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ABSTRACT 

A RESULT CACHE INVALIDATION SCHEME FOR 

WEB SEARCH ENGINES 

 

 

Şadiye Alıcı 

M.S. in Computer Engineering 

Supervisor: Prof. Dr. Özgür Ulusoy 

October, 2011 

 

 

The result cache is a vital component for the efficiency of large-scale web 

search engines, and maintaining the freshness of cached query results is a 

current research challenge. As a remedy to this problem, our work proposes a 

new mechanism to identify queries whose cached results are stale. The basic 

idea behind our mechanism is to maintain and compare the generation time of 

query results with the update times of posting lists and documents to decide on 

staleness of query results. 

 

 The proposed technique is evaluated using a Wikipedia document collection 

with real update information and a real-life query log. Throughout the 

experiments, we compare our approach with two baseline strategies from 

literature together with a detailed evaluation. We show that our technique has 

good prediction accuracy, relative to the baseline based on the time-to-live 

(TTL) mechanism. Moreover, it is easy to implement and it incurs less 

processing overhead on the system relative to a recently proposed, more 

sophisticated invalidation mechanism. 

 

 

 

Keywords: Web search, result cache, cache invalidation, time-to-live, freshness, 

adaptive. 
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ÖZET 

WEB ARAMA MOTORLARI İÇİN CEVAP ÖNBELLEĞİ 

TAZELEME YÖNTEMİ 

 

 

Şadiye Alıcı 

Bilgisayar Mühendisliği, Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. Özgür Ulusoy 

Ekim, 2011 

 

 

Cevap önbelleği, büyük ölçekli Web arama motorlarının verimi için anahtar 

bileşen konumundadır ve önbellekte bulunan sorgu cevaplarının tazeleğinin 

korunması güncel araştırma konularından birisidir. Bu probleme çözüm olarak, 

gerçekleştirdiğimiz çalışma önbellekte bayat cevaba sahip olan sorguların tespit 

edilmesi için yeni bir yöntem önermektedir. Önerdiğimiz yöntemin temelindeki 

ana fikir, sorgu cevaplarının taze olup olmadığına karar vermek amacıyla 

sorgular için cevap oluşturulma zamanının, terim listeleri ve dökümanlar için de 

güncellenme zamanlarının tutulmasıdır. 

 

 Önerilen yöntemin başarımı, gerçek güncellenme zaman bilgisi içeren 

Wikipedia doküman kümesi ve yine gerçek bir sorgu kümesi kullanılarak 

değerlendirilmiştir. Gerçekleştirilen deneylerde, önerilen teknik literatürdeki 

referans yaklaşımlarla karşılaştırmalı olarak incelenmiş ve detaylı bir şekilde 

değerlendirilmiştir. Bu yöntem ile literatürdeki son-kullanma-süresi (SKS) 

yaklaşımından çok daha başarılı tahmin sonuçları elde edilmiştir. Buna ilave 

olarak, önerdiğimiz yöntem literatürdeki gelişmiş bir yönteme göre de daha 

kolay gerçeklenebilir ve sistem üzerinde merkezi bir darboğaz yaratmayacak 

şekildedir. 

 

Anahtar sözcükler: Arama motoru, cevap önbelleği, önbellek tazeleme, son-

kullanma-süresi, tazelik, uyarlanabilen.  
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Chapter 1 
 

 

Introduction 
 

 

 

 

 

 

The development of world-wide web appeared at the end of 1980s [1] and one 

could have hardly imagined its current impact those days. Although the time 

passed from the introduction of the web is not long, the amount of its content 

has grown rapidly since then. Right after the introduction of the web, at the 

beginning of 1990s search engines have become an issue and it did not take 

much time before the development of the first generation web search engines 

between 1995 and 1997 [2]. The search engine technology has significantly 

improved in this period and, as web content has become the main source of 

information, web search engines have become the main entry point to this large 

amount of information.  

 

 At this point it would be appropriate to describe how web search engines 

work. Web search engines basically download a portion of the available web 

content and answer user queries based on this downloaded content. The big 

picture of a web search engine architecture is presented in Figure 1.1. There are 

three main components of a web search engine. The first component is crawler 

where web content is downloaded continuously. The second component is 

indexer where downloaded documents are indexed after some preprocessing 

such as parsing or tokenizing. The component at the top level is query processor 
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where users come into action. Here, the queries submitted by users are searched 

on the indexes and the results are returned to users. 

 

Figure 1.1: General architecture of a web search engine. 

  

 Since search engines have become an absolute necessity for users to find 

information on the web, the number of people using them increases at a very 

high rate. While an incredible number of users search the web, they all want to 

get high quality results with a low response time. In order to be able to serve the 

large number of users within acceptable latency constraints, large-scale search 

engines maintain a cache of previously computed search results [3]. Successive 

occurrences of a query are served by the cache (cache hit), decreasing the 

average query response latency as well as the amount of query traffic hitting the 

backend search servers. Therefore, successful caching can both lower the 

number of query executions and shorten the search engine’s response time. 
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 Caching is an effective technique for web search engines; however it also 

comes with its drawbacks. So far, the issues addressed about cache technology 

are related to cache eviction [4], admission [5], and prefetching [6], assuming 

limited capacity caches and a static web index. In practice, however, search 

engine caches are stored on disk and hence they can be very large, resembling a 

cache with almost infinite capacity [7]. Moreover, the web content is not static; 

on the contrary, an important aspect of world-wide web is its temporality. Web 

content is continuously updated with new document additions, modifications on 

existing documents, and deletions of existing documents.  

