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ABSTRACT

NEAREST-NEIGHBOR BASED METRIC FUNCTIONS
FOR INDOOR SCENE RECOGNITION

Fatih Çakır

M.S. in Computer Engineering

Supervisors: Prof. Dr. Özgür Ulusoy and Assoc. Prof. Dr. Uğur Güdükbay

July, 2011

Indoor scene recognition is a challenging problem in the classical scene recogni-

tion domain due to the severe intra-class variations and inter-class similarities of

man-made indoor structures. State-of-the-art scene recognition techniques such

as capturing holistic representations of an image demonstrate low performance on

indoor scenes. Other methods that introduce intermediate steps such as identi-

fying objects and associating them with scenes have the handicap of successfully

localizing and recognizing the objects in a highly cluttered and sophisticated

environment.

We propose a classification method that can handle such difficulties of the

problem domain by employing a metric function based on the nearest-neighbor

classification procedure using the bag-of-visual words scheme, the so-called code-

books. Considering the codebook construction as a Voronoi tessellation of the

feature space, we have observed that, given an image, a learned weighted distance

of the extracted feature vectors to the center of the Voronoi cells gives a strong

indication of the image’s category. Our method outperforms state-of-the-art ap-

proaches on an indoor scene recognition benchmark and achieves competitive

results on a general scene dataset, using a single type of descriptor.

In this study although our primary focus is indoor scene categorization, we also

employ the proposed metric function to create a baseline implementation for the

auto-annotation problem. With the growing amount of digital media, the problem

of auto-annotating images with semantic labels has received significant interest

from researches in the last decade. Traditional approaches where such content is

manually tagged has been found to be too tedious and a time-consuming process.

Hence, succesfully labeling images with keywords describing the semantics is a

crucial task yet to be accomplished.
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ÖZET

İÇ MEKAN TANIMA İÇİN EN YAKIN KOMŞUYA
DAYALI METRİK FONKSİYONLAR

Fatih Çakır

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticileri: Prof. Dr. Özgür Ulusoy ve Doç. Dr. Uğur Güdükbay

Temmuz, 2011

İç mekan tanıma, insan yapımı yapıların yüksek sınıf içi varyasyonlar ve sınıf

arası benzerlikler göstermesi sebebiyle klasik mekan tanıma alanının zorlu bir

problemidir. Resmin bütüncül temsillerini çıkarmak gibi en ileri mekan tanıma

teknikleri iç mekanlarda düşük performans göstermektedirler. Nesnelerin belirlen-

mesi ve ardından onların mekanlarla ilişkilendirilmesi gibi ara kademeler kullanan

diğer yöntemlerin de oldukça karmaşık bir ortamda nesnelerin başarıyla lokalize

edilmesi ve tanınması handikapları vardır.

Kodkitabı olarak da bilinen görsel kelimeler kümesi tekniğinden faydala-

narak en yakın komşu yöntemine dayalı bir metrik fonksiyonu ile bu zorlukların

üstesinden gelebilen bir sınıflandırma yöntemi öneriyoruz. Kodkitabı oluşumu

öznitelik uzayının mozaikleştirilmesi olarak ele alınırsa, verilen bir resim için,

öznitelik vektörlerinin Voronoi hücrelerinin ortalarına olan öğrenilmiş ağırlıklı

uzaklıklarının resmin kategorisi için güçlü bir gösterge olduğunu gözlemledik.

Yöntemimiz tek bir tanımlayıcı ile bir iç mekan testinde en gelişmiş yaklaşımları

geçmekte ve genel bir mekan veri kümesinde rekabetçi sonuçlar üretmektedir.

Bu çalışmada her ne kadar temel sorunumuz iç mekan kategorizasyonu olsa da,

önerilen metrik fonksiyonunu otomatik etiketleme problemine de bir temel uygu-

lama oluşturmak için kullanıyoruz. Gittikçe artan sayısal medya ile, otomatik

olarak resimlere anlamlı etiketler çıkarma problemine son on yılda araştırmacılar

büyük ilgi göstermişlerdir. Bu tarz içerikleri manüel olarak etiketlemek gibi ge-

leneksel yaklaşımlar çok bıktırıcı ve zaman harcayıcı olarak değerlendirilmektedir.

Bu nedenle resimleri anlamsal olarak başarıyla açıklayan anahtar kelimelerle

otomatik olarak etiketleme, çözülmeyi bekleyen önemli bir sorundur.

Anahtar sözcükler : mekan sınıflandırma, iç mekan tanıma, en yakın komşu
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sınıflandırıcısı, görsel kelimeler kümesi, otomatik resim etikelendirme.
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Chapter 1

Introduction

1.1 Indoor Scene Recognition

Scene classification is an active research area in the computer vision community.

Many classification methods have been proposed that aim to solve different as-

pects of the problem such as topological localization, indoor-outdoor classification

and scene categorization [1, 2, 3, 4, 5, 6, 7, 8, 9]. In scene categorization the prob-

lem is to associate a semantic label to a scene image. Although categorization

methods address the problem of categorizing any type of a scene, they usually

only perform well on outdoors [10]. In contrast, classifying indoor images has

remained a further challenging task due to the more difficult nature of the prob-

lem. The intra-class variations and inter-class similarities of indoor scenes are the

biggest barriers for many recognition algorithms to achieve satisfactory perfor-

mance on images that have never been seen, i.e., test data. Moreover, recognizing

indoor scenes is very important for many fields. For example, in robotics, the

perceptual capability of a robot for identifying its surroundings is a highly crucial

ability.

Earlier works on scene recognition are based on extracting low-level features

of the image such as color, texture and shape properties [1, 3, 5]. Such simple

global descriptors are not powerful enough to perform well on large datasets with

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Some indoor images with their respective classes. The intra-class
variations and inter-class similarities of indoor scenes are the biggest barriers for
many recognition algorithms.

sophisticated environmental settings. Olivia and Torralba [4] introduce a more

compact and robust global descriptor, the so-called gist, which captures the holis-

tic representation of an image using spectral analysis. Their descriptor performs

well on categorizing outdoor images such as forests, mountains and suburban en-

vironments but has difficulties recognizing indoor scenes. Borrowing ideas from

the human perceptual system, recent work on indoor scene recognition focuses on

classifying images by using representations of both global and local image prop-

erties and integrating intermediate steps such as object detection [10, 11]. This

is not surprising since indoor scenes are usually characterized by the objects they

contain. Consequently, indoor scene recognition can be mainly considered as a

problem of first identifying objects and then classifying the scene accordingly.

