: (a) TCP vs. TCP-QV, (b) DCP vs. 

DCP-QV, (c) aTCP vs. aTCP-QV, (d) aDCP vs. aDCP-QV, and (e) PP vs. PP-QV. 

 

 



Table II. Avg. symmetric difference scores for top-10 results and disjunctive query 

processing on ODP collection (relative improvements w.r.t. the baseline algorithms are 

shown in the column ∆%; all improvements greater than 1% are statistically significant) 

% TCP DCP aTCP aDCP PP TCP-
QV 

∆% DCP-
QV 

∆% aTCP-
QV 

∆% aDCP-
QV 

∆% PP-
QV 

∆% 

10% 0.97 0.94 0.89 0.95 0.96 0.97 0% 0.95 1% 0.91 2% 0.95 0% 0.96 0% 
20% 0.91 0.86 0.79 0.90 0.96 0.92 1% 0.89 3% 0.84 6% 0.90 0% 0.96 0% 
30% 0.83 0.77 0.69 0.83 0.96 0.85 2% 0.82 6% 0.77 12% 0.84 1% 0.96 0% 
40% 0.74 0.68 0.59 0.76 0.96 0.78 5% 0.74 9% 0.70 19% 0.78 3% 0.96 0% 
50% 0.64 0.58 0.47 0.67 0.93 0.70 9% 0.67 16% 0.63 34% 0.71 6% 0.93 0% 
60% 0.55 0.49 0.38 0.57 0.87 0.62 13% 0.61 24% 0.56 47% 0.63 11% 0.88 1% 
70% 0.47 0.40 0.28 0.47 0.75 0.55 17% 0.54 35% 0.50 79% 0.55 17% 0.78 4% 
80% 0.35 0.31 0.19 0.34 0.59 0.46 31% 0.47 52% 0.43 126% 0.46 35% 0.66 12% 
90% 0.14 0.20 0.09 0.20 0.34 0.40 186% 0.40 100% 0.37 311% 0.38 90% 0.49 44% 
 

In terms of the five baseline algorithms, the findings in this case confirm the earlier 

observations in [Altingovde et al. 2009a; Carmel et al. 2001; Garcia 2007]. The term-

centric adaptation of the access-based approach, aTCP, is the worst among all; and at 

50% pruning, the symmetric difference score drops down to 0.47. On the other hand, our 

document-centric version of the access-based pruning strategy, aDCP, achieves much 

better performance; it is clearly superior to its term-centric counterpart and provides 

comparable results to TCP and DCP for most cases.  

Nevertheless, we observe that term popularity based pruning strategy, PP, is better 

than the other four baseline strategies. This is basically due to the fact that PP uses the 

allocated storage space for the pruned index only for those terms that appear in the 

previous queries (and have more potential to reappear in the future, as we discuss in 

Section 6) whereas the other four strategies consider all terms and/or documents. In 

Section 6, we will also consider hybrid strategies that exploit term popularities.  

Next, we evaluate the performance of the strategies with query views, namely TCP-

QV, DCP-QV, aTCP-QV, aDCP-QV and PP-QV. A brief glance over Table II reveals 

that these approaches are far superior to their counterparts that are not augmented with 

the query views. Remarkably, the order of algorithms is similar in that PP-QV is still the 

best performer and aTCP-QV is the worst. However, the differences among the absolute 

effectiveness figures are now much smaller. Indeed, the percentage improvement 

columns reveal that, query views significantly enhance the performance of the poor 

strategies at all pruning levels (e.g., gains for aTCP range from 2% to as high as 311%). 

Even for those strategies that were relatively more successful before, query views provide 

significant gains, especially at the higher levels of the pruning. For instance, at 90% 

pruning, the symmetric difference score jumps from 0.34 to 0.49 for PP (a relative  



Table III. Avg. symmetric difference scores for top-10 results and conjunctive query 

processing on ODP collection (relative improvements w.r.t. the baseline algorithms are 

shown in the column ∆%; all improvements greater than 1% are statistically significant) 

% TCP DCP aTCP aDCP PP TCP-
QV

∆% DCP-
QV 

∆% aTCP-
QV 

∆% aDCP-
QV 

∆% PP-
QV 

∆% 

10% 0.66 0.80 0.95 0.98 0.94 0.79 20% 0.91 14% 0.95 0% 0.98 0% 0.94 0% 
20% 0.52 0.66 0.88 0.96 0.94 0.66 27% 0.81 23% 0.90 2% 0.96 0% 0.94 0% 
30% 0.41 0.54 0.81 0.92 0.94 0.56 37% 0.71 31% 0.84 4% 0.92 0% 0.94 0% 
40% 0.32 0.43 0.74 0.87 0.94 0.49 53% 0.63 47% 0.78 5% 0.87 0% 0.94 0% 
50% 0.25 0.33 0.65 0.82 0.90 0.43 72% 0.54 64% 0.71 9% 0.82 0% 0.91 1% 
60% 0.19 0.25 0.57 0.75 0.83 0.38 100% 0.47 88% 0.65 14% 0.75 0% 0.84 1% 
70% 0.15 0.17 0.48 0.67 0.66 0.34 127% 0.41 141% 0.57 19% 0.67 0% 0.71 8% 
80% 0.09 0.10 0.38 0.57 0.46 0.29 222% 0.34 240% 0.48 26% 0.57 0% 0.56 22% 
90% 0.04 0.05 0.26 0.43 0.20 0.26 550% 0.27 440% 0.37 42% 0.43 0% 0.35 75% 
 

increase of 44%), and 0.14 to 0.40 for TCP (186%) using query views. In short, query 

views significantly improve the baseline strategies, and carry them around 40-50% 

effectiveness at 90% pruning level, which is a solid success.  

 
An overall comparison of the pruning algorithms: conjunctive mode. In Table III, we 

provide symmetric difference results in the same setup but for conjunctive query 

processing mode (on the ODP collection). Interestingly, conjunctive processing is mostly 

overlooked and has been taken into account in only few works [de Moura et al. 2005; de 

Moura et al. 2008; Skobeltsyn et al. 2008; Ntoulas and Cho 2007], although it is the 

default and probably the most crucial processing mode for SEs. Thus, we first analyse the 

results for the baseline strategies, which has not been discussed in the literature to this 

extent, before moving to query view based strategies. 

Our experiments reveal that for the conjunctive processing mode, TCP is the worst 

strategy. This is an unsurprising result, of which reasons are discussed in an earlier study 

[de Moura et al. 2005]. That is, for a conjunctive query including, say, two terms, TCP 

may have pruned a posting that is at the tail of one term’s list and thus reduce the final 

rank of this posting which is at the top of the other term’s list (see Figure 1 in [de Moura 

et al. 2005]). Furthermore, a TCP-like pruning strategy is also reported to be rather 

discouraging in ResIn framework [Skobeltsyn et al. 2008]. This is attributed to the 

observation that the miss-queries are rather discriminative; i.e., return very few results. 

Recall that our test set also has the same properties as miss-queries, and the average result 

size is found to be only 398 when top-1000 results per test query are retrieved. Indeed, 

we created another test set that includes the queries with the highest number of results in 

our collection and witnessed that TCP’s performance can considerably improve. 



Nevertheless, in a typical setup with random queries, TCP is the worst performing 

algorithm for the conjunctive case. 

What is more surprising for conjunctive query processing case is the performance of 

the access-based strategies: aDCP and aTCP outperform TCP and DCP with a wide 

margin at all pruning levels. This is a new result that has not been reported before in the 

literature. We think that one reason of this great boost in performance may be the 

conjunctive processing of the training queries while computing the access counts. In the 

previous work [Garcia 2007], both training and testing have been conducted in 

disjunctive mode. We anticipate that the training in conjunctive mode more successfully 

distinguishes the documents that can also appear in the intersection of terms in other 

queries. Another remarkable issue is, our document-centric version of the access based 

strategy, aDCP, significantly outperforms its term-centric adaptation. Indeed, aDCP 

achieves a similarity of 0.43 to the original results even when the index is reduced to its 

one tenth (i.e., at 90% pruning level) and outperforms PP. Table III reveals that aDCP 

and PP are the clear winners for the conjunctive query processing case; the former yields 

the best result between 90% to 70% pruning, and the latter yields the best results 

thereafter. The success of aDCP is remarkable, as PP is a very strong competitor. For 

instance, in ResIn framework, their term+document pruning approach (discussed in more 

detail in Section 6.1) is reported to yield no improvement over PP when BM25 is used as 

the ranking function (see Figure 11 in [Skobeltsyn et al. 2008]).  

Turning our attention to the query view based strategies, we again report important 

improvements. This time, the worst performing strategies, TCP and DCP, have most 

benefited from the query views: TCP-QV and DCP-QV obtain enormous gains especially 

at the high pruning levels. The gains with aTCP-QV strategy are less emphasized, though 

reaching up to 42% at 90% pruning. Interestingly, aDCP-QV is found to yield no 

improvements in comparison to aDCP in this case. This has been also noted for Figure 

12(d), where gains are observed only when top-1000 results of the training queries are 

used. In our detailed analysis for this case, we observed that aDCP and aDCP-QV both 

select valuable but different postings and the latter has to sacrifice some of these useful 

postings to open space for the query views; so there happens to be no overall gains. 

Finally, PP-QV also improves the performance of PP; for instance the former is 

relatively 75% better than the latter at 90% pruning level. Still, aDCP-QV (and aDCP) 

yields the best-performance for the highest pruning levels, namely 80% and 90%, 

whereas PP-QV yields the best results at all other cases. 