 

 With decreasing locality of reference, caching mechanism may cause some 

problems regarding the quality of search results. Examples of situations with 

decreasing locality of reference include: 

- Engines that personalize search results, and 

- Engines with incremental or rapidly changing indices. 

 

 We know that web content changes continuously. Web search engines 

continuously download web content and update their indices accordingly. The 

problem resulting from decreasing locality of reference is that, when the indices 

of web search engines change, the corresponding cached entries become stale. It 

has been recently shown that, when an incrementally updated web index is 

coupled with a very large result cache, the staleness of cached entries becomes 

an issue since cache hits may result in stale search results to be served [7, 8], 

potentially degrading user satisfaction. 

 

 A simple solution to this problem is to associate a time-to-live (TTL) value 

with every cache entry so that the validity of an entry will be expired after this 

amount of time. By this method, hits on expired cache entries are considered as 

misses and lead to reevaluation of the query. However, this is a blind approach 

since it invalidates cached entries without any knowledge of changes to the 

index. This basic solution can be coupled with proactive refreshing of stale 
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entries, i.e., recomputing cached results when backend servers have low user 

query traffic [7].  

 

 An alternative approach is to couple the TTL solution with cache invalidation 

mechanisms. In this case, the cache entries whose results are predicted to change 

due to index updates are detected and invalidated [8]. This is referred to as a 

sightful mechanism since it provides the cache information about index changes. 

The mechanism in this work includes a separate module, which is called cache 

invalidation predictor (CIP), for selectively invalidating cached results. 

Although this is a more sophisticated mechanism and performs better than the 

TTL solution in terms of accuracy, the approach proposed in this work is very 

costly and not practical. 

 

 In this thesis, we introduce a new mechanism which utilizes timestamps to 

facilitate invalidation decisions. Our aim is to devise an invalidation mechanism 

which is better than TTL and close to CIP in detecting stale results, and better 

than CIP and close to TTL in efficiency and practicality. For this purpose, the 

proposed mechanism (based on [9]) maintains a separate timestamp for each 

document in the collection and posting list in the index [9, 10]. Timestamps 

indicate the last time a document or posting list became stale, decided based on 

an update policy. Similarly, every query result in the cache is time-stamped with 

its generation time. In case of a cache hit, the invalidation mechanism compares 

the timestamp of the query result with timestamps of associated posting lists and 

documents to decide whether the query result is stale or not, based on a certain 

invalidation policy.  

 

 The approach proposed in this thesis has several contributions. First of all, 

this approach does not involve blind decisions, as in the case of TTL-based 

invalidation [7], or techniques that are computationally expensive [8]. In terms 

of computation, it incurs little overhead on the system. Moreover, it can be 

easily integrated into a real search engine, due to its distributed nature. Finally, 
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the accuracy of the proposed approach in identifying stale queries and success in 

reducing redundant query executions at the backend search system is better than 

that of TTL and reasonably close to that of a sophisticated mechanism [8]. In 

addition to the invalidation mechanism, our work also provides a detailed 

evaluation of the proposed approach with several important parameters, such as 

query length, query frequency, result update frequency, and query execution 

cost, as real life query streams exhibit different characteristics for different 

applications (e.g., query results containing news pages may become stale more 

often than others). 

 

 The thesis is organized as follows. Chapter 2 summarizes studies related to 

the field of this work and also gives some background information about 

incremental indexing framework and the root cause analysis of staleness. The 

proposed cache invalidation framework and related policies are presented in 

Chapter 3. The experimental setup is explained in detail in Chapter 4. In 

addition, the experimental results together with the cost analysis are presented in 

the same chapter. Finally, Chapter 5 concludes our discussions and presents 

possible future research directions. 
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Chapter 2 
 

 

Related Work and Background 
 

 

 

 

 

 

In the following sections, we first provide a summary of related research efforts 

that deal with the quality of web search engines. We then present the 

background information that is needed to understand the concepts discussed in 

the following chapters. 

 

2.1 Related Work 
 

 

 

Temporality of world-wide web affects the quality of search engines. There are 

two main research dimensions in the literature regarding this issue. The first 

dimension deals with the quality of search engines’ databases and the other is 

related to the quality of search engines’ results. The following two subsections 

discuss the research efforts in these two dimensions. 

 

2.1.1 Quality of Search Engines’ Databases 
 

We have stated that web content is changing frequently with documents being 

added, deleted, and updated. This means that new terms need to be added to the 

index and posting lists of existing terms need to be updated. There are three 
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basic approaches to keep a web index fresh [11]. The first approach is to 

periodically reconstruct the index from scratch. This is the simplest approach 

and it is a preferable solution if the number of changes over time is small. Also, 

the delay in making new documents searchable should be acceptable for this 

approach. In the second approach, the necessary modifications are performed on 

a delta index, meaning that new documents are added to this separate index and 

updates and deletions of existing documents are also maintained in this delta 

index [12]. In this case, query processing is performed on both the main index 

and the delta index. After a specific amount of time or when the delta index 

reaches a specific amount of size, it is merged with the main index and a new 

delta index is grown. In the third approach, all modifications are performed on 

the main index [13, 14]. Modifications may be accumulated and performed in 

batches also [15]. This approach is preferable for frequently changing document 

collections. Lastly, a hybrid strategy between the last two techniques is also 

possible [16]. 