Intuitively, this idea seems reasonable but it is unlikely that even state-of-the-art

object recognition methods [12, 13, 14], can successfully localize and identify un-

known number of objects in cluttered and sophisticated indoor images. Hence,

classifying a particular scene via objects becomes yet a more challenging issue.

A solution to this problem is to classify an indoor image by implicitly mod-

eling objects with densely sampled local cues. These cues will then give indirect
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evidence of a presence of an object. Although this solution seems contrary to

the methodology of recognizing indoor scenes by the human visual system, i.e.,

explicitly identifying objects and associating them with scenes, it provides a suc-

cessful alternative by bypassing the drawbacks of trying to localize objects in

highly intricate environments. The most successful and popular descriptor that

captures the crucial information of an image region is the Scale-Invariant Feature

Transform (SIFT) [15, 16]. This proposes the idea that SIFT-like features ex-

tracted from images of a certain class may have more similarities in some manner

than those extracted from images of irrelevant classes. This similarity measure

can be achieved by first defining a set of categorical words (the so-called visual

words) for each class and then using a learned metric function to measure the

distance between local cues and these visual words.

It is very well known in the machine learning community that there is no

superior (or inferior) classification method given that no prior assumptions are

made about the nature of the problem domain (as described by the No Free

Lunch Theorem [17]). Classification methods may be preferred for several rea-

sons including their computational complexity, the assumptions they make about

the underlying data and their overall competence in high-dimensional space. In

this particular problem domain of classfying indoor images, we introduce a novel

non-parametric weighted metric function with a spatial extension based on the

approach described in [18]. In their work, Bolman et al. show that a Nearest-

Neighbor (NN) based classifier which computes direct image-to-class distances

without any quantization step achieves performance rates among the top lead-

ing learning-based classifiers. We show that a NN-based classifier is also well

suited for categorizing indoor scenes because: i) It incorporates image-to-class

distances which is extremely crucial for classes with high variability; ii) Consid-

ering the insufficient performance of state-of-the-art recognition algorithms on a

large object dataset [12], it successfully allows classifying indoor scenes directly

from local cues without incorporating any intermediate steps such as categorizing

via objects; iii) Given a query image, it allows ranked results and thus can be

employed for a preprocessing step to successfully narrow down the size of possi-

ble categories for subsequent analyses. Bolman et al. also show that a descriptor
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quantization step, i.e., codebook generation, severely degrades the performance

of the classifier by causing information loss in the feature space. They argue that

a non-parametric method such as the Nearest-Neighbor classifier has no training

phase as the learning-based methods do to compensate for this loss of infor-

mation. They evaluate their approach on Caltech101 [19] and Caltech256 [20]

datasets, where each image contains only one object and maintains a common

position, and on the Graz-01 dataset [21], which has three classes (bikes, persons

and a background class) with a basic class vs. no-class classification task. On

the other hand, for a multi-category recognition task of scenes where multiple

objects co-exist in a highly cluttered, varied and complicated form, we observe

that our NN-based classifier with a descriptor quantization step outperforms the

state-of-the-art learning-based methods. The additional quantization step allows

us to incorporate spatial information of the quantized vectors, and more im-

portantly, it significantly reduces the performance gap between our method and

other learning-based approaches. It is computationally inefficient for a straight-

forward NN-based method without a quantization step to perform classification,

considering the datasets with large number of training images.

1.2 Automatic Image Annotation

Auto-annotation is generally incorporated into image retrieval (IR) systems. Pre-

viously many content based IR systems allowed query-by-example, query-by-

sketch or similar query types for searching and retrieving related images. But

most users are not familiar with such inputs or it is simply to cumbersome for a

user to define a query. Hence it was quickly realized the need for semantic labels

describing the content of the images. The traditional solution is to manually

associate such semantic keywords to images with the guidance of an application

expert. However with growing collections of user-provided visual content this

traditional approach has been found to be too tedious and expensive. Hence

this issue generated significant interest in the problem of automatically labelling

words that describe semantic meanings. A recent review about image retrieveal

can be found in [22]. In this study, we also employ the proposed metric function
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to create a baseline implementation for the particular problem.

1.3 Organization

The rest of this paper is organized as follows: Section 2 discusses related work.

In Section 3 we describe the framework of our proposed method. We present

experimental results and evaluate the performance in Section 4. Section 5 gives

conclusions and future work.



Chapter 2

Related Work

2.1 Indoor Scene Recognition

Earlier works on scene classification are based on extracting low-level features

of the image such as color, texture and shape properties. Szummer and Picard

[1] use such features to determine whether an image is an outdoor or an indoor

scene. Vailaya et al. [3] use color and edge properties for the city vs. landscape

classification problem. Ulrich and Nourbakhsh [5] employ color-based histograms

for mobile robot localization. Such simple global features are not discriminative

enough to perform well on a difficult classification problem, such as recognizing

scene images. To overcome this limitation, Olivia and Torralba [4] introduce

the gist descriptor, a technique that attempts to categorize scenes by capturing

its spatial structure properties, such as the degree of openness, roughness, natu-

ralness, using spectral analysis. Although a significant improvement over earlier

basic descriptors, it has been shown in [10] that this technique performs poorly in

recognizing indoor images. One other popular descriptor is SIFT [16]. Due to its

strong discriminative power even under severe image transformations, noise and

illumination changes, it has been the most preferred visual descriptor in many

scene recognition algorithms [6, 7, 23, 24, 25].

Such local descriptors have been successfully used with the bag-of-visual words

6
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scheme for constructing codebooks. This concept has been proven to provide

good results in scene categorization [25]. Fei-Fei and Perona [24] represent each

category with such a codebook and classify scene images using Bayesian hierar-

chical models. Lazebnik et al. [7] use the same concept with spatial extensions.