 



6. COMBINING TERM AND DOCUMENT POPULARITIES WITH QUERY VIEW 

In Section 5, we show that term popularity based algorithm (PP) performs the best at 

most of the pruning levels for both disjunctive and conjunctive processing. Another 

important finding is that especially for the highest pruning levels and conjunctive 

processing; access-based strategies also serve well and have the potential of 

outperforming PP. These imply that combining term popularity and document access 

popularity has the potential of further enhancing the performance.   

To justify our intuition, we first conducted a preliminary experiment (on the ODP 

collection) to show the locality of terms appearing in the queries and top-k documents 

accessed by the queries. For this experiment, we used a test set of 100K queries 

constructed as described in Section 5. For training, we again employed 1.8M-top10 set. 

Using these two sets, we first find the number of test queries that include at least one new 

term, i.e., a term that is not encountered in the training set. In our setup, approximately 

10% of the test queries involve a new term. Recall that our test query set is essentially 

composed of singleton queries, i.e., appears only once in the entire query log. Still, 90% 

of the queries in the test set can be answered by indexing only those terms that are seen in 

the training log. This explains the success of PP as a pruning algorithm. 

Next, we obtain the number of queries that return at least one new document, i.e., a 

document that is never retrieved by the training queries, for top-k results. When k is set to 

10, approximately 13% of the queries retrieve at least one new document. In other words, 

it is possible to answer all remaining queries by only considering the postings of those 

documents that are retrieved in the top-10 results of the training queries. Moreover, for 

top-2 results the new document ratio drops to 4.5%; and for top-1 results only 3% of the 

queries has a new document. That is, indexing only those documents in the top-10 results 

of training queries allows correctly identifying the top result for 97% of the queries in the 

test set. 

This experiment indicates that there is a strong potential in exploiting term and 

document popularities together for improving the pruning strategies. In the literature, 

term popularity based pruning is combined with some document pruning approaches 

(e.g., see [Ntoulas and Cho 2007; Skobeltsyn et al. 2008]); however, we are not aware of 

any work that combine term and document popularities as we propose in this study. In 

what follows, we first define a general framework to combine the PP algorithm with 

other strategies, and then evaluate the performance of these algorithms. 

 
 



Algorithm Popularity Pruning (PP)-AAA 
Input: I, μ, popularity[] 
1:  L  sort terms in I the descending order of TermGain(t) = popularity(t)/|It| 
2:  ∀t Pt  0, AAAt  0 
3:  NumRemainingPostings  0 
4:  while NumRemainingPostings < |I| * (1-μ) and L is not empty 
5:       extract term t with the highest gain from L 
6:       AAAt  1 
7:       NumRemainingPostings  NumRemainingPostings + |IAAA,t| 
8:  reset L as in line (1) 
9:  while NumRemainingPostings < |I| * (1-μ) 
10:      extract term t with the highest gain from L 
11:      Pt  1 
12:      NumRemainingPostings  NumRemainingPostings + (|It|- |IAAA,t|) 
13: for each term t in I      
14:       if Pt = 0 and AAAt = 0 
15:            remove It from I 
16:       else if Pt = 0 and AAAt = 1 
17:            remove It-IAAA,t   from I 

Fig. 13. Pseudocode for combining PP approach with the baseline pruning strategies. 

 
6.1 Combined static pruning algorithms with the query views 

First, in Figure 13, we outline a general algorithm that combines PP strategy with the 

other baseline strategies as discussed in this work. We denote a combined algorithm as 

PP-AAA where AAA can represent either one of the algorithms TCP, DCP, aTCP, or 

aDCP. In the combined strategy, as in PP strategy, the algorithm proceeds in descending 

order of the term gain scores. However, in the first pass over the terms (lines 3-6), instead 

of storing the full lists in the pruned index, the algorithm stores the pruned lists (as 

generated by the AAA algorithm). If the pruned lists of all of the terms are stored and 

there is still space (i.e., the size of the pruned index is smaller than the desired size), then 

the algorithm starts a second pass over term list, again in descending score order. This 

time, for each term it replaces the pruned list of a term with its full list, until the required 

file size is reached. When the required pruning level is very high (say, 90%), this strategy 

allows storing shorter lists (i.e., only pruned lists) and keeping a higher number of terms 

in the index. But when there is more space, the algorithm can prefer to store more 

information, i.e., the full lists, of the terms with the highest gain scores, while still 

keeping the query view of the remaining terms. Using this combination approach, four 

different algorithms –namely, PP-TCP, PP-DCP, PP-aTCP and PP-aDCP –can be 

generated, as discussed below.  

In the literature, PP-TCP is applied in a slightly different sense: for instance, in the 

work of Skobeltsyn et al. [2008], the so-called term+document pruning approach keeps a 



fixed number (denoted as PLLmax) of the postings in the index for the terms with the 

highest gain scores. This has some difficulties in practice: a small PLLmax value would 

practically achieve no pruning whereas a high value may be too crude for smaller lists. 

Furthermore; PLLmax is not correlated to the term gain score: a fixed PLLmax value can be 

pruning half of the postings in, say, the lists of terms with the highest scores while 

keeping all of the posting for less scoring terms. In our scheme, we first apply a pruning 

algorithm AAA (at a certain pruning level) to all terms, and then keep the pruned lists for 

the terms that yield highest gains. The second stage of the algorithm guarantees that, 

when there is more space available, it is used to favor the highest scoring terms first.  

The work of Buttcher and Clarke [2006] is also similar to PP-DCP, in that pruning is 

only applied for certain terms. However, in their study, they prune the most frequent 

terms in the index, i.e., those terms with the longest posting lists. In PP-DCP, term 

popularity is computed from a previous query log and used to compute the term gain 

score. As another difference, their work assumes that while the pruned lists are kept in 

the main memory, the full posting lists of the remaining terms are still kept on disk. Here, 

we assume that if a term’s list could not be stored in the pruned index, then it is no more 

available for querying. Nevertheless, we can state that PP-TCP and PP-DCP are similar 

to the algorithms discussed in the literature. On the other hand, PP-aTCP and PP-aDCP 

combine term and document access popularity, and to our knowledge, they are proposed 

here for the first time in the literature.  

Finally, we also propose combining term popularity with the query view augmented 

strategies. We denote the family of these strategies as PP-AAA-QV (outlined in Figure 

14). This is similar to PP-AAA, but in the first pass over the terms, we only attempt to 

store the postings in the query views. If there is still space in the pruned index, then we 

store the pruned list of the term, which is obtained using some pruning algorithm AAA-

QV. In this algorithm, we never store the full list of a term (unless this term happens to 

belong to the query views of all documents in its posting list; i.e., ∀d ∈ It, t ∈ QVd). 

In Figures 13 and 14, for the sake of presentation, we assume that the pruned posting 

lists (i.e., IAAA,t or IAAA-QV,t) are readily available. In an actual implementation, these can be 

obtained on the fly, depending on the pruning algorithms employed.  

 
 
 
 
 
 
 



Algorithm Popularity Pruning (PP)-AAA-QV 
Input: I, μ, popularity[] 
1:  L  sort terms in I the descending order of TermGain(t)) = popularity(t)/|It| 
2:  ∀t Qt  0, AAA-QVt  0 
3:  NumRemainingPostings  0 
4:  while NumRemainingPostings < |I| * (1-μ) and L is not empty 
5:       extract term t with the highest gain from L 
6:       Qt  1  
7:       NumRemainingPostings  NumRemainingPostings +|QVt| 
8:  reset L as in line (1) 
9:  while NumRemainingPostings < |I| * (1-μ) 
10:     extract term t with the highest gain from L 
11:     AAA-QVt  1 
12:     NumRemainingPostings  NumRemainingPostings + (|IAAA-QV,t|- |QVt|) 
13: for each term t in I      
14:       if Qt = 0 and AAA-QVt = 0 
15:            remove It from I 
16:       else if Qt = 1 and AAA-QVt = 1 
17:            remove It-IAAA-QV,t   from I 
18:       else if Qt = 1 and AAA-QVt = 0 
19:            remove It-QVt   from I 

Fig. 14. Pseudocode for combining PP approach with the QV based pruning strategies. 

 

6.2 Experimental Evaluation 

Performance of the combined algorithms: disjunctive mode. In Table IV, we present 

the performance of combined pruning algorithms for disjunctive query processing on the 

ODP collection. The effectiveness figures for PP and PP-QV are copied from Table II to 

ease the comparisons. For the experiments, we again used 1.8M-top10 training set, as in 

Section 5. 

As mentioned in the above, the combined algorithms employ a pruning algorithm, 

denoted as AAA or AAA-QV, at a certain pruning level. For all cases, we experimented 

with 10%, 30% and 50% levels; and set the pruning level as 50% as it yields the best 

performance for the combined algorithms at high pruning levels. Note that, the total size 

of the pruned posting lists (generated by AAA or AAA-QV) for the terms that appear in 

the training set corresponds to at most 40% of the full index. So, we report values at 

pruning levels equal to or greater than 60%. We believe that, these high pruning levels 

are the cases that demand for improvements utmost; as at the moderate pruning levels it 

is actually possible to obtain more than 90% effectiveness. 