 

 The quality of search engines’ databases is an important issue since users will 

find the information they search for only if the search engine index is up to date 

and contains that information. For this reason, the crawler of a web search 

engine should operate in continuous mode and it should obtain fresh copies of 

previously fetched pages [17]. Bias in web crawling and therefore in the indices 

of web search engines is discussed in [18-20]. The freshness of the databases of 

three most popular web search engines is studied in [21] and their index update 

frequency is measured. As a result Google search engine is found to be the best 

as it updates most of its web pages on a daily basis.  

 

 A work that deals with the temporal quality of the data collected for a search 

engine claims that in order to have 80% freshness over the database, we need to 

synchronize with at least twice the actual update frequency [22]. Another 

finding in this paper is that, if real world elements (web documents) change once 

a day and search engine synchronizes also once a day, then freshness of the 
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database is 63%. In addition, another work [23] tries to estimate how often web 

search engines must reindex the web in order to keep current with the changing 

web content. As a result, it is shown that one-day-current web search engine 

needs a reindexing period of 8.5 days, and one-week-current web search engine 

needs a reindexing period of 18 days.  

 

2.1.2 Quality of Search Engines’ Results 
 

Result caching in search engines has been an active research area in recent 

years. The first work on result caching in the context of search engines is [4], 

which provides a comparison between static and dynamic result caching 

approaches. Several other works present new methods for static, dynamic, and 

hybrid result caching approaches [24-27]. Many issues in static and dynamic 

caching are covered by [3]. 

 

 In [28], it is claimed that previous works on search engines focused on the 

crawler ignoring the other parts of a search engine, and they somehow change 

the point of view from search engine databases to search engine results. In that 

work, they propose metrics for measuring staleness of a page with respect to 

when and how many times it is clicked by users. Their main claim is that a stale 

page clicked on by many users will have a bigger impact on freshness of a 

search engine than many pages that rarely show up in user search results. 

 

 In the previous subsection, we have presented the works that try to maintain 

up to date databases for web search engines in order not to return stale results to 

users. However, without careful real-time management of result caches, stale 

results might be returned to users despite the efforts invested in keeping the 

database and the index up to date. There are two recent works which deal with 

the staleness of result caches in web search engines. The first one [7] uses a 

blind approach while invalidating the queries. In this context, using the blind 

approach means invalidating cached results without any knowledge of changes 
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to the index. Cached results are expired based on a time-to-live (TTL) value and 

the invalidated results are selectively refreshed before they are reissued by the 

users. For this, the results to refresh are prioritized and they are refreshed in the 

idle cycles of the servers. However, the impact of almost blindly reissuing 

queries to the backend servers on financial costs is unclear. The second work 

dealing with the staleness of result caches is [8], which uses a sightful approach. 

The sightful approach means that cache is provided information about index 

changes and invalidation decisions are based on this information. In that work, a 

cache invalidation predictor (CIP) framework is presented which selectively 

invalidates cached results of queries whose results are affected by the updates to 

the index. However, this approach is computationally expensive since it builds 

an inverted index on the queries in the result cache and evaluates updated 

documents on this index [8]. Lastly, there is the extension of that work which 

uses authentic web-scale workloads and standard system metrics [29]. It 

presents new CIPs that are claimed to better adapt to real workloads. However, 

in that work a finite size cache is assumed which is not really realistic for search 

engines. Because search engine caches are stored on disk, they can be very large 

resembling a cache with almost infinite capacity [7]. 

 

2.2 Background 
 

 

 

In this section, the preliminary information needed to understand the concepts 

discussed in the following chapters is provided. This background information 

includes the general architecture of our incremental indexing framework, and 

the root cause analysis of staleness. 

 

2.2.1 Incremental Indexing Framework 

 

Large scale search engines have very huge indices which need to be accessed at 

very high speed. For this reason, their indices are generally distributed across 
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multiple machines referred to as nodes. By this way, each node searches some 

part of the distributed index. There are two types of distribution methods for 

inverted indices which are document-based partitioning (local index 

organization) and term-based partitioning (global index organization). In 

document-based partitioning, every node is responsible for storing and indexing 

a disjoint set of documents in the collection as well as processing queries over 

its index. In term-based partitioning, each node holds the posting lists of a 

disjoint set of terms, and performs query processing only if it holds inverted lists 

relative to the query terms. The two methods are compared for distributed query 

processing on a real machine in [30] and the conclusion of this work is that the 

global index organization outperforms the local index organization. However, it 

is also stated that the local index organization provides high parallelism. So, in 

our approach we use the local index organization approach which is also the 

state-of-the-art for search engines.  

 

 Furthermore, we employ the incremental indexing approach for updating the 

search engine database. In this method, firstly every document in the collection 

should be assigned to one node. This mapping of documents to search nodes is 

obtained through hashing of document ids into search node ids. After the initial 

assignment, future modifications occur in the original document collection (i.e., 

document addition, deletion, and updates). These modifications are 

communicated to search nodes by the crawler, which continuously monitors the 

changes in the Web. Every search node incrementally reflects these changes to 

its local index. We model updates on already indexed documents as the deletion 

of the old version succeeded by an addition of the new version. 

