
CACHING TECHNIQUES FOR LARGE
SCALE WEB SEARCH ENGINES

A DISSERTATION SUBMITTED TO

THE DEPARTMENT OF COMPUTER ENGINEERING

AND THE GRADUATE SCHOOL OF ENGINEERING

AND SCIENCE OF BİLKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Rıfat Özcan

September, 2011

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Özgür Ulusoy (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Fazlı Can

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Assoc. Prof. Dr. Uğur Güdükbay

ii

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Adnan Yazıcı

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Enis Çetin

Approved for the Graduate School of Engineering and

Science:

Prof. Dr. Levent Onural
Director of Graduate School of Engineering and Science

iii

ABSTRACT

CACHING TECHNIQUES FOR LARGE SCALE WEB
SEARCH ENGINES

Rıfat Özcan

Ph.D. in Computer Engineering

Supervisor: Prof. Dr. Özgür Ulusoy

September, 2011

Large scale search engines have to cope with increasing volume of web content

and increasing number of query requests each day. Caching of query results is

one of the crucial methods that can increase the throughput of the system. In

this thesis, we propose a variety of methods to increase the efficiency of caching

for search engines.

We first provide cost-aware policies for both static and dynamic query result

caches. We show that queries have significantly varying costs and processing

cost of a query is not proportional to its frequency (popularity). Based on this

observation, we develop caching policies that take the query cost into consider-

ation in addition to frequency, while deciding which items to cache. Second, we

propose a query intent aware caching scheme such that navigational queries are

identified and cached differently from other queries. Query results are cached and

presented in terms of pages, which typically includes 10 results each. In naviga-

tional queries, the aim is to reach a particular web site which would be typically

listed at the top ranks by the search engine, if found. We argue that caching

and presenting the results of navigational queries in this 10-per-page manner is

not cost effective and thus we propose alternative result presentation models and

investigate the effect of these models on caching performance. Third, we propose

a cluster based storage model for query results in a static cache. Queries with

common result documents are clustered using single link clustering algorithm. We

provide a compact storage model for those clusters by exploiting the overlap in

query results. Finally, a five-level static cache that consists of all cacheable data

items (query results, part of index, and document contents) in a search engine

setting is presented. A greedy method is developed to determine which items to

cache. This method prioritizes items for caching based on gains computed using

items’ past frequency, estimated costs, and storage overheads. This approach also

iv

v

considers the inter-dependency between items such that caching of an item may

affect the gain of items that are not cached yet.

We experimentally evaluate all our methods using a real query log and docu-

ment collections. We provide comparisons to corresponding baseline methods in

the literature and we present improvements in terms of throughput, number of

cache misses, and storage overhead of query results.

Keywords: Search engine, caching techniques, cost-aware caching, navigational

queries.

ÖZET

BÜYÜK ÖLÇEKLİ ARAMA MOTORLARINDA
ÖNBELLEKLEME TEKNİKLERİ

Rıfat Özcan

Bilgisayar Mühendisliği, Doktora

Tez Yöneticisi: Prof. Dr. Özgür Ulusoy

Eylül, 2011

Büyük ölçekli arama motorları artan ağ içeriği ve artan günlük sorgu sayısı ile

mücadele etmek zorundadırlar. Sorgu cevaplarının önbelleklenmesi ise sistemin

belli bir zamanda sorgu cevaplama sayısını arttırabileceği kritik yöntemlerden

birisidir. Bu tezde, arama motorlarında önbelleklemenin verimliliğini arttırıcı

çeşitli yöntemler önerilmektedir.

İlk olarak, statik ve dinamik sorgu cevabı önbellekleri için maliyet bazlı

önbellekleme yöntemleri geliştirilmiştir. Sorguların ciddi oranda farklı maliyet-

lerinin olduğu ve bu maliyet ile frekans arasında doğru orantı olmadığı

gözlemlenmiştir. Bu nedenle önbelleğe hangi öğelerin alınacağına karar ver-

ilirken frekansa ek olarak sorgu maliyetini de göz önüne alan yöntemler tasar-

lanmıştır. İkinci olarak, navigasyonel sorguların tanımlanarak diğer sorgu-

lardan farklı olarak önbelleklendiği bir sorgu tipi bazlı önbellekleme yöntemi

geliştirilmiştir. Sorgu cevapları genellikle her biri 10 cevap içeren sonuç sayfaları

olarak sunulmakta ve önbellekte saklanmaktadır. Navigasyonel sorgularda amaç

belirli bir ağ sayfasına ulaşmaktır ve bu sayfa arama motoru tarafından bulunursa

yüksek sıralarda listelenmektedir. Bu sorgu tipi için cevapların bir sayfada 10 ce-

vap olacak şekilde sunulup önbellekte saklanmasının maliyet etkinliği olmayan

bir yöntem olduğu gösterilmiş ve alternatif cevap sunum modelleri önerilerek

bunların önbellekleme üzerindeki etkisi araştırılmıştır. Üçüncü olarak, statik

önbellekte sorgu cevapları için kümeleme bazlı bir saklama yöntemi önerilmiştir.

Ortak cevap belgesi olan sorgular tek bağlantı yöntemi ile kümelenmiştir. Oluşan

kümelerdeki sorgu cevaplarındaki örtüşmeden yararlanan kompakt bir saklama

modeli sunulmuştur. Son olarak, bir arama motoru ortamında önbelleklenebilecek

tüm veri öğelerini (sorgu cevapları, endeks parçası ve belge içeriği) içerisinde

barındıran beş-seviyeli bir statik önbellek önerilmiştir. Öğelerin hangi sırayla

önbelleğe alınacağını belirlemek için bir açgözlü algoritma geliştirilmiştir. Bu

vi

vii

yöntem önbelleğe alınmada öğeleri geçmiş frekans değerleri, öngörülen maliyet

ve önbellekte kaplayacağı alan açısından önceliklendirmektedir. Ayrıca öğeler

arasındaki bağımlılık göz önüne alınarak bir öğenin önbelleğe alınmasından sonra

henüz önbelleğe alınmamış bağımlı öğelerin kazanç değerleri değiştirilmektedir.

Önerilen bütün yöntemler gerçek sorgu kütüğü ve belge kolleksiyonu kul-

lanan deneylerle test edilmiştir. Literatürde karşılık gelen referans yöntemler

ile karşılaştırmalar sunulmuş ve üretilen iş, sorgu ıskalama sayısı ve sorgu cevap-

larının kapladığı alan bazında gelişmeler elde edilmiştir.

Anahtar sözcükler : Arama motoru, önbellekleme teknikleri, maliyet-bazlı

önbellekleme, navigasyonel sorgular.

Acknowledgement

I would like to express my deepest thanks and gratitude to my supervisor Prof.

Dr. Özgür Ulusoy for his invaluable suggestions, support, guidance and patience

during this research.

I would like to thank all committee members for spending their time and effort

to read and comment on my thesis.

I would like to thank Dr. İsmail Sengör Altıngövde for his support and guid-

ance during this research. Furthermore, I also thank to my colleagues Dr. Berkant

Barla Cambazoğlu and Şadiye Alıcı.

I would like to thank the Scientific and Technological Research Council of

Turkey (TÜBİTAK) for supporting my PhD.

Finally, I would like to thank my family.

viii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

2 Background and Related Work 5

2.1 Large Scale Web Search Engines 5

2.2 Caching in Web Search Engines 7

2.3 Result Cache Filling Strategies 13

2.3.1 Frequency based . 13

2.3.2 Recency based . 14

2.3.3 Cost based . 14

2.4 Result Cache Evaluation Metrics 16

2.5 Result Cache Freshness . 17

3 Cost-Aware Query Result Caching 18

3.1 Introduction . 19

ix

CONTENTS x

3.2 Experimental Setup . 21

3.3 An Analysis of the Query Processing Cost 22

3.3.1 The Setup for Cost Measurement 22

3.3.2 Experiments . 26

3.4 Cost-Aware Static and Dynamic Caching 33

3.4.1 Cost-Aware Caching Policies for a Static Result Cache . . 33

3.4.2 Cost-Aware Caching Policies for a Dynamic Result Cache . 36

3.4.3 Cost-Aware Caching Policies for a Hybrid Result Cache . . 38

3.5 Experiments . 39

3.5.1 Simulation Results for Static Caching 40

3.5.2 Simulation Results for Dynamic Caching 44

3.5.3 Simulation Results for Hybrid Caching 46

3.5.4 Additional Experiments 50

3.6 Conclusion . 53

4 Query Intent Aware Result Caching 56

4.1 Introduction . 57

4.2 Related Work on Identifying User Search Goals 59

4.3 Result page models for navigational queries: Cost analysis and

evaluation . 62

4.3.1 Cost Analysis of the Result Page Models 64

CONTENTS xi

4.3.2 Evaluation of the Result Page Models 66

4.4 Caching with the result page models and experimental evaluation 72

4.4.1 Employing Result Page Models for Caching 72

4.4.2 Experiments . 73

4.5 User browsing behavior with the non-uniform result page model . 78

4.5.1 User Study Setup . 79

4.5.2 User Study Results . 82

4.6 Conclusion . 85

5 Space Efficient Caching of Query Results 86

5.1 Introduction . 87

5.2 Related Work on Query Clustering 87

5.3 Cluster-based Storage of Query Results 89

5.3.1 Query Clustering . 89

5.3.2 Storage of Query Results 90

5.4 Experiments . 93

5.5 Conclusion . 96

6 A Five-Level Static Cache Architecture 97

6.1 Introduction . 98

6.2 Query processing overview . 99

6.3 Five-level static caching . 100

CONTENTS xii

6.3.1 Architecture . 100

6.3.2 Cost-based mixed-order caching algorithm 100

6.4 Dataset and Setup . 104

6.5 Experiments . 107

6.5.1 Performance of single-level cache architectures 108

6.5.2 Performance of two-level and three-level cache architectures 113

6.5.3 Performance of five-level cache architecture with mixed-

order algorithm . 114

6.6 Conclusion . 117

7 Conclusion 118

List of Figures

2.1 Large scale search engine consisting of geographically distributed

search clusters. 6

2.2 Query processing in a search cluster. 7

2.3 Inverted index data structure. 8

2.4 Caching in a large scale search engine architecture. 9

3.1 Query processing in a typical large scale search engine. (Oz-

can, R., Altingovde, I.S., Ulusoy, O., “Cost-Aware Strate-

gies for Query Result Caching in Web Search Engines,” ACM

Transactions on the Web, Vol. 5:2, c©2011 ACM, Inc.

http://dx.doi.org/10.1145/1961659.1961663. Reprinted by per-

mission.) . 23

3.2 Correlation of “query result size/collection size” on Yahoo! and

a) ODP, b) Webbase, and c) Webbase semantically aligned for

the conjunctive processing mode. (Ozcan, R., Altingovde, I.S.,

Ulusoy, O., “Cost-Aware Strategies for Query Result Caching in

Web Search Engines,” ACM Transactions on the Web, Vol. 5:2,

c©2011 ACM, Inc. http://dx.doi.org/10.1145/1961659.1961663.

Reprinted by permission.) . 29

xiii

LIST OF FIGURES xiv

3.3 Normalized log-log scatter plot of the query CPU execution time

and query frequency in the a) ODP, b) Webbase, and c) Web-

base semantically aligned query log. (Ozcan, R., Altingovde, I.S.,

Ulusoy, O., “Cost-Aware Strategies for Query Result Caching in

Web Search Engines,” ACM Transactions on the Web, Vol. 5:2,

c©2011 ACM, Inc. http://dx.doi.org/10.1145/1961659.1961663.

Reprinted by permission.) . 32

3.4 Normalized log-log scatter plot of the query result-set size and

the query frequency in the ODP query log for 10K queries.

(Ozcan, R., Altingovde, I.S., Ulusoy, O., “Cost-Aware Strate-

gies for Query Result Caching in Web Search Engines,” ACM

Transactions on the Web, Vol. 5:2, c©2011 ACM, Inc.

http://dx.doi.org/10.1145/1961659.1961663. Reprinted by per-

mission.) . 33

3.5 Normalized log-log scatter plot of the query result-set size in

Yahoo! and the query frequency in the query log for 5K

queries. (Ozcan, R., Altingovde, I.S., Ulusoy, O., “Cost-Aware

Strategies for Query Result Caching in Web Search Engines,”

ACM Transactions on the Web, Vol. 5:2, c©2011 ACM, Inc.

http://dx.doi.org/10.1145/1961659.1961663. Reprinted by per-

mission.) . 34

3.6 Total query processing times (in seconds) obtained using different

static caching strategies for the ODP log when a) 25%, b) 50%,

and c) 100% of the index is cached. (Ozcan, R., Altingovde, I.S.,

Ulusoy, O., “Cost-Aware Strategies for Query Result Caching in

Web Search Engines,” ACM Transactions on the Web, Vol. 5:2,

c©2011 ACM, Inc. http://dx.doi.org/10.1145/1961659.1961663.

Reprinted by permission.) . 42

LIST OF FIGURES xv

3.7 Total query processing times (in seconds) obtained using dif-

ferent static caching strategies for the a) Webbase and b)

Webbase semantically aligned logs when 100% of the index is

cached. (Ozcan, R., Altingovde, I.S., Ulusoy, O., “Cost-Aware

Strategies for Query Result Caching in Web Search Engines,”

ACM Transactions on the Web, Vol. 5:2, c©2011 ACM, Inc.

http://dx.doi.org/10.1145/1961659.1961663. Reprinted by per-

mission.) . 43

3.8 Total query processing times (in seconds) obtained using different

dynamic caching strategies for the ODP log when a) 25%, b) 50%,

and c) 100% of the index is cached. (Ozcan, R., Altingovde, I.S.,

Ulusoy, O., “Cost-Aware Strategies for Query Result Caching in

Web Search Engines,” ACM Transactions on the Web, Vol. 5:2,

c©2011 ACM, Inc. http://dx.doi.org/10.1145/1961659.1961663.

Reprinted by permission.) . 46

3.9 Total query processing times (in seconds) obtained using dif-

ferent dynamic caching strategies for the a) Webbase and b)

Webbase semantically aligned logs when 100% of the index is

cached. (Ozcan, R., Altingovde, I.S., Ulusoy, O., “Cost-Aware

Strategies for Query Result Caching in Web Search Engines,”

ACM Transactions on the Web, Vol. 5:2, c©2011 ACM, Inc.

http://dx.doi.org/10.1145/1961659.1961663. Reprinted by per-

mission.) . 47

3.10 Total query processing times (in seconds) obtained using different

hybrid caching strategies for the ODP log when a) 25%, b) 50%,

and c) 100% of the index is cached. (Ozcan, R., Altingovde, I.S.,

Ulusoy, O., “Cost-Aware Strategies for Query Result Caching in

Web Search Engines,” ACM Transactions on the Web, Vol. 5:2,

c©2011 ACM, Inc. http://dx.doi.org/10.1145/1961659.1961663.

Reprinted by permission.) . 50

LIST OF FIGURES xvi

3.11 Total query processing times (in seconds) obtained using dif-

ferent hybrid caching strategies for the a) Webbase and b)

Webbase semantically aligned logs when 100% of the index is

cached. (Ozcan, R., Altingovde, I.S., Ulusoy, O., “Cost-Aware

Strategies for Query Result Caching in Web Search Engines,”

ACM Transactions on the Web, Vol. 5:2, c©2011 ACM, Inc.

http://dx.doi.org/10.1145/1961659.1961663. Reprinted by per-

mission.) . 51

3.12 Percentages of time reduction due to caching using best static, dy-

namic, and hybrid approaches for the ODP log when 100% of the

index is cached. (Ozcan, R., Altingovde, I.S., Ulusoy, O., “Cost-

Aware Strategies for Query Result Caching in Web Search En-

gines,” ACM Transactions on the Web, Vol. 5:2, c©2011 ACM,

Inc. http://dx.doi.org/10.1145/1961659.1961663. Reprinted by

permission.) . 52

3.13 Total query processing times (in seconds) obtained using different

dynamic caching strategies for the ODP log when queries are pro-

cessed in the disjunctive processing mode. (Ozcan, R., Altingovde,

I.S., Ulusoy, O., “Cost-Aware Strategies for Query Result Caching

in Web Search Engines,” ACM Transactions on the Web, Vol. 5:2,

c©2011 ACM, Inc. http://dx.doi.org/10.1145/1961659.1961663.

Reprinted by permission.) . 53

3.14 Average query response time obtained using different caching

strategies for various query workloads (simulated by the dif-

ferent mean query inter-arrival times) of the ODP log. (Oz-

can, R., Altingovde, I.S., Ulusoy, O., “Cost-Aware Strate-

gies for Query Result Caching in Web Search Engines,” ACM

Transactions on the Web, Vol. 5:2, c©2011 ACM, Inc.

http://dx.doi.org/10.1145/1961659.1961663. Reprinted by per-

mission.) . 54

LIST OF FIGURES xvii

4.1 Log graph showing number of query instances of which the last

click is at a given rank (for training log). (Ozcan, R., Altin-

govde, I.S., Ulusoy, O., “Exploiting Navigational Queries for Re-

sult Presentation and Caching in Web Search Engines,” Jour-

nal of the American Society for Information Science and Tech-

nology, Vol. 62:4, 714-726. c©2011 John Wiley and Sons.

http://dx.doi.org/10.1002/asi.21496. Reprinted by permission.) . 67

4.2 Graph showing the costs of two page result presentation mod-

els for only navigational queries. (Ozcan, R., Altingovde,

I.S., Ulusoy, O., “Exploiting Navigational Queries for Result

Presentation and Caching in Web Search Engines,” Journal

of the American Society for Information Science and Tech-

nology, Vol. 62:4, 714-726. c©2011 John Wiley and Sons.

http://dx.doi.org/10.1002/asi.21496. Reprinted by permission.) . 71

4.3 Hit ratios vs. fs (fraction of the cache reserved for static cache);

fs = 0 : purely dynamic, fs = 1 : purely static cache. (Oz-

can, R., Altingovde, I.S., Ulusoy, O., “Exploiting Navigational

Queries for Result Presentation and Caching in Web Search En-

gines,” Journal of the American Society for Information Science

and Technology, Vol. 62:4, 714-726. c©2011 John Wiley and Sons.

http://dx.doi.org/10.1002/asi.21496. Reprinted by permission.) . 74

4.4 Caching performances due to various levels of prefetching (F

as the prefetching factor) with fs = 0.8 and the cache size as

the number of cached result page entries. (Ozcan, R., Altin-

govde, I.S., Ulusoy, O., “Exploiting Navigational Queries for Re-

sult Presentation and Caching in Web Search Engines,” Jour-

nal of the American Society for Information Science and Tech-

nology, Vol. 62:4, 714-726. c©2011 John Wiley and Sons.

http://dx.doi.org/10.1002/asi.21496. Reprinted by permission.) . 75

LIST OF FIGURES xviii

4.5 The search interface of the user study. (Ozcan, R., Altin-

govde, I.S., Ulusoy, O., “Exploiting Navigational Queries for Re-

sult Presentation and Caching in Web Search Engines,” Jour-

nal of the American Society for Information Science and Tech-

nology, Vol. 62:4, 714-726. c©2011 John Wiley and Sons.

http://dx.doi.org/10.1002/asi.21496. Reprinted by permission.) . 81

4.6 The pattern between Beyond Top 2 cases and navigational task or-

der. (Ozcan, R., Altingovde, I.S., Ulusoy, O., “Exploiting Naviga-

tional Queries for Result Presentation and Caching in Web Search

Engines,” Journal of the American Society for Information Science

and Technology, Vol. 62:4, 714-726. c©2011 John Wiley and Sons.

http://dx.doi.org/10.1002/asi.21496. Reprinted by permission.) . 84

5.1 Conventional cache storage mechanism for queries Q1, Q2, Q3 and

Q4. (c©2008 IEEE. Reprinted, with permission from Ozcan, R.,

Altingovde, I.S., Ulusoy, O., “Space Efficient Caching of Query

Results in Search Engines,” International Symposium on Com-

puter and Information Sciences (ISCIS’08), Istanbul, Turkey, 2008.

http://dx.doi.org/10.1109/ISCIS.2008.4717960) 91

5.2 Our storage mechanism exploiting query clustering. (c©2008

IEEE. Reprinted, with permission from Ozcan, R., Altingovde,

I.S., Ulusoy, O., “Space Efficient Caching of Query Results

in Search Engines,” International Symposium on Computer

and Information Sciences (ISCIS’08), Istanbul, Turkey, 2008.

http://dx.doi.org/10.1109/ISCIS.2008.4717960) 92

LIST OF FIGURES xix

5.3 Size distribution of query clusters for most frequent 40,000

queries (clustering similarity threshold is 0.1). (c©2008

IEEE. Reprinted, with permission from Ozcan, R., Altingovde,

I.S., Ulusoy, O., “Space Efficient Caching of Query Results

in Search Engines,” International Symposium on Computer

and Information Sciences (ISCIS’08), Istanbul, Turkey, 2008.

http://dx.doi.org/10.1109/ISCIS.2008.4717960) 96

6.1 Update dependencies in the mixed-order static caching algorithm.

Each arc decreases the value of a variable used in the gain computa-

tion. (Ozcan, R., Altingovde, I.S., Cambazoglu, B. B., Junqueira,

F. P., Ulusoy, O., “A Five-level Static Cache Architecture for Web

Search Engines,” Information Processing & Management, In Press.

c©2011 Elsevier. http://dx.doi.org/10.1016/j.ipm.2010.12.007.

Reprinted by permission.) . 103

6.2 The workflow used by the simulator in query processing. (Ozcan,

R., Altingovde, I.S., Cambazoglu, B. B., Junqueira, F. P., Ulusoy,

O., “A Five-level Static Cache Architecture for Web Search En-

gines,” Information Processing & Management, In Press. c©2011

Elsevier. http://dx.doi.org/10.1016/j.ipm.2010.12.007. Reprinted

by permission.) . 105

6.3 Performance of one-level cache architectures. (Ozcan, R., Altin-

govde, I.S., Cambazoglu, B. B., Junqueira, F. P., Ulusoy, O., “A

Five-level Static Cache Architecture for Web Search Engines,” In-

formation Processing & Management, In Press. c©2011 Elsevier.

http://dx.doi.org/10.1016/j.ipm.2010.12.007. Reprinted by per-

mission.) . 109

LIST OF FIGURES xx

6.4 The effect of frequency correction on the result cache performance.

(Ozcan, R., Altingovde, I.S., Cambazoglu, B. B., Junqueira, F.

P., Ulusoy, O., “A Five-level Static Cache Architecture for Web

Search Engines,” Information Processing & Management, In Press.

c©2011 Elsevier. http://dx.doi.org/10.1016/j.ipm.2010.12.007.

Reprinted by permission.) . 111

6.5 The performance of two-level caches for varying split ratios of

cache space between result (R) and list (L) items. (Ozcan, R.,

Altingovde, I.S., Cambazoglu, B. B., Junqueira, F. P., Ulusoy, O.,

“A Five-level Static Cache Architecture for Web Search Engines,”

Information Processing & Management, In Press. c©2011 Else-

vier. http://dx.doi.org/10.1016/j.ipm.2010.12.007. Reprinted by

permission.) . 112

6.6 The comparison of baseline two-level cache with two-level

mixed-order cache. (Ozcan, R., Altingovde, I.S., Cam-

bazoglu, B. B., Junqueira, F. P., Ulusoy, O., “A Five-level

Static Cache Architecture for Web Search Engines,” Informa-

tion Processing & Management, In Press. c©2011 Elsevier.

http://dx.doi.org/10.1016/j.ipm.2010.12.007. Reprinted by per-

mission.) . 114

6.7 The comparison of baseline three-level cache with three-level

mixed-order cache. (Ozcan, R., Altingovde, I.S., Cam-

bazoglu, B. B., Junqueira, F. P., Ulusoy, O., “A Five-level

Static Cache Architecture for Web Search Engines,” Informa-

tion Processing & Management, In Press. c©2011 Elsevier.

http://dx.doi.org/10.1016/j.ipm.2010.12.007. Reprinted by per-

mission.) . 115

LIST OF FIGURES xxi

6.8 The comparison of baseline two-, three-, and five-level caches

with five-level mixed-order cache. (Ozcan, R., Altingovde, I.S.,

Cambazoglu, B. B., Junqueira, F. P., Ulusoy, O., “A Five-

level Static Cache Architecture for Web Search Engines,” Infor-

mation Processing & Management, In Press. c©2011 Elsevier.

http://dx.doi.org/10.1016/j.ipm.2010.12.007. Reprinted by per-

mission.) . 116

List of Tables

2.1 Classification of earlier works on caching in web search engines.

(Ozcan, R., Altingovde, I.S., Cambazoglu, B. B., Junqueira, F.

P., Ulusoy, O., “A Five-level Static Cache Architecture for Web

Search Engines,” Information Processing & Management, In Press.

c©2011 Elsevier. http://dx.doi.org/10.1016/j.ipm.2010.12.007.

Reprinted by permission.) . 11

3.1 Disk parameters for simulating CDISK . (Ozcan, R., Altingovde,

I.S., Ulusoy, O., “Cost-Aware Strategies for Query Result Caching

in Web Search Engines,” ACM Transactions on the Web, Vol. 5:2,

c©2011 ACM, Inc. http://dx.doi.org/10.1145/1961659.1961663.

Reprinted by permission.) . 25

3.2 Characteristics of the query log variants. (Ozcan, R., Altingovde,

I.S., Ulusoy, O., “Cost-Aware Strategies for Query Result Caching

in Web Search Engines,” ACM Transactions on the Web, Vol. 5:2,

c©2011 ACM, Inc. http://dx.doi.org/10.1145/1961659.1961663.

Reprinted by permission.) . 27

3.3 Hybrid cache configurations. (Ozcan, R., Altingovde, I.S., Ulu-

soy, O., “Cost-Aware Strategies for Query Result Caching in

Web Search Engines,” ACM Transactions on the Web, Vol. 5:2,

c©2011 ACM, Inc. http://dx.doi.org/10.1145/1961659.1961663.