We can summarize the findings drawn from Table IV as follows: First of all, when we 

compare the baseline algorithms, we see that PP-aTCP is worse than PP, whereas the 

remaining algorithms, PP-TCP, PP-DCP and PP-aDCP can outperform PP at high 

pruning levels.  For instance, all latter strategies are significantly better (based on the  



 

Table IV. Avg. symmetric difference scores for top-10 results and disjunctive query 

processing on the ODP collection (all differences between PP-AAA and PP-AAA-QV 

algorithms are statistically significant; relative improvements are shown in parentheses) 

% PP PP-QV PP-
TCP

PP-TCP-
QV 

PP-
DCP 

PP-DCP-
QV 

PP-
aTCP

PP-aTCP-
QV 

PP-
aDCP 

PP-aDCP-
QV 

60% 0.87 0.88 (1%) 0.73 0.79 (8%) 0.63 0.73 (16%) 0.47 0.65 (38%) 0.70 0.74 (6%) 
70% 0.75 0.78 (4%) 0.73 0.79 (8%) 0.63 0.73 (16%) 0.47 0.65 (38%) 0.69 0.73 (6%) 
80% 0.59 0.66 (12%) 0.67 0.72 (7%) 0.59 0.68 (15%) 0.44 0.61 (39%) 0.60 0.66 (10%) 
90% 0.34 0.49 (44%) 0.47 0.54 (15%) 0.41 0.52 (27%) 0.32 0.49 (53%) 0.40 0.50 (25%) 
 

ANOVA results) than PP at 90% pruning. For all strategies, embedding query views 

cause significant improvements. Among the algorithms with query views, PP-TCP-QV 

again yields the best results at pruning levels between 70% and 90%.   

In short, for the disjunctive case, if the query views are not employed, PP-TCP 

provides the best performance at high pruning levels, namely at 80-90% pruning, while 

PP-DCP and PP-aDCP can also outperform PP at these level. When query views based 

algorithms are used, the relative order of the algorithms remain the same; but the gaps 

between their performances are reduced as query views provide the highest and lowest 

improvements for PP and PP-TCP, respectively. These results may be expected, as 

access-based strategies are more competitive especially for the conjunctive case. In what 

follows, we analyse the latter case and show that it is possible to obtain higher 

effectiveness by combining term and document access popularity.  

 
Performance of the combined algorithms: conjunctive mode. In Table V, we compare 

the effectiveness of the combined pruning strategies for conjunctive query processing on 

the ODP collection. A comparison among the baseline algorithms reveals that PP-TCP 

and PP-DCP are both worse than PP, whereas PP-aTCP (at 80% and 90% levels) and PP-

aDCP (at 70%-90%) outperform PP (all differences are significant based on ANOVA). 

For instance, PP achieves a symmetric difference score of only 0.20 at 90% pruning 

level, whereas both PP-aTCP and PP-aDCP yield 0.32, indicating a relative improvement 

of 60%. As another important result, we see that all algorithms are considerably 

improved by using the query views. In the conjunctive case, the approaches that most and 

least benefit from the query views are PP-DCP-QV and PP-aDCP-QV, respectively. The 

gain for the PP-DCP-QV is almost 127% at the 90% pruning level. Even PP-aDCP-QV 

experiences a relative improvement of 22% at that level. 

 



Table V. Avg. symmetric difference scores for top-10 results and conjunctive query 

processing on the ODP (all differences between PP-AAA and PP-AAA-QV algorithms –

except the cases marked with a (*), are stat. significant; improvements are in parentheses) 

% PP PP-QV PP-
TCP

PP- 
TCP-QV 

PP-
DCP 

PP-DCP-
QV 

PP-
aTCP

PP-aTCP-
QV 

PP-
aDCP 

PP-aDCP-
QV 

60% 0.83 0.84 (1%) 0.28 0.46 (64%) 0.30 0.51 (70%) 0.62 0.69 (11%) 0.79 0.79* 
70% 0.66 0.71 (8%) 0.28 0.46 (64%) 0.30 0.51 (70%) 0.62 0.69 (11%) 0.77 0.77* 
80% 0.46 0.56 (22%) 0.25 0.42 (68%) 0.26 0.47 (81%) 0.55 0.62 (13%) 0.62 0.64 (3%) 
90% 0.20 0.35 (75%) 0.14 0.31 (121%) 0.15 0.34 (127%) 0.32 0.40 (25%) 0.32 0.39 (22%) 

 
An overall consideration of the results in Table V demonstrates that, especially at the 

very high pruning levels, between 70%-90%, combining term and document popularities 

pays off, and indeed augmenting these strategies with query views further improves the 

effectiveness. At 90% pruning level, PP-aDCP-QV yields an effectiveness score of 0.39, 

almost twice as better than PP, which is a very competitive baseline as shown in the 

recent works. For smaller pruning levels (i.e., less than 70%), PP is still the best 

performer and there is not much gain in coupling it with the query view or other pruning 

strategies.  

 
Performance of the combined algorithms: different test sets. We conducted additional 

experiments involving a set of 100K random queries that is constructed as described in 

Section 5.1. Due to time and resource limitations, we experimented with only those cases 

reported in Table V, i.e., the most promising results for conjunctive processing. We 

observed almost the same effectiveness figures and trends in every aspect; i.e., findings 

on the test-1000 set are also confirmed by the results obtained for the large test set. 

Moreover, we also investigated whether test sets that correspond to different time 

periods (i.e., especially to time periods that have larger temporal distance to submission 

times of training queries) yield different results; and again, observed no meaningful 

difference. Please see Appendix 2 for the details. 

 

Performance of the combined algorithms: ClueWeb09-B collection. Given that the 

combined algorithms with query views constitute the best-performing family of static 

pruning strategies proposed in this study, we further investigate their performance on a 

larger collection, namely, ClueWeb09-B. In particular, we repeated all experiments 

reported in Tables IV and V. As in the ODP collection case, we again set pruning level to 

50% for AAA and AAA-QV algorithms used in the combined experiments. A minor 

distinction from the previous case is in terms of the training set. While we employ the 

training set of 1.8M queries with top-10 results for the evaluation on the ODP collection,  



Table VI. Avg. symmetric difference scores for top-10 results and disjunctive query 

processing on ClueWeb09-B (relative improvements by QVs are shown in parentheses) 

% PP PP-QV PP-
TCP

PP-TCP-
QV 

PP-
DCP 

PP-DCP-
QV 

PP-
aTCP

PP-aTCP-
QV 

PP-
aDCP 

PP-aDCP-
QV 

60% 0.76 0.79 (4%) 0.76 0.80 (5%) 0.68 0.68 (0%) 0.62 0.69 (11%) 0.75 0.76 (1%) 
70% 0.63 0.69 (10%) 0.74 0.78 (5%) 0.66 0.66 (0%) 0.61 0.68 (11%) 0.73 0.74 (1%) 
80% 0.46 0.56 (22%) 0.62 0.67 (8%) 0.54 0.56 (4%) 0.52 0.60 (15%) 0.60 0.64 (7%) 
90% 0.23 0.40 (74%) 0.39 0.49 (26%) 0.32 0.41 (28%) 0.33 0.45 (36%) 0.35 0.46 (31%) 

 
Table VII. Avg. symmetric difference scores for top-10 results and conjunctive query 

processing on ClueWeb09-B (relative improvements by QVs are shown in parentheses) 

% PP PP-QV PP-
TCP

PP-TCP-
QV 

PP-
DCP 

PP-DCP-
QV 

PP-
aTCP

PP-aTCP-
QV 

PP-
aDCP 

PP-aDCP-
QV 

60% 0.73 0.76 (4%) 0.61 0.67 (10%) 0.54 0.54 (0%) 0.63 0.69 (10%) 0.76 0.76 (0%) 
70% 0.58 0.65 (12%) 0.59 0.65 (10%) 0.52 0.52 (0%) 0.62 0.67 (8%) 0.73 0.73 (0%) 
80% 0.39 0.50 (28%) 0.48 0.55 (15%) 0.41 0.42 (2%) 0.51 0.57 (12%) 0.56 0.61 (9%) 
90% 0.16 0.32 (100%) 0.24 0.38 (58%) 0.21 0.28 (33%) 0.28 0.39 (39%) 0.28 0.40 (43%) 
 

here we prefer to use top-100 results for the same query set. This is because ClueWeb09-

B collection is much larger than the ODP and 1.8M-top10 training set yields a very small 

query view with respect to the original index size. 

In Tables VI and VII, we present the performance of combined pruning algorithms for 

disjunctive and conjunctive query processing semantics, respectively. The tables reveal 

that, the absolute scores are lower than those obtained for the ODP collection and there 

are slight differences among the relative order of algorithms. Most remarkably, the 

performance of PP is inferior to PP-AAA algorithms for pruning levels greater than 60% 

for both disjunctive and conjunctive processing. This might be due to storing full lists for 

popular terms, which might also include several redundant postings in case of a very 

large collection, whereas all PP-AAA algorithms first apply a pruning of 50% using the 

corresponding AAA algorithm. Nevertheless, a glance on these tables shows that using 

query views still improves all algorithms in almost all cases. Similar to previous findings 

in the ODP case, PP-TCP-QV and PP-aDCP-QV yield the best results for disjunctive and 

conjunctive semantics, respectively. We also provide results that exhibit similar trends 

using a standard evaluation metric, namely MAP, in Appendix 3. 

Additionally, for 50 queries with relevance judgments (used in the TREC 2009 Web 

Track [Clark et al. 2010]), we obtained stat mean nDCG (over top-1000 results) as well 

as traditional MAP (over top-10 results) and P@10 scores for the cases reported in the 

Tables VI and VII. We verified that our key finding still holds, i.e., combining PP with 

other strategies and then with query views significantly improve the performance 

especially at high pruning levels (see Appendix 4 for the details).  