They hierarchically divide an image into sub-regions, which they call the spatial

pyramid, and compute histograms based on quantized SIFT vectors over these

regions. A histogram intersection kernel is then used to compute a matching

score for each quantized vector. The final spatial pyramid kernel is implemented

as concatenating weighted histograms of all features at all sub-regions. The tra-

ditional bag-of-visual words scheme discards any spatial information; hence many

methods utilizing this concept also introduce different spatial extensions [7, 26].

Bosch et al. [27] present a review of the most common scene recognition

methods. However, recognizing indoor scenes is a more challenging task than

recognizing outdoor scenes, owing to severe intra-class variations and inter-class

similarities of man-made indoor structures. Consequently, this task has been in-

vestigated separately within the general scene classification problem. Quattoni

and Torralba [10] brought attention to this issue by introducing a large indoor

scene dataset consisting of 67 categories. They argue that together with the global

structure of a scene which they capture via the gist descriptor, the presences of

certain objects described by local features are strong indications of its category.

Espinace et al. [11] suggest using objects as an intermediate step for classifying

a scene. Such approaches are coherent with the human vision system since we

identify and characterize scenes by the objects they contain. However, with the

state-of-the-art object recognition methods [12, 13, 14, 28], it is very unlikely to

successfully identify multiple objects in a cluttered and sophisticated environ-

mental setting. Instead of explicitly modeling the objects, we can use local cues

as indirect evidence for their presence and thus bypass the drawbacks of having

to successfully recognize them, which is a very difficult problem considering the

intricate nature of indoor scenes.
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2.2 Automatic Image Annotation

One of the earliest papers about auto-annotation is [29]. In this work the authors

consider the annotation of an image as a region-keyword association problem

(co-occurance of regions and words). They geometrically partition the image and

form a feature descriptor for each partitioned part. These partial images (re-

gions) are considered to inherit all the tags of the original image, afterwards they

vector quantize all regions of all the training images to produce clusters similar

to the codebook generation step widely used in the computer vision literature.

Given the centroids of the clusters, they estimate the likelihood (conditional den-

sity) of each word by accumulating the frequencies of it. After estimating the

likelihoods of all the keywords, a test image can be auto-annotated by: i) Geo-

metrically partitioning into sub-images; ii) Extracting the feature descriptors of

all sub-images and finding the nearest centroids to them; iii) Taking the average

of the likelihoods associated with the centroids and obtaining the top k keywords

having the largest average density value. They tested their approach on a mul-

timedia encyclopedia. In literature this approach is known as the co-occurence

model. Duygulu et al. [30] also approaches the auto-annotation problem from a

co-occurence perspective where keywords are assigned to image regions (blobs).

They first segment images using the popular Normalized cut algorithm [31]. Af-

terwards they cluster the segmented region representations to produce ‘blobs’. A

lexicon is then constructed which is described as a probability table holding the

probability estimations of the blob-keyword translations. Given a test image, it

is first segmented and the segmented regions is then quantized into blobs. Fi-

nally, each region is annotated with the most likely word. In the literature this

approach is named as the translational model.

Jeon et al. [32] introduced the relevance model anagolous to a cross-lingual

retrieval problem. Instead of finding one-to-one occurences between blobs and

words, they consider assigning words to the whole image by using a joint prob-

abilistic distribution association scheme. Lavrenko et al. [33] further improved

this method by directly modeling continuous features instead of quantizing (clus-

tering) the regions into a discrete vocabulary. Feng et al. [34] showed improved
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performance when the regions were extracted using rectangular grids instead of

a segmentation procedure and by modeling the annotation data with multiple-

Bernoulli distributions instead of a multinomial model. They argue that the

probability mass is splitted among the annotated data for an image with the

latter probabilistic model which is infact an incorrect approach to take consider-

ing a perfect annotation. Carneiro and Vasconcelos [35] demonstrated a super-

vised learning approach for auto-annotation. Their technique learns the class-

conditional densities P(x∣w)(x∣i) where each word (w) is considered as a distinct

class and x is a feature vector that represents the concept in an image. Since

extracting the feature vector that solely captures a concept in a training image

is cumbersome, they adopt a Multiple Instance Learning scheme where the con-

ditional densities is estimated by using all the available training images that are

annotated with the corresponding word. They argue that the distribution of the

concept follows a distinct pattern while the background is uniformly distributed.

The densities are modeled with mixture of Gaussians.

Makadia et al. [36] argue that although many techniques have successfully

addressed the problem they all lacked any comparison with a simple baseline

measure. They asserted that in the absence of such a baseline method it is hard

to justify the need for using complex models and training processes. They have

introduced a simple propagation model where given an un-annotated query image,

the most relevant training images are retrieved using a nearest-neighbor classifier

with simple color and texture features. Afterwards, they label the test image using

a simple transfer algorithm with the annotations of the training images which are

retrieved. They outperform state-of-the-art methods and hence conclude the need

for justification of comparing complex methods with a simple baseline technique.

Guillaumin et al. [37] improve this propagation model by integrating a metric

learning mechanism to determine the weights of the retrieved training images

which are consequently used in the auto-annotation process for a test image.

Another notable paper in this problem domain is [38]. In their study, the

authors propose a novel Conditional Random Field (CRF) model for semantic

context modeling for the auto-annotation problem. CRF [39] has been used to

model dependencies of certain sites such as spatial and semantic dependencies and
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has started to increase further attention from the machine learning community.

The CRF model has been adopted in [38] in which the semantics, i.e., annotation

labels, are considered to have dependencies. Truly certain concepts co-occur

frequently in an image dataset, for instance a ‘car’ and a ‘road’ occur more

generally than a ‘car’ and a ‘bird’. Thus the authors integrate this ‘contextual’

information by using a novel CRF model. Their paper is the state-of-the-art

regarding auto-annotation. Another interesting fact is that such dependencies

can also be considered in the scene recognition domain. Certain visual words

tend to occur more frequently, hence incorporating this information would likely

to boost the performance rate for a categorization method.