Reprinted by permission.) . 39

xxii

LIST OF TABLES xxiii

4.1 Caching performances with fs = 0.8 and prefetching F = 4. (Oz-

can, R., Altingovde, I.S., Ulusoy, O., “Exploiting Navigational

Queries for Result Presentation and Caching in Web Search En-

gines,” Journal of the American Society for Information Science

and Technology, Vol. 62:4, 714-726. c©2011 John Wiley and Sons.

http://dx.doi.org/10.1002/asi.21496. Reprinted by permission.) . 77

4.2 Caching performances with fs = 0.8 and prefetching F = 4 with

smoothing. (Ozcan, R., Altingovde, I.S., Ulusoy, O., “Exploiting

Navigational Queries for Result Presentation and Caching in Web

Search Engines,” Journal of the American Society for Information

Science and Technology, Vol. 62:4, 714-726. c©2011 John Wiley

and Sons. http://dx.doi.org/10.1002/asi.21496. Reprinted by per-

mission.) . 78

4.3 Caching performances by excluding costs for singleton query

misses (fs = 0.8 and prefetching F = 4). (Ozcan, R., Altin-

govde, I.S., Ulusoy, O., “Exploiting Navigational Queries for Re-

sult Presentation and Caching in Web Search Engines,” Jour-

nal of the American Society for Information Science and Tech-

nology, Vol. 62:4, 714-726. c©2011 John Wiley and Sons.

http://dx.doi.org/10.1002/asi.21496. Reprinted by permission.) . 79

4.4 Navigational and informational tasks used in the user study. (Oz-

can, R., Altingovde, I.S., Ulusoy, O., “Exploiting Navigational

Queries for Result Presentation and Caching in Web Search En-

gines,” Journal of the American Society for Information Science

and Technology, Vol. 62:4, 714-726. c©2011 John Wiley and Sons.

http://dx.doi.org/10.1002/asi.21496. Reprinted by permission.) . 80

LIST OF TABLES xxiv

4.5 User study experiment statistics. (Ozcan, R., Altingovde,

I.S., Ulusoy, O., “Exploiting Navigational Queries for Result

Presentation and Caching in Web Search Engines,” Journal

of the American Society for Information Science and Tech-

nology, Vol. 62:4, 714-726. c©2011 John Wiley and Sons.

http://dx.doi.org/10.1002/asi.21496. Reprinted by permission.) . 83

5.1 Storage performances. (c©2008 IEEE. Reprinted, with permis-

sion from Ozcan, R., Altingovde, I.S., Ulusoy, O., “Space Efficient

Caching of Query Results in Search Engines,” International Sym-

posium on Computer and Information Sciences (ISCIS’08), Istan-

bul, Turkey, 2008. http://dx.doi.org/10.1109/ISCIS.2008.4717960) 95

6.1 Cache types and their cost savings. (Ozcan, R., Altingovde,

I.S., Cambazoglu, B. B., Junqueira, F. P., Ulusoy, O., “A Five-

level Static Cache Architecture for Web Search Engines,” Infor-

mation Processing & Management, In Press. c©2011 Elsevier.

http://dx.doi.org/10.1016/j.ipm.2010.12.007. Reprinted by per-

mission.) . 101

6.2 Cost computations in the cache simulation. (Ozcan, R., Altin-

govde, I.S., Cambazoglu, B. B., Junqueira, F. P., Ulusoy, O., “A

Five-level Static Cache Architecture for Web Search Engines,” In-

formation Processing & Management, In Press. c©2011 Elsevier.

http://dx.doi.org/10.1016/j.ipm.2010.12.007. Reprinted by per-

mission.) . 107

6.3 Simulation parameters. (Ozcan, R., Altingovde, I.S., Cam-

bazoglu, B. B., Junqueira, F. P., Ulusoy, O., “A Five-level

Static Cache Architecture for Web Search Engines,” Informa-

tion Processing & Management, In Press. c©2011 Elsevier.

http://dx.doi.org/10.1016/j.ipm.2010.12.007. Reprinted by per-

mission.) . 108

LIST OF TABLES xxv

6.4 Future frequency values for past frequencies smaller than 5. (Oz-

can, R., Altingovde, I.S., Cambazoglu, B. B., Junqueira, F. P.,

Ulusoy, O., “A Five-level Static Cache Architecture for Web

Search Engines,” Information Processing & Management, In Press.

c©2011 Elsevier. http://dx.doi.org/10.1016/j.ipm.2010.12.007.

Reprinted by permission.) . 110

List of Publications

This dissertation is based on the following publications.

[Publication-I] R. Ozcan and I. S. Altingovde and O. Ulusoy, “Cost-aware

strategies for query result caching in web search engines,” ACM Transactions on

the Web, Vol. 5, No. 2, Article 9, 2011.

[Publication-II] R. Ozcan and I. S. Altingovde and O. Ulusoy, “Exploiting

navigational queries for result presentation and caching in web search engines,”

Journal of the American Society for Information Science and Technology, Vol.

62, No. 4, 714-726, 2011.

[Publication-III] R. Ozcan and I. S. Altingovde and B. B. Cambazoglu and

F. P. Junqueira and O. Ulusoy, “A five-level static cache architecture for web

search engines,” Information Processing & Management, In Press.

[Publication-IV] R. Ozcan and I. S. Altingovde and O. Ulusoy, “Static query

result caching revisited,” In Proceedings of the 17th International Conference on

World Wide Web, ACM, New York, NY, 1169-1170, 2008.

[Publication-V] R. Ozcan and I. S. Altingovde and O. Ulusoy, “Space effi-

cient caching of query results in search engines,” In Proceedings of the 23rd Int.

Symposium on Computer and Information Sciences, Istanbul, Turkey, 1-6, 2008.

[Publication-VI] R. Ozcan and I. S. Altingovde and O. Ulusoy, “Utilization

of navigational queries for result presentation and caching in search engines,” In

Proceedings of the 17th ACM Conference on Information and Knowledge Man-

agement (CIKM), Napa Valley, California, USA, 1499-1500, 2008.

xxvi

Chapter 1

Introduction

1.1 Motivation

The Internet has become the largest and most diverse source of knowledge (infor-

mation) in the world. In the early days, Internet was covering static homepages

with mostly textual information but today it is much more dynamic, reaching to

tens of billion web pages1, and it includes a wide range different web sites such

as giant enterprise web sites, multimedia (image, audio, video) sharing web sites,

blogs and social web sites. It is a challenge to find the web pages that contain

relevant information from this huge amount of data. At this point, large scale

search engines accept this challenge and try to answer millions of query requests

each day. For instance, Google, one of the largest search engines for the time

being, receives several hundred million queries per day2. Search engines have to

be efficient in order to respond to each user within seconds and effective so that

returned results are relevant to information needs of users.

Search engines crawl the web periodically in order to obtain the latest possible

content of the web. Thousands of computers are needed to store and process such

a collection. Next, an index structure is built on top of the crawled document

1http://www.worldwidewebsize.com/
2http://en.wikipedia.org/wiki/Google Search

1

CHAPTER 1. INTRODUCTION 2

collection. It is shown that inverted index file is the state-of-the-art data structure

for efficient retrieval [93]. Finally, queries are processed over the inverted index

using a retrieval (ranking) function that computes scores for documents based on

their relevance to the query and documents with highest scores are returned as

the query result. Additionally, result pages containing title, url and snippet (i.e.,

two or three sentence summary of the document) information are prepared and

displayed.

Query processing over a large inverted index file that is partitioned at thou-

sands of computers is a complex operation. In the first stage of processing, a

query must be forwarded to index servers containing the partial inverted index

files since it is not possible to accommodate the full index file in one server. Each

index server must access the disk to fetch the relevant parts of the index for

the query terms. A retrieval (ranking) algorithm has to be executed in order to

find the most relevant documents to the query. Finally, results from each index

server are aggregated and the result page is prepared. This requires access to the

contents of the documents.

A further challenge taken by large scale search engines is to perform the

query processing task in a very short period of time, almost instantly. To this

end, search engines employ a number of key mechanisms to cope with these

efficiency and scalability challenges. Caching, as applied in different areas of

computer science [29, 68, 75] successfully over many years, is one of these vital

methods to cope with these demanding requirements. The fundamental principle

in caching is to store items that will be requested in the near future. It is observed

that some popular queries are asked by many users and query requests have

temporal locality property, that means, a significant amount of queries submitted

previously are submitted again in the near future. This shows an evidence for

caching potential for query results [54]. Therefore, query results can be stored

in a reserved cache space and queries can be answered from the cache without

requiring any processing. In addition to query results, parts of the inverted index

structure and contents of documents can also be cached. Caching in the context of

large scale search engines has become an important and popular research problem

in recent years. In this thesis, we propose efficient strategies to improve the

CHAPTER 1. INTRODUCTION 3

efficiency of caching.

1.2 Contributions

In this thesis, we focus our attention on query result caching in large scale search

engines. Our basic contribution is to develop cost-aware and query intent aware

caching policies. We first propose cost-aware static and dynamic caching methods

that take the cost of queries into account while deciding which queries to cache.

Next, we deal with navigational queries (i.e., queries where the user is searching

for a website) and propose result presentation models for this query intent. We

analyze the impact of these models on the performance of query result caching.

We also contribute by proposing an efficient storage mechanism for query results

by clustering queries that have similar results. Finally, we provide a five-level

static cache architecture that considers different types of items (query results,

inverted index, document content, etc.) to cache at the same time using a greedy

approach. In the following paragraphs, we provide the details of our contributions

together with the organization of the thesis.

In Chapter 2, we provide the background information about large scale web

search engines and caching. We present a typical architecture of a search engine

and give details about query processing. Later, we describe different caching com-

ponents incorporated in this architecture to increase the efficiency. The literature

work on caching in the context of search engines is also given in this chapter.

In Chapter 3 (based on [64]), we propose cost-aware caching policies. We first

show that query processing costs may significantly vary among different queries

and the processing cost of a query is not proportional to its popularity. Based

on this observation, we propose to explicitly incorporate the query costs into the

caching policies. Our experiments using two large web crawl datasets and a real

query log reveal that the proposed approach improves overall system performance

in terms of the average query execution time.

CHAPTER 1. INTRODUCTION 4

In Chapter 4 (based on [65]), we propose result presentation models for nav-

igational queries and analyze the effect of these models on caching. With nav-

igational queries (e.g, “united airlines”) users try to reach a website and result

browsing behavior is very different from the case for informational queries (e.g,

“caching in web search engines”) where the user seeks for information about a

topic. We propose metrics for evaluation of result presentation models. We then

analyze the effects of result page models on the performance of caching. We

also conduct a user study in order to investigate the user browsing behavior on

different result page models.

In Chapter 5 (based on [61]), we propose a storage model for document iden-

tifiers of query results in a cache. Queries with common result documents are

clustered. We propose a compact representation for these clusters.

In Chapter 6 (based on [60]), we propose a five-level static cache that consists

of different items such as query results, inverted index and document contents.

A greedy approach that prioritizes the items using a cost oriented method for

caching is provided. The inter-dependency between items when making cache

decisions is also considered in this approach.

Finally, we conclude the thesis and mention some future work directions about

caching in search engines in Chapter 7.

Chapter 2

Background and Related Work

In this chapter, we provide background information for a large scale search engine

and present related work in the literature about caching mechanisms applied in

these systems. We first present a typical architecture of a search engine and give

information about query processing in Section 2.1. Different cache types (result,

posting list, document) employed in a large scale search engine together with

literature work on these caches are provided in Section 2.2. Since the majority

of work in this thesis focuses on the result caches, we further review result cache

filling, evaluation, and freshness issues in more depth in Sections 2.3, 2.4, and

2.5, respectively.

2.1 Large Scale Web Search Engines

Large scale web search engines like Google, Yahoo!, and Bing answer millions of

queries from all over the world each day. Each query is answered within one or

two seconds and the search service provided by them is available at all times.

This operation conditions search engines to take extra measures for efficiency,

effectiveness, fault tolerance, and availability. Figure 2.1 shows a typical top-

down architecture for a large scale web search engine consisting of geographically

distributed search clusters [11]. Each search cluster contains a replica of web

5

CHAPTER 2. BACKGROUND AND RELATED WORK 6

Clusteri

Clusterj

Geographically distributed a few 1000-machine search clusters

Search cluster

 WS1
 WS2

 WSn

Web servers

Index servers

Document servers

Query processing in a search cluster

 Web server /

Query broker

Index servers

Document servers

Clusterk

I1

I2

I3

D1

D2

D3

D4

Inverted index

Local document
collection

Figure 2.1: Large scale search engine consisting of geographically distributed
search clusters.

crawl and operates a few thousands nodes (computers). Each user query sub-

mitted through the web page interface of the search engine is directed to the

nearest search cluster through DNS (Domain Name Service) mechanism. Each

search cluster contains nodes for web servers, index servers, document servers,

and additionally, ad servers [11].

Web servers handle the query requests by communicating to the index servers

and document servers. All documents in a web crawl are partitoned among

document and index servers. As shown in Figure 2.2, each index server contains

a portion of the full inverted index for the web crawl. Each document server

store a subset of the crawled web pages. Web server (query broker) nodes send

CHAPTER 2. BACKGROUND AND RELATED WORK 7

Query processing in a search cluster

 Web server /

Query broker

Index servers

Document servers

I1 I2 I3

D1 D2 D3 D4

Inverted index

Local document
collection

Figure 2.2: Query processing in a search cluster.

query requests to index servers. Each index server processes the query using the

inverted index (and any extra available information), applies a ranking (scoring)

algorithm to sort the documents based on their relevance to the query, and forms

the top-k list. An example inverted index for the three documents is shown

in Figure 2.3. Vocabulary data structure contains the list of terms contained

in the document collection. It also contains pointers to the location of posting

lists for each term. Index part consists of term posting lists. Each posting list

contains the document ids (additionally, frequency and/or position of the term in

the document) which belong to the document that contains this term. Inverted

index construction requires several additional steps like tokenization, stopword

removal and stemming (for details, please see [87, 93]).

2.2 Caching in Web Search Engines

Caching is a mechanism to store items that will be requested in the near future.

It is a well-known technique applied in several domains, such as disk page caching

in operating systems [75, 77], databases [29], and web page caching in proxies [68].

Its main goal is to exploit the temporal and spatial localities of the requests in

CHAPTER 2. BACKGROUND AND RELATED WORK 8

Inverted index structure

d1

web

caching

d2

d3

web
search
engine
caching

web

search

engine Vocabulary

d1 d2

d2 d3

d2 d3

d1 d2

caching

engine

search

web d3

Index

Document collection

Figure 2.3: Inverted index data structure.

the task at hand. Operating systems attempt to fill the cache with frequently

(and/or recently) used disk pages and expect them to be again requested in the

near future.

Caching is one of the key techniques search engines use to cope with high query

loads. Figure 2.4 shows different cache types exploited in a search cluster. Three

different types of items can be cached: query results, posting lists, and document

content. Typically, search engines cache query results (result cache) [54, 30, 47,

61] in the query broker machine or posting lists for query terms (list cache) in

the index servers, or both [10, 51, 6, 7]. Query results can be cached in two

different formats: HTML result cache and docID (or Score) result cache. HTML

result cache stores the complete (ready to be sent to the user) result pages. A

result page contains links and titles of usually 10 or more result documents, and

snippets. Snippet is a small textual portion of the full result document related

to the query. DocID (or Score) result cache stores only the result document

ids of queries. Even though this representation is very compact for storing, an

additional step of snippet generation is needed. Caches containing posting lists

CHAPTER 2. BACKGROUND AND RELATED WORK 9

Caching in web search engines

Web server / Query broker

Index servers

Document servers

List cache

Document cache

Query

Result page

Hit

Result cache Miss

Query processing

Te
rm

Hit

Posting list

Miss

Top-k result doc ids

and scores
 Result merging

Document id

Hit

M
is

s

Document
content

 Snippet generation

Figure 2.4: Caching in a large scale search engine architecture.

can be categorized into two: List and intersection caches. List cache stores the full

(or a portion of) posting list of terms. Intersection cache [51] includes common

postings of frequently occuring pairs of terms. Additionally, document servers

can cache the frequently accessed document content (document cache).

Query processing with caching in search engine proceeds as follows: When a

query is submitted to the query broker node, result cache must be checked first.

If the result of the submitted query is already stored in the HTML result cache,

then there is no need for further processing and it can be sent to the user. If the

DocID cache is employed and the submitted query result is found in the cache,

then query broker machine contacts to the document servers in order to get the

content of result documents for snippet generation to produce the HTML result

page. If the query result cannot be found in the result cache, then the broker

contacts to all (or some) index servers for query processing. Each index server

CHAPTER 2. BACKGROUND AND RELATED WORK 10

executes the query using its own (local) inverted index. This requires access to

the posting lists for each of the query terms. It first checks the intersection cache

to see if posting list for any pair (or triple) of query terms is cached. Furthermore,

it looks for posting lists of the query terms in the list cache. Index server accesses

the disk for the query terms that are not found in the list or intersection cache.

In the final stage, a ranking (scoring) method computes the scores for documents

containing the query terms using the posting lists. A wide range of ranking

approaches such as BM25 and machine learning based methods [87] are proposed

in the literature, but we do not describe them in detail since they are not in

the scope of this thesis. Documents are sorted based on decreasing score and

top-k (k is practically between 10 and 1000) result document ids are sent back

to the broker with their corresponding scores. Broker aggregates (merges) all

these results and produces a final top-k list. In the final stage, snippets must be

constructed for documents in the final top-k in order to produce the HTML result

page. Document servers first check their document cache. If it is not found in

the cache, disk access is required. Snippet generation algorithm [83, 81] produces

a textual summary of document considering the query terms. Finally, the broker

node sends the result page to the user.

A search engine may employ a static or dynamic cache of different data items

(query results, posting lists, and documents), or both [30]. In the static case,

the cache is filled with entries as obtained from earlier logs of the search engine

and its content remains intact until the next periodical update. In the dynamic

case, the cache content changes dynamically with respect to the query traffic, as

new entries may be inserted and existing entries may be evicted. There are many

cache replacement policies adapted from the literature, such as Least Recently

Used (LRU), Least Frequently Used (LFU), etc.

In Table 2.1, we classify the previous studies that essentially focus on caching

techniques for large scale search engines. We group those works in terms of the

cache component focused on and also whether the caching strategy employed

is static or dynamic. An early proposal that discusses posting list caching in

an information retrieval system is presented in [80]. The authors use LRU as

the caching policy in their dynamic cache replacement algorithm. Markatos [54]

CHAPTER 2. BACKGROUND AND RELATED WORK 11

Table 2.1: Classification of earlier works on caching in web search en-
gines. (Ozcan, R., Altingovde, I.S., Cambazoglu, B. B., Junqueira, F. P.,
Ulusoy, O., “A Five-level Static Cache Architecture for Web Search En-
gines,” Information Processing & Management, In Press. c©2011 Elsevier.
http://dx.doi.org/10.1016/j.ipm.2010.12.007. Reprinted by permission.)

Cache Type Static Dynamic
Result Markatos [54] Markatos [54]

Baeza-Yates and Saint-Jean [10] Saraiva et al. [73]
Fagni et al. [30] Lempel and Moran [47]
Ozcan et al. [62] Long and Suel [51]

Fagni et al. [30]
Gan and Suel [32]
Puppin et al. [69]
Cambazoglu et al. [21]

Score – Fagni et al. [30]
Intersection – Long and Suel [51]
List Baeza-Yates and Saint-Jean [10] Tomasic and Garcia-

Molina [80]
Baeza-Yates et al. [6] Saraiva et al. [73]

Long and Suel [51]
Document – –

works on query result caching and analyzes the query log from the EXCITE search

engine. He shows that query requests have a temporal locality property, that is,

a significant amount of queries submitted previously are submitted again a short

time later. This fact shows evidence for the caching potential of query results.

That work also compares static vs. dynamic caching approaches for varying cache

sizes. The analysis in [54] reveals that the static caching strategy performs better

when the cache size is small, but dynamic caching becomes preferable when the

cache is relatively larger. In a more recent work, we [62] propose an alternative

query selection strategy, which is based on the stability of query frequencies over

time intervals instead of using an overall frequency value. Lempel and Moran

introduce a probabilistic caching algorithm for a result cache that predicts the

number of result pages to be cached for a query [47].

To the best of our knowledge, Saraiva et al. [73] present the first work in

the literature that mentions a two-level caching to combine caching of query

CHAPTER 2. BACKGROUND AND RELATED WORK 12

results and inverted lists. This work also uses index pruning techniques for list

caching because the full index contains lists that are too long for some popular

or common words. Experiments measure the performance of caching the query

results and inverted lists separately, as well as that of caching them together.

The results show that two-level caching achieves a 52% higher throughput than

caching only inverted lists and a 36% higher throughput than caching only query

results. Baeza-Yates and Saint-Jean propose a three-level search index structure

using query log distribution [10]. The first level consists of precomputed answers

(cached query results) and the second level contains the posting lists of the most

frequent query terms in the main memory. The remaining posting lists need to

be accessed from the secondary memory, which constitutes the third level in the

indexing structure. Since the main memory is shared by cached query results

and posting lists, it is important to find the optimal space allocation to achieve

the best performance. The authors provide a mathematical formulation of this

optimization problem and propose an optimal solution. More recently, another

three-level caching approach is proposed [51]. As in [10], the first and second levels

contain the results and posting lists of the most frequent queries, respectively. The

authors propose a third level, namely, an intersection cache, containing common

postings of frequently occurring pairs of terms. The intersection cache resides in

the secondary memory. Their experimental results show significant performance

gains using this three-level caching strategy. Garcia [33] also proposes a cache

architecture that stores multiple data item types based on their disk access costs.

The extensive study of Baeza-Yates et al. [6] covers many issues in static

and dynamic result/list caching. The authors propose a simple heuristic that

takes into account the storage size of lists when making caching decisions. They

compare the two alternatives: caching query results vs. posting lists. Their

analysis shows that caching posting lists achieves better hit rates [6]. The main

reason for this result is that repetitions of terms in queries are more frequent

than repetitions of queries. Puppin et al. propose a novel incremental cache

architecture for collection selection architectures [69]. They cache query results

computed by a subset of index servers selected by a collection selection strategy.

If a cache hit occurs for a particular query, additional index servers are contacted

CHAPTER 2. BACKGROUND AND RELATED WORK 13

to get more results to incrementally improve the cached result of the query.

Fagni et al. [30] propose a hybrid caching strategy, which involves both static

and dynamic caching. The authors divide the available cache space into two

parts: One part is reserved for static caching and the remaining part is used for

dynamic caching. Their motivation for this approach is based on the fact that

static caching exploits the query popularity that lasts for a long time interval and

dynamic caching handles the query popularity that arises for a shorter interval

(e.g., queries for breaking news, etc.). Experiments with three query logs show

that their hybrid strategy, called Static-Dynamic Caching (SDC), achieves better

performance than either purely static caching or purely dynamic caching. The

idea of having a score cache (called the DocID cache in the work) is also mentioned

in this study.

2.3 Result Cache Filling Strategies

Although there are many studies on query result caching for search engines, there

is no survey that classifies or compares all these works. We classify query result

cache filling strategies as

• frequency based

• recency based

• cost based

similar to the classification provided by Podlipnig and Böszörmenyi [68] for proxy

caching.

2.3.1 Frequency based

The objective of frequency based methods is to cache the most frequently re-

quested query result pages in the cache. Static result caches are filled based on

CHAPTER 2. BACKGROUND AND RELATED WORK 14

a previous query log. Queries are sorted based on decreasing frequency and the

cache is filled with most frequent query result pages [30, 54, 62]. Static cache

content is periodically updated.

Dynamic result caches can also employ frequency based methods such as the

widely-known LFU method [32]. This method keeps frequency of each item in

the cache. It tries to keep the most frequently requested result pages in the cache

by replacing least frequently requested items each time when the cache is full.

2.3.2 Recency based

Recency based methods consider the last time the item in the cache is requested

by any user. The objective is to keep the most recently used items in the cache

as much as possible. LRU is a popular recency based approach that works well

in other domains as well. This approach chooses the least recently used items for

replacement when the cache is full. Dynamic result caches can also employ this

approach [6, 54].

2.3.3 Cost based

Cost based methods consider that items are associated with different costs to

reproduce if not found in the cache. In the result cache domain, this means that

the cost of a query result page is to process the query in the index servers and

producing the snippets by accessing the document contents. The objective of

cost-aware methods is to keep the items in the cache that will provide the highest

cost gain.

In the literature, the idea of cost-aware caching is applied in some other areas

where miss costs are not always uniform [40, 41, 49]. For instance, in the context

of multiprocessor caches, there may be non-uniform miss costs that can be mea-

sured in terms of latency, penalty, power, or bandwidth consumption, etc. [40, 41].

CHAPTER 2. BACKGROUND AND RELATED WORK 15

In [40], the authors propose several extensions of LRU to make the cache replace-

ment policy cost sensitive. The initial cost function assumes two static miss costs,

i.e., a low cost (simply 1) and a high cost (experimented with varying values).

This work also provides experiments with a more realistic cost function, which

involves miss latency in the second-level cache of a multiprocessor. Web proxy

caching is another area where a cost-aware caching strategy naturally fits. In

this case, the cost of a miss would depend on the size of the page missed and its

network cost, i.e., the number of hops to be traveled to download it. The work

of Cao and Irani [22] introduces GreedyDual-Size (GDS) algorithm, which is a

modified version of the Landlord algorithm proposed by Young [90]. The GDS

strategy incorporates locality with cost and size concerns for web proxy caches.

We are aware of only two works in the literature that explicitly incorporate the

notion of costs into the caching policies of web search engines. Garcia [33] pro-

poses a heterogeneous cache that can store all possible data structures (posting

lists, accumulator sets, query results, etc.) to process a query, with each of these

entry types associated with a cost function. However, the cost function in that

work is solely based on disk access times and must be recomputed for each cache

entry after every modification of the cache.

The second study [32] that is simultaneous to our cost-aware caching work

(detailed in Chapter 3) also proposes cache eviction policies that take the costs

of queries into account. In this work, the cost function essentially represents

queries’ disk access costs and it is estimated by computing the sum of the lengths

of the posting lists for the query terms. The authors also experiment with another

option, i.e., using the length of the shortest list to represent the query cost, and

report no major difference in the trends. In Chapter 3, we also introduce the

notion of cost for caching result pages, however instead of predicting the cost we

use the actual CPU processing time obtained the first time the query is executed,

i.e., when the query result page is first generated. Our motivation is due to the

fact that actual query processing cost is affected by several mechanisms, such as

dynamic pruning, list caching, etc. (see [6]); and it may be preferable to use the

actual value when available. Furthermore, we use a more realistic simulation of

the disk access cost, which takes into account the contents of the list cache under

CHAPTER 2. BACKGROUND AND RELATED WORK 16

several scenarios.

Note that, there are other differences between our cost-aware caching work

and that of Gan and Suel [32]. In Chapter 3, we provide several interesting

findings regarding the variance of processing times among different queries, and

the relationship between a query’s processing time and its popularity. In light

of our findings, we propose cost-aware strategies for static, dynamic, and static-

dynamic caching cases [64]. Gan and Suel’s work [32] also considers some cost-

aware techniques for dynamic and hybrid caching. However, they focus on issues

like query burstiness and propose cache eviction policies that exploit features

other than the query cost.

2.4 Result Cache Evaluation Metrics

In the literature, performance of result caching strategies is evaluated using dif-

ferent measures. Here, we list and describe these metrics in detail below:

• Hit Ratio is the ratio of query requests served from the cache to all query

requests.

• Miss Ratio is the ratio of query requests that required query processing (not

served from the cache) to all query requests. Note that the summation of

hit and miss ratios is 1.

• Throughput measures the number of query requests that can be answered

by the search engine within a unit of time (e.g., 1 second).

• Response Time evaluates the time between query submission and return of

the result page.

CHAPTER 2. BACKGROUND AND RELATED WORK 17

2.5 Result Cache Freshness

A more recent research direction that is orthogonal to the above works is inves-

tigating the cache freshness problem. In this case, the main concern is not the

capacity related problems (as in the eviction policies) but the freshness of the

query results that is stored in the cache. To this end, Cambazoglu et al. [21] pro-

pose a blind cache refresh strategy: they assign a fixed time-to-live (TTL) value

to each query result in the cache and re-compute the expired queries without

verifying whether their result have actually changed or not. They also introduce

an eager approach that refreshes expired or about-to-expire queries during the

idle times of the search cluster. In contrast, Blanco et al. [14, 15] attempt to

invalidate only those cache items whose results have changed due to incremental

index updates. They propose cache invalidation predictor (CIP) module that

tries to provide coherency between index and result cache. This module invali-

dates cache entries that are affected by the newly crawled, updated, or deleted

documents. Bortnikov et al. [16] extend the work on CIP module and evaluate

its performance in real-life cache settings.

Timestamp-based cache invalidation techniques [1, 2] are proposed recently.