Table VIII. Average percentage of data fetched from disk during query processing 

% PP PP-
QV 

PP-
TCP 

PP-TCP-
QV 

PP-
DCP 

PP-
DCP-QV

PP-
aTCP

PP-aTCP-
QV 

PP-
aDCP 

PP-
aDCP-QV 

60% 88.5% 88.5% 63.9% 65.8% 46.3% 45.7% 61.9% 63.8% 63.8% 63.1% 
70% 77.3% 77.3% 63.3% 65.1% 45.8% 45.3% 61.3% 63.1% 63.1% 62.2% 
80% 63.3% 63.3% 57.0% 58.6% 41.1% 41.1% 55.3% 56.8% 56.8% 54.7% 
90% 44.1% 44.1% 40.7% 42.0% 29.2% 30.3% 39.4% 40.8% 41.0% 39.5% 

 

We also investigate the query processing efficiency on the pruned index files 

produced by the combined pruning algorithms. As disk access costs usually dominate the 

query processing cost, for each pruning strategy, we provide the average percentage of 

data transferred from disk (in comparison to the full index) during query processing on 

the ClueWeb09-B dataset. Note that, all data transfer costs are based on the compressed 

posting list sizes, i.e.; both document-id gaps and term frequency values in the postings 

are compressed using Elias- -γ encoding scheme. We report the results in Table VIII. 

Table VIII reveals several interesting aspect. First of all, the results show that while 

static index pruning significantly reduces the storage space for index files, its benefits in 

terms of disk transfer costs are more conservative as the most popular query terms can be 

pruned only moderately. For instance, PP algorithm (by definition) stores the full lists of 

selected terms; thus, in terms of data transfer from disk, it yields the minimum gain: at 

60% pruning level, the amount of data transferred is 88.5% of the data that would be 

transferred from the full index while processing test-1000 set. All PP-AAA algorithms 

incur disk transfer costs less than PP, usually ranging from 60% to 40% of those of the 

full index for the pruning levels from 60% to 90%, respectively. We see that PP-DCP has 

remarkably lower disk costs than other PP-AAA approaches, which implies that it has 

pruned the most popular query terms harshly. This also explains the inferior performance 

of DCP and DCP-QV algorithms especially in Table VII. The other three approaches, PP-

TCP, PP-aTCP and PP-aDCP, incur similar data transfer costs that are all lower than that 

of PP at a given pruning level.  From our perspective, a positive finding is that PP-aDCP, 

which is superior to other variants and PP in terms of effectiveness, also incurs 

comparable costs to PP-TCP and PP-aTCP. This means that PP-aDCP embodies a very 

effective decision mechanism for choosing the most valuable postings and eliminating all 

others.  

Another crucial finding is that while augmenting PP-AAA algorithms with query 

views significantly improve their effectiveness, the impact on the data transfer costs is 

negligible. For all results in Table VIII, we computed the relative difference in the 

amount of transferred data between corresponding PP-AAA and PP-AAA-QV algorithms  



Table IX. Average percentage of postings accessed during query processing. 
 

% PP PP-
QV 

PP-
TCP

PP-TCP-
QV 

PP-
DCP 

PP-DCP-
QV 

PP-
aTCP

PP-
aTCP-QV

PP-
aDCP 

PP-aDCP-
QV 

60% 86.8% 86.7% 49.2% 51.0% 27.4% 26.9% 49.2% 51.0% 48.9% 49.2% 
70% 74.8% 74.8% 48.6% 50.4% 27.1% 26.6% 48.6% 50.4% 48.1% 48.4% 
80% 60.6% 60.5% 43.4% 44.9% 24.4% 24.2% 43.4% 44.9% 42.1% 42.1% 
90% 42.3% 42.3% 30.3% 31.1% 17.4% 17.6% 30.3% 31.1% 29.3% 29.5% 

 

and observed that the change is rather negligible (i.e., between -3.5% to +3.5%). That is, 

query views increased the amount of data transferred in some cases (e.g., compare PP-

TCP and PP-TCP-QV columns in Table VIII) whereas they reduced the transfer costs in 

some other cases (e.g., for PP-aDCP-QV). Remarkably, the best performing algorithm for 

more common conjunctive query semantics, namely, PP-aDCP-QV has even lower disk 

transfer costs than PP-aDCP.  

In a separate experiment, we also investigate the average percentage of the number of 

postings accessed during query processing to represent in-memory query processing 

costs. Note that, we don’t take into account the query processing semantics or other 

dynamic pruning techniques and assumed that all postings of the query terms are 

accessed. While the actual number of scored postings may vary due to these latter issues, 

we believe that number of postings is still a reasonable approximation for comparing the 

efficiency of corresponding PP-AAA and PP-AAA-QV algorithms, as both would benefit 

from other optimizations (such as dynamic pruning) in similar ways, in practice. This 

experiment again shows that possible increments in the number of postings that are due to 

incorporating query views into PP-AAA pruning strategies are minor, e.g., PP-aDCP-QV 

causes a relative increase of at most 0.8% in the number of accessed postings with respect 

to PP-aDCP (at 90% pruning level). Results of this experiment are reported in Table IX. 

 

7. CONCLUSIONS AND FUTURE WORK 

In this study, we first propose query view based strategies for static pruning to improve 

the top-ranked result quality. We incorporate query views into a number of strategies that 

exist in the literature and/or adapted by us. Additionally, we propose new pruning 

strategies that combine the notions of term and document access popularity, and then 

couple them again with the query views. We summarize our key findings as follows: 

• Using query views significantly improves almost all of the baseline pruning 

strategies for both disjunctive and conjunctive processing. For most cases, gains can 

be obtained by using a training set constructed by using only top-10 results for the 



queries in the set. Such a training set can be simply formed during actual query 

processing of a SE.  

• Regarding the training query set sizes, we draw the following conclusion to guide 

practitioners. Suppose that a certain level of performance is observed on some 

reference collection C1 using query view based pruning algorithms and a training set 

Q1. To obtain the same level of performance on another collection C2, it is necessary 

to use a training query set Q2 that would yield a query view for C2 whose ratio to 

C2’s full index is at least as large as the ratio of C1’s query view size to its own full 

index size. Note that, in such a case, both training query sets to be employed for 

creating query views on collections C1 and C2 should better use the same number of 

top-k results.  

• Combining PP with the other strategies further improve performance. In terms of the 

combination of PP with the other four baseline strategies (i.e., PP-AAA algorithms), 

we see that different combinations can outperform PP at different cases. For 

disjunctive query processing, PP-TCP and PP-aDCP outperform PP at high pruning 

levels. For conjunctive case, combination of term and document access popularity 

pays off: PP-aTCP and PP-aDCP are superior to PP for the highest pruning levels. 

• Query views further enhance the performance of the combined approaches. For 

disjunctive processing, PP-QV performs very well, whereas PP-TCP-QV and PP-

aDCP-QV yield comparable or better performance. For conjunctive case, PP-aDCP-

QV again produces the highest effectiveness figures. 

 
Our work presented in this paper covers several aspects of static index pruning. Still, 

there are a number of issues that cannot be considered within the scope of a single work. 

First, our pruning strategies aim to improve the overlap in top-ranked results obtained 

from the pruned indexes and the full index to the greatest extent possible. An alternative 

goal in this setup could be providing exactly the same top-ranked results for as many as 

queries possible, as in [Ntoulas and Cho 2007], which is not explored in this study. 

Second, the impacts of the alternative ranking functions that exploit term proximity 

models or query-independent features are not taken into account. These issues are left as 

future research directions. 

Finally, static pruning techniques in the literature usually overlook the dynamicity of 

the underlying index. However, in practice, Web pages change frequently; enforcing the 

update of the index that is built on top of them. In the literature, three different methods 

(and their variants) for index update are discussed, namely, re-build, re-merge and in-



place update (see [Zobel and Moffat 2006] for a survey). The simplest strategy is 

periodically re-building the index. In this case, the pruned index (or indexes) can be 

obtained at the same time. Re-merge technique grows one or more delta index files to be 

merged to the main index, whereas the in-place update technique leaves some free space 

at the end of each list for the new postings. For these latter approaches, it is not clear how 

to update the pruned index or when to regenerate it. We also leave investigating the 

answers for these questions as a future work. 
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APPENDIX 1. EXPERIMENTAL RESULTS FOR DIFFERENT TRAINING SETS 

For the astute reader, here we provide detailed results corresponding to Figures 11 and 12 

for all six training sets. Note that, each table is in the flavor of Tables II and III given in 

Section 5.2; i.e., the first six tables (Tables A1.1 to A1.6) provide the average symmetric 

difference scores for the six training sets given in Table I and disjunctive query 

processing semantics; and the second six tables (Tables A1.7 to A1.12) provide results 

for conjunctive query processing semantics. For the smallest two training sets (10K and 

50K), we haven’t obtained the results with PP and PP-QV, as they were not promising.  

Finally note that, for some cases below, it is seen that a particular algorithm 

(especially for our query view based versions) performs better than the 1.8M-top10 case 

that we chose to present in detail in the previous sections. For instance, TCP-QV 

performs better for 1.8M-top1000 training set at low pruning levels; a point which is 

more easily understandable from the Figures 11(a)  and 11(b).  Nevertheless, we 

preferred to present 1.8M top 10 results, as it is the largest query set and it is more 

practical to obtain/store top-10 results in a real system (as they are already generated 

during the typical service of a search engine). 