 

 In an ideal incremental indexing setup, changes on the document repository 

are immediately reflected to local indexes in search nodes. In practice, 

depending on the freshness requirements, changes can be accumulated for a 

small time period and then reflected to index at once [8]. If the majority of the 

entire index is kept in main memory [31], this update process does not require a 
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strict locking mechanism, i.e., updates can be applied on copies of inverted lists 

and do not affect queries that are concurrently processed on the lists. After all 

lists of a particular update are processed, the index pointers are set to point to the 

new lists. Document properties (such as length, link and content scores, etc.) are 

also updated accordingly. In addition to these, we also maintain and update 

some timestamp values for updated documents and affected terms. These will be 

discussed in Chapter 3. 

 

Figure 2.1: Architecture of the search system (S. Alici, I. S. Altingovde, R. 

Ozcan, B. B. Cambazoglu, and O. Ulusoy, "Timestamp-based result cache 

invalidation for web search engines," Proceedings of the 34th international 

ACM SIGIR conference on Research and development in Information, ©2011 

ACM, Inc. http://dx.doi.org/10.1145/2009916.2010046. Reprinted by 

permission.) 

 

 In Figure 2.1, we illustrate a simplified version of the search system 

architecture we consider in this work. This architecture is generally same as the 

search engine architecture presented in Chapter 1 and it corresponds to one 

search node’s indexing/search system. First of all, there is the crawling system 

that continuously downloads information from the web into the document 

collection. Then there is the indexing/search system, in which downloaded 

information is indexed incrementally and queries are processed on the inverted 

indices. The result cache is presented as a separate component placed within a 

broker machine. The important operation we want to focus here is that, when the 
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user submits a query, we first check if it is found in the cache. If it is found in 

the result cache, then this is referred to as a “cache hit” and the answer is 

immediately served by the cache. Otherwise a “cache miss” occurs where the 

query is sent to all of the nodes and processed at their own indices. After query 

processing is completed at all nodes, the results from all of these nodes are 

collected and merged in the broker node, and the final ranked answer is returned 

to the user. Note that, in the incremental indexing framework described above, 

the underlying index may be modified after query results are generated and 

stored in the cache. As a result, we see that while the search engine decreases its 

response time by serving results from the cache, it may serve stale results to 

users. 

 

2.2.2 Root Cause Analysis of Staleness 
 

Before discussing our invalidation mechanism, we will take a closer look at the 

causes that make a result in the cache stale. We consider a query result as stale if 

there is a change in the ids or the order of documents in the result [8]. In this 

respect, we claim that at least one of the following cases should hold to make the 

cached result R of a query q stale: 

 

 Case (i). At least one document d that was initially in R is either deleted, or 

revised in such a way that its rank in R is changed. In the latter case, some query 

terms that were previously found in d could have been deleted, their frequency 

could have been modified (i.e., by an increase or decrease), or document length 

could have been changed (i.e., terms that are not in q can be added to or deleted 

from d, or their frequency in d can be modified).  

 

 An example scenario for these possibilities is presented in Figure 2.2. In this 

example, there is the query q and its result set R which contains three 

documents: d1, d2, and d3. In (a), d1 is deleted from the collection, as a result 

another document replaces d1 in the result set. In (b), d3 is updated and the 
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query terms’ frequency in d3 has changed (increased in this example). As a 

result of this, rank of d3 changes from 3 to 1. In (c), d3 is updated and one of the 

query terms (t1) is completely deleted from d3. For this reason, score of d3 

decreases for query q and d3 does not appear in the result set anymore. In the 

last option, (d), document length of d3 changes and it becomes a shorter 

document. So, the importance of q’s terms in d3 increases which then results in 

a rank change for document d3. 

 

 

Figure 2.2: Example staleness scenarios that depend on document 

deletions/updates for documents appearing in the result set (R). 

 

 Case (ii). At least one document d that was not previously in R can qualify to 

enter R. In this case, a new document including all query terms (and yielding a 

high-enough score) could have been added to the collection, or an existing 

document could have been revised in such a way that its new score qualifies for 

R. In such an update, some query terms that were not previously in d could have 

been added to d, the frequency of query terms that appear in d could have been 
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modified or, as in the previous item, the document length could have been 

changed due to modifications in other terms that are not in q. 

 

 

Figure 2.3: Example staleness scenarios that depend on document 

additions/updates for documents not appearing in the result set (R). 

 

 An example scenario for these possibilities is presented in Figure 2.3. In this 

scenario, again we have query q whose result set (R) includes documents d1, d2, 

and d3. Moreover, there are two documents d4 and d5 which contain q’s terms 

but do not have a high enough score to enter R. In (a), a totally new document is 

added to the collection and its score qualifies to enter R for query q. In (b), 

document d4 is updated (one query term, t1 in this case, is added to d4) and it 

now has a higher score than d3 to enter R. In (c), d5 is updated so that frequency 

of query terms increases. Lastly, in (d), document length of d5 changes and as a 

result it qualifies to enter R. 

 



 

 

15 

 

 We note that our discussion assumes a ranking function that is essentially 

based on basic document and collection statistics (e.g., TF-IDF, BM25). In 

practice, a revision on a document can also change the term distances within the 

text and subsequently, the document score, if a proximity-based scoring function 

is employed [32]. Similarly, changes on the graph-based features of a document 

(such as its PageRank score) may also change its overall score. In this thesis, we 

assume a basic scoring function while evaluating the proposed invalidation 

framework to keep our experimental setup tractable (as in [8]). However, 

throughout the discussions, we point to possible extensions of our policies to 

cover more sophisticated ranking functions. 