Timestamps are assigned to queries based on generation time of the result pages

in the cache. Similarly, posting list for each term and each document in the

collection are also timestamped based on their update times. Query results are

invalidated based on some rules that compare the query result timestamps with

term or document timestamps. Their experiments show that timestamp-based

approach achieves a performance close to that of CIP module but it is more cost

efficient.

Chapter 3

Cost-Aware Query Result

Caching

Web search engines need to cache query results for efficiency and scalability pur-

poses. Static and dynamic caching techniques (as well as their combinations)

are employed to effectively cache query results. In this chapter, we propose cost-

aware strategies for static and dynamic caching setups. Our research is motivated

by two key observations: i) query processing costs may significantly vary among

different queries, and ii) the processing cost of a query is not proportional to its

popularity (i.e., frequency in the previous logs). The first observation implies that

cache misses have different, i.e., non-uniform, costs in this context. The latter

observation implies that typical caching policies, solely based on query popular-

ity, cannot always minimize the total cost. Therefore, we propose to explicitly

incorporate the query costs into the caching policies. Simulation results using two

large web crawl datasets and a real query log reveal that the proposed approach

improves overall system performance in terms of the average query execution

time.

The rest of this chapter is organized as follows. In Section 3.1, we provide the

motivation for our work and list our contributions. We provide the experimental

18

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 19

setup that includes the characteristics of our datasets, query logs and comput-

ing resources in Section 3.2. Section 3.3 is devoted to a cost analysis of query

processing in a web search engine. The cost-aware static, dynamic, and hybrid

caching strategies are discussed in Section 3.4, and evaluated in Section 3.5. We

conclude the chapter in Section 3.6.

3.1 Introduction

In the context of web search engines, the literature involves several proposals

concerning what and how to cache. However, especially for query result caching,

the cost of a miss is usually disregarded, and all queries are assumed to have

the same cost. In this chapter, we essentially concentrate on the caching of

query results and propose cost-aware strategies that explicitly make use of the

query costs while determining the cache contents. Our research is motivated

by the following observations: First, queries submitted to a search engine have

significantly varying costs in terms of several aspects (e.g., CPU processing time,

disk access time, etc.). Thus, it is not realistic to assume that all cache misses

would incur the same cost. Second, the frequency of the query is not an indicator

of its cost. Thus, caching policies solely based on query popularity may not

always lead to optimum performance, and a cost-aware strategy may provide

further gains.

In this chapter, we start by investigating the validity of these observations

for our experimental setup. To this end, it is crucial to model the query cost in

a realistic and accurate manner. Here, we define query cost as the sum of the

actual CPU execution time and the disk access cost, which is computed under a

number of different scenarios. The former cost, CPU time, involves decompressing

the posting lists, computing the query-document similarities and determining

the top-N document identifiers in the final answer set. Obviously, CPU time is

independent of the query submission order, i.e., can be measured in isolation per

query. On the other hand, disk access cost involves fetching the posting lists for

query terms from the disk, and depends on the current content of the posting

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 20

list cache and the query order of queries. In this work, we compute the latter

cost under three realistic scenarios, where either a quarter, half, or full index is

assumed to be cached in memory. The latter option, storing the entire index in

memory, is practiced by some industry-scale search engines (e.g., see [27]). For

this case, we only consider CPU time to represent the query cost, as there is no

disk access. The former option, caching a relatively smaller fraction of the index,

is more viable for medium-scale systems or memory-scarce environments. In this

study, we also consider disk access costs under such scenarios while computing

the total query processing cost. The other cost factors, namely, network latency

and snippet generation costs, are totally left out, assuming that these components

would be less dependent on query characteristics and would not be a determining

factor in the total cost. Next, we introduce cost-aware strategies for the static,

dynamic, and hybrid caching of query results. For the static caching case, we

combine query frequency information with query cost in different ways to generate

alternative strategies. For the dynamic case, we again incorporate the cost notion

into a typical frequency-based strategy in addition to adapting some cost-aware

policies from other domains. In the hybrid caching environment, a number of

cost-aware approaches developed for static and dynamic cases are coupled. All

these strategies are evaluated in a realistic experimental framework that attempts

to imitate the query processing of a search engine, and are shown to improve the

total query processing time over a number of test query logs.

The contributions of our work in this chapter are summarized as follows:

1. We introduce a cost-aware strategy that takes the frequency and cost into

account at the same time for the static caching. We also propose a cost-

aware counterpart of the static caching method that we have discussed

in another work [62]. The latter method takes into account the stability

of query frequency in time, and can outperform typical frequency-based

caching.

2. We introduce two cost-aware caching policies for dynamic query result

caching. Furthermore, we adapt several cost-aware policies from other do-

mains.

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 21

3. We also evaluate the performance of cost-aware methods in a hybrid caching

environment (as proposed in [30]), in which a certain part of the cache is

reserved for static caching and the remaining part is used for the dynamic

cache.

4. We experimentally evaluate caching policies using two large web crawl

datasets and real query logs. Our cost function, as discussed above, takes

into account both actual CPU processing time that is measured in a realistic

setup with list decompression and dynamic pruning, and disk access time

computed under several list caching scenarios. Our findings reveal that the

cost-aware strategies improve overall system performance in terms of the

total query processing time.

3.2 Experimental Setup

Datasets. In this study, we use two datasets. For the first, we obtained the

list of URLs categorized at the Open Directory Project (ODP) web directory

(www.dmoz.org). Among these links, we successfully crawled around 2.2 million

pages, which take 37 GBs of disk space in uncompressed HTML format. For the

second dataset, we create a subset of the terabyte-order crawl collection provided

by Stanford University’s WebBase Project [84]. This subset includes approxi-

mately 4.3 million pages collected from US government web sites during the first

quarter of 2007. These two datasets will be referred to as “ODP” and “Webbase”

datasets, respectively. The datasets are indexed by the Zettair search engine [92]

without stemming and stopword removal. We obtained compressed index files of

2.2 GB and 7 GB on disk (including the term offset information in the posting

lists) for the first and second datasets, respectively.

Query Log. We create a subset of the AOL Query Log [66], which contains

around 20 million queries of about 650K people for a period of three months.

Our subset contains around 700K queries from the first six weeks of the log.

Queries submitted in the first three weeks constitute the training set (used to

fill the static cache and/or warm up the dynamic cache), whereas queries from

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 22

the second three weeks are reserved as the test set. In this study, during both

the training and testing stages, the requests for the next page of the results for

a query are considered as a single query request, as in [9]. Another alternative

would be to interpret each log entry as <query, result page number> pairs [30].

Accordingly, we presume that a fixed number of N results are cached per query.

Since N would be set to a small number in all practical settings, we presume that

the actual value of N would not significantly affect the findings in this study.

Here, we set N as 30, as earlier works on log analysis reveal that search engine

users mostly request only the first few result pages. For instance, Silverstein et al.

report that in 95.7% of queries, users requested up to only three result pages [74].

Experimental Platform. All experiments are conducted using a computer

that includes an Intel Core2 processor running at 2.13GHz with 2GB RAM. The

operating system is Suse Linux.

3.3 An Analysis of the Query Processing Cost

3.3.1 The Setup for Cost Measurement

The underlying motivation for employing result caching in web search engines

(at the server side) is to reduce the burden of query processing. In a typical

broker-based distributed environment (e.g., see [20]), the cost of query processing

would involve several aspects, as shown in Figure 3.1. The central broker, after

consulting its result cache, sends the query to index nodes. Each index node

should then fetch the corresponding posting lists to the main memory (if they

are not already in the list cache) with the cost CDISK . Next, the postings are

processed and partial results are computed, with the cost CCPU . More specifically,

the CPU cost involves decompressing the posting lists (as they are usually stored

in a compressed form), computing a similarity function between the query and

the postings, and obtaining the top-N documents as the partial result. Then,

each node sends its partial results to the central broker, with the cost CNET ,

where they are merged. Finally, the central broker generates the snippets for the

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 23

Figure 3.1: Query processing in a typical large scale search engine. (Ozcan, R.,
Altingovde, I.S., Ulusoy, O., “Cost-Aware Strategies for Query Result Caching
in Web Search Engines,” ACM Transactions on the Web, Vol. 5:2, c©2011 ACM,
Inc. http://dx.doi.org/10.1145/1961659.1961663. Reprinted by permission.)

query results, with the cost CSNIP , and sends the output page to the user. Thus,

the cost of query processing is the sum of all of these costs, i.e., CDISK +CCPU +

CNET + CSNIP .

For the purposes of this work, we consider the sum of the CPU execution time

and disk access time (i.e., CDISK+CCPU) as the major representative of the overall

cost of a query. We justify leaving out the network communication and snippet

generation costs as follows: Regarding the issue of network costs, a recent work

states that for a distributed system interconnected via a LAN, the network cost

would only be a fraction of the query processing cost (e.g., see Table 2 in [6]). The

snippet generation cost is discarded because its efficiency is investigated in only

a few previous studies (e.g., [83, 81]), and none of these discusses how the cost of

snippet generation compares to other cost components. Furthermore, we envision

that the two costs, namely, network communication and snippet generation, are

less likely to vary significantly among different queries and neither would be a

dominating factor in the query processing cost. This is because, regardless of

the size of the posting lists for query terms, only a small and fixed number of

results with the highest scores, (typically, top-10 document identifiers) would

be transferred through the network. Similarly, only that number of documents

would be accessed for snippet generation. Thus, in the rest of this chapter, we

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 24

essentially use CCPU +CDISK as the representative of the query processing cost in

a search engine. In this study, all distinct queries are processed using the Zettair

search engine in batch mode to obtain the isolated CPU execution time per query.

That is, we measured the time to decompress the lists, compute similarities and

obtain the identifiers of the top-N documents, where N is set to 30. Since Zettair

is executed at a centralized architecture, there is no network cost. To be more

accurate, we describe the setup as follows.

1. We use Zettair by its default mode, which employs an early pruning strat-

egy that dynamically limits the number of accumulators used for a query.

In particular, this dynamic pruning strategy adaptively decides to discard

some of the existing accumulators or add new ones (up to a predefined tar-

get number of accumulators) as each query term is processed (see [48] for

details). Following the practice in Lester et al. [48], we also set the target

number of accumulators to approximately 1% of the number of documents

in the collection, namely, 20K. Employing a dynamic pruning strategy is a

crucial choice for the practicality of our proposal, since no real web search

engine would make a full evaluation and the CPU execution time clearly

depends on the partial evaluation strategy used in the system.

2. All query terms in the log are converted to lower case. The queries are

modified to include an additional “AND” conjunct between each term, so

that the search engine runs in the “conjunctive” mode. This is the default

search mode of the major search engines [26, 57]. Stopwords are not elim-

inated from the queries. No stemming algorithm is applied. Finally, all

phrase queries are discarded.

In contrast to CCPU , it is hard to associate a query with an isolated disk

access cost, because for a real-life system disk access time depends on the query

stream and the posting lists that are buffered and/or cached in the memory at

the processing time. Thus, instead of measuring the actual disk access time, we

compute this value per query under three different scenarios, where 25%, 50%, or

100% of the index is assumed to be cached. It is now widely accepted that any

large scale search engine involves a reasonably large list cache that accompanies

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 25

Table 3.1: Disk parameters for simulating CDISK . (Ozcan, R., Altingovde,
I.S., Ulusoy, O., “Cost-Aware Strategies for Query Result Caching in Web
Search Engines,” ACM Transactions on the Web, Vol. 5:2, c©2011 ACM, Inc.
http://dx.doi.org/10.1145/1961659.1961663. Reprinted by permission.)

Parameter Name Value
Seek time 8.5 ms
Rotational delay 4.17 ms
Block read time 4.883 microseconds
Block size 512 bytes

the result cache. Indeed, it is known that some major search engines store all

posting lists in the main memory, an approach totally eliminating the cost of

disk access ([27, 76]). Therefore, our scenarios reflect realistic choices for the list

cache setup.

For each of these scenarios, query term frequencies are obtained from the

training logs and those terms with the highest ratio of term frequency to posting

list length are stored in the cache, as proposed in [6]. That study also reports

that a static list cache filled in this manner yields a better hit rate than dynamic

approaches (see Figure 8 in [6]); so our framework only includes the static list

cache. For each scenario, we first determine which terms of a given query cause

a cache miss, and compute the disk access cost of each such term as the sum

of seek time, rotational latency, and block transfer time, which is typical (e.g.,

see [70]). In this computation, we use the parameters of a moderate disk, as listed

in Table 3.1.

To sum up, our framework realistically models the cost of processing a query

in terms of the CPU and disk access times. The cost of a query computed by

this model is independent of the query load on the system, as it only considers

the isolated CPU and disk access times. More specifically, disk access time in

this setup depends on the contents of the list cache (and, in some sense, previous

queries), but not on the query load.

Before discussing cost-aware result caching strategies, we investigate answers

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 26

to the following questions: i) Do the costs of different queries really vary con-

siderably? ii) Is there a correlation between the frequency and the cost of the

queries? We expect the answer to the first question to be positive; i.e., there

should be a large variance among query execution times. On the other hand, we

expect the answer of the second question to be negative; that is, frequency should

not be a trustworthy indicator of processing time, so that cost-aware strategies

can further improve solely frequency-based strategies. We explore the answers to

these questions in the next section and show that our expectations are justified.

3.3.2 Experiments

After a few initial experiments with the datasets and query log described above, it

turns out that a non-trivial number of queries yields no answer for our datasets.

As an additional problem, some of the most frequent queries in the query log

appear much less frequently in the dataset, which might bias our experiments.

Since previous works in the literature emphasize that the dataset and query log

should be compatible to ensure a reliable experimental framework [85], we first

focus on resolving this issue. The ODP dataset contains pages from a general web

directory that includes several different categories and the AOL log is a general

domain search engine log. That is, the content of our dataset matches the query

log to a certain extent, although the dataset is, of course, much more restricted

than the real AOL collection. Thus, for this case, it would be adequate to simply

discard all queries that have no answer in the ODP dataset. On the other hand,

recall that the Webbase dataset includes pages crawled only from the .gov domain.

Thus, there seems to be a higher possibility of mismatch between the Webbase

dataset and AOL query log. To avoid any bias that might be caused by this

situation, we decided to obtain a domain-restricted version of the query log for

the Webbase collection. In what follows, we describe the query logs corresponding

to the datasets as used in this study.

a) ODP query log: We keep all queries in the log that yield non-empty results

on the ODP dataset.

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 27

Table 3.2: Characteristics of the query log variants. (Ozcan, R., Altingovde,
I.S., Ulusoy, O., “Cost-Aware Strategies for Query Result Caching in Web
Search Engines,” ACM Transactions on the Web, Vol. 5:2, c©2011 ACM, Inc.
http://dx.doi.org/10.1145/1961659.1961663. Reprinted by permission.)

Query Log Number of distinct queries Number of all queries
Training Test Training Test

ODP query log 253,961 209,636 446,952 362,843
Webbase query log 211,854 175,557 386,179 313,884
Webbase semantically
aligned query log

28,794 24,066 45,705 37,506

b) Webbase query log: We keep all queries in the log that yield non-empty

results on the Webbase dataset.

c) Webbase semantically aligned query log: Following a similar approach dis-

cussed in a recent work [82], we first submit all distinct queries in our original

query log to Yahoo! search engine’s “Web search” service [89] to get the top-10

results. Next, we only keep those queries that yield at least one result from the

.gov domain.

In Table 3.2, we report the number of the remaining queries in each query log.

To experimentally justify that these query logs and the corresponding datasets

are compatible, we conduct an experiment as follows: We process randomly cho-

sen 5K queries from each of the three query logs in conjunctive mode on the

corresponding collection, and record the total number of results per query. Next,

we submit the same queries to Yahoo! (using its web search API), again in con-

junctive (default) processing mode. For each case, we also store the number of

results per query as returned by the search engine API.

In Figure 3.2, we represent these 5K queries on a log-log scale plot, where the

y-axis is the ratio of the number of results retrieved in our corresponding collection

to the collection size, and the x-axis is the same ratio for Yahoo! collection. We

assume that the underlying collection of Yahoo! includes around 31.5 billion

pages, which is the reported number of results when searching for the term “a”

on the Yahoo! website. The figure reveals that the ratio of the number of results

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 28

(a)

(b)

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 29

(c)

Figure 3.2: Correlation of “query result size/collection size” on Yahoo! and a)
ODP, b) Webbase, and c) Webbase semantically aligned for the conjunctive pro-
cessing mode. (Ozcan, R., Altingovde, I.S., Ulusoy, O., “Cost-Aware Strategies
for Query Result Caching in Web Search Engines,” ACM Transactions on the
Web, Vol. 5:2, c©2011 ACM, Inc. http://dx.doi.org/10.1145/1961659.1961663.
Reprinted by permission.)

per query in each collection is positively correlated with the ratio in the Yahoo!

search engine, i.e., yielding correlation coefficients of 0.80, 0.57, and 0.86 for the

ODP, Webbase, and Webbase semantically aligned logs, respectively. Thus, we

conclude that our collections and query sets are compatible, and experimental

evaluations would provide meaningful results.

Next, for each of the query logs in Table 3.2, we obtain the CPU execution

time of all distinct queries using the setup described in the previous section. The

experiments are repeated four times and the results reveal that the computed

CPU costs are stable and can be used as the basis of the following discussions.

For instance, for ODP log, we find that the average standard deviation of query

execution times is 2 ms. Considering that the average query processing time

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 30

is 93 ms for this case, we believe that the standard deviation figure (possibly

due to system-dependent fluctuations) is reasonable and justifies our claim of the

stability of execution times.

In Figure 3.3, we provide the normalized log-log scatter plots that relate the

query’s frequency in the log and the CPU execution time1 for randomly selected

10K queries. These plots reveal the answers to the questions raised at the end of

the previous section. First, we see that the query execution time covers a wide

range, from a fraction of a millisecond to a few thousand milliseconds. Thus, it

may be useful to devise cost-aware strategies in the caching mechanisms. Second,

we cannot derive a high positive correlation between the query frequency and

the processing times. That is, a very frequent query may be cheaper than a

less-frequent query. This can be explained by the following arguments: In earlier

works, it is stated that query terms and collection terms may not be highly

correlated (e.g., a correlation between Chilean crawl data and the query log is

found to be only 0.15 [10]), which means that a highly frequent query may return

fewer documents, and be cheaper to process. Indeed, in a separate experiment

reported below, we observe that this situation also holds for the AOL query log

using both the ODP dataset and the Yahoo! search engine.

In Figure 3.4, we show the normalized log-log scatter plots that relate the

query frequency in the log and result-set size, i.e., the ratio of number of query

results to the size of ODP collection, for randomly selected 10K queries. As can

be seen from the figure, the correlation is very low; i.e., the correlation coefficient

is -0.01. In order to show that the same trend also holds true for a real search

engine, we provide the same plot obtained for Yahoo! in Figure 3.5. Here, we

obtain the number of results returned for randomly selected 5K queries using the

Yahoo! Web search API. Figure 3.5 again demonstrates that queries with the

same frequency might have a very different number of results, and that there is

no positive correlation between query frequency and query result frequency; i.e.,

for this case, the correlation coefficient is only 0.03. Similar findings are also

1Note that, this experiment considers the scenario where the entire index is assumed to be in
the memory and thus CDISK is discarded. The findings for other scenarios, i.e., those involving
CDISK , are similar and not reported here for brevity.

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 31

(a)

(b)

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 32

(c)

Figure 3.3: Normalized log-log scatter plot of the query CPU execution time
and query frequency in the a) ODP, b) Webbase, and c) Webbase semantically
aligned query log. (Ozcan, R., Altingovde, I.S., Ulusoy, O., “Cost-Aware Strate-
gies for Query Result Caching in Web Search Engines,” ACM Transactions on the
Web, Vol. 5:2, c©2011 ACM, Inc. http://dx.doi.org/10.1145/1961659.1961663.
Reprinted by permission.)

observed for Webbase dataset and corresponding query logs.

Finally, note that, even for the cases where the above trend does not hold

(i.e., the frequent queries return a large number of result documents), the pro-

cessing time does not necessarily follow the proportion, due to the compression

and early stopping (pruning) techniques applied during query processing (see Fig-

ure 10 in [6], for example). Our findings in this section are encouraging in the

following ways: We observe that the query processing costs, and accordingly, the

miss costs, are non-uniform and may vary considerably among different queries.

Furthermore, this variation is not directly correlated to the query frequency, a

feature already employed in current caching strategies. These call for a cost-aware

caching strategy, which we discuss next.

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 33

Figure 3.4: Normalized log-log scatter plot of the query result-set size and the
query frequency in the ODP query log for 10K queries. (Ozcan, R., Altin-
govde, I.S., Ulusoy, O., “Cost-Aware Strategies for Query Result Caching in Web
Search Engines,” ACM Transactions on the Web, Vol. 5:2, c©2011 ACM, Inc.
http://dx.doi.org/10.1145/1961659.1961663. Reprinted by permission.)

3.4 Cost-Aware Static and Dynamic Caching

In this section we describe our cost-aware strategies for static, dynamic, and

hybrid result caching.

3.4.1 Cost-Aware Caching Policies for a Static Result

Cache

As discussed in the literature [6], filling a static cache with a predefined capacity

can be reduced to the well-known knapsack problem, where query result pages

are the items with certain sizes and values. In our case, we presume that cache

capacity is expressed in terms of the number of queries; i.e., each query (and its

results) is allocated a unit space. Then, the question is how to fill the knapsack

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 34

Figure 3.5: Normalized log-log scatter plot of the query result-set size in Yahoo!
and the query frequency in the query log for 5K queries. (Ozcan, R., Altin-
govde, I.S., Ulusoy, O., “Cost-Aware Strategies for Query Result Caching in Web
Search Engines,” ACM Transactions on the Web, Vol. 5:2, c©2011 ACM, Inc.
http://dx.doi.org/10.1145/1961659.1961663. Reprinted by permission.)

with the items that are most valuable. Setting the value of a query to its frequency

in previous query logs, i.e., filling the cache with the results of the most frequent

past queries, is a typical approach employed in search engines. However, as we

argue above, miss costs of queries are not uniform. Therefore, the improvement

promises of such a strategy evaluated in terms of, for example, hit rate, may

not translate to actual improvements that can be measured in terms of query

processing time or throughput. To remedy this problem, we propose to directly

embed miss costs into the static caching policies. In what follows, we specify

a number of cost-aware static caching approaches in addition to the traditional

frequency-based caching strategy, which serves as a baseline. In these discussions,

for a given query q, its cost and frequency are denoted as Cq and Fq, respectively.

Most Frequent (MostFreq). This is the baseline method, which basically

fills the static cache with the results of the most frequent queries in the query

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 35

log. Thus, the value of a cache item is simply determined as follows:

V alue(q) = Fq (3.1)

Frequency Then Cost (FreqThenCost). Previous studies show that

query frequencies in a log follow a power-law distribution; i.e., there exist a few

queries with high frequencies and many queries with very low frequencies [88].

This means that for a reasonably large cache size, the MostFreq strategy should

select among a large number of queries with the same relatively low- frequency

value, possibly breaking the ties at random. In the FreqThenCost strategy, we

define the value of a query with the pair (Fq, Cq) so that while filling the cache

we first choose the results of the queries with the highest frequencies, and from

the queries with the same frequency values we choose those with the highest cost.

We anticipate that this strategy would be more effective than MostFreq especially

for caches with larger capacities, for which more queries with the same frequency

value would be considered for caching. In Section 3.5, we provide experimental

results that justify our expectation.

Stability Then Cost (StabThenCost). In a recent study, we introduce

another feature, namely, query frequency stability (QFS), to determine the value

of a query for caching [62]. This feature represents the change in a query’s popu-

larity during a time interval. The underlying intuition for this feature stems from

the fact that in order to be cached, queries should be frequent and remain fre-

quent over a certain time period. The QFS feature is defined as follows: Assume

that query q has the total frequency of f in a training query log that spans a time

period T . Consider that this time period is divided into n equal time intervals2

and query q has the following values of frequency: F = {f1, f2, . . . , fn}; one for

each T/n time units. Then, the stability of query q is defined by the following

formula:

QFSq =
n∑
i=1

|fi − fµ|
fµ

(3.2)

2In this study, we assume one day as the time interval

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 36

where fµ = f
n

is the mean frequency of q during T .

In this previous study, it is shown that using the QFS feature for static caching

yields better hit rates than solely using the frequency feature. Here, we combine

this feature with the query cost and define the value of a query with the pair

(QFSq, Cq). That is, while filling the cache, queries are first selected based on

their QFS value and then their associated cost values.

Frequency and Cost (FC K). For a query q with cost Cq and frequency

Fq, the expected value of the query q can be simply computed as the product of

these two figures, i.e., Cq × Fq. That is, we expect that the query would be as

frequent in future as in past logs, and caching its result would provide the gain

as expressed by this formula. During the simulations reported in Section 3.5, we

observe that this expectation may not hold in a linearly proportional manner;

i.e., queries that occur with some high frequency still tend to appear with a high

frequency, whereas the queries with a relatively lower frequency may appear even

more sparsely, or totally fade away, in future queries. A similar observation is

also discussed in [32]. For this reason, we use a slightly modified version of the

formula that is biased to emphasize higher frequency values and depreciate lower

ones, as shown below.

V alue(q) = Cq × FK
q (3.3)

where K > 1.

3.4.2 Cost-Aware Caching Policies for a Dynamic Result

Cache

Although static caching is an effective approach for exploiting long-term popular

queries, it may miss short-term popular queries submitted to a web search engine

during a short time interval. Dynamic caching handles this case by updating its

content as the query stream changes. Different from static caching, a dynamic

cache does not require a previous query log. It can start with an empty cache

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 37

and it fills its entries as new queries are submitted to a web search engine. If the

result page for a submitted query is not found in the cache, the query is executed

and its result is stored in the cache. When the cache is full, a victim cache entry

is chosen based on the underlying cache replacement policy. A notable number

of cache replacement policies are proposed in the literature (e.g., see [68] for web

caches). In the following, we first describe two well-known strategies, namely,

least recently used and least frequently used, to serve as a baseline. Then, we

introduce two cost-aware dynamic caching strategies in addition to adapting two

other approaches from the literature to the result caching domain.

Least Recently Used (LRU). This well-known strategy chooses the least

recently referenced/used cache item as the victim for eviction.

Least Frequently Used (LFU). In this policy, each cached entry has a

frequency value that shows how many times this entry is requested. The cache

item with the lowest frequency value is replaced when the cache is full. This

strategy is called “in-cache LFU” in [68].

Least Costly Used (LCU). This is the most basic cost-aware replacement

policy introduced in this study. Each cached item has an associated cost. This

method chooses the least costly cached query result as the victim.

Least Frequently and Costly Used (LFCU K). This policy is the dy-

namic version of the FC K static cost-aware policy. We employ the same formula

specified for the FC K strategy in Section 3.4.1.

Greedy Dual Size (GDS). This method maintains a so-called H-value for

each cached item [22]. For a given query q with an associated cost Cq and result

page size Sq, the H-value is computed as follows:

H value(q) =
Cq
Sq

+ L (3.4)

In this formula, L is an aging factor that is initialized to zero at the beginning.

This policy chooses the cache item with the smallest H-value. Then, the value of

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 38

L is set to the evicted item’s H-value. When a query result is requested again,

its H-value is recalculated since the value of L might have changed. The size

component in the formula can be ignored as all result pages are assumed to use

the same amount of space, as we discuss before.