Chapter 3

Nearest-Neighbor based Metric

Functions

In this chapter, we discuss about the proposed approach to classify indoor scenes

and to provide a baseline for automatically annotating images. We begin our

discussion by describing the feature descriptor we employed to model the local

cues of images and the vector quantization procedure undertaken to construct a

set of visual words which has proven its effectiveness in the classification literature.

Then, we discuss the proposed Nearest-Neighbor based Metric Function (NNbMF)

method by first providing the baseline formulation and then extending the metric

to incorporate the spatial information of visual words. This treatment is based

on the indoor scene recognition problem. Finally, we focus on how to utilize the

metric function for annotation purposes.

3.1 Image Representation

3.1.1 The Feature Extraction Process

To consider the image itself as the input data to a classification procedure is gen-

erally deemed to be redundant mostly because of the high-dimensional feature

11
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space it results in. This redundancy has shown to have a larger impact with

nearest-neighbor based search methods [40]. The effects of high dimensionality

are referred by the curse of dimensionality term and many dimension reduction

techniques have been proposed in the literature to avoid the negative impacts.

Given input data, a feature extraction process can also be considered as a di-

mensionality reduction technique that produces a reduced set of features. This

set of features, also named as a feature vector or descriptor, is then the repre-

sentation of the original data in a lower dimensional space. Among many feature

extraction techniques, the ones that have certain invariance properties and show

robustness to changes in image scale, illumination and noise are more favorable.

This transformation process can be applied globally, i.e. to the whole image,

yielding a single representative feature vector or locally resulting a set of feature

vectors describing the image.

Formally, let us denote the transformation process with the mapping function

Φ. Given an image x ∈ X the transformation Φ ∶ X → RD yields a global

descriptor of the image where D denotes the dimensionality of the feature. An

example of a global feature vector is the GIST descriptor [4]. If Φ ∶ X →
RN×D then the image is described by a set of feature vectors which generally is

obtained from local patches (areas) of an image. The most successful and popular

local descriptor is the Scale-Invariant Feature Transform (SIFT) [15, 16]. Not all

patches may be used in the tranformation process. Interest point detectors try to

detect the salient patches which are considered to be more crucial in classification;

such as edges, corners and blobs in an image. Two of the most celebrated detectors

are the Harris affine region detector detector [41] and Lowe’s DoG (Difference

of Gaussians) detector [42]. After the detection stage, the SIFT descriptor is

calculated from a certain scale of the interest point. Although interest point

detectors obtain the salient regions in an image, it has been shown that using

densely sampled SIFT vectors in a recognition framework demonstrates higher

performance [43].
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(a) A number of plotted SIFT descriptors on a hospital room image. The
interest points are detected using Lowe’s DoG detector.

(b) Plotted SIFT descriptor on a local patch. Notice that there are 4×4 spatial
and 8 orientation bins. SIFT transforms this local patch into a 128-dimensional
vector.

Figure 3.1: Local patches and plotted SIFT descriptors.
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3.1.2 Image Vector Quantization

In statistical text retrieval, a document is represented by a vector composed of

frequencies of words in the document. These words are obtained by parsing docu-

ments, stemming for removing derivations and rejecting the most frequent words

that intuitively have no representative power. Similarly in the case of image

analysis, we consider an image as a document and the local patches described by

feature descriptors as (candidate) visual words. The equivalent parsing step of

text retrieval in the image domain is the feature extraction process. After obtain-

ing a set of feature vectors from training images we apply a quantization step by

using a clustering method for similar purposes of stemming in text retrieval. The

set of formed quantized vectors, i.e. visual words, is often termed as a dictionary

or codebook. Considering a dataset with multiple classes, if the training images in

which features are extracted are randomly chosen over all classes, the final visual

words are to be representative for all images in the dataset (a global codebook).

In such cases images are generally represented by a frequency histogram of the

words. On the other hand if a codebook is generated for each class using the

respective images only, the codebook is said to be local in which its ‘words’ only

describe that particular class.

A concise and formal treatment of the procedure is given in the next section.

3.2 NNbMF

3.2.1 Baseline Problem Formulation

The celebrated bag-of-visual words paradigm introduced in [44] has become com-

monplace in various image analysis tasks. It has been proven to provide powerful

image representations for image classification and object/scene detection. To

summarize the procedure, consider X to be a set of feature descriptors in D-

dimensional space, i.e., X = [x1, x2, . . . ,xL]T ∈ RL×D. A vector quantization or

a codebook formation step involves the Voronoi tessellation of the feature space
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by applying K-means clustering to set X to minimize the cost function

J =
K

∑
i=1

L

∑
l=1

∥ xl − vi ∥2 (3.1)

where the vectors in V = [v1,v2 . . . ,vK]T correspond to the centers of the

Voronoi cells, i.e., the visual words of codebook V, and ∥ ⋅ ∥ denotes the L2-

norm. After forming a codebook for each class using Equation (3.1), a set

Xq = [x1, x2, . . . ,xN]T denoting the extracted feature descriptors from a query

image can be categorized to class c by employing the Nearest-Neighbor classifi-

cation function y ∶ RN×D → {1, . . . ,C} given as

y (Xq) = argmin
c=1,...C

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N

∑
n=1

∥ xn −NNc (xn) ∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
h(⋅∣θc)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.2)

where NNc (x) denotes the nearest visual word of x, i.e., the nearest Voronoi cell

center, in the Voronoi diagram of class c, yi ∈ {1, . . . ,C} refers to class labels and

h (⋅ ∣θc ) denotes a combination function with the parameter vector θc associated

with class c. Intuitively, Equation (3.2) can be considered as an ensemble of mul-

tiple experts based on the extracted descriptor set Xq. In this ensemble learning

scheme there are ∣Xq ∣ weak-classifiers and h ∶ RN → R is a fusion function to

combine the outputs of such experts. This large ensemble scheme is very suitable

for the particular problem domain where each scene object, implicitly modeled

by local cues, provides little discriminative power in the classification objective

but in combination they significantly increase the predictive performance.