 

 For handling case (i), the primary source of the required information is the 

query result R (in addition to the deleted and revised documents). However, 

handling case (ii) requires some knowledge of documents that are not in R, i.e., 

all other candidate documents for q in the collection. Obviously, this constraint 

is harder to satisfy. In the following chapter, we introduce our timestamp-based 

invalidation framework (TIF), which involves various policies that attempt to 

detect if one of the above cases hold for a cached query result. Note that, since it 

is not always possible to guarantee if any of these cases really occurred (without 

reexecuting the query), all invalidation prediction approaches involve a factor of 

uncertainty, and subsequently, a trade-off between prediction accuracy and 

efficiency. Hence, while tailoring our policies, our focus is on both keeping 

them practical and efficient to be employed in a real system and as good as the 

approaches in the literature in terms of prediction accuracy. 
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Chapter 3 
 

 

Timestamp-based Result Cache 

Invalidation Schemes 
 

 

 

 

 

 

Our timestamp-based invalidation framework has an offline (i.e., indexing time) 

and an online (i.e., query time) component (see Figure 3.1). The offline 

component is responsible for reflecting document updates on the index and 

deciding on stale terms and documents. To this end, each term t in the 

vocabulary and each document d in the collection are associated with 

timestamps TS(t) and TS(d), respectively. The value of a timestamp shows the 

last time a term (or document) is deemed to be stale. The staleness decision for 

terms and documents are given based on the policies discussed in Section 3.1. 

 

 The online component is responsible for deciding on staleness of a query 

result. Each query q in the result cache is associated with a timestamp TS(q), 

showing the last time the query results are computed at the backend. Our 

invalidation policy aims to predict whether any one of the cases discussed in 

Section 2.2.2 hold for a cached result.  
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Figure 3.1: Timestamp-based result cache invalidation architecture (S. Alici, I. 

S. Altingovde, R. Ozcan, B. B. Cambazoglu, and O. Ulusoy, "Timestamp-based 

result cache invalidation for web search engines," Proceedings of the 34th 

international ACM SIGIR conference on Research and development in 

Information, ©2011 ACM, Inc. http://dx.doi.org/10.1145/2009916.2010046. 

Reprinted by permission.)  

 

 In order to predict the staleness of a cached result; we compare documents' 

TS values to query's TS value. By this, we try to identify the documents that are 

deleted or updated after the query result was generated, and can render the 

cached result invalid. To predict results that became stale due to the second 

reason in Section 2.2.2, we compare query terms' TS values to query's TS value 

to identify queries whose terms start to appear in some new documents. 

 

3.1 Timestamp Update Policies 
 

 

 

3.1.1 Updating document timestamps 

 

In Figure 3.1, for the sake of simplicity, we present the data stored at a single 

node in the search cluster. At each index node, in addition to the inverted index 

and other auxiliary data structures that are typically used for query processing, 

we keep timestamp values for documents and terms. 
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 The timestamps of documents are defined as follows. We set the timestamps 

of the newly added documents to the current date. For all deleted documents, we 

set TS to a predefined infinite value.
1
 Finally, for a revised document, we 

compare the old and new versions of the document and set the timestamp to the 

new version's date only if their lengths (the total number of terms) differ by 

more than a fixed percentage L (this is similar to [8]). This parameter is intended 

to allow a level of flexibility in when a document can be considered as updated. 

When L is set to 0, every single modification of a document causes a TS update. 

 

 Since each document is assigned to a certain index node via a hash function, 

we store a document's TS value only on the associated index node. That is, 

keeping track of document TS values is a simple operation and since its cost 

would be amortized during the in-place index update it would yield almost no 

additional burden on the system. 

 

3.1.2 Updating term timestamps 

 

For each term in the index (again, on a certain node), we update the timestamp 

value when a term's list is significantly modified in a time period. Analogous to 

the document TS case, our decision is guided by the amount of change in the 

length of a posting list. Furthermore, for terms, we can not only keep track of the 

number of modifications (addition and deletion of postings) but also estimate 

which of these modifications are more important in terms of the ranking score. 

In this respect, we describe two alternative policies, as follows. 

 

 Frequency-based update. In this policy, we keep an update counter that is 

incremented whenever the term's posting list is modified by addition or deletion 

of postings. Here, we only take into account the modifications due to postings 

                                                 
1
 This choice simply allows a uniform presentation of our invalidation policy in the next section. 

In practice, it is also possible to set the timestamp value of a deleted document to a null value, or 

the deletion can be inferred by the system if it cannot be found in the document TS data 

structure. 
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that are newly added to a term's list. The reason of this decision is that deletions 

from a revised document may less often make a result stale, in comparison to the 

addition of new content. When the value of a term's update counter exceeds a 

certain fraction (F) of its initial posting list length, the term is said to be stale 

(see Figure 3.2). Then, a new timestamp is assigned to the term which reflects 

the current date, and its update counter is set to zero. 

 

Figure 3.2: Frequency-based term TS update policy 

 

 Score-based update. In this policy, for each term's posting list, we initially 

sort the postings (in descending order) using the ranking function of the search 

system. The working mechanism of this update policy can be seen in Figure 3.3. 