 

Table A1.1. Avg. symmetric difference scores for top-10 results and disjunctive query 
processing using 1.8M-top10 training set. (This corresponds to Table II above and 

repeated here to ease comparisons). 
 
% TCP DCP aTCP aDCP PP TCP-

QV 
∆% DCP-

QV 
∆% aTCP-

QV 
∆% aDCP-

QV 
∆% PP-

QV 
∆% 

10% 0.97 0.94 0.89 0.95 0.96 0.97 0% 0.95 1% 0.91 2% 0.95 0% 0.96 0% 
20% 0.91 0.86 0.79 0.90 0.96 0.92 1% 0.89 3% 0.84 6% 0.90 0% 0.96 0% 
30% 0.83 0.77 0.69 0.83 0.96 0.85 2% 0.82 6% 0.77 12% 0.84 1% 0.96 0% 
40% 0.74 0.68 0.59 0.76 0.96 0.78 5% 0.74 9% 0.70 19% 0.78 3% 0.96 0% 
50% 0.64 0.58 0.47 0.67 0.93 0.70 9% 0.67 16% 0.63 34% 0.71 6% 0.93 0% 
60% 0.55 0.49 0.38 0.57 0.87 0.62 13% 0.61 24% 0.56 47% 0.63 11% 0.88 1% 
70% 0.47 0.40 0.28 0.47 0.75 0.55 17% 0.54 35% 0.50 79% 0.55 17% 0.78 4% 
80% 0.35 0.31 0.19 0.34 0.59 0.46 31% 0.47 52% 0.43 126% 0.46 35% 0.66 12% 
90% 0.14 0.20 0.09 0.20 0.34 0.40 186% 0.40 100% 0.37 311% 0.38 90% 0.49 44% 
 
 
 
 
 
 
 
 
 
 
 
 



Table A1.2. Avg. symmetric difference scores for top-10 results and disjunctive query 
processing using 1.8M-top1000 training set. 

 
% TCP DCP aTCP aDCP PP TCP-

QV 
∆% DCP-

QV 
∆% aTCP-

QV 
∆% aDCP-

QV 
∆% PP-

QV 
∆% 

10% 0.97 0.94 0.84 0.94 0.96 0.98 1% 0.98 4% 0.93 11% 0.96 2% 0.96 0% 
20% 0.91 0.86 0.68 0.87 0.96 0.95 4% 0.95 10% 0.88 29% 0.91 5% 0.96 0% 
30% 0.83 0.77 0.54 0.77 0.96 0.91 10% 0.93 21% 0.84 56% 0.86 12% 0.96 0% 
40% 0.74 0.68 0.42 0.66 0.96 0.86 16% 0.89 31% 0.8 90% 0.81 23% 0.96 0% 
50% 0.64 0.58 0.31 0.54 0.93 0.82 28% 0.84 45% 0.76 145% 0.77 43% 0.94 1% 
60% 0.55 0.49 0.22 0.41 0.87 0.79 44% 0.79 61% 0.74 236% 0.74 80% 0.87 -1% 
70% 0.47 0.40 0.14 0.3 0.75 0.71 51% 0.66 65% 0.62 343% 0.66 120% 0.74 -3% 
80% 0.35 0.31 0.08 0.19 0.59 0.62 77% 0.48 55% 0.32 300% 0.39 105% 0.58 0% 
90% 0.14 0.20 0.03 0.08 0.34 0.44 214% 0.31 55% 0.12 300% 0.16 100% 0.34 1% 

 
 

Table A1.3. Avg. symmetric difference scores for top-10 results and disjunctive query 
processing using 518K-top10 training set. 

 
% TCP DCP aTCP aDCP PP TCP-

QV 
∆% DCP-

QV 
∆% aTCP-

QV 
∆% aDCP-

QV 
∆% PP-

QV 
∆% 

10% 0.97 0.94 0.88 0.92 0.90 0.97 0% 0.94 0% 0.88 0% 0.92 0% 0.90 0% 
20% 0.91 0.86 0.78 0.86 0.90 0.92 1% 0.88 2% 0.79 1% 0.86 0% 0.90 0% 
30% 0.83 0.77 0.67 0.8 0.90 0.84 1% 0.79 3% 0.7 4% 0.8 0% 0.90 0% 
40% 0.74 0.68 0.57 0.74 0.90 0.76 3% 0.71 4% 0.62 9% 0.74 0% 0.90 0% 
50% 0.64 0.58 0.46 0.65 0.89 0.67 5% 0.63 9% 0.54 17% 0.66 2% 0.89 0% 
60% 0.55 0.49 0.37 0.56 0.83 0.59 7% 0.56 14% 0.46 24% 0.58 4% 0.84 1% 
70% 0.47 0.4 0.27 0.45 0.71 0.51 9% 0.48 20% 0.39 44% 0.48 7% 0.73 3% 
80% 0.35 0.31 0.18 0.33 0.56 0.40 14% 0.40 29% 0.32 78% 0.38 15% 0.59 5% 
90% 0.14 0.20 0.09 0.19 0.32 0.29 107% 0.32 60% 0.25 178% 0.28 47% 0.40 25% 

 
 

Table A1.4. Avg. symmetric difference scores for top-10 results and disjunctive query 
processing using 518K-top1000 training set. 

 
% TCP DCP aTCP aDCP PP TCP-

QV 
∆% DCP-

QV 
∆% aTCP-

QV 
∆% aDCP-

QV 
∆% PP-

QV 
∆% 

10% 0.97 0.94 0.84 0.94 0.90 0.97 0% 0.96 2% 0.9 7% 0.95 1% 0.90 0% 
20% 0.91 0.86 0.69 0.87 0.90 0.93 2% 0.92 7% 0.81 17% 0.88 1% 0.90 0% 
30% 0.83 0.77 0.54 0.77 0.90 0.87 5% 0.87 13% 0.74 37% 0.8 4% 0.90 0% 
40% 0.74 0.68 0.42 0.66 0.90 0.8 8% 0.82 21% 0.67 60% 0.72 9% 0.90 0% 
50% 0.64 0.58 0.31 0.54 0.89 0.74 16% 0.77 33% 0.6 94% 0.64 19% 0.89 0% 
60% 0.55 0.49 0.22 0.41 0.83 0.68 24% 0.71 45% 0.55 150% 0.56 37% 0.84 1% 
70% 0.47 0.4 0.14 0.29 0.71 0.59 26% 0.62 55% 0.5 257% 0.5 72% 0.72 1% 
80% 0.35 0.31 0.08 0.19 0.56 0.45 29% 0.48 55% 0.46 475% 0.46 142% 0.51 -9% 
90% 0.14 0.20 0.03 0.08 0.32 0.39 179% 0.30 50% 0.18 500% 0.21 163% 0.33 3% 

 
 
 
 
 
 
 



Table A1.5. Avg. symmetric difference scores for top-10 results and disjunctive query 
processing using 50K-top1000 training set. 

 
% TCP DCP aTCP aDCP TCP-

QV 
∆% DCP-

QV 
∆% aTCP-

QV 
∆% aDCP-

QV 
∆% 

10% 0.97 0.94 0.83 0.92 0.97 0% 0.95 1% 0.84 1% 0.92 0% 
20% 0.91 0.86 0.66 0.84 0.92 1% 0.88 2% 0.7 6% 0.84 0% 
30% 0.83 0.77 0.53 0.74 0.85 2% 0.81 5% 0.57 8% 0.74 0% 
40% 0.74 0.68 0.42 0.62 0.76 3% 0.72 6% 0.47 12% 0.62 0% 
50% 0.64 0.58 0.3 0.51 0.67 5% 0.64 10% 0.37 23% 0.51 0% 
60% 0.55 0.49 0.22 0.4 0.58 5% 0.56 14% 0.29 32% 0.41 2% 
70% 0.47 0.4 0.14 0.29 0.5 6% 0.48 20% 0.22 57% 0.3 3% 
80% 0.35 0.31 0.08 0.17 0.37 6% 0.38 23% 0.16 100% 0.20 18% 
90% 0.14 0.20 0.03 0.07 0.24 71% 0.26 30% 0.11 267% 0.11 57% 

 
 

Table A1.6. Avg. symmetric difference scores for top-10 results and disjunctive query 
processing using 10K-top1000 training set. 

 
% TCP DCP aTCP aDCP TCP-

QV 
∆% DCP-

QV 
∆% aTCP-

QV 
∆% aDCP-

QV 
∆% 

10% 0.97 0.94 0.8 0.87 0.97 0% 0.94 0% 0.8 0% 0.87 0% 
20% 0.91 0.86 0.64 0.77 0.91 0% 0.87 1% 0.65 2% 0.77 0% 
30% 0.83 0.77 0.51 0.68 0.83 0% 0.78 1% 0.52 2% 0.68 0% 
40% 0.74 0.68 0.4 0.6 0.74 0% 0.69 1% 0.41 2% 0.6 0% 
50% 0.64 0.58 0.29 0.47 0.65 2% 0.6 3% 0.31 7% 0.47 0% 
60% 0.55 0.49 0.2 0.37 0.56 2% 0.51 4% 0.23 15% 0.37 0% 
70% 0.47 0.4 0.13 0.26 0.48 2% 0.43 7% 0.16 23% 0.26 0% 
80% 0.35 0.31 0.07 0.16 0.36 3% 0.33 6% 0.10 43% 0.16 0% 
90% 0.14 0.20 0.03 0.07 0.17 21% 0.23 15% 0.05 67% 0.07 0% 

 
 

Table A1.7. Avg. symmetric difference scores for top-10 results and conjunctive query 
processing using 1.8M-top10 training set. (This corresponds to Table III above and 

repeated here to ease comparisons). 
 