Greedy Dual Size Frequency (GDSF K). This method is a slightly modi-

fied version of the GDS replacement policy [3]. In this case, the frequency of cache

items is also taken into account. The corresponding H-value formula is presented

below.

H value(q) = FK
q ×

Cq
Sq

+ L (3.5)

In this strategy, the frequency of the cache items are also kept and updated

after each request. As discussed in Section 3.4.1, again we favor the higher fre-

quencies by adding an exponent K(> 1) to the frequency component. Note that

with this extension, the formula also resembles the generalized form of GDSF as

proposed in [23]. However, that work proposes to add weighting parameters for

both frequency and size components while setting the cost component to 1. In

our case, we have to keep the cost, Cq, and apply weighting only for the frequency

values.

3.4.3 Cost-Aware Caching Policies for a Hybrid Result

Cache

The hybrid result caching strategy proposed in [30] involves both static and dy-

namic caching and it outperforms its purely static and purely dynamic coun-

terparts. We employ the hybrid caching framework in order to see the effect

of cost-awareness in such a state-of-the-art query result caching environment.

In this cache configuration, total cache size is divided into two parts, for static

and dynamic caches. The fractions of the cache space reserved for each kind of

cache is based on the underlying query log for the best performance. The static

cache part is filled based on a training query log. Then, the dynamic cache part

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 39

Table 3.3: Hybrid cache configurations. (Ozcan, R., Altingovde, I.S., Ulu-
soy, O., “Cost-Aware Strategies for Query Result Caching in Web Search
Engines,” ACM Transactions on the Web, Vol. 5:2, c©2011 ACM, Inc.
http://dx.doi.org/10.1145/1961659.1961663. Reprinted by permission.)

Hybrid cache configuration Static cache strategy Dynamic cache strategy
Non cost-aware MostFreq LRU
Only static cache is cost-
aware

FC K LRU

Both static and dynamic
caches are cost-aware

FC K LFCU K

FC K GDS
FC K GDSF K

is warmed up by submitting the remaining training queries into this part of the

cache. Later, cache performance is evaluated using the disjoint test set. Table 3.3

shows the hybrid cache configurations experimented with in this work. We essen-

tially consider three types of cache configurations, based on whether a cost-aware

strategy is employed in each cache part. The baseline case does not involve the

notion of cost at all; the static and dynamic caches employ traditional MostFreq

and LRU strategies, respectively [30]. In the second case, only the static por-

tion of the hybrid cache can be cost-aware; the static part employs the FC K

strategy and the dynamic part is still based on LRU. In the third configuration,

both the static and dynamic portions might be cost-aware. For this case, three

different combinations are experimented with. All three combinations use FC K

for the static cache part, but they use three different cost-aware dynamic caching

policies, namely, LFCU K, GDS, and GDSF K.

3.5 Experiments

In this section, we provide a simulation-based evaluation of the aforementioned

cost-aware policies for static, dynamic, and hybrid caching environments. As

described in Section 3.2, the query log is split into training and test sets, and

the former is used to fill the static caches and/or warm up the dynamic caches,

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 40

whereas the latter is used to evaluate the performance. Cache size is specified in

terms of the number of the queries. Remarkably, we do not measure the cache hit

rate (due to non-uniform miss costs) but use the total query processing time for

evaluation. For the cache hits, we assume that the processing time is negligible;

i.e., the cost is 0. To simulate the cache misses, we use the query processing

cost, CCPU + CDISK , which is also employed in the training stage. That is, for

all distinct queries in the log, we store the actual CPU execution time (CCPU)

per query that is reported by the Zettair search engine. As mentioned before,

CPU cost measurements are repeated four times and found to be stable; i.e.,

no fluctuations are observed. Furthermore, for each list cache scenario, namely,

caching 25%, 50%, and 100% of the index, we compute the simulated disk access

time, CDISK , per query. Whenever a cache miss occurs, the cost of this query is

retrieved as the sum of CCPU and CDISK for the given list cache scenario, and

added to the total query processing time.

3.5.1 Simulation Results for Static Caching

In this section, we essentially compare the four strategies, namely MostFreq,

FreqThenCost, StabThenCost, and FC K, for static caching. In Figure 3.6(a),

3.6(b), and 3.6(c), we provide the total query execution times using these strate-

gies for the ODP log when 25%, 50%, and 100% of the index is cached, respec-

tively. For the sake of brevity, the corresponding experimental results for the

Webbase and Webbase semantically aligned logs are given in Figure 3.7 only for

the case where the entire index is cached.

We also provide the potential gains for the optimal cost-aware static caching

strategy (OptimalCost), where the test queries are assumed to be known before-

hand. Since we know the future frequency of the training queries, we fill the

cache with the results of the queries that would yield the highest gain, i.e., fre-

quency times cost. Clearly, this is only reported to illustrate how far the proposed

strategies are away from the optimal.

In all experiments, cost-aware strategies (FreqThenCost, StabThenCost and

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 41

(a)

(b)

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 42

(c)

Figure 3.6: Total query processing times (in seconds) obtained using different
static caching strategies for the ODP log when a) 25%, b) 50%, and c) 100% of the
index is cached. (Ozcan, R., Altingovde, I.S., Ulusoy, O., “Cost-Aware Strategies
for Query Result Caching in Web Search Engines,” ACM Transactions on the
Web, Vol. 5:2, c©2011 ACM, Inc. http://dx.doi.org/10.1145/1961659.1961663.
Reprinted by permission.)

FC K) reduce the overall execution time with respect to the baseline, i.e., Most-

Freq. We observe that the improvement gets higher as higher percentages of the

index are cached. This is important because large scale search engines tend to

cache most of the index in memory. The best-performing strategy, FC K (where

K is set to 2.5 by experimentally tuning), yields up to a 3% reduction in total

time for varying cache sizes. It is also remarkable that the gains for the optimal

cache (denoted as OptimalCost) are much higher, which implies that it is possible

to further improve the value function employed in the cost-aware strategies.

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 43

(a)

(b)

Figure 3.7: Total query processing times (in seconds) obtained using differ-
ent static caching strategies for the a) Webbase and b) Webbase semanti-
cally aligned logs when 100% of the index is cached. (Ozcan, R., Altingovde,
I.S., Ulusoy, O., “Cost-Aware Strategies for Query Result Caching in Web
Search Engines,” ACM Transactions on the Web, Vol. 5:2, c©2011 ACM, Inc.
http://dx.doi.org/10.1145/1961659.1961663. Reprinted by permission.)

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 44

3.5.2 Simulation Results for Dynamic Caching

In this section, we experiment with the dynamic caching approaches mentioned

in Section 3.4. Note that, LRU and LFU strategies do not use cost values in

the replacement policies, while all the other strategies are cost-aware. As a lower

bound, we also show the performance of the infinite-sized dynamic cache (INFI-

NITE), for which no replacement policy is necessary. In Figure 3.8, we display the

total query execution times obtained using different dynamic caching strategies

for the ODP log when 25%, 50%, and 100% of the index is cached. The results

of the same experiment for the Webbase and Webbase semantically aligned logs

are given in Figure 3.9 only for the case where 100% of the index is cached. The

other cases, namely caching 25% and 50% of the index, yield similar results and

are not reported here.

In all experiments, the trends are very similar. As in the case of static caching,

the improvements are more emphasized as the percentage of index that is cached

in the memory increases. Therefore, in the following, we only discuss the case for

the ODP log when 100% of the index is cached. First, we see that the cost-aware

version of LFU, which is LFCU K (with K=2, tuned by only using the training

log), outperforms LFU in all reported cache sizes. The reductions in total query

processing times reach up to 8.6%, 9.4%, and 7.4% for the ODP, Webbase, and

Webbase semantically aligned logs, respectively. Although LRU is slightly better

than LFCU K for small cache sizes, the cost-aware strategy performs better for

medium and large cache sizes. It is seen that the GDSF K policy (again with

the best-performing value of K tuned by only using the training log, namely, 2.5)

is the best strategy among all policies for all cache sizes and all three logs. We

achieved up to 6.2%, 7%, and 5.9% reductions in total query processing time

compared to the LRU cache for the ODP, Webbase, and Webbase semantically

aligned logs, respectively.

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 45

(a)

(b)

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 46

(c)

Figure 3.8: Total query processing times (in seconds) obtained using different dy-
namic caching strategies for the ODP log when a) 25%, b) 50%, and c) 100% of the
index is cached. (Ozcan, R., Altingovde, I.S., Ulusoy, O., “Cost-Aware Strategies
for Query Result Caching in Web Search Engines,” ACM Transactions on the
Web, Vol. 5:2, c©2011 ACM, Inc. http://dx.doi.org/10.1145/1961659.1961663.
Reprinted by permission.)

3.5.3 Simulation Results for Hybrid Caching

In this section, we experimentally evaluate the hybrid caching approaches. In

Figure 3.10, we provide the total query execution times using different hybrid

caching strategies for the ODP log when 25%, 50%, and 100% of the index is

cached. As before, we report the results for the Webbase and Webbase seman-

tically aligned logs only for the latter scenario, in Figure 3.11(a) and 3.11(b),

respectively. The fraction parameter for dividing the cache is tuned experimen-

tally using the training query log. We observe that using a split parameter of 50%

yields the best performance for the majority of the cases among the five differ-

ent hybrid cache configurations given in Table 3.3. So, in all of the experiments

reported below, we equally divide the cache space between static and dynamic

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 47

(a)

(b)

Figure 3.9: Total query processing times (in seconds) obtained using differ-
ent dynamic caching strategies for the a) Webbase and b) Webbase seman-
tically aligned logs when 100% of the index is cached. (Ozcan, R., Altin-
govde, I.S., Ulusoy, O., “Cost-Aware Strategies for Query Result Caching in Web
Search Engines,” ACM Transactions on the Web, Vol. 5:2, c©2011 ACM, Inc.
http://dx.doi.org/10.1145/1961659.1961663. Reprinted by permission.)

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 48

caches. We see that cost-aware policies also improve performance in the hybrid

caching environment. For brevity, we discuss the reduction percentages for the

ODP log for the scenario where 100% of the index is cached. The other cases

exhibit similar trends with smaller gains.

To start with, we observe that it is possible to obtain improvements even

when only the static portion of the cache is cost-aware. In Figures 3.10 and 3.11,

the static FC K dynamic LRU case outperforms the baseline, especially for the

larger cache sizes. For this case, we achieve up to 2.6%, 3.5%, and 2.6% reductions

in total query processing time for the ODP, Webbase, and Webbase semantically

aligned logs, respectively. Furthermore, if the dynamic portion also employs a

cost-aware cache eviction policy, reductions in total query processing time are

more emphasized, especially for the GDSF K policy (i.e., up to 3.8%, 4.9%, and

3.5% reductions for the ODP, Webbase, and Webbase semantically aligned logs,

respectively).

In Figure 3.12, we compare the best performing strategies for static and dy-

namic caching (namely, FC K, and GDSF K) to the hybrid caching that combines

both strategies. Our findings confirm previous observations that result caching

significantly improves system performance. For instance, even the smallest static

cache configuration (including only 5K queries) yields a 14% drop in total query

processing time. We also show that hybrid caching is superior to purely static

and dynamic caching for smaller cache sizes, whereas it provides comparable per-

formance to dynamic caching for larger cache sizes.

The performance of dynamic caching strategies may suffer from the use of con-

currency control mechanisms in a parallel query processing environment. Fagni

et al. [30] argue that such cache-access concurrency mechanisms can cause a rel-

atively higher overhead for fully dynamic caching strategies when compared to

hybrid strategies, which include a static (i.e., read-only) part. Note that, since

the performance gap between the static and dynamic/hybrid strategies is rather

large (e.g., see Figure 3.12), it is less probable that this access overhead would

make any difference in relative performance of these strategies. For the purposes

of this work, we anticipate that the cost of cache-access mechanisms would not

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 49

(a)

(b)

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 50

(c)

Figure 3.10: Total query processing times (in seconds) obtained using different
hybrid caching strategies for the ODP log when a) 25%, b) 50%, and c) 100% of
the index is cached. (Ozcan, R., Altingovde, I.S., Ulusoy, O., “Cost-Aware Strate-
gies for Query Result Caching in Web Search Engines,” ACM Transactions on the
Web, Vol. 5:2, c©2011 ACM, Inc. http://dx.doi.org/10.1145/1961659.1961663.
Reprinted by permission.)

be that significant in comparison to other query processing cost components, and

so we do not explicitly consider cache-access overhead in the experiments.

3.5.4 Additional Experiments

In this section, we provide two additional experiments for our cost-aware caching

policies. Note that, in all simulation results reported previously, we measure

CPU execution times when the queries are processed in the conjunctive mode

(i.e., “AND” mode). In a set of additional experiments, we also measure the

query execution times in the disjunctive (OR) mode. Figure 3.13 provides the

simulation result for dynamic caching with the ODP log when the entire index is

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 51

(a)

(b)

Figure 3.11: Total query processing times (in seconds) obtained using differ-
ent hybrid caching strategies for the a) Webbase and b) Webbase semanti-
cally aligned logs when 100% of the index is cached. (Ozcan, R., Altingovde,
I.S., Ulusoy, O., “Cost-Aware Strategies for Query Result Caching in Web
Search Engines,” ACM Transactions on the Web, Vol. 5:2, c©2011 ACM, Inc.
http://dx.doi.org/10.1145/1961659.1961663. Reprinted by permission.)

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 52

Figure 3.12: Percentages of time reduction due to caching using best static, dy-
namic, and hybrid approaches for the ODP log when 100% of the index is cached.
(Ozcan, R., Altingovde, I.S., Ulusoy, O., “Cost-Aware Strategies for Query Re-
sult Caching in Web Search Engines,” ACM Transactions on the Web, Vol. 5:2,
c©2011 ACM, Inc. http://dx.doi.org/10.1145/1961659.1961663. Reprinted by

permission.)

assumed to be cached. The other cache types and query logs are not discussed to

save space. Notably, the overall query processing times in Figure 3.13 are longer

than those of the corresponding case with the conjunctive processing, as expected

(please compare with the plot in Figure 3.8(c)). We also see that all trends are

the same, except the LCU strategy performs slightly better in the conjunctive

mode.

As a final experiment, we analyze the average response time of queries under

different query loads for several caching methods. In this simulation, we assume

that the time between each query submission follows an exponential distribution

as shown in previous works (e.g., [19]). In particular, we vary the mean query

inter-arrival time between 50 ms and 500 ms, corresponding to high and low

workload scenarios, respectively. We also assume that the search system involves

two processors. In Figure 3.14, we provide average response time figures for

dynamic caching strategies (namely LFU, LRU, LFCU K and GDSF K), and

only for the case where all index is stored in memory, for the sake of simplicity.

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 53

Figure 3.13: Total query processing times (in seconds) obtained using dif-
ferent dynamic caching strategies for the ODP log when queries are pro-
cessed in the disjunctive processing mode. (Ozcan, R., Altingovde, I.S., Ulu-
soy, O., “Cost-Aware Strategies for Query Result Caching in Web Search
Engines,” ACM Transactions on the Web, Vol. 5:2, c©2011 ACM, Inc.
http://dx.doi.org/10.1145/1961659.1961663. Reprinted by permission.)

Our findings reveal that cost-aware strategies also improve the average response

time under different load scenarios. Note that, our results presented here are not

conclusive, and we leave an in-depth investigation of response time related issues

as a future work.

3.6 Conclusion

In this chapter, we justify the necessity of cost-based caching strategies by demon-

strating that query costs are not uniform and may considerably vary among the

queries submitted to a search engine. We propose cost-aware caching strategies

for the query result caching in web search engines, and evaluate it for static,

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 54

Figure 3.14: Average query response time obtained using different caching
strategies for various query workloads (simulated by the different mean query
inter-arrival times) of the ODP log. (Ozcan, R., Altingovde, I.S., Ulu-
soy, O., “Cost-Aware Strategies for Query Result Caching in Web Search
Engines,” ACM Transactions on the Web, Vol. 5:2, c©2011 ACM, Inc.
http://dx.doi.org/10.1145/1961659.1961663. Reprinted by permission.)

dynamic, and hybrid caching cases. For static caching, we incorporate cost-

awareness into the static caching policy introduced in [62]. For dynamic caching,

we propose two cost-aware policies, namely LCU and LFCU K, and show that

especially the latter strategy achieves better results than its non-cost-aware coun-

terpart and the traditional LRU strategy. We also show that cost-aware policies

such as GDS and GDSF K, as employed in other domains, perform well in query

result caching. Finally, we analyze the performance of the cost-aware policies in

a hybrid caching setup such that one portion of the cache is reserved for static

caching and the other portion for dynamic caching. We experiment with several

different alternatives in this setup and show that if both static and dynamic por-

tions of the cache follow a cost-aware caching policy, performance improvement

is highest.

We observe considerable reductions in total query processing time (i.e., sum

CHAPTER 3. COST-AWARE QUERY RESULT CACHING 55

of the CPU execution and disk access times) for all three caching modes. In the

static caching mode, the reductions are up to around 3% (in comparison to the

classical baseline, i.e., caching the most frequent queries). In the dynamic caching

mode, the reductions are more emphasized and reach up to around 6% in com-

parison to the traditional LRU strategy. Finally, up to around 4% improvement

is achieved in a hybrid, static-dynamic, caching mode. Thus, for all cases, the

cost-aware strategies improve the state-of-the-art baselines.

Chapter 4

Query Intent Aware Result

Caching

In web search engines, query results are cached and presented in terms of pages,

which typically include 10 results each. In navigational queries, users seek a par-

ticular website, which would be typically listed at the top ranks (maybe, first

or second) by the search engine, if found. For this type of query, caching and

presenting results in the 10-per-page manner may waste cache space and network

bandwidth. In this chapter, we propose non-uniform result page models with

varying numbers of results for navigational queries. The experimental results

show that our approach reduces the cache miss count by up to 9.17% (due to

better utilization of cache space). Furthermore, bandwidth usage, which is mea-

sured in terms of number of snippets sent, is also reduced by 71% for navigational

queries. This means a considerable reduction in the number of transmitted net-

work packets, i.e., a crucial gain especially for mobile search scenarios. Our user

study reveals that users easily adapt to the proposed result page model and that

the efficiency gains observed in the experiments can be carried over to real-life

situations.

The rest of this chapter is organized as follows. In Section 4.1, we provide the

motivation for our work and list our contributions. Section 4.2 presents related

56

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 57

work on identifying user search goals, with special emphasis on the works about

navigational queries. We then define and discuss alternative result page models

for navigational queries and evaluate their presentation costs in Section 4.3. The

effects of non-uniform page models on caching are evaluated in Section 4.4. Sec-

tion 4.5 presents the results of the user study, in which user browsing behavior

is observed regarding non-uniform result pages. Finally, we conclude the chapter

in Section 4.6.

4.1 Introduction

Web search engines answer millions of queries per day to satisfy the informa-

tion needs of their users. In the literature [18, 72], two essential goals for web

searches are identified as “informational” or “navigational.” Additionally, some

other classifications of user search intents including transactional [18] and re-

source queries [72] are also proposed. In the context of this study, we focus on

the navigational queries and broadly refer to all queries that are not navigational

as informational. To illustrate the difference between these categories, consider

the following two queries as examples of informational and navigational types,

respectively: “caching in web search engines” and “united airlines.” The user

asking the first query is trying to find information on caching in web search en-

gines and (s)he does not have a specific website in mind. Therefore, (s)he may

browse several result pages, read the snippets and decide to visit many different

web pages. On the other hand, the user asking the second query is most probably

looking for United Airlines’ company website. In this case, if the search engine

finds the target page, it can be expected to be among the top-ranked results since

Liu et al. [50] note that information retrieval systems have much better effective-

ness for navigational queries than informational queries. Thus, the user would

typically glance over only a few of the top-ranked URLs and not attempt to visit

alternative pages, other than the target page in his/her mind. The difference

between user intention and behavior is clear: in the navigational case, the user is

only interested in accessing the particular web page that (s)he knows or expects

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 58

to exist (e.g., www.united.com for this example), and not any other results re-

lated to the topic of the query (e.g., financial news about United Airlines, etc.).

The previous works in the caching literature [30, 47] assume that query results

are cached as typical pages that include 10 results for all queries.

Web search engines, regardless of the user’s search goal, present and cache the

results in terms of pages, each of which includes a fixed number (typically 10) of

results. By result page, we mean the URLs and snippets of the documents in the

query result [30] that is necessary to construct the final HTML output. The visual

content of the page (e.g., with ads, etc.) are not considered. This uniform result

page model may be appropriate for informational queries, but for navigational

queries, caching and presenting results in this 10-per-page manner may waste

cache space and network bandwidth. In other words, for navigational queries, it

may be possible to provide, say, fewer than 10 results on the first result page and

still satisfy the user, while saving the valuable resources mentioned above.

In this chapter, we propose to use non-uniform result page models, i.e., pages

with varying number of results, for navigational queries. By doing so, our goals

are to reduce network bandwidth usage during the result page presentation, and

to best utilize the cache space at search engine side. To our knowledge, this is

the first work that explores the display and caching of query result pages with

varying granularities (number of results). More specifically, the contributions of

our work in this chapter are as follows:

1. We define a cost model for the result page models and investigate the band-

width utilization of non-uniform result page models for presenting up to

the top-20 results. We restrict ourselves to the top-20 results since, for

the vast majority of web queries, at most top-20 results are inspected by

users [66]. Using the cost model and a large query log, we experimentally

show that non-uniform result page models considerably reduce the number

of snippets transmitted to the user and hence improve bandwidth usage for

navigational queries. This reduction in bandwidth usage is more crucial for

mobile search scenarios with low bandwidth capacities. Considering that

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 59

a significant portion of mobile queries are navigational [24], this improve-

ment will be an important contribution for this field. In particular, our

findings reveal that presenting top-20 results in three pages containing two,

eight, and 10 results, respectively, would be the most efficient model for

bandwidth consumption.

2. We investigate and evaluate the gains of using non-uniform result page

models in web search engine caching. We adapt a realistic framework that

involves a hybrid result cache (composed of static and dynamic parts) along

with an adaptive prefetching mechanism [30]. Our experimental findings

show that the proposed model improves cache space utilization and subse-

quently reduces the number of cache misses.

3. For our proposal to make sense in practical settings, it is crucial to observe

the reaction of users for the non-uniform result page models since they are

accustomed to seeing a constant (e.g., 10) number of results per page. That

is, in a navigational search scenario, if the user keeps on browsing successive

result pages even after (s)he finds the target page, this would diminish the

efficiency promises of our proposal. We explore whether the proposed model

fits the real-life browsing behavior of the users by conducting a user study.

The study reveals that users easily adapt to non-uniform result page models

and interact with the web search engine as expected, i.e., do not look further

result pages if they are satisfied with the current result page. This means

that the efficiency gains observed in the experiments are realistic and can

be carried into real-life situations.

4.2 Related Work on Identifying User Search

Goals

User search goal identification is well explored in the literature. Early works [18,

72] analyze query logs and classify different user search goals manually. Later

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 60

works [4, 5, 31, 35, 36, 43, 44, 45, 50, 53, 55, 56] in this area focus on the auto-

matic identification of user search goals by several machine learning techniques

that exploit various features. The majority of these works essentially evaluates

the accuracy of determining the user search’s intent and proposes some future

directions for the utilization of this knowledge. That is, there are relatively few

works as ours that build upon these automatic identification methods. In particu-

lar, only two of the above works [31, 43] devise different ranking algorithms based

on the user’s search intent. As an alternative use case, Rose [71] suggests that

different user interfaces (or different forms of interaction with the users) should

be provided to match users’ different search goals. An illustrative study in this

direction is by Kofler and Lux [44]). In their work, once users’ search goals are

predicted, the results (digital photos in their case) are displayed accordingly, e.g.,

in either thumbnail or list view.

In our work, we do not aim to propose another identification method. There-

fore we adopt a simple and effective approach from Liu et al. [50] ’s work. They

propose two features extracted from click-through data for user intent classifica-

tion. These features are N clicks satisfied (nCS) and top-n results satisfied (nRS).

nCS measures the frequency of query submissions such that fewer than n clicks

are performed in those cases. Similarly, nRS measures the frequency of query

submissions such that all clicks in these submissions are within top-n results.

A decision tree classification exploiting these features and Lee et al. [45]’s click

distribution feature achieves 85% F-measure for navigational queries. Brenes et

al. [17] surveys several methods for user intent classification and evaluates their

accuracy using a set of 6,624 manually labeled queries. It is found that Liu et

al. [50]’s nRS feature gives the best accuracy for navigational queries. As noted

in this survey, a combination of various features increases the accuracy. There-

fore, in this study we also decide to use a complementary method proposed by

Jansen et al. [36]. In this work, navigational queries are identified by a set of

heuristics such as whether it contains person/organization/company names and

query length is less than three, etc.

Lu et al. [53] propose to use thousands of features for navigational query

identification. They claim that for navigational queries, “presentation of the

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 61

search results or the user perceived relevance can be improved by only showing

the top results and reserving the rest of [the] space for other purposes.” In

this chapter, we explore different result page models for navigational searches to

improve system efficiency, i.e., to best utilize the bandwidth and cache space.

Piwowarski and Zaragoza [67] try to predict the possibility of the user clicking

on a particular result for a query. They achieve over 90% accuracy for navigational

queries. They suggest that if it can be determined that it is highly likely that a

user will click on a certain result, the snippet for that result could be highlighted

or the user could be directly sent to the page for that result. Our approach is in

the middle of these extremes. Showing the top results on the first result page is

a more conservative approach than directly forwarding the user to the top result

page, but it is less conservative than just highlighting the snippet.

Teevan et al. [79] examine the re-finding behavior of users by considering

repeat queries in Yahoo!’s logs. Their results show that navigational queries

constitute a significant portion of repeat queries. The authors suggest that the

web search engine designers should take this re-finding behavior into account

when designing user interfaces. They propose that a history of a user’s past

queries would be helpful. They also propose providing direct links labeled with

the most frequent query term, to websites for users who issue a high number of

navigational queries. Their findings confirm our motivation for this study, since

we also propose a special treatment for navigational query types.

Finally, it is possible that some commercial search engines may already be

treating different query types in different manners. For instance, Google’s Browse

by Name facility1 allows users to type queries into the address bar and if the

system determines the site that the user wants to go to, it directly forwards

him/her to that site. Otherwise it gives the usual result page for the query. A

recent work by Tann and Sanderson [78] shows that some informational queries

become partly navigational nowadays. For example, many users who issue an

informational query about a film actor want to see the page in internet movie

database (IMDB) website or Wikipedia website. This work also shows that web

1http://www.google.com/support/toolbar/bin/answer.py?hl=en&answer=9267.

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 62

search engines take this user expectation into account and show the results from

IMDB or Wikipedia at high ranks. However, the details of such technologies are

not publicly available.

4.3 Result page models for navigational

queries: Cost analysis and evaluation

Navigational queries constitute a non-trivial portion of web search queries [36]. It

is hard to develop a result page model tailored to informational queries, as user

behavior is unpredictable. Even if the search is successful, the user may click

on several results or even request another result page to learn different aspects

of the topic in question. On the other hand, those who submit navigational

queries, mostly aim to obtain the address of a target site. For such a query, a

successful search would return the target result at the highest ranks because Liu

et al. [50] note that information retrieval systems have much better effectiveness

for navigational queries than informational queries. Subsequently, the user would

be expected to click on only the top few results, and no more. Therefore, it might

be beneficial to show the top few results on the first result page for navigational

queries. Note that this choice of result presentation for navigational queries is also

confirmed by previous works on user browsing behaviors by Joachims at al. [42]

and Dupret and Piwowarski [28]. In these works it is observed that in almost all

cases users check the first two query results right after the result page is displayed.