From this perspective, given a query image, assume N base-classifiers cor-

responding to the extracted descriptor set Xq = [x1, x2, . . . ,xN]T . Let Vc =
[vc1,vc2 . . . ,vcK]T and dci be the codebook and the prediction of base classifier

g(xi,Vc) =∥ xi −NNc (xi) ∥ for class c, respectively. Taking dci = g(xi,Vc), the

final prediction value for the particular class is then

h (dc1, dc2, . . . , dcN ∣θc) =
N

∑
n=1

ωncd
c
n (3.3)

where θc = [ω1c, . . . , ωNc]T denotes the parameters of the fusion function asso-

ciated with class c. Note that θc = 1, ∀c ∈ {1, . . . ,C} in Equation (3.2). In
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Figure 3.2: The Nearest-Neighbor based metric function as an ensemble of mul-
tiple classifiers based on the local cues of a query image. Each local cue can
be considered as a weak classifier that outputs a numeric prediction value for
each class. The combination of these predictions can then be used to classify the
image.

the next section, we will use spatial information of the extracted descriptors to

determine the parameter vector set θ = {θ1, . . . ,θC}. Figure 3.2 illustrates this

concept. It should be noted that Equation (3.2) does not take into account un-

quantized descriptors, as in [18]. There is a trade-off between information loss

and computational efficiency because of the quantization of the feature space.

3.2.2 Incorporating Spatial Information

The classic bag-of-visual words approach does not take into account spatial

information and thus loses crucial data about the distribution of the feature

descriptors within an image. Hence, this is an important aspect to consider

when working to achieve satisfactory results in a classification framework. We
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incorporate spatial information as follows. Given extracted descriptors in D-

dimensional space, X = [x1, x2, . . . ,xL]T ∈ RL×D and their spatial locations

S = [(x1,y1) , (x2, y2) , . . . , (xL, yL)], during the codebook generation step we

also calculate their relative position with respect to the corresponding image

boundaries from which they are extracted. Hence their relative locations are

S
′ = [(x′1, y

′

1) , (x
′

2, y
′

2) , . . . , (x
′

L, y
′

L)] = [( x1

w1
, y1h1

) , ( x2

w2
, y2h2

) , . . . , ( xL

wL
, yLhL

)] , where

the (w1, h1) , (w2, h2) , . . . , (wL, hL) pairs represent the width and height values

of the corresponding images. After applying clustering to the set X, we obtain

the visual word set V as described in the previous section. Since similar feature

descriptors of X are expected to be assigned to the same visual word, their corre-

sponding coordinate values described in set S′ should have similar values. Figure

3.3 shows the spatial layout of the descriptors assigned to several visual words.

To incorporate this information into Equation (3.2), we consider the density esti-

mation methods which are generally used for determining unknown probabilistic

density functions. It should be noted that we do not consider a probabilistic

model; thus obtaining and using a legitimate density function is irrelevant in our

case. We can assign weights for each grid on the spatial layout of every visual

word using a histogram counting technique (cf. Figure 3.3). Suppose we geomet-

rically partition this spatial layout into M ×M grids. Then for the f th visual

word of class c, vcf , the weight of a grid can be calculated as

Wcf = [wcf
ij ] =

k

N
(3.4)

where k is the number of descriptors assigned to vcf that fall into that particular

grid and N is the total number of descriptors assigned to vcf . During the classifi-

cation of a query image, the indices i, j correspond to the respective grid location

of an extracted feature descriptor. An alternative way for defining weights is to

first consider Wcf = [wcf
ij ] = k, then scale this matrix as

Wcf
′

=
[wcf

ij ]
max(Wcf) (3.5)

where max (⋅) describes the largest element. Equation (3.5) does not provide

weight consistency of the visual words throughout a codebook. It assigns larger

weights to visual words that have a sparse distribution in the spatial layout while

attenuating the weights of the visual words that are more spatially compact. The
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choice of a weight matrix assignment is directly related to the problem domain;

as we have found Equation (3.4) more suitable for the 67-indoor benchmark and

Equation (3.5) suitable for the 15-scenes benchmark.

We calculate the weight matrices for all visual words of every codebook. The

function h (⋅∣θc) described in Equation (3.2) now can be improved as

N

∑
n=1

(1 − γcWcf
ij )× ∥ xn −NNc (xn) ∥ (3.6)

where NNc (xn) ≡ vcf . The parameter set now includes the weight matrices

associated with each visual word of a codebook, i.e., θc = [Wc1,Wc2, . . . ,WcK].
Obviously γc functions as a scale operator for a particular class, e.g., if γc = 0 then

the spatial location for class c is entirely omitted when classifying an image, i.e.,

only the sum of the descriptors’ Euclidean distance to their closest visual words

is considered. This scale operator can be determined manually or by using an

optimization model. Now, given codebook c, assume a vector dc ∈ RN that holds

the predictions of every extracted descriptor xn of a query image as its elements;

i.e., dcn = g(xn,Vc) =∥ xn − NNc(xn) ∥, where n ∈ {1, . . . ,N} corresponds to

extracted descriptor indices and NNc (xn) refers to the nearest visual word to xn

(NNc (xn) ≡ vcf). αc
n denotes the corresponding spatial weights assigned to dcn;

i.e., αc
n = γcWcf

ij . Referring to the vector of these spatial weights as αc ∈ RN ,

Equation (3.6) can now be redefined as (1−αc)⋅dc and an image can be classified

to class c by using the function

y (Xq) = argmin
c=1,...C

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(1 −αc) ⋅ dc

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
h(⋅ ∣θc)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(3.7)

Consider an image i that belongs to class j with an irrelevant class k. We would

like to satisfy the inequalities (1 −αj
i)

T
dj
i < (1 −αk

i )
T

dk
i . Given i training

images and j classes, we specify a set of S = i × j × (j − 1) inequality constraints

where k = j − 1. Since we will not be able to find a scale vector that satisfies all

such constraints, we introduce slack variables, ξijk, and try to minimize the sum

of slacks allowed. We also aim to select a scale vector γ so that Equation (3.6)

remains as close to Equation (3.2) as possible. Hence we minimize the Ln−norm
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(a)

(b)

(c)

Figure 3.3: Spatial layouts and weight matrix calculation for three different visual
words. The left sides of (a), (b) and (c) represent the spatial layouts of the visual
words that themselves represent the relative positions of the extracted descriptors
to their image boundaries. These layouts are then geometrically partitioned into
MM bins and a weight matrix W is computed as shown on the right sides of (a),
(b) and (c).
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Figure 3.4: The flow chart for the testing phase of our method.

of γ. Consequently, finding the scale vector γ = [γ1, . . . , γj] can now be modeled

as an optimization problem as follows:

min ∥ γ ∥n + ϕ∑
i,j,k

ξijk

subject to ∀(i, j, k) ∈ S ∶

(−αj
i)

T
dj
i + (αk

i )
T
dk
i < dk

i − dj
i + ξijk

ξijk ≥ 0 , γ ≥ 0

(3.8)

where ϕ is a penalizing factor. We choose n from {1, 2}, resulting in linear and

quadratic programming problems, respectively.