The figure shows that, after the sort operation, we store the score threshold, i.e., 

the score of posting at rank P (S@P). The parameter P can be set to a constant 

value (such as 10), or adaptively determined for each term as some percentage 

of the term's posting list length. At each modification to a list, we compute the 

score of the newly added posting, Snew. If Snew > S@P for this list, we update the 

TS of this term, and recompute S@P. 

 

 In some sense, the latter policy resembles the posting list pruning method 

proposed by Carmel et al. [33]. In this work, posting lists are again sorted based 

on their ranking scores; and those postings with scores smaller than the score of 

the Pth postings are decided to be less worthy, i.e., can be pruned safely. Here, 

conversely, we imply that only those postings that can enter among the top-P 

postings of a term are valuable enough to update this term's timestamp. 
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Figure 3.3: Score-based term TS update policy 

 

 Both of our timestamp-update polices require only an additional field to be 

stored per index term, which is a very modest requirement. Clearly, the score-

based policy is more expensive than the frequency-based one as the former 

requires ranking of the postings in a list at each timestamp update for that term. 

In return to its higher cost, we anticipate that the score-based policy may 

identify those update operations that can change query results more accurately. 

This expectation is experimentally justified in Chapter 4. 

 

3.2 Query Result Invalidation Policies 
 

 

 

As seen in Figure 3.1, the result cache stores the query string q, result set R and 

timestamp value TS(q).
2
 For each cache hit, the triplet <q, R, TS(q)> is sent to 

index servers. Each node, in parallel, predicts whether the cached result is stale 

or not, using the term and document timestamps and the triplet <q, R, TS(q)> 

for the query in question. A node decides that a result is stale if one of the two 

conditions holds: 

                                                 
2
 Snippets are omitted as they are irrelevant to this problem. 
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 C1: If ∃d ∈ R, s.t. TS(d) > TS(q) (i.e., document is deleted or revised 

after the generation of the query result), or 

 C2: If ∀t ∈ q, s.t. TS(t) > TS(q) (i.e., each query term appeared in some 

new documents after the generation of the query result). 

 

 After deciding on staleness of a result, each node sends its prediction to the 

result cache, located in the broker. If at least one index server returns a stale 

decision, the query is re-executed at the index nodes, and R and TS(q) 

information are updated in the cache; otherwise, the result in the cache is served 

to the user. 

 

 The first condition of our policy can correctly detect all stale results due to 

the deletion of documents in R. For result documents whose scores may have 

changed due to a revision, we adopt a conservative approach. If a document in R 

is found to have a larger TS value than the query's TS value, we assume that its 

rank in R would most probably change and we decide that the result would be 

stale. We also propose to relax this latter case by introducing a parameter M, 

which is a threshold for the number of revised documents to be in R to predict its 

staleness. That is, we predict a query result as stale if at least M documents in R 

are found to have a larger TS value than the query's TS value. 

 

 The second condition is intended to (partially) handle the stale results that are 

caused by a newly added document or a revised document (e.g., after addition of 

query terms), which was not in R but now qualifies to enter. For this case, we 

again take a conservative approach and decide that a query is stale if each one of 

its terms now appears in a sufficiently large number of new documents. 

 

 We note that the first condition, C1 may cause some false positives (i.e., 

predict some results as stale that are, in reality, not), however it does not yield 

any stale results to be served (when L = 0 and M = 1). That is, all stale results 

caused by the first case discussed in Section 2.2.2 would be caught. On the other 
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hand, the second condition, C2, can yield both false positives and stale results to 

be served, as it cannot fully cover the second case discussed in Section 2.2.2. 

For instance, assume a document that includes all terms of a particular query but 

its score does not qualify for top-10 results. Then, during a revision, some terms 

that are irrelevant to the query are deleted from this document (so that it is 

significantly shortened) and its score can now qualify for top-10. Clearly, this 

situation cannot be deduced by either conditions of our invalidation policy. We 

anticipate that such cases would be rather rare in practice. Nevertheless, to 

handle such cases and prevent accumulation of stale results in the cache, we 

adapt the practice in [8] and augment our policy with an invalidation scheme 

based on TTL. Thus, in case of a cache hit, a query TS is first compared to a 

fixed TTL value, and if expired, it is reexecuted; otherwise, our timestamp-

based invalidation policy is applied. 
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Chapter 4 
 

 

Experimental Setup and Results 
 

 

 

 

 

 

In Chapter 3 we have presented our invalidation approach together with the 

developed policies in detail. Now, we provide an evaluation of our approach. 

We give a detailed explanation of our experimental setup and results in the 

following subsections. 

 

4.1 Experimental Setup 
 

 

 

In order to evaluate the cache invalidation strategy defined in the previous 

chapter, there is the need for a detailed, realistic, and high-scale framework. To 

comply with these requirements and also for the sake of comparability, we use 

the simulation setup introduced in [8] as blueprint. We strictly follow this setup 

in terms of the dataset, and query set selection as well as the simulation logic.  

 

4.1.1 Dataset 

 

In order to use throughout the experiments, we obtain a public dump of the 

English Wikipedia site. This dump
3
 includes all Wikipedia articles along with 

                                                 
3
 http://www.archive.org/details/enwiki-20070402 
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their revision history starting from Jan 1, 2006 to April 30, 2007. The size of the 

dataset is 85GB compressed and 1.7TB actual. The dataset contains around eight 

million web pages, but some of these are for purposes other than publishing 

information on the web. We omitted these certain pages (e.g., help, user, image, 

and category pages) from our data as they are not useful for our experiments. 