If these results are not satisfying, then those at the lower ranks are examined.

These earlier findings imply that it may be possible to present and cache the

results of navigational queries in a more efficient manner, i.e., by presenting only

a few results on the first result page. In this section, we first develop a model for

evaluating the presentation cost of query results in terms of the network usage and

user browsing process. This cost model is used to determine whether there exists

a better way of presenting the results of a navigational query to the user than the

typical 10-results-per-page approach. We define some of the basic notions and

introduce measures used in our cost model as follows:

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 63

Query Instance: A query submission by a user to the search engine at a

specific time. This also includes activities after query submission such as browsing

the result pages. It ends when the user submits another query or the query session

expires, i.e., the user does not perform any activity for 30 minutes.

Click Requests: The set of clicks performed by the user after query submis-

sion. The user browses the returned results and clicks on the ones that seem to

be relevant to his/her information need.

Result Page Model: A result page is an atomic item for internal (e.g., result

caching) and external (e.g., result display) purposes of the web search engine. A

result page model describes how the query results are placed into the pages,

each of which may include a fixed (uniform model) or variable number of results

(non-uniform model).

numSnippetsSent: A measure of the number of snippets sent by the web

search engine to the users. It shows the network bandwidth cost incurred by the

query result display. The ideal result page model must minimize this quantity.

numResultPagesBrowsed: Indicates the total number of result pages that

the user browses in order to reach the target document(s) for his/her query. The

ideal result page model should minimize the number of result pages browsed.

This quantity also corresponds to the number of requests that must be handled

by the web search engine.

Note that the underlying objectives of the last two measures conflict with

each other. In an extreme case, the result page model could show one result per

result page. This model would guarantee that the number of snippets sent would

be minimal but it would also maximize the number of result pages browsed. At

another extreme, the search engine may show all the results (e.g., top-100 or

top1000) in one result page. While minimizing the number of the result pages

browsed to only one, this model maximizes the number of snippets sent to the

user. In what follows, we introduce a cost model based on these measures to find

the optimal result page model for navigational queries.

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 64

4.3.1 Cost Analysis of the Result Page Models

In this section, we present a practical cost analysis model for the result page mod-

els with varying granularities. Various previous studies [13, 38, 39] agree on the

finding that users rarely click on more than the top-20 results, so without loss of

generality we restrict our analysis to the result page models for this most common

case. We explore how the top-20 results can be “paged/organized” to optimize

the measures (numSnippetsSent and numResultPagesBrowsed) introduced above.

Consider a query instance Q and the click requests C = {c1, c2, . . . , ck}
of k clicks for this query. Assume that click requests are at the ranks R =

{r1, r2, ..., rk}, where ri ≤ ri+1 and rk ≤ 20. Then the result at rank rk is defined

as the lowest-ranked clicked document for this query instance. For simplicity, we

assume that the user requested all the result pages up to the result page containing

the result at rank rk and that the user will not request more results after this rank.

This assumption agrees with the “cascade model” proposed by Craswell at al. [25]

for user click behavior. The cascade model assumes that users view each query

result in a linear order, from top to bottom, and decide to click on it or not for

each result. The users do not examine documents below a clicked result according

to this model. Based on these assumptions, we collect all < Q, rk > pairs for the

top-20 clicks. Then, we obtain the list A = {A1, A2, . . . , A10, A11, A12, . . . , A20},
where Ai denotes the number of query instances for which the lowest-ranked

clicked document is at rank i (i.e., rk = i).

Next, we can derive formulas for numSnippetsSent and numResultPages-

Browsed measures using this list. Assume we have a two-page result model for

top-20 as X Y, which denotes that the first result page contains X results and

the second result page contains Y (or 20-X) results. For this case, the formulas

for numSnippetsSent and numResultPagesBrowsed are presented below:

numSnippetsSentX Y = X ×
20∑
i=1

Ai + Y ×
20∑

i=X+1

Ai (4.1)

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 65

numResultPagesBrowsedX Y =
20∑
i=1

Ai +
20∑

i=X+1

Ai (4.2)

Equation 4.1 expresses that we have to send the first result page containing X

number of snippets for all query submissions in the list A (captured with the first

summation) but the second result page containing Y snippets will only be sent to

query submissions that also request results at the rank X + 1 or more (expressed

with the second summation). Similarly, in Equation 4.2, the first summation

accounts for the first result page that is clearly browsed for all queries and the

second summation counts the number of queries that ask for the second page of

results.

The objective of the result page model is to minimize these two quantities.

We have to normalize these expressions in order to find a result page model that

minimizes the overall cost. To this end, we use the conventional model of 10-

results-per-page schema (10 10) as our baseline model and normalize the above

expressions as follows:

numSnippetsSent normX Y =
numSnippetsSentX Y

numSnippetsSent10 10

(4.3)

numResultPagesBrowsed normX Y =
numResultPagesBrowsedX Y

numResultPagesBrowsed10 10

(4.4)

Note that we do not expect any two-page result model to achieve better figures

than the baseline model of 10 10 for both of the above measures. That is, a

model X Y will decrease one quantity at the cost of an increase in the other

quantity. However, the question is whether it is possible to find a model better

than the baseline for the overall case. For this purpose, the summation of the

normalized values in Equations 4.3 and 4.4 can be used as an overall measure for

the result presentation models (see Equation 4.5). Note that, it is possible to have

different weightings for the components in Equation 4.5 for different objectives.

For example, in a mobile search scenario, the bandwidth savings might be more

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 66

important and therefore the weight of numSnippetsSent can be higher. Since the

value of such a sum for the baseline model is 2, we can use the following formulas

to calculate the overall improvement percentage of the result page models over

the baseline model in the experiments:

overallX Y = numSnippetsSent normX Y +numResultPagesBrowsed normX Y

(4.5)

%improvementX Y =
2− overallX Y

2
× 100 (4.6)

Note that, although we restrict the discussion in this section to the top-20

results and result page models with two pages, the cost formulations can be

generalized for top-K results and M pages. In the experimental evaluations, we

consider models involving two and three result pages for the top-20 results.

4.3.2 Evaluation of the Result Page Models

4.3.2.1 Experimental Setup

We use the AOL Query Log [66] that contains around 20 million queries of about

650K people for a period of three months. We exclude query instances that do

not have any clicks (In AOL log, it is not possible to determine exactly which

result pages are viewed by the users without any knowledge of clicks). Our subset

contains 10,733,457 query instances that have at least one click. Among those

queries, 5,853,929 are submitted in the first 6 weeks of three months and reserved

as the training set. This set is used to determine the navigational queries and

fill the cache (discussed in the next section). The remaining 4,879,528 queries

constitute the test set, which will be used to evaluate the cost of the result page

models. We first present the characteristics of the training query log. Figure 4.1

shows the number of queries that have the lowest-ranked clicks at a given rank,

i.e., it illustrates the list A described in the previous subsection. Note that in

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 67

Figure 4.1: Log graph showing number of query instances of which the last
click is at a given rank (for training log). (Ozcan, R., Altingovde, I.S., Ulu-
soy, O., “Exploiting Navigational Queries for Result Presentation and Caching
in Web Search Engines,” Journal of the American Society for Information Sci-
ence and Technology, Vol. 62:4, 714-726. c©2011 John Wiley and Sons.
http://dx.doi.org/10.1002/asi.21496. Reprinted by permission.)

our query log 93.7% of all clicks are for results in the top-20, justifying our use

of those results in this study. The cut between ranks 10 and 11 is clearly visible,

which indicates that the number of requests for results on the second page is an

order of magnitude less than the number of requests for the results on the first

page.

4.3.2.2 Navigational Query Identification

As mentioned in the related work section, there are several methods proposed for

automatic navigational query identification in the literature. Since the proposal

of another method for this purpose is not among the objectives of this study,

we adopt a simple and effective approach from Liu et al. [50]’s work and slightly

extend it for more flexibility. We also combine Jansen et al. [36]’s method into our

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 68

approach for higher accuracy. The first stage of our method identifies navigational

queries by using the click distribution such that if 90% of the time users clicked up

to rank two for that query2, it is classified as a navigational query. However, as we

will see later, this definition is too restrictive; so we have an additional heuristic

as follows: For a query, we define the notion of confidence in navigational query

identification as in Equation 4.7. In this formula, fQ,Top2 denotes the frequency of

query instances of query Q, in which users clicked up to rank two; the right side

of the multiplication represents the log normalized frequency of query Q. Here,

fQ is the frequency of query Q in the training set and fMAX is the maximum

frequency value in the training set.

Confidence = fQ,Top2 ×
log(fQ + 1)

log(fMAX + 1)
(4.7)

We also use the above confidence measure for identifying navigational queries.

In particular, we call those queries with fQ,Top2 greater than 80% and a confidence

score greater than 0.2 navigational queries, as well. The intuition underlying the

components of this confidence score, namely fQ,Top2 and query frequency, is as

follows: In navigational queries, users click on only one or two result document

most of the time. Therefore, fQ,Top2 is an important indicator in determining

whether a query is navigational or not. Second, we use query frequency since it

is a general rule in machine learning that as training size increases, classification

accuracy also increases. Therefore, the queries with a high occurrence frequency

and high fQ,Top2 are identified as navigational queries with a higher confidence

score. Finally, we exclude the queries that occur only once in the training log

regardless of the above considerations, except those that include domain suffixes

(www, com, edu, org, etc.), since Jansen et al. [36] report that the existence of

such suffixes in the query is an important characteristic of navigational queries.

In a recent study by Lee and Sanderson [46], it is found that 86% of URL queries

(i.e., those that consist of full or partial URLs) are navigational.

In the second stage of our approach, we further apply Jansen et al. [36]’s

method for those queries that cannot be identified as navigational by the first

2Note that this corresponds to the nRS feature for n=2 in Liu et al. [50].

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 69

stage. In this method, navigational queries are identified based on a set of rules

derived from characteristics of those queries. Jansen et al. list the character-

istics of navigational queries as following: a) containing company, organization

and people names; b) having less than three terms; c) including domain suffixes

(com, edu, etc.); d) viewing only the first result page. We used the freebase

database3 as also applied in [17] in order to get the list of company, organiza-

tion and people names. We obtained 1,579K people names, 492K organization

names, and 89K company names. We check whether the query contains any of

these names and also satisfy the characteristics listed above in order to classify

it as navigational. In our training log, we discover that among the 2,778,591

distinct queries, 446,026 of them are navigational queries. When we consider the

occurrence frequency of navigational queries, they constitute 32.5% of the query

log. Three annotators manually inspected 500 randomly chosen queries that are

identified as “navigational” in order to measure the precision. It is found that

416 are correctly identified, which corresponds to 83.2% precision. There was

a disagreement among three annotators for only 72 queries, and so they agree

in 85.6% of the queries. When we consider the query occurrence frequency, the

precision increases to 87.9%, such that out of 1,418 occurrences of 500 distinct

queries, 416 correctly identified navigational queries constitute 1,246 submissions.

This shows that identification is highly accurate for frequent queries but less ac-

curate for rare queries. We further observe that there are some informational

queries for which users mostly click on the top two results. We envision that the

non-uniform result page models that we propose in this chapter can also serve

well for such queries.

4.3.2.3 Result Page Model Experiments

In this set of experiments, our aim is to compare alternative result page models

for navigational queries based on numSnippetsSent and numResultPagesBrowsed

measures defined previously. We use the training set to find the navigational

queries as mentioned in the previous subsection. We process the test set and

3http://www.freebase.com/

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 70

for those queries that are identified as navigational in the training set, we apply

the result presentation model X Y (The first page contains X results/snippets

and the second page contains Y (or 20-X) results). We use the uniform result

presentation model (i.e., 10 10) for informational queries.

As we mentioned in Section 4.3.1, we perform experiments for two page and

three page result models for the top-20 clicks. Figure 4.2 shows the graph for the

normalized cost of two page models (X Y) ranging from 1 19 to 19 1 for naviga-

tional query types (those queries in the test set that are identified as navigational

query in the training set). As expected, models left to the 10 10 baseline approach

achieve lower numSnippetsSent but higher numResultPagesBrowsed values than

the baseline. On the other hand, models to the right of the baseline provide

improvements in terms of the browsed result pages but increase the number of

snippets sent.

The best result presentation model is 3 17, which has the normalized num-

SnippetsSent value as 0.43 and the normalized numResultPagesBrowsed as 1.08.

The overall improvement for this model is 24.5% (excluding the cost of the in-

formational query type). If we consider the improvement in the existence of

informational queries such that we use the 3 17 model for navigational queries

and the baseline 10 10 model for the remaining queries, then the overall improve-

ment becomes 8.8% (numSnippetsSent = 0.80 and numResultPagesBrowsed =

1.025, such that a 20% decrease in the number of snippets sent occurs at the cost

of a 2.5% increase in the number of result pages browsed.).

Experiments with three page result presentation models are also conducted

but the results for all 171 combinations are not reported due to space consider-

ations. Here we mention only the best models achieved. In this case, the best

model is 2 8 10; that achieves a normalized numSnippetsSent value of 0.29 and

a normalized numResultPagesBrowsed of 1.11. The overall improvement for this

model is 29.5% (excluding the cost of the informational query type). If we con-

sider the improvement in the existence of informational queries such that we use

the 2 8 10 model for navigational queries and the baseline 10 10 model for the re-

maining queries, then the overall improvement becomes 10.1% (numSnippetsSent

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 71

Figure 4.2: Graph showing the costs of two page result presentation mod-
els for only navigational queries. (Ozcan, R., Altingovde, I.S., Ulusoy,
O., “Exploiting Navigational Queries for Result Presentation and Caching in
Web Search Engines,” Journal of the American Society for Information Sci-
ence and Technology, Vol. 62:4, 714-726. c©2011 John Wiley and Sons.
http://dx.doi.org/10.1002/asi.21496. Reprinted by permission.)

= 0.76 and numResultPagesBrowsed = 1.039, such that a 24% decrease in the

number of snippets sent occurs at the cost of a 3.9% increase in the number of

result pages browsed). In the rest of this chapter, we use the 2 8 10 model for

navigational queries unless stated otherwise.

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 72

4.4 Caching with the result page models and

experimental evaluation

4.4.1 Employing Result Page Models for Caching

In this section, we examine the effect of using a non-uniform result page model

for navigational queries on the caching mechanism in web search engines. We

adapt a hybrid caching framework proposed by Fagni et al. [30], in which some

part of the cache is reserved for static caching and the remaining part is reserved

for dynamic caching.

The static cache is populated with the most frequent query results. In the

traditional case, query results consist of result pages of 10 results. The static

cache is filled with the most frequent < query, result page no > pairs in the

training query log. Since the size of the result pages is the same in this case,

considering frequency would be enough. However, as in our case, we have pages

of two results, eight results, and ten results. The size of the cached items must be

taken into account in addition to the frequency. Since snippets are large enough

to dominate the size, we assume that the page sizes are directly proportional to

the number of results, i.e., the size of the first page of a navigational query is only

20% of the size of a 10-results page, and the second page is 80%. Based on these

considerations, the query result pages are ordered by the following score formula

(adapted from [6]) and the cache is populated with the items having the highest

scores.

Score<query,result page no> =
FREQ<query,result page no>

SIZE<query,result page no>

(4.8)

In the dynamic part of the cache, we employ the LRU replacement policy that

orders cache items based on their last usage time and when the cache is full evicts

the one that has been requested least recently. Note that we do not attempt to

identify navigational queries dynamically since our identification method essen-

tially requires the click frequencies of queries, which are obtained from previous

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 73

query logs in an offline manner. Therefore, for all query types, the result pages

are stored in the uniform 10-per-page manner in the dynamic cache. The only

exception is for those navigational queries of which the top-2 results are cached

in the static cache. In this case, if the user requests the second result page, i.e.,

results between ranks three to 10, this page should also be inserted into the dy-

namic cache. Thus, the dynamic cache would include pages of size 10 or eight in

our setup.

4.4.2 Experiments

4.4.2.1 Experimental Setup

We perform our experiments in the static-dynamic caching environment proposed

by Fagni et al. [30]. It is important to decide what portions of the cache are

reserved for static or dynamic caching for the best hit ratio. As noted in Fagni

et al. [30], the best fraction value is based on the query log. The fraction of

cache space reserved for the static cache is denoted as fs; the cache with fs = 0

corresponds to a purely dynamic cache and the cache with fs = 1.0 corresponds

to a purely static cache.

Figure 4.3 presents hit ratios of static-dynamic caches with different fs values,

ranging from purely dynamic to purely static for small (50K), medium (500K),

and large (2500K) cache sizes. In the experiments reported throughout this sec-

tion, the cache size is expressed in terms of the number of typical result pages

in the cache. For small or medium cache sizes, most of the cache space must be

reserved for the static cache, but for large cache sizes the dynamic cache portion

must dominate the cache. For our query log, a static-dynamic cache with fs = 0.8

gives the best hit ratio for most of the cache sizes (It has the best hit ratio for

small and medium cache sizes and very close to the best ratio for the large cache

size, as shown in Figure 4.3). We therefore perform caching experiments with

this cache configuration.

Second, prefetching query results is an important mechanism that increases

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 74

Figure 4.3: Hit ratios vs. fs (fraction of the cache reserved for static cache);
fs = 0 : purely dynamic, fs = 1 : purely static cache. (Ozcan, R., Altingovde,
I.S., Ulusoy, O., “Exploiting Navigational Queries for Result Presentation and
Caching in Web Search Engines,” Journal of the American Society for Informa-
tion Science and Technology, Vol. 62:4, 714-726. c©2011 John Wiley and Sons.
http://dx.doi.org/10.1002/asi.21496. Reprinted by permission.)

the cache hit ratio, as noted in Fagni et al. [30]. Normally, when a user requests

a page of results and it is not in the cache, only the requested page of results is

brought into the (dynamic) cache. If the user asks for the next page of results and

it is not in the cache, the same process is repeated. In the case of prefetching,

if the requested page is not in the cache, instead of just one page, successive

F (prefetching factor) result pages (including the requested page) are brought

into the cache. Fagni et al. [30] proposed an adaptive prefetching policy that

remarkably increases the prefetching performance. This method prefetches F

successive result pages only if the miss occurs for a page other than the first result

page. When a miss occurs for the first result page, only the second result page

is prefetched (for details, see Table V in [30]). We applied the Fagni et al. [30]’s

adaptive prefetching policy in our experiments. Figure 4.4 presents the results

of the experiments with different prefetching factors for a cache with fs = 0.8.

Note that minimum prefetching with F = 2 improves the “No prefetching” case

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 75

Figure 4.4: Caching performances due to various levels of prefetching (F as the
prefetching factor) with fs = 0.8 and the cache size as the number of cached result
page entries. (Ozcan, R., Altingovde, I.S., Ulusoy, O., “Exploiting Navigational
Queries for Result Presentation and Caching in Web Search Engines,” Journal of
the American Society for Information Science and Technology, Vol. 62:4, 714-726.
c©2011 John Wiley and Sons. http://dx.doi.org/10.1002/asi.21496. Reprinted by

permission.)

considerably. The hit ratios increase as the prefetching factor increases but the

improvements are marginal after F = 4. It is important to note that in the

case of prefetching 20 successive pages (not shown in the figure), the hit ratio

starts to decrease; since after this point, the cache is filled with too many useless

prefetched pages that results in eviction of pages that will likely be requested in

the near future.

In the following experiments, we compare the cache performance in the case

of using non-uniform result pages (2 8 10) to that of using the baseline (10 10)

approach. In the light of the above discussions, we use fs = 0.8 as it gives the best

performance for almost all cache sizes that are experimented. For the prefetching

strategy, we experiment with the prefetching factor F = 4 since after this point

improvements in the hit ratio are marginal. The static part of the cache is filled

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 76

with the queries in the training set as described in the previous subsection and the

remaining queries are submitted to dynamic part of the cache. Then, the overall

cache performance is evaluated by using the disjoint test set. In the literature,

the hit ratio is widely used as a measure for comparing the different caching

approaches. However, in our case, since the size of the cached items is not the

same, using the hit ratio as an evaluation measure is not possible. For instance,

assume that we have cached the first (including results at ranks one and two) and

the second result pages (including results at ranks three to 10) of a navigational

query in our caching scheme. Then let the conventional caching scheme cache

the first result page (results of ranks one to 10) of the same query. Assume that

clicks for this query in the test log are at the ranks R = {1, 2, 5, 12}. For our

system, we would have hits for the first and second result pages but we would

have a miss for the third result page, which results in a hit ratio of 2/3. On the

other hand, the conventional system would have one hit for the first result page

and one miss for the second result page, which gives a hit ratio of 1/2. As it

can be seen, even though these two caching strategies cached the same amount

of results for the same query, the hit ratio measure artificially differs, and thus is

not appropriate to use here. Therefore, we use another approach to measure the

effectiveness of the two strategies. Instead of hit ratio, we compute the absolute

number of cache misses for each strategy. For instance, in the above example,

there is only one cache miss for both caches, which is a fair evaluation.

4.4.2.2 Experimental Results

Our caching experiment results are shown in Table 4.1. The cache size is given as

the number of 10-results-per-page cache size entries. The reduction percentages

in the total miss counts are shown in a separate column. As the cache size

increases, improvements decrease since this causes many of the second result

pages of navigational queries to be cached also. Therefore, our method is more

effective for small and medium size caches. For large cache sizes, our approach

experiences higher miss counts than the baseline. This seems surprising at first,

but has a sound explanation. For some of the queries that are identified as

navigational in the training log and have all their clicks in the top two results,

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 77

Table 4.1: Caching performances with fs = 0.8 and prefetching F = 4. (Ozcan,
R., Altingovde, I.S., Ulusoy, O., “Exploiting Navigational Queries for Result
Presentation and Caching in Web Search Engines,” Journal of the American
Society for Information Science and Technology, Vol. 62:4, 714-726. c©2011 John
Wiley and Sons. http://dx.doi.org/10.1002/asi.21496. Reprinted by permission.)

Cache Size Baseline Cache Our cache(with 2 8 10)
Cache Miss Counts Cache Miss Counts % reduction

5K 4,072K 3,851K 5.42
10K 3,824K 3,604K 5.75
30K 3,437K 3,264K 5.04
50K 3,269K 3,124K 4.43
100K 3,059K 2,952K 3.49
200K 2,866K 2,806K 2.11
300K 2,765K 2,702K 2.27
500K 2,657K 2,613K 1.67
750K 2,546K 2,538K 0.30
1500K 2,448K 2,453K -0.21
2500K 2,350K 2,358K -0.33

our static caching scheme would never cache the second results page (including

results three to 10), regardless of the cache size (i.e., recall that we compute the

frequency of the <query, result page> pairs in the training set, thus if all clicks

are for the top two results, the frequency of the second result page would be 0,

and can never be cached in the static portion of the cache). They can be cached

in the dynamic cache but the first occurrences of all such result pages cause cache

miss in our case. To remedy this problem, we use the confidence score used during

the identification of navigational queries for a smoothing operation. That is, for

each query identified as a navigational query, we multiply its (first result page)

frequency with (1− confidence)/c , where c is an experimental constant (which

is found as 2), and add this score to the frequency of the second result page.

This creates a smoothing effect and allows us to cache the second result page of

a navigational query with low confidence, even if results between ranks three and

10 are never clicked on the training log. In Table 4.2, we report the results with

smoothing. Notice that our model does not create an increase in miss counts for

any cache size, in turn of a slight decrease in the reductions for smaller cache sizes

(Please compare Tables 4.1 and 4.2). The proposed result page model provides

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 78

Table 4.2: Caching performances with fs = 0.8 and prefetching F = 4 with
smoothing. (Ozcan, R., Altingovde, I.S., Ulusoy, O., “Exploiting Navigational
Queries for Result Presentation and Caching in Web Search Engines,” Journal of
the American Society for Information Science and Technology, Vol. 62:4, 714-726.
c©2011 John Wiley and Sons. http://dx.doi.org/10.1002/asi.21496. Reprinted by

permission.)

Cache Size Baseline Cache Our cache(with 2 8 10)
Cache Miss Counts Cache Miss Counts % reduction

5K 4,072K 3,868K 5.00
10K 3,824K 3,622K 5.28
30K 3,437K 3,283K 4.47
50K 3,269K 3,145K 3.80
100K 3,059K 2,974K 2.78
200K 2,866K 2,805K 2.14
300K 2,765K 2,702K 2.28
500K 2,657K 2,604K 2.01
750K 2,546K 2,524K 0.87
1500K 2,448K 2,434K 0.59
2500K 2,350K 2,339K 0.46

reductions of 4-5% in absolute miss counts.

Finally, we realized that reporting our gains in terms of miss counts disfavors

us in that the majority of misses in our system is for singleton queries (queries

that occur only once in the test log and do not appear at all in the training log),

which can never be resolved in a caching mechanism. For comparison purposes,

we also report the experimental results for the test set queries excluding the

singleton query miss counts in Table 4.3 (again with smoothing). For this case,

reductions are more emphasized, reaching up to 9.17%.

4.5 User browsing behavior with the non-

uniform result page model

Search engine users’ browsing behavior is well studied in the literature [52, 25,

28] for purposes such as providing better search interfaces for users and better

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 79

Table 4.3: Caching performances by excluding costs for singleton query misses
(fs = 0.8 and prefetching F = 4). (Ozcan, R., Altingovde, I.S., Ulusoy,
O., “Exploiting Navigational Queries for Result Presentation and Caching in
Web Search Engines,” Journal of the American Society for Information Sci-
ence and Technology, Vol. 62:4, 714-726. c©2011 John Wiley and Sons.
http://dx.doi.org/10.1002/asi.21496. Reprinted by permission.)

Cache Size Baseline Cache Our cache(with 2 8 10)
Cache Miss Counts Cache Miss Counts % reduction

5K 2,445K 2,241K 8.35
10K 2,196K 1,995K 9.17
30K 1,810K 1,656K 8.53
50K 1,642K 1,517K 7.60
100K 1,431K 1,347K 5.90
200K 1,239K 1,177K 4.98
300K 1,137K 1,074K 5.50
500K 1,029K 976K 5.15
750K 919K 896K 2.48
1500K 820K 806K 1.70
2500K 722K 712K 1.44

exploitation of query logs as implicit relevance judgments. All these studies are

based on the uniform result presentation model that shows 10 results per page. In

this study, we propose a non-uniform result page model for search engines through

the use of navigational query identification, thus it is important to investigate the

effect of such a result presentation model on user browsing behavior. To this end,

we conduct a user study. In this section, we first describe the experimental setup

and then present our findings.

4.5.1 User Study Setup

Ten search tasks, presented in Table 4.4, are prepared for the user study4. Five

of these tasks are navigational and the remaining five have informational intent.

Navigational tasks are chosen so that the target result could be found among the

top results in one of the major search engines.

4Available at http://139.179.11.31/rifat/Search/

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 80

Table 4.4: Navigational and informational tasks used in the user study. (Ozcan,
R., Altingovde, I.S., Ulusoy, O., “Exploiting Navigational Queries for Result
Presentation and Caching in Web Search Engines,” Journal of the American
Society for Information Science and Technology, Vol. 62:4, 714-726. c©2011 John
Wiley and Sons. http://dx.doi.org/10.1002/asi.21496. Reprinted by permission.)