3.2.2.1 LP vs. QP

One may prefer the L2−norm, since sparsity is not desirable in our case due to

the fact that sparse solutions may heavily bias categories associated with large

scale weights. An alternative model is to define one weight value associated with
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Figure 3.5: The flow chart for the training phase of our method.

all categories. This model is less flexible but it prevents a possible degradation in

recognition performance caused by sparsity. The scale vector can also be manually

chosen. Figures 3.4 and 3.5 depict the testing and training phase of the proposed

method, respectively.

3.3 NNbMF for Automatic Image Annotation

In contrast with a regular classification problem where each instance exclusively

belongs to a single class, there could be more than one semantic label associated

with an image in an annotation domain (we consider semantic labels to be anal-

ogous to the classes of a classification framework). As a result the set of visual

words constructed for a class in the two domains implicate slightly different mean-

ings. In a recognition framework the set of visual words are solely representatives

of that particular class whereas in the annotation domain where instances belong

to multiple classes it is hard to distinguish the visual words that truly describe

the semantic concept. One way to avoid this situation is to assign larger weights

to visual words that we somehow believe is more representative to that particular

concept. The parameters θc = [ω1c, . . . , ωNc]T of the fusion function in Equation

(3.3) then holds such weights. However the procedure of calculating the weights

is left for future work as well as the option of incorporating spatial information.

Consider the set Xq = [x1, x2, . . . ,xN]T denoting the extracted feature descrip-

tors from the image to be annotated, in Section 3.2.2 we assumed a vector dc ∈ RN
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that holds the predictions of every extracted descriptor xn of a query image as its

elements; i.e., dcn = g(xn,Vc) =∥ xn −NNc(xn) ∥, where n ∈ {1, . . . ,N} describes

the extracted descriptor indices and c ∈ {1, . . . ,C} the semantic labels (classes).

Let us define yet another vector δ ∈ RC where δc =∥ dc ∥1, to annotate the im-

age with the extracted descriptor set Xq we solve the following binary integer

programming problem

min y ⋅ δ

subject to ∑
c

yc = k

yc = {0, 1} ∀c = 1, . . . ,C

(3.9)

where k determines the number of labels for annotation and ∥ ⋅ ∥1 denotes the

L1-norm. Basically with the above optimization procedure we find the classes

which have the smallest distances to the extracted descriptor set.



Chapter 4

Experimental Setup and Results

In this chapter, we first present the experimental setup and results of our NN-

based metric function for the indoor scene recognition task on the 15 scenes [7]

and 67 indoor scenes datasets [10]. We then describe our setup and present

results for the annotation problem in the subsequent section. Finally, we give

information about the runtime performance of our procedure.

4.1 Image Datasets

4.1.1 15-Scenes Dataset

The 15-scenes dataset contains 4485 images spread over 15 indoor and outdoor

categories containing 200 to 400 images each. We use the same experimental setup

as in [7] and randomly choose 100 images per class for training, i.e., for codebook

generation and learning the scale vector γ, and use the remaining images for

testing.

23
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4.1.2 67-Indoors Dataset

The 67-indoor scenes dataset contains images solely from indoor scenes with

very high intra-class variations and inter-class similarities. We use the same

experimental setup, as in [10] and [45]. Approximately 20 images per class are

used for testing and 80 images per class for training.

4.2 Experimental Setup

4.2.1 Parameter Selections

In our solution, we use two different scales of SIFT descriptors for evaluation.

For the 15-scenes dataset, patches with bin sizes of 6 and 12 pixels are used, and

for the 67-indoor scenes dataset, the bin sizes are selected as 8 and 16 pixels.

The SIFT descriptors are sampled and concatenated at every four pixels and are

constructed from 4×4 grids with eight orientation bins (256 dimension in total).

The training images are first resized to speed the computation and to provide scale

consistency. The aspect ratio is maintained, but all images are scaled down so

their largest resolution does not exceed 500 and 300 pixels and the feature space is

clustered using K-means into 500 and 800 visual words, for the 67-indoor scenes

and 15-scenes datasets, respectively. We use 100K SIFT descriptors extracted

from random patches to construct a codebook.

The spatial layout of each visual word from each category is geometrically

partitioned into M ×M bins and a weight matrix is formed for each visual word

from Equation (3.4) and Equation (3.5). Several settings are used to determine

the scale vector γ. We first consider assigning different weights to all categories

(γ ∈ RC). We find the optimal scale vector by setting n = {1, 2} in Equation (3.8)

and solving the corresponding optimization problem. We also use another setting

for the optimization model where we assign the same weight to all categories

(γ ∈ R). Alternatively, we select the scale parameter manually.
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The constraints in Equation (3.8) are formed as described in the previous

section with 10 training images per class. The rest of the training set is used

for codebook construction. The subset of the training images used for parameter

learning is also employed as the validation set when manually tuning the scale

parameter to find its optimal value. The value that yields the highest performance

for this validation set is then selected for our method.

4.2.2 Evaluation Method

The performance rate is calculated by the ratio of correctly classified test images

within each class. The final recognition rate is the total number of correctly

classified images divided by the total number of test images used in the evaluation.