The remaining data includes 3.5 million unique pages.  

 

 The information regarding to the revision of existing pages and the addition 

of new pages are obtained using the Wikipedia dataset. However, the 

information about deleted pages is not available in this dataset. For this reason, 

we obtained the deleted page information by querying the Wikipedia database 

using the MediaWiki API.
4
 For instance, when the following query 

“http://en.wikipedia.org/w/api.php?action=query&list=logevents&letype=delet

e&lestart=20060101000000&ledir=newer&lelimit=500” is submitted, we get 

the deleted page information of up to 500 pages that are deleted on or after 

January 1, 2006 at 00:00:00 a.m. The results are sorted starting from the first 

deleted page. By sending such queries we construct the list of deleted pages on 

each day of the dataset’s time interval. 

 

4.1.2 Simulation setup 

 

In order to perform the experiments we need an incremental indexing 

framework. For this, we consider all modifications on the collection (additions, 

deletions, and updates) for the first 30 days following Jan 1, 2006. Firstly, we 

generate an initial index using the Wikipedia content present on this first day. 

This initial snapshot contains almost one million unique pages. For our dataset, 

the average number of page additions, revisions, and deletions per day are 2,050 

(0.2% of the initial dataset), 41,000 (4.1%) and 167 (0.02%), respectively. These 

numbers are similar to those reported in [8].  

 

                                                 
4
 http://www.mediawiki.org/wiki/API 
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 Following the practice in [8] and also to reduce the complexity of the 

simulation setup, we assume that all modifications on the collection are applied 

as a batch separately for each day. Thus, we create an index for each day by 

reflecting all modifications of a particular day on top of the index constructed 

for the previous day. By this way, we have an initial index and 30 more 

incremental indices for the next 30 days. We used the open source Lucene 

library
5
 for creating the index files and processing queries. 

 

4.1.3 Query set 

 

As the query set, we sample 10,000 queries from the AOL query log [34] such 

that each query has at least one clicked answer from the English Wikipedia 

domain
6
. The queries span a period of 2 weeks, and 8,673 of them are unique. 

We also verify that the query frequency distribution of our sample follows a 

power-law, which is typical for the web.  

 

 We assume that, in each day, the set of queries is submitted to the search 

system. Using a fixed set of queries in each day allows evaluating the 

invalidation approaches in a way independent from other cache parameters (e.g., 

size, replacement policies, etc.), as discussed in [8]. Therefore, for each day in 

our simulation, we execute the query set on the current day’s index and retrieve 

top-10 results per query, which constitutes the ground truth set. During query 

processing, we enforce the conjunctive query processing semantics.  

 

4.1.4 Evaluation metrics 

 

Each invalidation strategy predicts whether a query result in the cache is stale 

for each day within our evaluation period and accordingly decides either to 

return the cached result or reexecute the query. We decide on the staleness of a 

                                                 
5
 http://lucene.apache.org 

6
 http://en.wikipedia.org 
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query by comparing the returned result for a particular day with the ground truth 

of that day. If the two result sets differ in terms of the listed documents or their 

order, then the returned result is said to be stale. The entire simulation 

framework is illustrated in Figure 4.1. In this figure, we see the index on a day, 

namely on day k-1. When the index updates on day k come (i.e., the document 

additions, updates, and deletions), the index of day k is generated. After this 

index generation, the queries are run on this index while our invalidation 

strategy is also in operation. Comparison of the results of our strategy with the 

ground-truth data gives us the stale ratio and false positive ratio for day k. 

 

 

Figure 4.1: The simulation framework used (S. Alici, I. S. Altingovde, R. Ozcan, 

B. B. Cambazoglu, and O. Ulusoy, "Timestamp-based result cache invalidation 

for web search engines," Proceedings of the 34th international ACM SIGIR 

conference on Research and development in Information, ©2011 ACM, Inc. 

http://dx.doi.org/10.1145/2009916.2010046. Reprinted by permission.)  

 

 When we compare the two result sets, one based on our invalidation strategy 

and the other based on the ground-truth data, one of the following cases will 

occur.  

 

1. False Positive (FP): The cached query result is not stale and the 

invalidation strategy decides that it is stale. 
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2. False Negative (FN): The cached query result is stale and the 

invalidation strategy decides that it is not stale. 

3. True Positive (TP): The cached query result is stale and the invalidation 

strategy decides that it is stale. 

4. True Negative (TN): The cached query result is not stale and the 

invalidation strategy decides that it is not stale. 

 

 

 

Figure 4.2: Evaluation metrics used in the experiments 

 

 As defined in [8], we evaluate cache invalidation strategies in terms of the 

stale traffic (ST) ratio (i.e., the percentage of stale query results served by the 

system) versus the FP ratio (i.e., the percentage of redundant query executions). 