% TCP DCP aTCP aDCP PP TCP-

QV 
∆% DCP-

QV 
∆% aTCP-

QV 
∆% aDCP- 

QV 
∆% PP-

QV 
∆% 

10% 0.66 0.80 0.95 0.98 0.94 0.79 20% 0.91 14% 0.95 0% 0.98 0% 0.94 0% 
20% 0.52 0.66 0.88 0.96 0.94 0.66 27% 0.81 23% 0.90 2% 0.96 0% 0.94 0% 
30% 0.41 0.54 0.81 0.92 0.94 0.56 37% 0.71 31% 0.84 4% 0.92 0% 0.94 0% 
40% 0.32 0.43 0.74 0.87 0.94 0.49 53% 0.63 47% 0.78 5% 0.87 0% 0.94 0% 
50% 0.25 0.33 0.65 0.82 0.90 0.43 72% 0.54 64% 0.71 9% 0.82 0% 0.91 1% 
60% 0.19 0.25 0.57 0.75 0.83 0.38 100% 0.47 88% 0.65 14% 0.75 0% 0.84 1% 
70% 0.15 0.17 0.48 0.67 0.66 0.34 127% 0.41 141% 0.57 19% 0.67 0% 0.71 8% 
80% 0.09 0.10 0.38 0.57 0.46 0.29 222% 0.34 240% 0.48 26% 0.57 0% 0.56 22% 
90% 0.04 0.05 0.26 0.43 0.20 0.26 550% 0.27 440% 0.37 42% 0.43 0% 0.35 75% 
 
 

 
 
 
 
 



 
 

Table A1.8. Avg. symmetric difference scores for top-10 results and conjunctive query 
processing using 1.8M-top1000 training set. 

 
% TCP DCP aTCP aDCP PP TCP-

QV 
∆% DCP-

QV 
∆% aTCP-

QV 
∆% aDCP-

QV 
∆% PP-

QV 
∆% 

10% 0.66 0.8 0.93 0.98 0.94 0.94 42% 0.98 23% 0.97 4% 0.98 0% 0.94 0% 
20% 0.52 0.66 0.86 0.96 0.94 0.9 73% 0.95 44% 0.94 9% 0.96 0% 0.94 0% 
30% 0.41 0.54 0.78 0.91 0.94 0.86 110% 0.92 70% 0.91 17% 0.93 2% 0.94 0% 
40% 0.32 0.43 0.7 0.85 0.94 0.84 163% 0.88 105% 0.87 24% 0.9 6% 0.94 0% 
50% 0.25 0.33 0.6 0.79 0.90 0.81 224% 0.84 155% 0.84 40% 0.86 9% 0.92 2% 
60% 0.19 0.25 0.52 0.71 0.83 0.79 316% 0.79 216% 0.79 52% 0.81 14% 0.85 2% 
70% 0.15 0.17 0.43 0.61 0.66 0.51 240% 0.58 241% 0.71 65% 0.73 20% 0.72 9% 
80% 0.09 0.10 0.34 0.51 0.46 0.28 211% 0.29 190% 0.54 59% 0.60 18% 0.49 7% 
90% 0.04 0.05 0.24 0.37 0.20 0.14 250% 0.11 120% 0.35 46% 0.42 14% 0.22 10% 

 
 

Table A1.9. Avg. symmetric difference scores for top-10 results and conjunctive query 
processing using 518K-top10 training set. 

 
% TCP DCP aTCP aDCP PP TCP-

QV 
∆% DCP-

QV 
∆% aTCP-

QV 
∆% aDCP-

QV 
∆% PP-

QV 
∆% 

10% 0.66 0.8 0.94 0.96 0.87 0.72 9% 0.86 7% 0.94 0% 0.96 0% 0.87 0% 
20% 0.52 0.66 0.87 0.93 0.87 0.58 12% 0.74 12% 0.88 1% 0.93 0% 0.87 0% 
30% 0.41 0.54 0.81 0.9 0.87 0.47 15% 0.64 19% 0.82 1% 0.9 0% 0.87 0% 
40% 0.32 0.43 0.73 0.86 0.87 0.39 22% 0.53 23% 0.76 4% 0.86 0% 0.87 0% 
50% 0.25 0.33 0.64 0.8 0.85 0.32 28% 0.44 33% 0.67 5% 0.8 0% 0.85 0% 
60% 0.19 0.25 0.56 0.74 0.77 0.27 42% 0.36 44% 0.6 7% 0.74 0% 0.78 1% 
70% 0.15 0.17 0.47 0.65 0.61 0.22 47% 0.29 71% 0.52 11% 0.65 0% 0.63 3% 
80% 0.09 0.10 0.38 0.56 0.43 0.16 80% 0.22 119% 0.43 13% 0.55 -1% 0.47 9% 
90% 0.04 0.05 0.26 0.42 0.19 0.12 202% 0.15 200% 0.32 21% 0.42 -1% 0.26 37% 

 
 

Table A1.10. Avg. symmetric difference scores for top-10 results and conjunctive query 
processing using 518K-top1000 training set. 

 
% TCP DCP aTCP aDCP PP TCP-

QV 
∆% DCP-

QV 
∆% aTCP-

QV 
∆% aDCP-

QV 
∆% PP-

QV 
∆% 

10% 0.66 0.8 0.94 0.98 0.87 0.87 32% 0.96 20% 0.96 2% 0.98 0% 0.87 0% 
20% 0.52 0.66 0.86 0.96 0.87 0.78 50% 0.9 36% 0.92 7% 0.96 0% 0.87 0% 
30% 0.41 0.54 0.78 0.91 0.87 0.71 73% 0.84 56% 0.86 10% 0.91 0% 0.87 0% 
40% 0.32 0.43 0.7 0.85 0.87 0.66 106% 0.77 79% 0.81 16% 0.86 1% 0.87 0% 
50% 0.25 0.33 0.6 0.79 0.85 0.62 148% 0.71 115% 0.74 23% 0.8 1% 0.85 0% 
60% 0.19 0.25 0.51 0.7 0.77 0.58 205% 0.64 156% 0.68 33% 0.72 3% 0.79 3% 
70% 0.15 0.17 0.43 0.61 0.61 0.53 253% 0.57 235% 0.6 40% 0.64 5% 0.67 10% 
80% 0.09 0.10 0.34 0.51 0.43 0.46 411% 0.47 370% 0.47 38% 0.49 -4% 0.48 12% 
90% 0.04 0.05 0.24 0.37 0.19 0.15 275% 0.14 180% 0.32 33% 0.36 -3% 0.23 21% 

 
 
 
 
 
 



Table A1.11. Avg. symmetric difference scores for top-10 results and conjunctive query 
processing using 50K-top1000 training set. 

 
% TCP DCP aTCP aDCP TCP-

QV 
∆% DCP-

QV 
∆% aTCP-

QV 
∆% aDCP-

QV 
∆% 

10% 0.66 0.8 0.93 0.98 0.73 11% 0.89 11% 0.93 0% 0.98 0% 
20% 0.52 0.66 0.85 0.94 0.59 13% 0.78 18% 0.86 1% 0.94 0% 
30% 0.41 0.54 0.77 0.89 0.48 17% 0.67 24% 0.79 3% 0.9 1% 
40% 0.32 0.43 0.69 0.83 0.4 25% 0.57 33% 0.72 4% 0.83 0% 
50% 0.25 0.33 0.6 0.76 0.33 32% 0.48 45% 0.64 7% 0.76 0% 
60% 0.19 0.25 0.51 0.69 0.28 47% 0.39 56% 0.56 10% 0.68 -1% 
70% 0.15 0.17 0.42 0.6 0.23 53% 0.31 82% 0.47 12% 0.59 -2% 
80% 0.09 0.10 0.34 0.50 0.16 78% 0.23 130% 0.37 9% 0.48 -4% 
90% 0.04 0.05 0.24 0.36 0.12 200% 0.14 180% 0.26 8% 0.33 -8% 

 
 
 
Table A1.12. Avg. symmetric difference scores for top-10 results and conjunctive query 

processing using 10K-top1000 training set. 
 