4.3 Results and Discussion

Table 4.1 shows recognition rates for both datasets with different scale vector

settings. Baseline and Baselinefull refer to the method when Equation (3.2) is

used (no spatial information is incorporated). The difference is that Baselinefull

uses all available training images for codebook generation while Baseline leaves

10 images per class for scale parameter learning. In Table 4.1, the settings to

the right of the baselines use the corresponding codebook setup. Observe the

positive correlation between the number of training images used for constructing

codebooks and the general recognition rate. This impact is clearly visible on the

67-indoors dataset. When we generate codebooks using all available training data

the recognition rate increases by 2%. The 15-scenes dataset has little intra-class

variations with respect to the 67-indoors dataset, hence increasing the number

of training images for codebooks generation yields only a slight increase in the

performance.

The results where a scale parameter is assigned to every category (γ =
[γ1, γ2, . . . , γC] ∈ RC) are slightly better than the baseline implementation
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in the 15-scenes benchmark. In spite of an insignificant increase, we observe that

setting n = 2 in Equation (3.8) gives a higher recognition rate compared to that

with n = 1. This confirms our previous assertion that dense solutions increase

the performance. This effect is clearly observed when we assign the same scaling

parameter γ to all 15 categories. On the other hand, assigning a different scale

parameter for each category in the 67-indoor scenes dataset decreases the perfor-

mance values for both the LP and QP programming models. In fact we observed

that the solutions to these models are identical for our setting. This situation

can be avoided and the overall performance value can be increased by using more

training images, however this results in the reduction of the number of available

training images for codebook construction which also degrades the recognition

rate.

Another solution is to assign the same scale parameter to all categories. This

positively affects the performance, resulting in a 43% and 45% recognition rate

with the two corresponding codebook setups when a LP optimization model is

used to determine the scale parameter. One can easily expect that this effect will

be much stronger in a problem domain where spatial distributions of the visual

words are more ordered and compact. The last two columns in Table 4.1 shows

the recognition rate when the scale parameter is manually tuned. As the initial

selection for the parameter we used the value determined by the LP model. The

performance rate of this initial selection is also included in Table 1 (γm = γLP ).
The heuristic optimal value γ∗m is then found by a simple numerical search.

Although the learned value of the scale parameter increases the accuracy of

the method, manually tuning the parameter with respect to a validation set

provides the highest accuracy in our setting. A more robust learning scheme can

be constructed by introducing further constraints to the optimization model in

Equation (3.8).

Figure 4.1 shows the recognition rates with different weight matrix (W) sizes.

Geometrically partitioning the spatial layout into 5 × 5 and 8 × 8 grids yields the

best results for the 15-scenes and 67-indoor scenes datasets, respectively. The 15-

scenes dataset can be separated into five indoor and nine outdoor categories. We
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ignore the industrial category since it contains both indoor and outdoor images.

Observe that incorporating spatial information improves the performance rate of

the outdoor categories by 2% only. The performance rate for the indoor categories

is improved by up to 6%. This difference can be explained by the more orderly

form of the descriptors extracted from the indoor images. This improvement is

4.5% for the 67-indoor scenes dataset due to further difficulty and intra-class

variations.

Table 4.2 compares our method with the state-of-the-art scene recognition

algorithms. Our method achieves more than 7% improvement over the best pub-

lished result in the 67-indoor benchmark [28] and shows competitive performance

in the 15-scenes dataset. Figures 4.2 and 4.3 show the confusion matrix for the

67 indoor scenes and 15 scenes datasets, respectively.

Our method also induces rankings that could naturally be used as a pre-

processing step in another recognition algorithm. As shown in Figures 4.4 (a) and

(b), our method returns the correct category within the top ten results by ranking

the categories for a query image with 82% overall accuracy in the 67-indoor scenes

benchmark. This rate is near 100% considering the returned top three results in

the 15-scenes dataset (cf. Figure 4.4 (a)). Hence one can utilize this aspect of

our algorithm to narrow down category choices, consequently increasing their

final recognition rate by analyzing other information channels of the query image

with different complementary descriptors or classification methods. Figure 4.5

shows a set of classified images.
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(a) 15 scenes

(b) 67 indoors

Figure 4.1: Recognition rates based on different grid size settings.
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Figure 4.2: Confusion matrix for the 67-indoor scenes dataset. The horizontal
and vertical axes correspond to the true and predicted classes, respectively.
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Figure 4.3: Confusion matrix for the 15-scenes dataset. The columns and rows
denote the true and predicted classes, respectively.
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(a) 15 scenes

(b) 67 indoors

Figure 4.4: Recognition rates based on rankings. Given a query image, if the true
category is returned in the top-k results, it is considered a correct classification.
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Table 4.3: Recognition Rates for each Category (67-Indoors)

Category Rate Category Rate Category Rate

airport inside 0.30 elevator 0.62 movietheater 0.65
artstudio 0.25 fastfood restaurant 0.47 museum 0.35

auditorium 0.72 florist 0.68 nursery 0.70
bakery 0.26 gameroom 0.25 office 0.05

bar 0.44 garage 0.56 operating room 0.16
bathroom 0.50 greenhouse 0.65 pantry 0.65
bedroom 0.38 grocerystore 0.67 poolinside 0.30
bookstore 0.40 gym 0.28 prisoncell 0.40
bowling 0.90 hairsalon 0.38 restaurant 0.10
buffet 0.60 hospitalroom 0.50 restaurant kitchen 0.30
casino 0.63 inside bus 0.74 shoeshop 0.26

children room 0.50 inside subway 0.76 stairscase 0.40
church inside 0.68 jewelleryshop 0.32 studiomusic 0.68

classroom 0.78 kindergarden 0.50 subway 0.48
cloister 0.90 kitchen 0.48 toystore 0.55
closet 0.72 laboratorywet 0.23 trainstation 0.60

clothingstore 0.50 laundromat 0.55 tv studio 0.50
computerroom 0.67 library 0.45 videostore 0.32

concert hall 0.40 livingroom 0.35 waitingroom 0.24
corridor 0.62 lobby 0.25 warehouse 0.52

deli 0.21 locker room 0.43 winecellar 0.48
dentaloffice 0.43 mall 0.45
dining room 0.33 meeting room 0.27