Navigational tasks
Find the official homepage for Beijing 2008 Summer Olympics.
Find the homepage for United Airlines company.
Find the homepage for the New York Times newspaper.
Find the homepage for Computer Science department of University of Sheffield.
Find the homepage for United States Consulate in Istanbul Turkey.
Informational tasks
Find where and when the first olympics games organized.
When NASA sent a spacecraft for the first time for exploration of Mars?
Find information on the effects of global warming on polar bears.
Find information on how to quit smoking.
Find information on touristic places in Turkey.

The user study is designed as follows: When a subject logs in to the system, at

the top of the usual search interface (i.e., a textbox in which to type the query)

the system randomly displays a task amongst from the search tasks shown in

Table 4.4 and that has never been completed by that user (see Figure 4.5). The

user is asked to accomplish the given task by submitting queries and viewing the

results, including URLs and snippets, as usual. We used Yahoo! search engine’s

“Web search” web service [89] in order to get the results of the user queries. For

the navigational tasks5 only the top two results are shown based on the non-

uniform result page model (2 8 10) discussed in the previous sections. If the user

clicks the “next page” link, then the top three to 10 results are shown in the

second result page. On the other hand, for informational queries, the baseline

result presentation is used and 10 results are shown on each page. In the tutorial

stage of the user study, we requested that subjects mark the search result(s) that

answer(s) the given task by clicking the “TARGET” checkboxes provided at the

end of each result snippet. The subjects are allowed to click on the result URL to

further see the content of the result document. Note that in this study, subjects

5Note that the user is not informed about navigational or informational query types and
they do not know what we are measuring.

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 81

Figure 4.5: The search interface of the user study. (Ozcan, R., Altingovde,
I.S., Ulusoy, O., “Exploiting Navigational Queries for Result Presentation and
Caching in Web Search Engines,” Journal of the American Society for Informa-
tion Science and Technology, Vol. 62:4, 714-726. c©2011 John Wiley and Sons.
http://dx.doi.org/10.1002/asi.21496. Reprinted by permission.)

do not perform an evaluation of the information retrieval system; if that were

the case they would be requested to scan top-100 or top-1000 results and decide

whether each result is relevant or irrelevant. In this case, subjects are instructed

to stop when they think they have accomplished the given task, i.e., found the

web pages that answer the question in the corresponding search task.

Fifty-four subjects consisting of graduate and undergraduate students from

the computer engineering and industrial engineering departments in our univer-

sity perform the user study. There are 14 female subjects and remaining 40

subjects are male students. Each subject is given a brief introduction to the

experiment. Our aim is to measure the browsing behavior of subjects to the non-

uniform result page model for navigational queries. Specifically, we will measure

the users’ tendency to request the next result page even if they can identify the

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 82

target answer among top-2 results in the first page. In this sense, we investigate

whether the users can easily accommodate to a non-uniform result page model,

or they insist on seeing all top-10 results even when they find the answer in top-2.

4.5.2 User Study Results

The result of the experiment reveals that out of 237 navigational tasks completed

by the subjects (ignoring the cases where the subjects did not enter any target

result for the query), in only 24 cases subjects wanted to look for the results be-

yond the top two. In other words, subjects were satisfied with the top two results

89.9% of the time. Table 4.5 presents additional statistics obtained in this user

study. Each statistic is given as an average for navigational and informational

queries. As expected, the average informational task duration is much longer

than the average navigational task duration. Subjects type more queries for in-

formational tasks. The number of target sites selected for informational queries

is much higher than the number of targets selected for navigational queries. We

observe that the actual URLs and/or snippets are much more helpful for navi-

gational queries than informational queries since users click on fewer numbers of

URLs in the former case. Note that this number should be close to 1 in real life

case since in that case, users are expected to click on the target website because

the sole purpose of a navigational query is to reach that website. However, in

this experimental setting, subjects are instructed to just select the correct sites;

most of the time they understand the target website from snippets and do not

need to actually visit that website. The last statistic evaluates the ranks of the

target sites selected for each type of task. We observe that 96% of the target sites

selected for navigational queries reside in the top one or two ranks. However, this

ratio decreases to 34% for informational tasks.

To justify our approach, it is important to analyze the cases when subjects

want to see beyond the top two even though they found the target site(s) in the top

two. We will refer to such cases as “Beyond Top 2” hereafter. On average, only

in 9.3% of total navigational query instances in which users selected target sites

in the top two, they also want to see beyond the top two. When we focus on such

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 83

Table 4.5: User study experiment statistics. (Ozcan, R., Altingovde, I.S., Ulu-
soy, O., “Exploiting Navigational Queries for Result Presentation and Caching
in Web Search Engines,” Journal of the American Society for Information Sci-
ence and Technology, Vol. 62:4, 714-726. c©2011 John Wiley and Sons.
http://dx.doi.org/10.1002/asi.21496. Reprinted by permission.)

Statistic Navigational Informational
Avg. task completion time (sec) 38.33 83.94
Avg. number of queries submitted for a task 1.09 1.27
Avg. number of results selected as TARGET for
a task

1.25 4.09

Avg. number of URLs clicked for a task 0.33 1.06
Avg. % of TARGET results selected at ranks
Top1-2 for a task

96% 34%

Beyond Top 2 cases, we see a pattern, shown in Figure 4.6, between the occurrence

of such cases and the viewing order of the navigational task. (Recall that search

tasks are assigned to subjects in random order.) It is observed that many of the

Beyond Top 2 cases occur when a subject meets our result presentation model of

2 8 10 for navigational queries for the first time (i.e., 10 of 22 such cases occur

when a user evaluates his/her first navigational task, as shown in Figure 4.6). As

users see more examples of the non-uniform result presentation model, they get

used to it; the number of Beyond Top 2 cases drops dramatically after performing

a few navigational tasks. Therefore, even though, the percentage of Beyond Top

2 cases is 9.3%, users stop asking for the next result pages after they experience

just a few navigational queries with our method.

The overall result of the user study can be summarized as follows: Users easily

adapt to non-uniform result page models and interact with the web search engine

as expected, i.e., they do not look for further result pages if they are satisfied with

the current result page. This conclusion justifies our proposal of a non-uniform

result model and implies that the efficiency gains obtained in the experimental

setup of the previous sections could be transferred to real life search systems.

Furthermore, the work of Teevan et al. [79] examines the users’ re-finding

behavior and shows that navigational queries constitute a significant portion of

repeat queries. This means that a user tends to use the same navigational query

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 84

Figure 4.6: The pattern between Beyond Top 2 cases and navigational task order.
(Ozcan, R., Altingovde, I.S., Ulusoy, O., “Exploiting Navigational Queries for Re-
sult Presentation and Caching in Web Search Engines,” Journal of the American
Society for Information Science and Technology, Vol. 62:4, 714-726. c©2011 John
Wiley and Sons. http://dx.doi.org/10.1002/asi.21496. Reprinted by permission.)

to locate a particular page in his/her mind, and would be familiar with the result

page. Thus, in such cases, users are even less likely to browse result pages beyond

the first page. However, in the user study, the users are most probably not very

familiar with the navigational tasks assigned to them. That is, our user study

serves as a worst-case scenario for the number of Beyond Top 2 cases, since, in

contrast to real-life, almost no task is a repeat query.

Evidence in addition to user click behavior supports our choice of the 2 8 10

result page model for navigational queries. The eye tracking study in [42] revealed

that users almost always check the first two results immediately after a result page

is displayed. Then, a few seconds later, other results are examined if the first two

are not satisfying. Therefore, our non-uniform result model is confirmed by this

type of user browsing behavior.

CHAPTER 4. QUERY INTENT AWARE RESULT CACHING 85

4.6 Conclusion

In this chapter, we propose and evaluate non-uniform result page models to dis-

play and cache the results of navigational queries. It is shown that for these types

of queries, it is possible to reduce the number of snippets sent by 71%, at the

cost of an 11% increase in the number of result pages browsed. In other words,

assuming that an HTML result page (of top-10 results) takes 4 KB space [30]

and a TCP packet stores at most 1460 bytes of data, our approach would require

only one TCP packet for top-2 results, instead of three packets needed for trans-

mitting top-10 results. This reduction in the number of packets sent will be more

important in mobile search scenarios because of low bandwidth capacity and high

packet loss probability. The proposed result presentation model for navigational

queries is also shown to be valuable for caching mechanism, especially for small

and medium cache sizes. It is possible to reduce the number of miss counts up to

9.17%. Our findings are encouraging and justify the need for the special treat-

ment of different query types, especially navigational queries, submitted to a web

search engine. Our user study with 54 subjects shows that users easily adapt to

non-uniform result page models and interact with the search engine as expected,

i.e., they do not look for further result pages if they are satisfied with the current

result page. Therefore the efficiency gains observed in the experiments can be

carried over to real-life situations.

In addition to the aforementioned gains in efficiency, the approaches presented

in this chapter enable effective use of web page space [53], which implies further

benefits in various scenarios. For instance, given that only two results are shown

on the first (and most important) page, now it is possible to reserve the remaining

page space for purposes such as advertisements, result visualization, or related

query suggestions. This may have a positive impact on the number of clicks

received by ads, which is an important source of revenue for commercial search

engines. As another use case, search engines may want to provide more informa-

tion in the result snippets especially for news site navigational queries (e.g., “new

york times”) by giving direct links to several important headlines.

Chapter 5

Space Efficient Caching of Query

Results

In this chapter1, we propose an efficient storage model to cache document iden-

tifiers of query results. Essentially, we first cluster queries that have common

result documents. Next, for each cluster, we attempt to store those common doc-

ument identifiers in a more compact manner. Experimental results reveal that

the proposed storage model achieves space reduction of up to 4%. The proposed

model is envisioned to improve the cache hit rate and system throughput as it

allows storing more query results within a particular cache space, in return to a

negligible increase in the cost of preparing the final query result page.

The rest of this chapter is organized as follows. In the next section, we provide

the motivation for our work. Section 5.2 presents the related work on clustering

queries. We describe the details of our cluster-based storage approach in Sec-

tion 5.3. Experimental evaluation and discussion of the results are provided in

Section 5.4. Finally, we conclude this chapter in Section 5.5.

1 c©2008 IEEE. Reprinted, with permission from Ozcan, R., Altingovde, I.S., Ulu-
soy, O., “Space Efficient Caching of Query Results in Search Engines,” International
Symposium on Computer and Information Sciences (ISCIS’08), Istanbul, Turkey, 2008.
http://dx.doi.org/10.1109/ISCIS.2008.4717960

86

CHAPTER 5. SPACE EFFICIENT CACHING OF QUERY RESULTS 87

5.1 Introduction

Search engines typically cache either the query results or posting lists for query

terms, or both [6]. For each case, static or dynamic caching (and even a hybrid of

both) can be applied. In this chapter, we focus on the static caching of the query

results. A static cache can store the query results in two ways. In a, so-called,

docID cache [30] only the document identifiers of the query results are stored.

The snippets and the final result page are generated each time a query request

yields a cache hit. An alternative to this approach is a snippet cache, which stores

the final HTML result pages (including snippets, etc.) to be displayed upon a

request that yields a cache hit. Clearly, in the former approach, the cache can

store more items; but a cache hit still needs some processing for preparing the

result page, whereas the latter approach stores less items in the same space, but

the results can be sent immediately to the user once a query is found in the cache.

We propose a storage mechanism for static docID caching. Our approach

exploits the overlaps in the results of similar queries, which are identified by clus-

tering queries. Intuitively, we presume that there may exist several query clusters

that share a set of documents in their member queries’ results, and we try to en-

code these common document identifiers in a compact form, to better utilize the

static cache space and increase the hit rate. In the literature, query clustering is

essentially exploited for better answer ranking and query recommendation pur-

poses. To the best of our knowledge, our approach is the first attempt to use

query clustering for efficient storage of query results.

5.2 Related Work on Query Clustering

As far as we know, none of the works in the caching literature discuss how the

results (docIDs or snippets pages) are actually stored in a static or dynamic cache.

Such practical details of the commercial search engines are not publicly available.

Thus, we basically assume that the docID cache includes a simple list of top-K

integers (as provided by the query processor) per query and the snippet cache

CHAPTER 5. SPACE EFFICIENT CACHING OF QUERY RESULTS 88

includes HTML pages that can be directly displayed to the user for a given query.

Our goal in this chapter is to devise a more compact storage scheme for storing

docID’s in a static cache.

Clustering of queries is addressed in several earlier studies [8, 12, 34, 58,

91]. Query clustering in the context of search engines is previously proposed

for two main goals: a) query recommendation, and b) enhancing result ranking.

Beeferman and Berger use clicktrough data, which consists of <query, url> pairs,

in order to find related queries and related URLs by clustering [12]. The proposed

approach is to see the query log as a bipartite graph between the sets of queries

and sets of URLs. Then, two particular vertices (one from the queries and the

other from the URLs) are connected by an edge if such a pair occurs in the

query log. Finally, clustering is performed on this bipartite graph. The proposed

clustering is a kind of hierarchical agglomerative clustering [34]. The similarity

of two vertices in this graph is calculated by the overlap on neighbors. If two

queries have more common URLs then their similarity is high. After finding

query clusters, they can be used to assist users by suggesting alternative (and

potentially related) queries during web search. That is, for a given user query,

the system determines its cluster and suggest other queries from the same cluster.

The proposed approach is evaluated by the number of user clicks on this suggested

alternative query links.

In [8], queries are clustered by using the content of documents that are clicked

by the users. These documents are represented by the well-known vector space

model and clustered by using the k-means algorithm. After query clustering, this

structure is used for 2 applications: a) Answer ranking: The popularity of the

results in a query’s cluster are employed to re-rank the original results of that

particular query. b) Query recommendation: When a query is submitted, its

query-cluster is found and queries are recommended based on their similarity to

the query and their support based on the query log.

Wen et al. also perform query clustering using the logs [86]. Similar to the

above approaches, they also claim that using only query keywords to do query

clustering is not successful since queries are very short and words have polysemic

CHAPTER 5. SPACE EFFICIENT CACHING OF QUERY RESULTS 89

meanings (e.g. “java”). They propose to use the common documents which are

clicked for the queries to measure the similarity between those queries. This

cross-reference information between the queries and clicked documents is shown

to be effective for query clustering and better than using the either one of the

query keywords or logs alone.

In our study, we use the result lists for forming query clusters and exploit these

clusters for utilizing the storage of these results. Since we focus on storing the

entire result list per query, we do not use solely the clicked documents, differing

from the other works mentioned above. To the best of our knowledge, query

clusters are not used previously for exploiting the cache storage space in this

manner.

5.3 Cluster-based Storage of Query Results

Our approach consists of two steps: a) Query clustering, and b) Storage of query

results. Each of these steps is explained in detail in the following subsections.

5.3.1 Query Clustering

We applied the single link (linkage) hierarchical clustering algorithm [34] for query

clustering. The aim of the clustering in our context is to find overlaps between

result lists of similar queries. Therefore, each query is represented by its n result

document numbers. Clustering algorithm works as follows:

At the beginning of the clustering phase, one cluster is formed for each query

in the dataset. Assume two queries Qi and Qj have the following result sets, each

containing top-n result document identifiers.

Ri = {ri1, ri2, . . . , rin} Rj = {rj1, rj2, . . . , rjn}

CHAPTER 5. SPACE EFFICIENT CACHING OF QUERY RESULTS 90

Then the similarity between these two queries (actually clusters in the con-

text of the algorithm) is computed by the following formula which considers the

fraction of intersection:

sim measureij =
|Ri ∩Rj|

min(|Ri| , |Rj|)
(5.1)

At each step of the single link clustering, most similar cluster pair is chosen

whose similarity value is greater than a predefined minimum similarity threshold

(Tsim). If such a cluster pair is found, they are merged and the union of result

lists in each cluster in this pair constitutes the result list for the new cluster. This

process continues until no cluster pair satisfying the minimum similarity threshold

can be found or all clusters are merged to one cluster, which is practically not

possible for a real query log.

5.3.2 Storage of Query Results

In this section, we present the details of our storage mechanism exploiting the

query clusters obtained in the previous stage. Note that our focus is to improve

the actual storage of result lists of queries in the static cache and we do not

address any lookup mechanisms in this study.

We present our storage mechanism by the following simple example. Assume

that we have obtained the query cluster containing queries Q1, Q2, Q3 and Q4

as given in Figure 5.1. For the sake of simplicity, let each query store only top-3

results. We also give hypothetical document ids for each result document. The

shared documents in this cluster are 1111, 2222, 3333.

In Figure 5.1, we illustrate the conventional storage scheme for the results of

these four queries. In this case, it is assumed that the query results are simply

kept as a list of document identifiers, each requiring 4 bytes of storage. Then,

the total storage space required for query results is 48 bytes (excluding the space

required for lookup mechanism and the queries themselves). Note that, as it is

CHAPTER 5. SPACE EFFICIENT CACHING OF QUERY RESULTS 91

1111 2222 3333 Q1

1111 2222 3333 Q2

1111 2222 5555 Q3

1111 3333 6666 Q4

0 1 2

Q1

0 1 2

Q2

0 1 5555

Q3

0 2 6666

Q4

1111 2222 3333

0 1 2

Shared docs

array

Figure 5.1: Conventional cache storage mechanism for queries Q1, Q2, Q3 and
Q4. (c©2008 IEEE. Reprinted, with permission from Ozcan, R., Altingovde, I.S.,
Ulusoy, O., “Space Efficient Caching of Query Results in Search Engines,” Inter-
national Symposium on Computer and Information Sciences (ISCIS’08), Istanbul,
Turkey, 2008. http://dx.doi.org/10.1109/ISCIS.2008.4717960)

mentioned before, there is no earlier work on storage mechanisms for query result

lists in the context of caching. Although commercial web search engines definitely

employ static and dynamic caching mechanisms, details are not exposed. So, we

use the simple storage scheme described above as the baseline in this study.

In the above scenario, it is seen that the shared document ids are stored several

times in the cache. Our storage approach exploits this overlap of document ids

in the query clusters. Figure 5.2 shows the general structure of our approach. A

shared-documents array is constructed for the overlapping result document ids

in a cluster. For each cluster, its shared-documents array includes the top-256

documents that have the highest frequency among the results of the queries in

that cluster. The result list of a query stores the array index for the shared

documents, which can be expressed in only 1-byte (as there are at most 256

entries in the array). For instance, in Figure 5.2, the result list of Q3 starts with

the 1-byte identifier 0, which will be resolved to the first element of the array, i.e.,

document 1111. The result documents that are unique to each query (e.g., 5555

for Q3 and 6666 for Q4) will be stored as is, i.e., in 4-bytes. Clearly, as the degree

of overlap in the results of the queries in a cluster increase, our storage scheme

CHAPTER 5. SPACE EFFICIENT CACHING OF QUERY RESULTS 92

1111 2222 3333 Q1

1111 2222 3333 Q2

1111 2222 5555 Q3

1111 3333 6666 Q4

0 1 2

Q1

0 1 2

Q2

0 1 5555

Q3

0 2 6666

Q4

1111 2222 3333

0 1 2

Shared docs

array

Figure 5.2: Our storage mechanism exploiting query clustering. (c©2008 IEEE.
Reprinted, with permission from Ozcan, R., Altingovde, I.S., Ulusoy, O., “Space
Efficient Caching of Query Results in Search Engines,” International Sympo-
sium on Computer and Information Sciences (ISCIS’08), Istanbul, Turkey, 2008.
http://dx.doi.org/10.1109/ISCIS.2008.4717960)

will yield more gains. That is, shared documents will be stored with 4-bytes only

once, and will be pointed by 1-byte entries in each result list.

The proposed storage scheme employs a shared-documents array per cluster,

which implies that each query should know the location of this array. In Fig-

ure 5.2, an extra 4-byte entry is added to the beginning of each query’s result list

to store the address of this array. Furthermore, we also need a mechanism to en-

code whether an entry in the result list should be interpreted as a 1-byte pointer

or a 4-byte document identifier, as they are in a mixed order in our scheme. In

the literature, it is reported that web users very rarely see more than top-30 re-

sults ([74, 37]). Thus, we assume that for each query a result list of at most 30

entries are stored. In this case, another 4-byte entry is added to the beginning

of the result list, to encode whether the succeeding entries should be interpreted

as 1-byte or 4-byte values. For instance, for Q3, the corresponding bit sequence

would start with 110, which means that the first two entries in the result list are

pointers to the shared array, and the third entry is actually a document identifier.

CHAPTER 5. SPACE EFFICIENT CACHING OF QUERY RESULTS 93

As a result, our scheme incurs a cost of 8-bytes (4-bytes for the address of shared-

documents array and 4-bytes for the entry interpretation mask) per query result

list. For the simple scenario outlined above, the proposed storage scheme can

not compensate these costs; but in real life our approach would compensate the

costs and yield space gains even when a query cluster have a few documents in

common among the top-30 results. For instance, in a cluster of three queries, an

intersection of 5 results would be enough for compensating the additional costs.

Finally, since static caching is an offline process, we can decide whether to apply

our storage scheme or not, considering the cost/gain trade-off for each cluster. In

Section 5.4, we provide experimental evidence supporting our claims.

5.4 Experiments

Dataset: We use a subset of the AOL Query Log [66] which contains around

20 million queries of about 650K people for a period of 3-months. Our subset

contains 1,127,894 query submissions and 661,791 of them are distinct queries.

We used Yahoo! search engine’s “Web search” web service [89] to get Top-100

results including titles, urls and snippets, for all distinct queries. This resulted

in a 13.8 GB dataset. In our experiments, top-30 query results are cached in

static cache since most users only check a few result pages [74, 37]. In [74], it is

reported that in 95.7% of queries, users requested up to only three result pages.

Following the practice in the literature, static cache is populated with the

most popular query results. We select most frequent K queries from our query

log. Next, single link clustering algorithm is executed on this K query set. After

obtaining query clusters, we distinguish clusters as “useful” and “useless” ac-

cording to the space consumed by using our approach. If storing a cluster in our

scheme requires more space than its baseline storage space (i.e., when there is not

enough overlap in the result documents among the queries of the cluster), then

it is identified as “useless” cluster and we store the queries in that cluster as in

the case of baseline. Additionally, since clustering process is terminated based on

CHAPTER 5. SPACE EFFICIENT CACHING OF QUERY RESULTS 94

a minimum similarity threshold value(Tsim) at some point, there may also exist

single-query clusters left apart from the “useless” clusters. These single-query

clusters could not be merged with any other cluster during the query cluster-

ing. Baseline storage model is also applied for those types of queries. For useful

clusters that yield space gains, we apply the storage scheme proposed in this

study.

Table 5.1 provides the overall reduction rates in cache sizes where the cache

is filled with the most-frequent K queries. The column “baseline” denotes the

case where each document id in the result lists is stored by using 4-bytes. The

columns “cluster-based” denote the cases in which our storage scheme is applied as

described above. We experiment with two different values of minimum similarity

threshold (Tsim) that is used to terminate the clustering process. Finally, we also

conducted an additional experiment where we kept a shared-document array for

the entire set of queries in the cache. That is, instead of clustering queries we

determine the top-256 most frequent result documents for all queries in the cache

and store in a global shared-documents array. Again, the shared documents in

the result lists are encoded with a 1-byte pointer. For this case, there is no need

to store the address of array per query, since there is only one global array. The

column “baseline-2” denotes this case.

We draw the following observations from Table 5.1. First of all, encoding

shared documents in a compact manner is a beneficial approach even in the

global case. When a global array of 256 documents is used, we observe a slight

reduction in the space wasted. However, the gains are more emphasized when

queries are clustered. For the case with clustering similarity threshold is set to

0.1, we obtain the space reductions up to 4%. For all values of K, cluster-based

storage scheme outperforms the baseline storage and the baseline with a global

shared-documents array.

Figure 5.3 shows the size distribution of query clusters (with similarity thresh-

old 0.1) for K=40,000 queries case, for which our storage scheme achieves the

highest reduction (i.e., 4.01%). As it can be seen from the graph, clusters involv-

ing two queries dominate. For a more detailed analysis, we also report the number

CHAPTER 5. SPACE EFFICIENT CACHING OF QUERY RESULTS 95

Table 5.1: Storage performances. (c©2008 IEEE. Reprinted, with per-
mission from Ozcan, R., Altingovde, I.S., Ulusoy, O., “Space Efficient
Caching of Query Results in Search Engines,” International Symposium
on Computer and Information Sciences (ISCIS’08), Istanbul, Turkey, 2008.
http://dx.doi.org/10.1109/ISCIS.2008.4717960)

Cache
Size

Baseline Baseline-2 %
Red.

Cluster-
Based
(Tsim=0.2)

%
Red.

Cluster-
Based
(Tsim=0.1)

%
Red.

1K 112,212 110,868 1.20 108,954 2.90 108,616 3.20
3K 335,500 332,953 0.76 324,487 3.28 323,280 3.64
5K 558,216 555,029 0.57 539,967 3.27 537,980 3.63
10K 1,109,212 1,104,220 0.45 1,069,220 3.61 1,064,961 3.99
15K 1,664,260 1,657,619 0.40 1,603,909 3.63 1,597,907 3.99
20K 2,206,984 2,199,540 0.34 2,127,752 3.59 2,119,242 3.98
30K 3,282,072 3,273,717 0.25 3,164,765 3.57 3,152,692 3.94
40K 4,296,000 4,286,139 0.23 4,138,939 3.66 4,123,945 4.01
50K 5,325,428 5,315,378 0.19 5,133,331 3.61 5,116,419 3.92

of “useful”, “useless” and single-query clusters in this case. Out of 40,000 queries,

2,840 “useful” clusters and 2,340 “useless” clusters are formed. These clusters

contain 13,652 and 5,548 queries, respectively. 20,800 queries are left as single-

query clusters. Average cluster size of “useful” clusters is 4.81 queries, whereas

“useless” clusters have 2.35 queries per cluster on average. This is expected since

more queries should be overlapping in “useful” clusters.

The queries in the useless and single-query clusters (summing up to 26,348

queries) are stored in the conventional manner whereas the remaining queries

(13,652 of them) are stored by using our scheme. Thus, 34.13% of all queries

are stored using our mechanism. The storage space used only for these queries

drops from 1,513,212 bytes to 1,359,157 bytes; resulting an 11% reduction in the

consumed space. This implies that better clustering of queries may also yield

higher overall reductions.

Note that, our approach may also cause a slight increase in the preparation of

final query result page in case of a cache hit, due to relatively more complicated

handling of the query result lists. In turn, the gains in the storage space would

improve the cache hit rate and throughput with respect to the baseline scheme,

CHAPTER 5. SPACE EFFICIENT CACHING OF QUERY RESULTS 96

Figure 5.3: Size distribution of query clusters for most frequent 40,000
queries (clustering similarity threshold is 0.1). (c©2008 IEEE. Reprinted,
with permission from Ozcan, R., Altingovde, I.S., Ulusoy, O., “Space Effi-
cient Caching of Query Results in Search Engines,” International Symposium
on Computer and Information Sciences (ISCIS’08), Istanbul, Turkey, 2008.
http://dx.doi.org/10.1109/ISCIS.2008.4717960)

as more queries can be filled to the same cache space with our approach. As

a result, we envision that the former cost of processing would be negligible and

compensated by the latter gains in hit rate and throughput.

5.5 Conclusion

In this chapter, we present a storage mechanism for caching of query results by

exploiting the query clustering. In particular, we store the documents identifiers

that are shared by the queries in a cluster in a more compact manner and improve

storage utilization. We use single link clustering algorithm to form the queries

that share common result documents. Then these clusters are stored by a compact

storage mechanism and we obtain the space reductions up to 4% compared to

the baseline approach.