% TCP DCP aTCP aDCP TCP-
QV 

∆% DCP-
QV 

∆% aTCP-
QV 

∆% aDCP-
QV 

∆% 

10% 0.66 0.8 0.91 0.95 0.68 3% 0.84 5% 0.92 1% 0.95 0% 
20% 0.52 0.66 0.84 0.9 0.53 2% 0.71 8% 0.84 0% 0.9 0% 
30% 0.41 0.54 0.76 0.86 0.42 2% 0.59 9% 0.76 0% 0.86 0% 
40% 0.32 0.43 0.67 0.82 0.34 6% 0.48 12% 0.68 1% 0.82 0% 
50% 0.25 0.33 0.58 0.74 0.27 8% 0.39 18% 0.59 2% 0.74 0% 
60% 0.19 0.25 0.5 0.66 0.21 11% 0.29 16% 0.52 4% 0.66 0% 
70% 0.15 0.17 0.42 0.58 0.16 7% 0.22 29% 0.44 5% 0.58 0% 
80% 0.09 0.10 0.33 0.49 0.10 11% 0.14 40% 0.35 6% 0.48 -2% 
90% 0.04 0.05 0.23 0.36 0.05 25% 0.07 40% 0.24 4% 0.35 -3% 

 



APPENDIX 2. EXPERIMENTS WITH TEMPORALLY DIFFERENT TEST SETS 

To investigate the temporal dimension, we conducted experiments using four new test 

sets each of which includes 5,000 unique queries. Recall from Section 5 that we have 

used the first six weeks of AOL query log for training, whereas a set of 1000 test queries 

were selected from the second six weeks. Now, we split the test queries’ time period (i.e., 

the second six weeks) into three parts: the first set, test-W12, denotes the queries selected 

from the first two weeks of the test period, whereas test-W34 and test-W56 denote the 

queries selected from the second and third 2-week periods, respectively. As before, all of 

these are tail queries (i.e., with frequency 1) that are distinct from the training set. As the 

fourth query set, we again randomly selected 5,000 queries from a totally distinct log, 

namely, Excite [Jansen and Spink 2000]. This latter query log spans a totally different 

time period, i.e., it is collected in December 1999. 

In Tables A2.1 and A2.2, we present the results for our best-performing algorithms, 

namely PP-AAA and PP-AAA-QV family, corresponding to Tables IV and V. For the 

sake of simplicity, we only report the results for a single pruning level of 90%, whereas 

the trends are the same for other pruning levels, as well. In the tables, we provide results 

for the four test sets of 5,000 queries, and the last row simply copies the result of test-

1,000 set reported in Tables IV and V, for easy comparison.  

Tables A2.1 and A2.2 show that the performance reported on our test-1000 set is 

almost the same as the other three sets extracted from the AOL log for different time 

periods, as described above. While the figures over all AOL test sets are comparable, the 

performance over Excite set is worse than those on AOL. This is not surprising, given 

that Excite query log covers a totally different time period (i.e., collected in 1999, almost 

7 years older than AOL log). To summarize, this experiment indicates that pruned index 

files created by the combined pruning algorithms preserve the same performance within 

time, i.e., at least for some reasonable time period. 

 

Table A2.1. Avg. symmetric difference scores for top-10 results and disjunctive query 
processing. All files are 90% pruned. The last row is copied from Table IV. 

 
Test set PP PP-

QV
PP-
TCP

PP-TCP-
QV 

PP-
DCP

PP-DCP-
QV 

PP-
aTCP

PP-aTCP-
QV 

PP-
aDCP 

PP-aDCP- 
QV 

Test-Excite 0.25 0.40 0.38 0.44 0.25 0.42 0.26 0.41 0.30 0.41 
Test-W12 0.39 0.54 0.51 0.58 0.41 0.56 0.36 0.53 0.43 0.54 
Test-W34 0.38 0.52 0.49 0.57 0.39 0.55 0.36 0.52 0.43 0.53 
Test-W56 0.38 0.53 0.50 0.57 0.39 0.55 0.35 0.52 0.43 0.53 
Test-1000 0.34 0.49 0.47 0.54 0.41 0.52 0.32 0.49 0.40 0.50 
 



Table A2.2. Avg. symmetric difference scores for top-10 results and conjunctive query 
processing. All files are 90% pruned. The last row is copied from Table V. 

 
Test set PP PP-

QV
PP-
TCP

PP-TCP- 
QV 

PP-
DCP 

PP-DCP-
QV 

PP-
aTCP

PP-aTCP-
QV 

PP-
aDCP 

PP-aDCP- 
QV 

Test-Excite 0.11 0.23 0.14 0.23 0.11 0.23 0.18 0.26 0.18 0.25 
Test-W12 0.21 0.36 0.14 0.33 0.20 0.35 0.33 0.42 0.32 0.41 
Test-W34 0.20 0.35 0.14 0.33 0.18 0.35 0.33 0.41 0.31 0.40 
Test-W56 0.20 0.37 0.15 0.34 0.18 0.36 0.33 0.42 0.31 0.41 
Test-1000 0.20 0.35 0.14 0.31 0.15 0.34 0.32 0.40 0.32 0.39 
 



APPENDIX 3. EXPERIMENTS WITH STANDARD EVALUATION METRICS 

In addition to average symmetric difference score, we also considered using Kendall’s 

tau (KT) as an evaluation metric to take into account the ranks of the results obtained 

from the full and pruned index files. However, we experienced several difficulties in 

practice. First of all, Carmel et al. (please see Section 4.1 in [Carmel et al. 2001]) noted 

that original Kendall’s tau was defined for comparing two permutations, whereas the 

problem at hand requires comparing two top-k lists but not permutations (of the entire 

documents). Therefore, they adapted a modified KT metric in their work. We also 

implemented this modification; however soon realized that this metric works reasonably 

only when both of the compared lists include k elements. In contrast, in our setup, it is 

possible that both the full and pruned indexes yield fewer, i.e., less than k, top results. 

This situation occurs due to several reasons: (i) we experiment with very high pruning 

levels (i.e., up to 90%), (ii) we also investigate conjunctive processing semantics, which 

returns smaller number of results on the full and pruned indexes especially for the ODP 

collection, and (iii) our test queries are distinct from the train (i.e., like cache misses) and 

indeed each has a test frequency of 1; another reason for these queries having smaller 

number of results (see Figure 3 in [Skobeltsyn et al. 2008]). As a result, a number of our 

test queries return less than k results on the full and pruned index files, which prevents 

directly using this modified KT as proposed in [Carmel et al. 2001]. 

We noticed that the above conclusion is also reached by other researchers (see 

Section 4.3 in [DeMoura et al. 2005]) as they also take into account the conjunctive query 

processing. As a remedy, they proposed to add “fake” documents to the result list 

obtained from a pruned index if there happens to be less than k results. This is a partially 

reasonable solution for this problem, but we observed that if both the full and pruned 

indexes have yielded less than k results for a query, the problem still remains. In this 

case, we tried to add fake documents to both sides (to the results from the full and pruned 

index), but we are not convinced that the KT metric works perfectly. As a result, we 

decided to use symmetric difference score as a metric, which seemed as a less 

problematic and reliable metric to evaluate our algorithms.  

Note that, Garcia proposed to use standard IR metrics for evaluating pruned results 

(please see Figure 4.2 in [Garcia 2007]). This is possible because the results obtained 

from the full index can be considered as the ground truth, and the results from the pruned 

index files can then be evaluated against them using traditional P@10 or MAP. We 

observed that both metrics (as computed over top-10 results using trec_eval software) 

yield exactly the same trends for comparing the pruning algorithms, but absolute  



 
Table A3.1. MAP (over top-10 results) using disjunctive query processing for test-1000 
query set on ClueWeb09-B (relative improvements by QVs are shown in parentheses) 

 
% PP PP-QV PP-

TCP PP-TCP-QV 
PP-
DCP PP-DCP-QV

PP-
aTCP

PP-aTCP-
QV 

PP-
aDCP 

PP-aDCP-
QV 

60% 0.7668 0.8035 (5%) 0.8161 0.8447 (4%) 0.7525 0.7500 (0%) 0.7097 0.7627 (7%)  0.8123 0.8153 (0%) 
70% 0.6407 0.7136 (11%) 0.7933 0.8263 (4%) 0.7294 0.7274 (0%) 0.6931 0.7505 (8%) 0.7856 0.7961 (1%) 
80% 0.4697 0.6012 (28%) 0.6679 0.7226 (8%) 0.5985 0.6287 (5%) 0.5918 0.6679 (13%) 0.6423 0.6949 (8%) 
90% 0.2391 0.4548 (90%) 0.4189 0.5441 (30%) 0.3529 0.4716 (34%) 0.3722 0.516 (39%) 0.3722 0.5217 (40%) 

 
Table A3.2. MAP (over top-10 results) using conjunctive query processing for test-1000 

query set on ClueWeb09-B (relative improvements by QVs are shown in parentheses) 
 

% PP PP-QV 
PP-TCP PP-TCP-QV 

PP-
DCP PP-DCP-QV

PP-
aTCP PP-aTCP-QV 

PP-
aDCP 

PP-aDCP-
QV 

60% 0.7291 0.7698 (6%) 0.6544 0.7179 (10%) 0.605 0.603 (0%) 0.7166 0.7602 (6%) 0.8148 0.8149 (0%) 
70% 0.5772 0.6661 (15%) 0.6322 0.6993 (11%) 0.5834 0.581 (0%) 0.6976 0.7458 (7%) 0.783 0.7913 (1%) 
80% 0.3844 0.528 (37%) 0.5147 0.5984 (16%) 0.4609 0.4852 (5%) 0.5679 0.6369 (12%) 0.6011 0.6604 (10%) 
90% 0.1421 0.364 (156%) 0.2606 0.425 (63%) 0.2295 0.3379 (47%) 0.3057 0.4484 (47%) 0.2917 0.447 (53%) 

 
Table A3.3. Avg. symmetric difference scores for top-1 results and disjunctive query 

processing (ClueWeb09-B dataset) 
 

% PP PP-QV PP-
TCP

PP-TCP-
QV 

PP-
DCP

PP-DCP-
QV 

PP-
aTCP

PP-aTCP-
QV 

PP-
aDCP 

PP-aDCP-
QV 

60% 0.760 0.797 (5%) 0.822 0.852 (4%) 0.768 0.765 (0%) 0.725 0.770 (6%) 0.820 0.820 (0%) 
70% 0.630 0.718 (14%) 0.798 0.835 (5%) 0.743 0.747 (1%) 0.707 0.758 (7%) 0.792 0.803 (1%) 
80% 0.459 0.602 (31%) 0.664 0.726 (9%) 0.611 0.651 (7%) 0.597 0.671 (12%) 0.635 0.699 (10%) 
90% 0.230 0.462 (101%) 0.409 0.551 (35%) 0.348 0.492 (41%) 0.365 0.522 (43%) 0.357 0.521 (46%) 

 

effectiveness scores are higher (because these traditional metrics only consider the 

“distance” of the pruned results from the “full results”, but not vice versa; in contrast to 

the symmetric difference metric). In Tables A3.1 and A3.2, we provide the results using 

MAP as a metric for ClueWeb09-B dataset on our test-1000 query set. P@10 values are 

almost the same for all cells in the tables (as MAP is also computed over top-10 results) 

and not reported here to save space. Clearly, the results are in line with those obtained 

using the symmetric difference score metric (i.e., please compare to Tables VI and VII, 

respectively).  