Table 4.4: Recognition Rates for each Category (15-Scenes)

Category Rate Category Rate

suburb 0.96 tallbuilding 0.86
coast 0.88 office 0.95
forest 0.95 bedroom 0.57

highway 0.86 industrial 0.61
insidecity 0.79 kitchen 0.73
mountain 0.92 livingroom 0.80

opencountry 0.72 store 0.77
street 0.88
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Figure 4.5: Classified images for a subset of indoor scenes. Images from the first
four rows are taken from the 67-indoor scenes and the last two rows are from
the indoor categories of the 15-scenes dataset. For every query image the list of
ranked categories is shown on the right side. The bold name denotes the true
category.
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4.4 Evaluation and Results for Auto-annotation

The IAPR dataset we used for evaluation consists of 19875 images. 17665 of

these images are used for codebook construction and 1962 images are used for

testing purposes. Figure 4.6 displays sample images. For each label, images were

obtained having been annotated with it and SIFT descriptors were extracted

from patches with bin sizes of 8 and 16 pixels. Then from randomly chosen 100K

descriptors a codebook was constructed using K-means consisting of 200 visual

words for the particular label. In the testing phase Equation (3.9) was used with

different k settings. In both training and testing we scaled the images to have 4:3

aspect ratio (or 3:4 if image height is larger than its width). The performance is

measured by calculating the mean precision and recall over all keywords/concepts.

The precision of a keyword is defined as the number of images correctly assigned

by that word divided by the total number of images assigned by it. Recall of

a keyword is defined as the number of images correctly assigned by that word

divided by the number of images annotated with that particular word in the

ground truth annotation. Table 4.5 shows results with different k settings and

Table 4.6 compares our method with a state-of-the-art baseline technique in the

auto-annotation literature. Although our method’s performance is inferior there

Figure 4.6: Sample images with respective human annotations from the IAPR
dataset.

is much space for improvement. As we mentioned before not all visual words of a

category truly describe the concept, hence weighting the visual words with respect

to their representative power will likely increase the annotation performance. We

also did not take into account the spatial arrangement of the visual words as in

the recognition task. Although huge spatial variations of the concepts exist, one
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Table 4.5: Annotation performance with different k settings. There are total of
291 concepts.

K = 200 k = 5 k = 10 k = 15 k = 20 k = 25 k = 30

Mean precision 0.07 0.08 0.10 0.11 0.10 0.10
Mean recall 0.05 0.09 0.13 0.17 0.20 0.23

# of words with recall > 0 118 158 194 224 238 252

may still benefit from incorporating the spatial structure especially with concepts

that appear in similar schemes/areas in an image. Context modeling for auto-

matic image annotation has also attracted attention from the vision community

recently. Incorporating the contextual information of the semantic labels has

shown to increase the annotation performance [38]. Thus integrating contextual

information into the metric function would also enhance annotation accuracy.

Table 4.6: Performance comparison with a state-of-the-art baseline technique

NNbMF Makadia et al. [36]
k = 15 k = 5

Mean precision 0.11 0.26
Mean recall 0.13 0.16

# of words with recall > 0 194 199

4.5 Runtime Performance

Compared to learning-based methods such as the popular Support Vector Ma-

chines (SVM), the Nearest-Neighbor classifier has a slow classification time, es-

pecially when the dataset is too large and the dimension of the feature vectors is

too high. Several approximation techniques have been proposed to increase the

efficiency of this method, such as [47], and [48]. These techniques involve pre-

processing the search space using data structures, such as KD-trees or BD-trees.

These trees are hierarchically structured so that only a subset of the data points

in the search space is considered for a query point. We utilize the Approximate

Nearest Neighbors library (ANN) [47]. For the 67 indoor scenes benchmark, it
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takes approximately 0.9 seconds to form a tree structure of a category codebook

and about 2.0 seconds to search all query points of an image in a tree structure,

using an Intel Centrino Duo 2.2 GHz CPU. Without quantizing, it takes about

100 seconds to search all the query points. For the 15-scenes benchmark, it takes

about 1.5 seconds to construct a search tree and 4.0 seconds to search all query

points in it. Without quantizing, it takes approximately 200 seconds to search

all the query points.

The CUDA implementation of the K-nearest neighbor method [49] further

increases the efficiency by parallelizing the search process. We observed ∼0.2

seconds per class needed to search the query points extracted from an image

using a NVIDIA Geforce 310M graphics card.

The annotation runtime performance was only tested with the CUDA imple-

mentation of the K-NN method. It takes ∼30 seconds to annotate an image.



Chapter 5

Conclusion and Future Work

We proposed a simple, yet effective nearest-neighbor based metric function for

recognizing indoor scene images. In addition, given an image our method also

induces rankings of categories for a possible pre-processing step for further clas-

sification analyses. Our method also incorporates the spatial layout of the visual

words formed by clustering the feature space. Experimental results show that

the proposed method effectively classifies indoor scene images compared to state-

of-the-art methods. We are currently investigating how to further improve the

spatial extension part of our method by using other estimation techniques to

better capture and model the layout of the formed visual words.

We also employed the proposed metric function for auto-annotation. Although

performance of our method is inferior in this domain, we believe that there is

much space for improvement. Integrating contextual, spatial information into

the metric function will likely improve the annotation accuracy. Also weighting

the visual words according to their discriminative power and using complementary

features can also enhance the performance.
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Germany), pp. 195–203, August 2004.

[24] L. Fei-Fei and P. Perona, “A bayesian hierarchical model for learning natural

scene categories,” in Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, vol. 2 of CVPR ’05, pp. 524–

531, June 2005.



BIBLIOGRAPHY 42

[25] P. Quelhas, F. Monay, J.-M. Odobez, D. Gatica-Perez, and T. Tuytelaars,

“A thousand words in a scene,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 29, pp. 1575–1589, September 2007.

[26] V. Viitaniemi and J. Laaksonen, “Spatial extensions to bag of visual words,”

in Proceedings of the ACM International Conference on Image and Video

Retrieval, CIVR ’09, Article no. 37, (New York, NY, USA), pp. 1–8, ACM,

2009.
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