Chapter 6

A Five-Level Static Cache

Architecture

In this chapter, we describe a five-level static cache architecture for web search

engines, i.e., a cache that stores items of five different types (query results, pre-

computed scores, posting lists, intersections of posting lists, and documents’ con-

tent). Moreover, we propose a greedy caching heuristic that prioritizes items

for caching, based on gains computed by using items’ past access frequencies,

estimated computational costs, and storage overheads. This heuristic takes into

account the inter-dependency between the items when making its caching deci-

sions, i.e., caching a particular item may lead to updates on gains of items that

are not yet cached. Our simulations under realistic assumptions reveal that the

proposed heuristic performs better than dividing the entire cache space among

particular item types at fixed proportions.

The rest of this chapter is organized as follows. In Section 6.1, we provide the

motivation for our work. Section 6.2 describes query processing flow in a typical

web search engine, and presents the major costs associated with each step. In

Section 6.3, we present our five-level architecture and our caching strategy. We

describe the dataset and our experimental setup in Section 6.4 and evaluate the

proposed strategy in Section 6.5. We conclude this chapter in Section 6.6.

97

CHAPTER 6. A FIVE-LEVEL STATIC CACHE ARCHITECTURE 98

6.1 Introduction

Search engines may cache three different types of data items such as query results,

posting lists, and document content, as mentioned in Chapter 2. Query results

can be stored in the form of top-k document ids (with their scores) or as HTML

result pages. These types of caches will be referred as score and result caches,

respectively. Posting lists of individual terms can be cached in the list cache

and posting lists of pair of terms can be cached in the intersection cache. Con-

sidering all these variations, in this chapter, we propose a five-level static cache

architecture that includes result, score, list, intersection, and document caches.

The literature involves a number of works [30, 47, 54, 80] on the performance of

these caches separately and several other works [6, 51, 73] that forms multi-level

caches using two or three different items. We are not aware of any works that

consider all possible cache components in a static caching framework. To the best

of our knowledge, the closest work to ours is the work of [33], which considers the

interaction between different types of caches in a dynamic caching setting.

We propose a five-level static cache architecture that contains all known cache

types proposed in literature. We also describe a greedy heuristic that iterates over

all possible items that may be cached in one of the levels. At each iteration, the

heuristic selects the item with the highest possible gain for caching such that how

much processing would be needed if we did not cache this item. We calculate the

caching gain of an item by considering the past access frequencies of items as well

as their estimated processing costs and storage costs. In this heuristic, after an

item is selected for caching, the potential gains of all related items are updated,

based on the inter-dependencies between the items.

We evaluate the proposed static cache architecture in a very detailed and

realistic simulation setup, where we model almost every major cost incurred in

query processing. Our findings using a real-life query log and a document collec-

tion reveal that the proposed mixed-order caching heuristic performs better than

assigning fixed fractions of the entire cache space to different cache types, which

is the common practice in literature.

CHAPTER 6. A FIVE-LEVEL STATIC CACHE ARCHITECTURE 99

6.2 Query processing overview

Query processing involves a number of steps: issuing the query to search nodes,

computing a partial result ranking in all nodes, merging partial rankings to ob-

tain a global top-k result set, computing snippets for the top-k documents, and

generating the final result page. In this study, we neglect the overheads due to

network communication between the nodes and the overhead of the result merg-

ing step. These overheads are relatively insignificant. For instance, the cost of

network transfer is estimated to be less than 1ms in [6], a tiny fraction of the

query processing cost, if the nodes are connected through a local area network.

The cost of result merging, especially for low k values (e.g., 10), would not be

more than a few milliseconds either.

In our work, we take into account the following steps, which incur relatively

high processing or I/O overhead:

• Step 1: For all query terms, fetch the associated posting lists from the disk.

This incurs I/O cost, denoted as Cpl.

• Step 2: Compute relevance scores for the documents in the intersection of

fetched posting lists and select the top-k documents with the highest scores.

This incurs CPU overhead, denoted as Crank.

• Step 3: For the top-k documents identified, fetch the document data from

the disk. This incurs I/O overhead, denoted as Cdoc.

• Step 4: For the fetched documents, compute snippets. This incurs CPU

overhead, denoted as Csnip.

We assume that, in a search cluster, each node acts as both a master and

a client. That is, there are no central brokers that collect partial results from

the nodes and merge them to generate the final query result. Instead, each node

plays the role of a broker for a subset of queries. The node that would serve

as a broker for a particular query can be determined by using the MD51 hash

1http://en.wikipedia.org/wiki/MD5

CHAPTER 6. A FIVE-LEVEL STATIC CACHE ARCHITECTURE 100

of the query. Notably, each node in the cluster executes all five steps of query

processing and needs to access and/or generate corresponding five types of data

items, namely lists, intersections, scores, documents and results, in this particular

order. This, in turn, means that a cache architecture in a fully-distributed search

cluster should consider all types of caches at each node. Such an architecture is

the focus of the rest of this chapter.

6.3 Five-level static caching

6.3.1 Architecture

We describe a five-level cache architecture for static caching in search engines. In

this architecture, the space reserved to each type of item cache is not individually

constrained. Instead, there is a global capacity constraint that applies to all

caches, i.e., all caches share the same storage space. Therefore, individual caches

can continue to grow as long as their total size is below the global capacity

constraint.

Each cache stores a different type of (key, value) pair and provides saving for

one or more of the query processing costs mentioned in Section 6.2. In Table 6.1,

we list the five different cache types considered in this work, along with their

(key, value) pairs and associated savings in query processing costs.

6.3.2 Cost-based mixed-order caching algorithm

As the caching algorithm for the above-mentioned architecture, we propose a

simple greedy heuristic. In this heuristic, six different priority queues are main-

tained, one for each of the five caches and one for selecting the most cost-effective

item currently available at each greedy choice step. The algorithm consists of an

initial gain computation step for filling the five priority queues, and a selection

and gain update step for determining the items to be cached. The steps of the

CHAPTER 6. A FIVE-LEVEL STATIC CACHE ARCHITECTURE 101

Table 6.1: Cache types and their cost savings. (Ozcan, R., Altingovde, I.S.,
Cambazoglu, B. B., Junqueira, F. P., Ulusoy, O., “A Five-level Static Cache
Architecture for Web Search Engines,” Information Processing & Management, In
Press. c©2011 Elsevier. http://dx.doi.org/10.1016/j.ipm.2010.12.007. Reprinted
by permission.)

Cache type Key Value Cost saving

Result Query Snippets of top k documents Cpl + Crank+
(output of Step 4) Cdoc + Csnip

Score Query Relevance scores for top-k Cpl + Crank

documents (output of Step 2)

Intersection Set of term ids Intersection of posting lists Cpl + Crank

(intermediate output of Step 2)

List Term id Posting lists (data fetched in Cpl

Step 1)

Document Document id Raw document content Cdoc

(data fetched in Step 3)

algorithm can be summarized as follows:

Initial gain computation: For each item that is candidate to be cached (e.g.,

query result, document, term), we compute the potential gain that would be ob-

tained by caching that item, using the statistics in a previous query log. In an

earlier work [6], the gain computation is usually based on the ratio between the

access frequency of the item and its size, i.e., the nominator is the observed fre-

quency of requests for the item and denominator is the space (in bytes) that the

item would occupy in the cache. In our cost-based framework [64], the gain com-

putation is further augmented with a cost component that represents the saving

achieved in query processing time (in ms) by caching the item (see Eq. (6.1)). In

our case, for each item type, the corresponding cost saving is computed as shown

in the fourth column of Table 6.1.

Gain =
Cost saving × Frequency

Size
. (6.1)

Here, an important assumption is that the past access frequencies of items

accurately represent their future access frequencies. Although this assumption

generally holds, a way of smoothing may still be needed. For instance, previous

CHAPTER 6. A FIVE-LEVEL STATIC CACHE ARCHITECTURE 102

studies show that the frequency of query terms exhibit little variation in a rea-

sonably long time period, e.g., a few months [6]. Thus, for list caching, the term

access frequencies observed in earlier query logs would be a good evidence to rely

on. On the other hand, for a given query stream, almost half of the queries are

singleton [6] (i.e., they appear only once in the entire query log), which implies

that the past query frequencies may not exactly capture the future frequencies.

This is especially true for less frequent queries. In a recent study, it is mentioned

that “past queries that have occurred with some high frequency still tend to ap-

pear with a high frequency, whereas queries with relatively less frequency may

appear even more sparsely, or totally fade away in the future” [64]. A similar

discussion about the estimation of future query frequencies for result caching is

also provided in [32]. In the latter work, it is reported that, for queries with a

past frequency greater than 20, the future frequencies almost precisely follow the

past observations. Thus, it is practical to construct an estimation table by using

a separate query log for queries with a frequency value less than 20. In this study,

we follow the same practice, as discussed in Section 5.1.

After their potential gains are computed, we insert all items into their respec-

tive priority queues based on these values. The head of a priority queue at any

time shows (potentially) the most cost-effective item to be cached from that par-

ticular cache type. We note that each item gain in a queue represents the total

processing time saving that would be achieved if the item is cached. Therefore,

gains are comparable across all queues.

Selection and gain update: The selection step finds the item with the highest

expected gain by maintaining a “selection” priority queue. The priority queue

keeps the current best (head) item in each “cache” priority queue, and hence its

capacity is fixed to five items. The head of the selection queue is dequeued and

permanently added into the cache. A new item of the same type (the new best

item in the queue) is inserted into the selection queue. The procedure is repeated

until the cache is full or no more items are left in the cache queues.

During this procedure, caching of an item may affect the frequency or cost

saving of other items. In Figure 6.1, we illustrate the dependencies among items

CHAPTER 6. A FIVE-LEVEL STATIC CACHE ARCHITECTURE 103

Result cache

Score cache

Document

cache

Intersection

cache
List cache

reduce C
DOCreduce freq

reduce freq reduce freq reduce freqreduce freq

reduce C
PL

 and C
RANK

reduce freq

reduce C
PL

 and C
RANK

reduce freq

reduce C
PL

reduce C
PL

reduce freq

reduce C
PL

Figure 6.1: Update dependencies in the mixed-order static caching algo-
rithm. Each arc decreases the value of a variable used in the gain com-
putation. (Ozcan, R., Altingovde, I.S., Cambazoglu, B. B., Junqueira, F.
P., Ulusoy, O., “A Five-level Static Cache Architecture for Web Search En-
gines,” Information Processing & Management, In Press. c©2011 Elsevier.
http://dx.doi.org/10.1016/j.ipm.2010.12.007. Reprinted by permission.)

of different types. In the figure, a directed edge from type Ti to Tj indicates that

whenever an item of the former type is cached, the update operation on this edge

(as shown on the label) should be executed for the related items of latter type,

Tj. The update operation may reduce either the frequency or the cost saving.

For example, if the result set of a query is cached, the frequency of the lists for

the terms appearing in the query is reduced. In contrast, whenever a list of a

term is cached, the cost saving for the results of the queries including that term

is reduced by the cost of fetching that list, i.e., Cpl for that list. Similar trade-offs

exist between different items and cache types.

CHAPTER 6. A FIVE-LEVEL STATIC CACHE ARCHITECTURE 104

6.4 Dataset and Setup

As the dataset, we use a collection of around 2.2 million web pages crawled

from the open directory project web directory2. The dataset is indexed without

stemming and stopword removal. The uncompressed index file, which includes

only a document identifier and a term frequency per posting, takes 3.2 GB on

disk.

As the query log, we use a subset of the AOL query log [66], which contains

around 20 million queries issued during a period of 12 weeks. Our training query

set, which is used to estimate items’ access frequencies, include one million queries

from the first 6 weeks. The test query set contains an equal number of queries

from the second 6 weeks. Note that, we verify the compatibility of our dataset

and query log in Section 3.3.2 of Chapter 3.

Query terms are normalized by case-folding and sorted in alphabetical order.

We also removed punctuation and stopwords. Queries are processed in conjunc-

tive mode, i.e., all query terms appear in documents matching the query. In

performance evaluations, we omitted queries that do not match any documents.

Queries in the training set are used to compute the item frequencies for re-

sults (equivalently, scores), lists and intersections. Without loss of generality,

we consider intersections only for the term pairs that appear in queries. Access

frequencies for documents are obtained from query results.

In our simulation runs, we consider a distributed search cluster where each

search node caches all five types of data items. However, while computing costs

of data items, we restrict our experiments to a single search node. This choice

does not cause any issue since we neglect network and result merging overheads,

as discussed in Section 6.2. Furthermore, since query processing in a search

cluster is embarrassingly parallel, query processing times on a 1-node system

with Q queries and D documents are comparable to those on a K-node system

with K×Q queries and K×D documents. In this sense, our choice of a 3.2

2Open directory project, available at http://www.dmoz.org.

CHAPTER 6. A FIVE-LEVEL STATIC CACHE ARCHITECTURE 105

Result cache

query

Score cache

Miss

Miss

Intersection
cache

Miss

List cache

Document
cache

Hit
(top-k

doc ids)

Step 5: Snippet
computation

Hit (doc data)

Miss Step 4: Fetch
document data

Fetch request

Document
data

doc
data

Step 3: Doc.
scoring

Hit
(doc ids)

top-k doc ids

Step 2: Posting
list intersection

Hit
(doc ids)

Hit
(posting list)

Hit
(posting list)

Step 2: Posting
list intersection

Miss
posting list

doc ids

Inverted
index

Fetch request

posting list

Hit
(result page)

result page

doc ids

Deterministic path (taken by all items)

Non-deterministic path (can be taken by a subset of items)

Figure 6.2: The workflow used by the simulator in query processing. (Oz-
can, R., Altingovde, I.S., Cambazoglu, B. B., Junqueira, F. P., Ulu-
soy, O., “A Five-level Static Cache Architecture for Web Search En-
gines,” Information Processing & Management, In Press. c©2011 Elsevier.
http://dx.doi.org/10.1016/j.ipm.2010.12.007. Reprinted by permission.)

GB dataset is not arbitrary, but intentional. We anticipate that the data size

we use in our simulations roughly corresponds to the size of data that would be

indexed by a single node in a typical search cluster. Nevertheless, in what follows,

we discuss how the costs associated with the aforementioned four steps in query

processing (see Section 6.2) are computed to model the workflow of a node in a

realistic manner. Figure 6.2 illustrates the workflow used by our simulator and

also illustrates the interaction between different cache components.

In a real-life search cluster, the processing cost of a query depends on all

nodes, since partial results (i.e., steps 1 and 2) have to be computed at each

CHAPTER 6. A FIVE-LEVEL STATIC CACHE ARCHITECTURE 106

node. However, under a uniform workload assumption (i.e., no load imbalance),

the execution time on a node would almost be the same as the time on other

nodes. Thus, in the simulation runs, a node considers its own processing time

for the query and assumes that it would not need to wait for other nodes, i.e.,

partial results from those would also be ready at the same time3. Subsequently,

in our setup, computation of Cpl and Crank values for finding the partial top k

results in a single node is a realistic choice4.

Once partial results are computed and sent to the broker node for a particular

query, this node fetches the documents and generates snippets to create the final

result. For this stage of processing (i.e., steps 3 and 4), again each node considers

its local execution time. However, during snippet generation, a node itself may

not need to take into account the time for creating snippets for all top 10 results.

This is because the documents are partitioned into nodes and, for a practically

large number of servers in a cluster (e.g., in the order of hundreds [27]), it is

highly likely that each document in the final top-10 set will be located in a

different node. Thus, we can model the cost of document access and snippet

generation steps for only one document, i.e., presumably for the highest ranking

document in its partial result set. In other words, we assume that a node would

contribute only its top-scoring partial result to the final top 10 results. This is a

reasonable assumption, given the high number of nodes in a cluster and search

engines’ desire for providing diversity in their top-ranked results.

In the simulations, we assume that the node at hand experiences the cost of

producing partial results for top 10 documents and then producing the snippets

for the highest scoring document (dtop). We believe that this setup reflects the

costs that would be experienced by each node in a search cluster as close as

possible. The cost values associated with each query step is computed using the

formulas shown in Table 6.2. Note that there is a subtle detail in the computation

of Crank for an intersection item. For an intersection of two lists I1 and I2, the

total posting count of a query is computed as |I1|+ |I2| − |I1 ∩ I2| since the gain

3In practice, a search engine may enforce an upper bound on the execution time at the nodes
so that the execution terminates when this threshold is reached [21].

4Note that search engines usually produce 10 results for each result page [47]. Hence, we
essentially focus on generating 10 results at a time.

CHAPTER 6. A FIVE-LEVEL STATIC CACHE ARCHITECTURE 107

Table 6.2: Cost computations in the cache simulation. (Ozcan, R., Altingovde,
I.S., Cambazoglu, B. B., Junqueira, F. P., Ulusoy, O., “A Five-level Static Cache
Architecture for Web Search Engines,” Information Processing & Management, In
Press. c©2011 Elsevier. http://dx.doi.org/10.1016/j.ipm.2010.12.007. Reprinted
by permission.)

Cost Notation Computation

Posting lists access Cpl Dseek + Drotation + Dread × d |Ii|×Sp

Dblock
e

Ranking Crank CPUscoring ×
∑
ti∈q (|Ii| × Sp)

Document access Cdoc Dseek + Drotation + Dread × d |dtop|Dblock
e

Snippet generation Csnip CPUsnippet × |d|

in this case avoids to process lists |I1| and |I2| in entirety.

The parameters used in the simulations are listed in Table 6.3. The default

parameters are determined by either consulting the literature or through experi-

mentation. In particular, parameters regarding the disk access times are figures

for a modern disk [70]. Storage parameters are based on typical assumptions in

the literature, i.e., a posting size is usually assumed to take 8 bytes (4 bytes for

document id and term frequency). The scoring time is computed by running ex-

periments with the publicly available Terrier system [59] on our dataset. Finally,

we assume a rather simplistic snippet generation mechanism (e.g., highlighting

the first appearance of the query words, as well as a couple of words surrounding

them in a document) and set the snippet computation time to a fraction of the

scoring time.

6.5 Experiments

In this section, we evaluate the performance of several cache architectures in

terms of the total query processing time. In particular, we first compare the

performance of each cache type separately. Next, we discuss performance of

some previously proposed two- and three-level cache architectures, where each

cache type is reserved a fixed portion of the available cache space. Finally, we

CHAPTER 6. A FIVE-LEVEL STATIC CACHE ARCHITECTURE 108

Table 6.3: Simulation parameters. (Ozcan, R., Altingovde, I.S., Cambazoglu, B.
B., Junqueira, F. P., Ulusoy, O., “A Five-level Static Cache Architecture for Web
Search Engines,” Information Processing & Management, In Press. c©2011 Else-
vier. http://dx.doi.org/10.1016/j.ipm.2010.12.007. Reprinted by permission.)

Parameter Type Notation Default value

Result item size Storage Sr 512 bytes
Score item size Storage Ss 8 bytes
Posting size Storage Sp 8 bytes

Disk seek Disk Dseek 8.5 ms
Rotational latency Disk Drotation 4.17 ms
Disk block read Disk Dread 4.883 ns
Block size Disk Dblock 512 bytes

Cache lookup cost CPU CPUlookup 40 ns
Scoring cost per posting CPU CPUscoring 200 ns
Snippet generation cost per byte CPU CPUsnippet 10 ns

Requested query results Other k 10

evaluate the performance of our five-level cache architecture with mixed-order

caching strategy and show that it is superior to others.

6.5.1 Performance of single-level cache architectures

In Figure 6.3, we show the total query processing time versus cache size (ranging

from 1% to 50% of the full index size in bytes), separately for each cache type.

As expected, for the smallest cache size (i.e., 1% of the index), the performance

of the score cache is the best, and the result cache is the runner-up. In this case,

it is not possible to cache all non-tail queries by the result cache. The processing

time achieved by the intersection cache is better than that of the list cache, and

the document cache is the worst. However, as the cache size grows, the list cache

becomes the most efficient choice as the terms are shared among many queries.

The intersection cache, which is shared by fewer number of queries, performs

better at the beginning, but then becomes inferior to the list cache as the cache

size exceeds 10% of the index. For the larger cache sizes, the result cache is better

than the score cache, but cannot compete with the list cache, as also discussed

in [6]. Finally, our findings show that caching only documents is not a feasible

CHAPTER 6. A FIVE-LEVEL STATIC CACHE ARCHITECTURE 109

1 % 5 % 1 0 % 2 5 % 5 0 %
2 5

3 0

3 5

4 0

4 5

5 0

To

tal
 qu

ery
 pr

oc
es

sin
g t

im
e (

x 1
0^

6 m
se

c)

C a c h e c a p a c i t y (a s % o f t h e i n d e x s i z e)

 R e s u l t
 S c o r e
 I n t e r s e c t i o n
 L i s t
 D o c u m e n t

Figure 6.3: Performance of one-level cache architectures. (Ozcan, R., Altingovde,
I.S., Cambazoglu, B. B., Junqueira, F. P., Ulusoy, O., “A Five-level Static Cache
Architecture for Web Search Engines,” Information Processing & Management, In
Press. c©2011 Elsevier. http://dx.doi.org/10.1016/j.ipm.2010.12.007. Reprinted
by permission.)

choice at all for a search engine, as fetching posting lists are much more expensive

than the former.

In the experiments mentioned above, the caching decision for a particular

item is given by using the gain function (Eq. 6.1), where the frequency of an

item is simply set to its past access frequency observed in the training query log.

However, the frequency values observed in the training log are not necessarily

true indicators of the future frequencies for some of the item types, like result

pages [64]. This can be explained by the fact that, for all item types relevant to the

query processing process, the access frequencies follow a power-law distribution5.

5This is also verified for our query logs in a separate set of experiments that are not reported
here.

CHAPTER 6. A FIVE-LEVEL STATIC CACHE ARCHITECTURE 110

Table 6.4: Future frequency values for past frequencies smaller than 5.
(Ozcan, R., Altingovde, I.S., Cambazoglu, B. B., Junqueira, F. P., Ulu-
soy, O., “A Five-level Static Cache Architecture for Web Search En-
gines,” Information Processing & Management, In Press. c©2011 Elsevier.
http://dx.doi.org/10.1016/j.ipm.2010.12.007. Reprinted by permission.)

Past query (or term) Future query Future query
frequency frequency term frequency

1 0.15 0.73
2 0.66 1.46
3 1.53 2.27
4 2.47 3.15
5 3.48 3.93

Thus, while relatively few items are repeated many times in the log, majority

of the items are asked rarely, or only once. This is especially true for result

pages (and scores), as previous works show that almost 50% of the queries in

a given query stream are singleton. For such rarely encountered items, future

access frequencies may significantly differ than the training frequencies. This

may diminish the performance of the static cache.

As a remedy to this problem, following the practice of [32], we construct a

table to experimentally obtain future frequency values corresponding to a small

set of past frequency values, i.e., up to 20 (it is shown that queries with past access

frequency higher than 20 achieve almost the same future frequency in [32]). To

this end, we use another subset of the AOL log different from the training and

test logs employed throughout this section. This validation log is split into two

parts, representing past and future observations. For each frequency value f <20,

we check the future frequency values of those queries that have frequency f in the

past. The average of such frequency values is recorded as the future frequency

value for f . The same idea is applied for the frequency of query terms (i.e., list

items).

In Table 6.4, to save space, we only report the frequency values obtained for

past frequencies smaller than 5, for both queries and query terms. We observe

that the frequency values for query terms are more stable in comparison to query

CHAPTER 6. A FIVE-LEVEL STATIC CACHE ARCHITECTURE 111

1 % 5 % 1 0 % 2 5 % 5 0 %

3 4

3 5

3 6

3 7

3 8

3 9

4 0

4 1

4 2

4 3

To

tal
 qu

ery
 pr

oc
es

sin
g t

im
e (

x 1
0^

6 m
se

c)

C a c h e c a p a c i t y (a s % o f t h e i n d e x s i z e)

 O r i g i n a l q u e r y f r e q u e n c i e s
 C o r r e c t e d q u e r y f r e q u e n c i e s

Figure 6.4: The effect of frequency correction on the result cache perfor-
mance. (Ozcan, R., Altingovde, I.S., Cambazoglu, B. B., Junqueira, F.
P., Ulusoy, O., “A Five-level Static Cache Architecture for Web Search En-
gines,” Information Processing & Management, In Press. c©2011 Elsevier.
http://dx.doi.org/10.1016/j.ipm.2010.12.007. Reprinted by permission.)

frequencies. This suggests that frequency correction is more crucial for query

result caching than posting list caching.

In Figure 6.4, we show the effect of frequency correction on result caching

performance. Here, while computing the gains, we use the estimated future fre-

quency value whenever the training frequency of the query is found to be less

than 20. According to the figure, the improvement is higher for medium cache

sizes (5% or 10% of the index size). As the cache size grows, the gains become

smaller since the majority of result items can fit into the cache (for instance, a

static cache with a capacity equal to 50% of the full index size can store more

than 80% of all results). In this case, the remaining result pages are for the

CHAPTER 6. A FIVE-LEVEL STATIC CACHE ARCHITECTURE 112

1 % 5 % 1 0 % 2 5 % 5 0 %
1 8
2 0
2 2
2 4
2 6
2 8
3 0
3 2
3 4
3 6
3 8
4 0
4 2

To

tal
 qu

ery
 pr

oc
es

sin
g t

im
e (

x 1
0^

6 m
se

c)

C a c h e c a p a c i t y (a s % o f t h e i n d e x s i z e)

 R L _ 0 . 8 _ 0 . 2
 R L _ 0 . 6 _ 0 . 4
 R L _ 0 . 5 _ 0 . 5
 R L _ 0 . 4 _ 0 . 6
 R L _ 0 . 2 _ 0 . 8

Figure 6.5: The performance of two-level caches for varying split ratios of cache
space between result (R) and list (L) items. (Ozcan, R., Altingovde, I.S., Cam-
bazoglu, B. B., Junqueira, F. P., Ulusoy, O., “A Five-level Static Cache Ar-
chitecture for Web Search Engines,” Information Processing & Management, In
Press. c©2011 Elsevier. http://dx.doi.org/10.1016/j.ipm.2010.12.007. Reprinted
by permission.)

singleton queries, all of which would have the same estimated future frequency

(i.e., 0.15 in Table 6.4) and the same relative caching order, as before. On the

other hand, our experiments using corrected frequencies for list items do not yield

any improvement. Hence, in the rest of the experiments, we employ frequency

correction only for result items.

CHAPTER 6. A FIVE-LEVEL STATIC CACHE ARCHITECTURE 113

6.5.2 Performance of two-level and three-level cache ar-

chitectures

In most work in literature, a two-level cache architecture that involves a result and

a list cache is considered. An extension of this architecture is three-level caching,

where an intersection cache is introduced. Note that, in [51], the intersection

cache is assumed to be on disk, whereas we assume that all caches are in the

memory.

In Figure 6.5, we demonstrate the performance of two-level caching for various

divisions of cache space between the two caches. Our findings confirm those of [6]

in that the minimum query processing time is obtained when almost 20% of the

cache space is devoted to results and the rest is used for the lists. Note that, while

filling the cache, the frequencies of the cached results are reduced from those of

the lists, as recommended in [6].

We show the comparison of the best performing two-level cache with two-level

mixed-order cache in Figure 6.6. It is seen that mixed-order caching considerably

improves with the frequency estimation. On the other hand, the performance

improvement in the baseline two-level cache due to frequency estimation is minor.