Finally, we also compute symmetric difference scores for only top-1 result 

corresponding to cases in Tables VI and VII in Section 6.2. Clearly, the rank of results is 

not an issue for top-1 result; i.e., the pruned results are either the same as those obtained 

from the full index, or not. We observe that the gains provided by query views in Tables 

A3.3 and A3.4 are almost the same as those in Tables VI and VII, respectively. 

 

 



 
Table A3.4. Avg. symmetric difference scores for top-1 results and conjunctive query 

processing (ClueWeb09-B dataset) 
 

% PP PP-QV PP-
TCP

PP-TCP-
QV 

PP-
DCP 

PP-DCP-
QV 

PP-
aTCP

PP-aTCP-
QV 

PP-
aDCP 

PP-aDCP-
QV 

60% 0.733 0.782 (7%) 0.726 0.775 (7%) 0.671 0.668 (0%) 0.729 0.767 (5%) 0.820 0.815 (-1%) 
70% 0.580 0.684 (18%) 0.704 0.76 (8%) 0.647 0.649 (0%) 0.706 0.752 (7%) 0.786 0.794 (1%) 
80% 0.386 0.553 (43%) 0.565 0.648 (15%) 0.512 0.556 (9%) 0.569 0.644 (13%) 0.601 0.672 (12%) 
90% 0.155 0.405 (61%) 0.282 0.469 (66%) 0.248 0.40 (61%) 0.310 0.471 (52%) 0.295 0.468 (59%) 

 



APPENDIX 4. EXPERIMENTS WITH TREC 2009 WEB TRACK QUERY SET 

For 50 queries (WT09 topic file) used in the TREC 2009 Web Track, we obtained stat 

mean nDCG (sMNDCG) and traditional MAP/P@10 scores. The former metric was 

employed in 2009 Web Track and computed using statAP_MQ_eval_v3 script 

(available at http://trec.nist.gov/data/web09.html) for top-1000 results. Since the 

objective in our problem domain is keeping the top-10 results obtained from pruned 

index files as similar as those obtained from the full index, we also compute traditional 

P@10 and MAP (for top-10 results only). In particular, we removed the pool inclusion 

probability column from TREC’s official prels file (i.e., resulting in binary judgments) 

and used standard trec_eval software to compute traditional P@10 and MAP (see 

[Kaptein et al. 2010] for a similar approach). The trec_eval software is invoked with 

the parameters “-c -M10” to evaluate top-10 results. These results are presented in Tables 

A4.1 to A4.6. 

 
Table A4.1. Stat mean NDCG (over top-1000 results) using disjunctive query processing 

for TREC 2009 Web Track 50-topic query set 
 

% PP PP-
QV

PP-
TCP

PP- 
TCP-QV

PP-
DCP 

PP-
DCP-QV

PP-
aTCP

PP-aTCP-
QV 

PP-
aDCP 

PP-aDCP-
QV 

60% 0.253 0.291 0.291 0.291 0.29 0.29 0.282 0.295 0.292 0.293 
70% 0.254 0.289 0.276 0.291 0.275 0.295 0.266 0.3 0.266 0.298 
80% 0.222 0.289 0.253 0.291 0.254 0.292 0.244 0.295 0.254 0.292 
90% 0.14 0.286 0.222 0.289 0.216 0.288 0.209 0.287 0.212 0.286 

 
Table A4.2. MAP (over top-10 results) using disjunctive query processing for TREC 

2009 Web Track 50-topic query set 
 
% PP PP-QV PP-

TCP 
PP- 

TCP-QV
PP-
DCP 

PP-DCP-
QV 

PP-
aTCP

PP-aTCP-
QV 

PP-
aDCP 

PP-aDCP-
QV 

60% 0.0312 0.0346 0.0347 0.0346 0.0343 0.0344 0.0337 0.0343 0.0345 0.0343 
70% 0.0293 0.0342 0.0341 0.0346 0.0337 0.0344 0.033 0.0343 0.0333 0.0343 
80% 0.0263 0.0344 0.0312 0.0346 0.0308 0.0344 0.0301 0.0342 0.0309 0.0342 
90% 0.0154 0.0342 0.0263 0.0344 0.0243 0.0340 0.0255 0.0343 0.0244 0.0342 
 

Table A4.3. P@10 using disjunctive query processing for TREC 2009 Web Track 50-
topic query set 

 
% PP PP-

QV 
PP-
TCP

PP- 
TCP-QV

PP-
DCP 

PP-DCP-
QV 

PP-
aTCP

PP-aTCP-
QV 

PP-
aDCP 

PP-aDCP-
QV 

60% 0.81 0.908 0.91 0.908 0.898 0.904 0.890 0.900 0.904 0.900 
70% 0.76 0.898 0.896 0.908 0.884 0.904 0.876 0.900 0.874 0.900 
80% 0.684 0.898 0.81 0.908 0.798 0.904 0.788 0.898 0.802 0.898 
90% 0.406 0.896 0.684 0.898 0.632 0.892 0.670 0.896 0.634 0.896 

 
 
 
 



 
Table A4.4. Stat mean NDCG (over top-1000 results) using conjunctive query 

processing for TREC 2009 Web Track 50-topic query set 
 

% PP PP-
QV

PP-
TCP

PP- 
TCP-QV

PP-
DCP 

PP-DCP-
QV 

PP-
aTCP

PP-aTCP-
QV 

PP-
aDCP 

PP-aDCP-
QV 

60% 0.277 0.291 0.291 0.291 0.289 0.293 0.282 0.295 0.292 0.293 
70% 0.281 0.288 0.288 0.291 0.286 0.298 0.278 0.300 0.283 0.297 
80% 0.263 0.288 0.277 0.291 0.278 0.295 0.267 0.295 0.279 0.292 
90% 0.211 0.282 0.263 0.288 0.275 0.286 0.250 0.286 0.270 0.282 

 
Table A4.5. MAP (over top-10 results) using conjunctive query processing for TREC 

2009 Web Track 50-topic query set 
 

% PP PP-
QV PP-

TCP 
PP- 

TCP-QV 
PP-

DCP 
PP-DCP-

QV 
PP-

aTCP

PP-
aTCP-

QV 
PP-

aDCP 

PP-
aDCP-

QV 
60% 0.0293 0.0346 0.0347 0.0346 0.0341 0.0341 0.0337 0.0343 0.0345 0.0343 
70% 0.0274 0.0342 0.033 0.0346 0.0324 0.0341 0.0320 0.0343 0.0321 0.0343 
80% 0.0215 0.0343 0.0293 0.0346 0.0287 0.0341 0.0282 0.0342 0.029 0.0342 
90% 0.0084 0.0341 0.0215 0.0343 0.0186 0.0339 0.0209 0.0343 0.0188 0.0342 

 
Table A4.6. P@10 using conjunctive query processing for TREC 2009 Web Track 50-

topic query set 
 

% PP PP-
QV 

PP-
TCP

PP- 
TCP-QV 

PP-
DCP 

PP-
DCP-QV

PP-
aTCP

PP-aTCP-
QV 

PP-
aDCP 

PP-aDCP-
QV 

60% 0.760 0.908 0.910 0.908 0.894 0.896 0.890 0.900 0.904 0.900 
70% 0.708 0.898 0.872 0.908 0.856 0.896 0.852 0.900 0.846 0.900 
80% 0.554 0.898 0.760 0.908 0.744 0.896 0.738 0.898 0.752 0.898 
90% 0.236 0.894 0.554 0.898 0.480 0.888 0.546 0.896 0.484 0.896 

 
First of all, please notice that, stat mean nDCG (sMNDCG) score (over top-1000 

results as usual in TREC) is similar to that of [Garcia 2009; Table 1] for the full index, 

revealing the validity/correctness of our experimental setup. Overall, the results are 

interesting in that the differences among PP-AAA (PP-AAA-QV) algorithms are less 

emphasized, whereas they all perform better than PP (PP-QV) algorithm. This might be 

due to small number of test topics, human judgment bias or, especially, query 

characteristics. In particular, we observed that the TREC query set includes rather easy 

queries (like “yahoo”, “atari”, “volvo”, etc. with average query length of 2) whereas our 

test-1000 set includes only tail queries (with frequency 1) from a very large query log 

(average query length is 3.2 after stopword elimination). Nevertheless, our key finding 

still holds, i.e., combining PP with other strategies and further with query views 

considerably improve the performance especially at high pruning levels. 

 

 