Nevertheless, mixed-order two-level cache with frequency estimation achieves as

good performance as the baseline cache. Note that, there is no tuning overhead in

mixed-order caching and the division ratio of cache space among results and lists

is decided by the algorithm adaptively, which is an advantage over the baseline.

In Figure 6.7, we show the same plot for three-level caches. Here, the best

performance for three-level caches is obtained when 20% of the cache space is

reserved for result items, 20% for intersection items, and the remaining 60% for

list items. Note that, determining the best division of the cache capacity among

these item types requires experimenting with a large number of combinations;

and these are not reported here to save space. On the other hand, as before, our

mixed-order caching approach achieves the same performance as the best case of

the baseline algorithm without any tuning.

CHAPTER 6. A FIVE-LEVEL STATIC CACHE ARCHITECTURE 114

1 % 5 % 1 0 % 2 5 % 5 0 %

1 5

2 0

2 5

3 0

3 5

4 0

4 5

To

tal
 qu

ery
 pr

oc
es

sin
g t

im
e (

x 1
0^

6 m
se

c)

C a c h e c a p a c i t y (a s % o f t h e i n d e x s i z e)

 R L _ 0 . 2 _ 0 . 8
 M i x e d 2
 M i x e d 2 (C o r r e c t e d f r e q u e n c i e s)
 R L _ 0 . 2 _ 0 . 8 (C o r r e c t e d f r e q u e n c i e s)

Figure 6.6: The comparison of baseline two-level cache with two-level mixed-
order cache. (Ozcan, R., Altingovde, I.S., Cambazoglu, B. B., Junqueira, F.
P., Ulusoy, O., “A Five-level Static Cache Architecture for Web Search En-
gines,” Information Processing & Management, In Press. c©2011 Elsevier.
http://dx.doi.org/10.1016/j.ipm.2010.12.007. Reprinted by permission.)

6.5.3 Performance of five-level cache architecture with

mixed-order algorithm

In this section, we analyze the performance of our five-level cache architecture.

To the best of our knowledge, there is no work in the literature that investigates

static caching of these five item types (results, scores, intersections, lists and

documents) in a single framework. As in previous sections, we reserve a fixed

fraction of the cache space for each item type in the baseline five-level cache.

However, as it might be expected, the tuning of the cache space splitting becomes

a very tedious job in the five-level architecture.

In the five-level mixed order caching experiments, we realized that score items

CHAPTER 6. A FIVE-LEVEL STATIC CACHE ARCHITECTURE 115

1 % 5 % 1 0 % 2 5 % 5 0 %

1 5

2 0

2 5

3 0

3 5

4 0

To

tal
 qu

ery
 pr

oc
es

sin
g t

im
e (

x 1
0^

6 m
se

c)

C a c h e c a p a c i t y (a s % o f t h e i n d e x s i z e)

 R I L _ 0 . 2 _ 0 . 2 _ 0 . 6
 R I L _ 0 . 2 _ 0 . 2 _ 0 . 6 (C o r r e c t e d f r e q u e n c i e s)
 M i x e d 3
 M i x e d 3 (C o r r e c t e d f r e q u e n c i e s)

Figure 6.7: The comparison of baseline three-level cache with three-level mixed-
order cache. (Ozcan, R., Altingovde, I.S., Cambazoglu, B. B., Junqueira, F.
P., Ulusoy, O., “A Five-level Static Cache Architecture for Web Search En-
gines,” Information Processing & Management, In Press. c©2011 Elsevier.
http://dx.doi.org/10.1016/j.ipm.2010.12.007. Reprinted by permission.)

turn out to be the most profitable item type according to the greedy selection

approach. This is because a score item provides significant cost savings (i.e., all

query processing costs, other than the snippet generation cost, are eliminated)

while consuming very small storage space (see Table 6.3). Thus, even for very

small cache sizes (e.g., %1 of the index), the majority of the score items are

selected for caching before any other item types. This causes a devastating effect

on the item types that are related to scores (see Figure 6.1). Since almost all

score items are brought into the cache, the frequency values of the result items,

intersection items, and list items are significantly reduced. This makes documents

the only profitable item type to be cached after the scores. Clearly, a cache

configuration of mostly scores and documents would yield a poor performance.

CHAPTER 6. A FIVE-LEVEL STATIC CACHE ARCHITECTURE 116

1 % 5 % 1 0 % 2 5 % 5 0 %

1 5

2 0

2 5

3 0

3 5

4 0

4 5

To

tal
 qu

ery
 pr

oc
es

sin
g t

im
e (

x 1
0^

6 m
se

c)

C a c h e c a p a c i t y (a s % o f t h e i n d e x s i z e)

 M i x e d 5
 R L _ 0 . 2 _ 0 . 8
 R S I L D _ 0 . 1 8 _ 0 . 0 2 _ 0 . 1 5 _ 0 . 6 0 _ 0 . 0 5
 R I L _ 0 . 2 _ 0 . 2 _ 0 . 6

Figure 6.8: The comparison of baseline two-, three-, and five-level caches with
five-level mixed-order cache. (Ozcan, R., Altingovde, I.S., Cambazoglu, B. B.,
Junqueira, F. P., Ulusoy, O., “A Five-level Static Cache Architecture for Web
Search Engines,” Information Processing & Management, In Press. c©2011 Else-
vier. http://dx.doi.org/10.1016/j.ipm.2010.12.007. Reprinted by permission.)

As a remedy, we still allow the greedy approach to cache the score items

before the others, but do not permit those score items to affect frequencies of

related items. Our decision is based on the observation that all possible score

items require a tiny fraction of the cache space, i.e., in our case, all score items

take about only 1% of the index size. Hence, it is reasonable to keep them in the

cache as long as they are not allowed to totally reset frequencies of related items.

In Figure 6.8, we provide the comparison of our five-level mixed-order caching

approach with the best results obtained for the baseline two-level and three-

level caches, proposed in literature. We also obtain a five-level baseline cache by

experimentally determining the fraction of the cache space that should be devoted

to each item type. For this latter case, the best results are obtained when 18% of

CHAPTER 6. A FIVE-LEVEL STATIC CACHE ARCHITECTURE 117

cache space is reserved for result items, 2% for score items, 15% for intersection

items, 60% for list items, and 5% for document items. Our findings reveal that

mixed-order caching outperforms the baselines at all cache sizes. In particular,

our approach yields up to 18.4% and 9.1% reduction in total query processing

time against the two-level and three-level caches, respectively. Furthermore, the

highest improvement against the baseline five-level cache is 4.8%.

6.6 Conclusion

In this chapter, we present a hybrid static cache architecture that brought to-

gether different types of caches that are independently managed in web search

engines. We also propose a greedy heuristic for prioritization of different data

items for placement in the cache. This heuristic takes into account the inter-

dependencies between processing costs and access frequencies of data items. The

proposed approach is shown to provide efficiency improvements compared to ar-

chitectures in which caches are manipulated independent of each other. In par-

ticular, cost-based mixed-order cache yields up to 18.4% and 9.1% reduction in

total query processing time against the two-level and three-level caches, respec-

tively. Furthermore, the highest improvement against the baseline five-level cache

is 4.8%.

Chapter 7

Conclusion

Large scale search engines try to cope with rapidly increasing volume of web

content and increasing number of query requests each day. Caching is one of the

crucial methods that can help reducing this burden on search engines. Query

result caching in the context of search engines has become a popular research

topic in the last decade. In this thesis, we focus on this problem and propose

solutions that can contribute to the performance improvement of caching in web

search engines.

We first present cost-aware caching policies both for static and dynamic

caching of query results. We show that query costs vary significantly and cost

aware policies outperform its non-cost-aware counterparts. We also exploit nav-

igational queries for caching. It is shown that result page browsing behavior of

users for navigational queries is very different from that for informational queries.

We propose result page models and evaluate their performance using real query

logs. We show that it is possible to obtain reductions in cache miss counts using

the result page model proposed for navigational queries. It is shown through a

user study that the proposed result page model does not affect users’ browsing

behavior in a negative manner.

As another contribution of this thesis, we propose a storage mechanism for

query results by exploiting the queries with similar results. We cluster queries

118

CHAPTER 7. CONCLUSION 119

with common result documents and provide a compact storage model for these

clusters.

Finally, we propose a five-level static cache architecture that consists of five

different cache items such as query results (in the form of HTML result pages and

document identifiers), posting lists of terms, and document contents. We show

the inter-dependency among cache items and provide a greedy approach.

Caching for search engines is a recent research topic and there are still open

problems that can be considered as future work. We envision that processing and

caching requirements may differ for different types of queries (e.g., navigational

queries may have different requirements than informational queries, as discussed

in [63]). In our future studies, we plan to extend the cost-aware strategies to take

into account the characteristics of such query types.

As a future work for query intent aware caching, we first plan to investigate

the use of non-uniform result page models for query types other than navigational.

Furthermore, transactional query identification might be exploited for more rele-

vant sponsored search links. Indeed, it is even possible to have a separate cache

specialized for each query type, i.e., each cache employs not only different result

page models but also different caching policies. We also plan to exploit naviga-

tional queries to reduce the cost of some other major tasks, such as the actual

query processing, in a web search engine.

Our work on five-level static cache architecture can be extended in two ways.

First, the inter-dependencies between different caches need to be investigated

for the dynamic caching setting. Although this has already taken some atten-

tion [33], it is still not clear how cost updates can be performed on-the-fly and

what data structures are needed to perform these updates efficiently. Another

research direction is to consider our hybrid cache architecture in a setting where

cache entries are refreshed.

Bibliography

[1] S. Alici, I. S. Altingovde, R. Ozcan, B. B. Cambazoglu, and O. Ulusoy.

Timestamp-based cache invalidation for search engines. In Proceedings of

the 20th International Conference Companion on World Wide Web (WWW

’11), pages 3–4, 2011.

[2] S. Alici, I. S. Altingovde, R. Ozcan, B. B. Cambazoglu, and O. Ulusoy.

Timestamp-based result cache invalidation for web search engines. In Pro-

ceedings of 34th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 973–982, 2011.

[3] M. F. Arlitt, R. J. F. L. Cherkasova, J. Dilley, and T. Y. Jin. Evaluating

content management techniques for web proxy caches. ACM SIGMETRICS

Perform. Eval. Rev., 27(4):3–11, 2000.

[4] A. Ashkan, C. Clarke, E. Agichtein, and Q. Guo. Classifying and character-

izing query intent. In Proceedings of the 31th European Conference on IR

Research on Advances in Information Retrieval, pages 578–586, 2009.

[5] R. Baeza-Yates, L. Calderon-Benavides, and C. Gonzalez-Caro. The inten-

tion behind web queries. In Proceedings of String Processing and Information

Retrieval, pages 98–109, 2006.

[6] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, and

F. Silvestri. The impact of caching on search engines. In Proceedings of the

30th Annual International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval, pages 183–190, 2007.

120

BIBLIOGRAPHY 121

[7] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, and

F. Silvestri. Design trade-offs for search engine caching. ACM Transactions

on the Web, 2(4):1–28, 2008.

[8] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Improving search engines by

query clustering. Journal of the American Society for Information Science

and Technology, 58(12):1793–1804, 2007.

[9] R. Baeza-Yates, F. Junqueira, V. Plachouras, and H. F. Witschel. Admission

policies for caches of search engine results. In Proceedings of 14th Interna-

tional Symposium on String Processing and Information Retrieval, Lecture

Notes in Computer Science (Springer Verlag), Vol. 4726, pages 74–85, 2007.

[10] R. Baeza-Yates and F. Saint-Jean. A three level search engine index based

in query log distribution. In Proceedings of 10th International Symposium

on String Processing and Information Retrieval, Lecture Notes in Computer

Science (Springer Verlag), Vol. 2857, pages 56–65, 2003.

[11] L. A. Barroso, J. Dean, and U. Holzle. Web search for a planet: The google

cluster architecture. IEEE Computer Society, 23(2):22–28, 2003.

[12] D. Beeferman and A. Berger. Agglomerative clustering of a search engine

query log. In Proceedings of the Sixth ACM SIGKDD international Confer-

ence on Knowledge Discovery and Data Mining, pages 407–416, 2000.

[13] S. M. Beitzel, E. C. Jensen, A. Chowdhury, D. Grossman, and O. Frieder.

Hourly analysis of a very large topically categorized web query log. In Pro-

ceeding of the 27th Annual International ACM SIGIR Conference on Re-

search and Development in Information Retrieval, pages 321–328, 2004.

[14] R. Blanco, E. Bortnikov, F. Junqueira, R. Lempel, L. Telloli, and

H. Zaragoza. Caching search engine results over incremental indices. In Pro-

ceedings of the 19th International Conference on World Wide Web, pages

1065–1066, 2010.

[15] R. Blanco, E. Bortnikov, F. Junqueira, R. Lempel, L. Telloli, and

H. Zaragoza. Caching search engine results over incremental indices. In

BIBLIOGRAPHY 122

Proceedings of the 33rd Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 82–89, 2010.

[16] E. Bortnikov, R. Lempel, and K. Vornovitsky. Caching for realtime search. In

Proceedings of 33rd European Conference on Information Retrieval, Lecture

Notes in Computer Science (Springer Verlag), Vol. 6611, pages 104–116,

2011.

[17] D. J. Brenes, D. Gayo-Avello, and K. Perez-Gonzalez. Survey and evaluation

of query intent detection methods. In Proceedings of the 2009 Workshop on

Web Search Click Data, pages 1–7, 2009.

[18] A. Broder. A taxonomy of web search. SIGIR Forum, 36(2):3–10, 2002.

[19] F. Cacheda and A. Vina. Experiencies retrieving information in the world

wide web. In Proceedings of the 6th IEEE Symposium on Computers and

Communications, pages 72–79, 2001.

[20] B. B. Cambazoglu. Models and algorithms for parallel text retrieval. PhD

thesis, Bilkent University, 2006.

[21] B. B. Cambazoglu, F. Junqueira, V. Plachouras, S. Banachowski, B. Cui,

S. Lim, and B. Bridge. A refreshing perspective of search engine caching.

In Proceedings of the 19th International Conference on World Wide Web,

pages 181–190, 2010.

[22] P. Cao and S. Irani. Cost-aware www proxy caching algorithms. In Pro-

ceedings of the USENIX Symposium on Internet Technologies and Systems,

pages 18–18, 1997.

[23] L. Cherkasova and G. Ciardo. Role of aging, frequency and size in web

caching replacement strategies. In Proceedings of the 2001 Conference on

High Performance Computing and Networking (HPCN’01), Lecture Notes

in Computer Science (Springer Verlag), Vol. 2110, pages 114–123, 2001.

[24] K. Church, B. Smyth, K. Bradley, and P. Cotter. A large scale study of

european mobile search behaviour. In Proceedings of the 10th International

BIBLIOGRAPHY 123

Conference on Human Computer Interaction with Mobile Devices and Ser-

vices (MobileHCI ’08), pages 13–22, 2008.

[25] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An experimental com-

parison of click position-bias models. In Proceedings of the International

Conference on Web Search and Web Data Mining, pages 87–94, 2008.

[26] E. S. de Moura, C. F. dos Santos, D. R. Fernandes, A. S. Silva, P. Calado,

and M. A. Nascimento. Improving web search efficiency via a locality based

static pruning method. In Proceedings of the 14th International Conference

on World Wide Web, pages 235–244, 2005.

[27] J. Dean. Challenges in building large-scale information retrieval systems:

invited talk. In Proceedings of the Second ACM International Conference on

Web Search and Data Mining, pages 1–1, 2009.

[28] G. E. Dupret and B. Piwowarski. A user browsing model to predict search

engine click data from past observations. In Proceedings of the 31st An-

nual International ACM SIGIR Conference on Research and Development

in Information Retrieval, pages 331–338, 2008.

[29] W. Effelsberg and T. Haerder. Principles of database buffer management.

ACM Transactions on Database Systems, 9(4):560–595, 1984.

[30] T. Fagni, R. Perego, F. Silvestri, and S. Orlando. Boosting the performance

of web search engines: Caching and prefetching query results by exploiting

historical usage data. ACM Transactions on Information Systems, 24(1):51–

78, 2006.

[31] A. Fujii. Modeling anchor text and classifying queries to enhance web docu-

ment retrieval. In Proceedings of the 17th International Conference on World

Wide Web, pages 337–346, 2008.

[32] Q. Gan and T. Suel. Improved techniques for result caching in web search

engines. In Proceedings of the 18th International Conference on World Wide

Web, pages 431–440, 2009.

BIBLIOGRAPHY 124

[33] S. Garcia. Search engine optimisation using past queries. PhD thesis, RMIT

University, 2007.

[34] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall,

Inc., 1988.

[35] B. J. Jansen and D. Booth. Classifying web queries by topic and user intent.

In Proceedings of the 28th of the International Conference Extended Abstracts

on Human Factors in Computing Systems 2010, pages 4285–4290, 2010.

[36] B. J. Jansen, D. Booth, and A. Spink. Determining the informational, navi-

gational, and transactional intent of web queries. Information Processing &

Management, 44(3):1251–1266, 2008.

[37] B. J. Jansen and A. Spink. An analysis of web documents retrieved and

viewed. In Proceedings of the 4th International Conference on Internet Com-

puting, pages 65–69, 2003.

[38] B. J. Jansen and A. Spink. How are we searching the world wide web? a

comparison of nine search engine transaction logs. Information Processing

& Management, 42(1):248–263, 2005.

[39] B. J. Jansen, A. Spink, C. Blakely, and S. Koshman. Web searcher inter-

actions with the dogpile.com meta-search engine. Journal of the American

Society for Information Science and Technology, 58(4):1875–1887, 2006.

[40] J. Jeong and M. Dubois. Cost-sensitive cache replacement algorithms. In

Proceedings of Ninth International Symposium on High-Performance Com-

puter Architecture, pages 327–337, 2003.

[41] J. Jeong and M. Dubois. Cache replacement algorithms with nonuniform

miss costs. IEEE Transactions on Computers, 55(4):353–365, 2006.

[42] T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately

interpreting clickthrough data as implicit feedback. In Proceedings of the 28th

Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval, pages 154–161, 2005.

BIBLIOGRAPHY 125

[43] I. Kang and G. Kim. Query type classification for web document retrieval.

In Proceedings of the 26th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 64–71, 2003.

[44] C. Kofler and M. Lux. Dynamic presentation adaptation based on user intent

classification. In Proceedings of the Seventeen ACM international Conference

on Multimedia, pages 1117–1118, 2009.

[45] U. Lee, Z. Liu, and J. Cho. Automatic identification of user goals in web

search. In Proceedings of the 14th International Conference on World Wide

Web, pages 391–400, 2005.

[46] W. M. Lee and M. Sanderson. Analyzing URL queries. Journal of the Ameri-

can Society for Information Science and Technology, 61(11):2300–2310, 2010.

[47] R. Lempel and S. Moran. Predictive caching and prefetching of query results

in search engines. In Proceedings of the 12th International Conference on

World Wide Web, pages 19–28, 2003.

[48] N. Lester, A. Moffat, W. Webber, and J. Zobel. Space-limited ranked

query evaluation using adaptive pruning. In Proceedings of the 6th Interna-

tional Conference on Web Information Systems Engineering, Lecture Notes

in Computer Science (Springer Verlag), Vol. 3806, pages 470–477, 2005.

[49] S. Liang, K. Chen, S. Jiang, and X. Zhang. Cost-aware caching algorithms

for distributed storage servers. In Proceedings of the 21st International Sym-

posium on Distributed Computing (DISC), pages 373–387, 2007.

[50] Y. Liu, M. Zhang, L. Ru, and S. Ma. Automatic query type identification

based on click through information. In Proceedings of the Asia Information

Retrieval Symposium, pages 593–600, 2006.

[51] X. Long and T. Suel. Three-level caching for efficient query processing in

large web search engines. In Proceedings of the 14th International Conference

on World Wide Web, pages 257–266, 2005.

BIBLIOGRAPHY 126

[52] L. Lorigo, B. Pan, H. Hembrooke, T. Joachims, L. Granka, and G. Gay. The

influence of task and gender on search and evaluation behavior using Google.

Information Processing & Management, 42(4):1123–1131, 2006.

[53] Y. Lu, F. Peng, X. Li, and N. Ahmed. Coupling feature selection and ma-

chine learning methods for navigational query identification. In Proceedings

of the 15th ACM International Conference on Information and Knowledge

Management (CIKM), pages 682–689, 2006.

[54] E. P. Markatos. On caching search engine query results. Computer Commu-

nications, 24(2):137–143, 2001.

[55] M. Mendoza and R. Baeza-Yates. A web search analysis considering the

intention behind queries. In Proceedings of the Latin American Web Con-

ference, pages 66–74, 2008.

[56] M. Mendoza and J. Zamora. Identifying the intent of a user query using

support vector machines. In Proceedings of the 16th International Symposium

on String Processing and Information Retrieval, pages 131–142, 2009.

[57] A. Ntoulas and J. Cho. Pruning policies for two-tiered inverted index with

correctness guarantee. In Proceedings of the 30th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval,

pages 191–198, 2007.

[58] E. Omiecinski and P. Scheuermann. A parallel algorithm for record cluster-

ing. ACM Transaction on Database Systems, 15(4):599–624, 1990.

[59] I. Ounis, G. Amati, V. Plachouras, B. He, C. Macdonald, and D. Johnson.

Terrier information retrieval platform. In Proceedings of the 27th European

Conference on Information Retrieval, pages 517–519, 2005.

[60] R. Ozcan, I. S. Altingovde, B. B. Cambazoglu, F. P. Junqueira, and O. Ulu-

soy. A five-level static cache architecture for web search engines. Information

Processing & Management, In Press.

BIBLIOGRAPHY 127

[61] R. Ozcan, I. S. Altingovde, and O. Ulusoy. Space efficient caching of query

results in search engines. In Proceedings of the 23rd Int. Symposium on

Computer and Information Sciences, pages 1–6, 2008.

[62] R. Ozcan, I. S. Altingovde, and O. Ulusoy. Static query result caching

revisited. In Proceedings of the 17th International Conference on World

Wide Web, pages 1169–1170, 2008.

[63] R. Ozcan, I. S. Altingovde, and O. Ulusoy. Utilization of navigational queries

for result presentation and caching in search engines. In Proceedings of the

17th ACM Conference on Information and Knowledge Management (CIKM),

pages 1499–1500, 2008.

[64] R. Ozcan, I. S. Altingovde, and O. Ulusoy. Cost-aware strategies for query

result caching in web search engines. ACM Transactions on the Web, 5(2):Ar-

ticle 9, 2011.

[65] R. Ozcan, I. S. Altingovde, and O. Ulusoy. Exploiting navigational queries

for result presentation and caching in web search engines. Journal of the

American Society for Information Science and Technology, 62(4):714–726,

2011.

[66] G. Pass, A. Chowdhury, and C. Torgeson. A picture of search. In Proceedings

of the 1st International Conference on Scalable Information Systems, page 1,

2006.

[67] B. Piwowarski and H. Zaragoza. Predictive user click models based on click-

through history. In Proceedings of the 16th ACM Conference on Conference

on Information and Knowledge Management (CIKM), pages 175–182, 2007.

[68] S. Podlipnig and L. Boszormenyi. A survey of web cache replacement strate-

gies. ACM Computing Surveys, 35(4):374–398, 2003.

[69] D. Puppin, R. Perego, F. Silvestri, and R. Baeza-Yates. Tuning the capacity

of search engines: Load-driven routing and incremental caching to reduce

and balance the load. ACM Transactions on Information Systems, 28(2):1–

36, 2010.

BIBLIOGRAPHY 128

[70] R. Ramakrishnan and J. Gehrke. Database Management Systems. Mc Graw

Hill, 2003.

[71] D. E. Rose. Reconciling information-seeking behavior with search user inter-

faces for the web. Journal of the American Society for Information Science

and Technology, 57(2):797–799, 2006.

[72] D. E. Rose and D. Levinson. Understanding user goals in web search. In

Proceedings of the 13th International Conference on World Wide Web, pages

13–19, 2004.

[73] P. C. Saraiva, E. S. de Moura, N. Ziviani, W. Meira, R. Fonseca, and

B. Riberio-Neto. Rank-preserving two-level caching for scalable search en-

gines. In Proceedings of the 24th Annual International ACM SIGIR Confer-

ence on Research and Development in Information Retrieval, pages 51–58,

2001.

[74] C. Silverstein, H. Marais, M. Henzinger, and M. Moricz. Analysis of a very

large web search engine query log. SIGIR Forum, 33(1):6–12, 1999.

[75] A. J. Smith. Cache memories. ACM Computing Surveys, 14(3):473–530,

1982.

[76] T. Strohman and W. B. Croft. Efficient document retrieval in main memory.

In Proceedings of the 30th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 175–182, 2007.

[77] A. S. Tanenbaum. Modern Operating Systems. Prentice Hall, 2007.

[78] C. Tann and M. Sanderson. Are web based informational queries changing?

Journal of the American Society for Information Science and Technology,

60(6):1290–1293, 2009.

[79] J. Teevan, E. Adar, R. Jones, and M. A. Potts. Information re-retrieval:

repeat queries in Yahoo!’s logs. In Proceedings of the 30th Annual interna-

tional ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 151–158, 2007.

BIBLIOGRAPHY 129

[80] A. Tomasic and H. Garcia-Molina. Caching and database scaling in dis-

tributed shared-nothing information retrieval systems. ACM SIGMOD

Record, 22(2):129–138, 1993.

[81] Y. Tsegay, S. J. Puglisi, A. Turpin, and J. Zobel. Document compaction for

efficient query biased snippet generation. In Proceedings of the 31st European

Conference on Information Retrieval, Lecture Notes In Computer Science

(Springer Verlag), Vol. 5478, pages 509–520, 2009.

[82] Y. Tsegay, A. Turpin, and J. Zobel. Dynamic index pruning for effective

caching. In Proceedings of the 16th ACM Conference on Conference on In-

formation and Knowledge Management (CIKM), pages 987–990, 2007.

[83] A. Turpin, Y. Tsegay, D. Hawking, and H. E. Williams. Fast generation of

result snippets in web search. In Proceedings of the 30th Annual Interna-

tional ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 127–134, 2007.

[84] WebBase. Stanford University Webbase Project. www-

diglib.stanford.edu/ testbed/doc2/WebBase, 2007.

[85] W. Webber and A. Moffat. In search of reliable retrieval experiments. In Pro-

ceedings of the Tenth Australasian Document Computing Symposium, pages

26–33, 2005.

[86] J. Wen, Y. Jian, and H. Zhang. Query clustering using user logs. ACM

Transactions on Information Systems, 20(1):59–81, 2002.

[87] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing

and Indexing Documents and Images. Morgan Kaufmann Publishers, 1999.

[88] Y. Xie and D. O’Hallaron. Locality in search engine queries and its implica-

tions for caching. In Proceedings of the 21st Annual joint Conference of the

IEEE Computer and Communication Societies, pages 1238–1247, 2002.

[89] Yahoo! Web search API. http://developer.yahoo.com/search/, 2009.

[90] N. E. Young. On-line file caching. Algorithmica, 33(3):371–383, 2002.

BIBLIOGRAPHY 130

[91] C. T. Yu. Theory of indexing and classification. PhD thesis, Cornell Uni-

versity, 1973.

[92] Zettair. The Zettair search engine. http://www.seg.rmit.edu.au/zettair/,

2007.

[93] J. Zobel and A. Moffat. Inverted files for text search engines. ACM Com-

puting Surveys, 38(2):Article 6, 2006.