The formulas for these metrics are shown in Figure 4.2. False positive ratio is 

calculated by dividing the FP count by the number of cached queries. Here, the 

FP count corresponds to the redundant query executions. The stale traffic ratio is 

calculated as sum of the frequencies of the stale queries divided by the overall 

frequency sum. We also present the FN ratio versus the FP ratio and observe the 

same trends reported in [8]. However, we consider the ST ratio, which takes into 

account the frequency of the stale results that are served and stale results 

accumulated in the cache, as a more realistic metric to evaluate the success of an 

invalidation approach. 
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4.1.5 Baseline strategies 

 

We compare our timestamp-based invalidation framework (TIF) to two baseline 

approaches in the literature. The most straightforward baseline is assigning a 

fixed time-to-live (TTL) value to each cached query. As a stronger baseline, we 

implement the cache invalidation predictor (CIP) with its best-case parameters 

(i.e., using complete documents and score thresholding) [8]. 

 

 In our adaptation of the CIP strategy, a cached result is deemed to be stale if 

it includes at least one deleted document in a particular day (similar to the first 

case of our result invalidation policy discussed in Section 3.2).  While handling 

additions, first all cached queries that match to the document at hand are 

determined, using conjunctive query processing semantics. Next, the score of 

the document with respect to each such query is computed, and if this score 

exceeds the score of the top-10th document in the cached result, the query result 

is marked as stale. This means that the newly added document has a high 

enough score to enter the top-10 result set of query. For each day, we assume 

that collection statistics (such as inverse document frequency (IDF)) from the 

previous day are available to CIP.  

 

4.2 Experimental Results 
 

 

 

Throughout the experiments, we try to see if our invalidation scheme performs 

good enough to beat the baseline strategies. We also experiment with different 

parameters in order to see their effect on different strategies. We summarize the 

invalidation approaches and related parameters that are investigated in Table 

4.1. In the baseline TTL strategy each query result is associated with an 

expiration period (τ), and the result is decided to be stale at the end of this 

period. Since our simulation setup reflects all updates to the index in batch, each 

day, the τ = 1 case simply corresponds to no caching at all. In this case, each 
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query result is expired every day and thus each query is executed every day. 

This means that there is no stale traffic, however a very high fraction of queries 

are executed redundantly (i.e., about 86% in this setup). Not surprisingly, with 

increasing values of τ, the ST ratio increases while FP ratio decreases. 

 

 For the other baseline, CIP, we have two relevant parameters. We employ the 

document length parameter L in the same way as it is used for our timestamp-

based policies; i.e., a revised document is considered for invalidation only if its 

older and newer versions differ by more than L% in terms of the number of 

terms contained. This is similar to the document modification threshold used in 

the CIP setup [8]. We also augment the CIP policy with the TTL strategy such 

that each cached query is also associated with τ. By this way, if the strategy 

itself does not invalidate the cached query for a period of τ, then the TTL 

strategy invalidates this query. 

 

Table 4.1: Invalidation approaches and parameters (S. Alici, I. S. Altingovde, R. 

Ozcan, B. B. Cambazoglu, and O. Ulusoy, "Timestamp-based result cache 

invalidation for web search engines," Proceedings of the 34th international 

ACM SIGIR conference on Research and development in Information, ©2011 

ACM, Inc. http://dx.doi.org/10.1145/2009916.2010046. Reprinted by 

permission.) 

 

Approach Parameter Value range 

TTL τ 1 – 5 

CIP [8] 
τ 

L 

2 – 5 

0%, 1%, or 2.5% 

TIF 

τ 

L 

F 

P 

M 

2 – 5 

0%, 1%, or 2.5% 

10% 

top-10 

1 or 2 
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 Our timestamp-based invalidation framework (TIF) uses the following 

parameters. For the document TS update policy, we experiment with L values of 

0% (i.e., all revisions to a document causes an update on TS values), 1%, and 

2.5%. For updating term timestamps, we use either the frequency-based or the 

score-based TS update policy. For the former case, we set F to 10%. This means 

that, a term is assigned a new TS when the number of newly added postings 

exceed 10% of the initial posting list size. For the latter case, we set P to 10 

indicating that a term is assigned a new TS if a newly added posting has a score 

that can enter the top-10 postings of its list. We note that, while computing 

posting scores, we can safely use the statistics from the previous day since the 

computation actually takes place at the index nodes and during the incremental 

index update process. Finally, the parameter M takes the values 1 or 2, 

indicating that a query result R at a particular day is predicted to be stale if it 

includes either one or two documents updated on that day (see Section 3.2). Our 

strategy is also augmented with TTL, i.e., the parameter τ is again associated 

with cached queries. 

 

 In Figure 4.3(a), we compare the performance of TIF that uses a frequency-

based term TS update policy to those of the baseline strategies. In this 

experiment, L ranges from 0% to 2.5% and M = 1. The figure reveals that our 

invalidation approach is considerably better than the baseline TTL strategy. In 

particular, for each TTL point, we have a better ST ratio with the same or lower 

FP ratio, and vice versa. For instance, when τ is set to 2 for TTL policy, an ST 

ratio of 7% is obtained while causing an FP ratio of 37%. Our policy halves this 

ST ratio (i.e., to less than 4%) for an FP ratio of 36%. Similarly, for τ values 3 

and 4, we again provide ST ratio values that are relatively 31% and 38% lower 

than those of the TTL policy at the same or similar FP ratios. 

 



 

 

31 

 

 

(a) 

 

(b) 

Figure 4.3: ST vs. FP for TIF: (a) frequency-based term TS update policy and (b) 

score-based term TS update policy (S. Alici, I. S. Altingovde, R. Ozcan, B. B. 

Cambazoglu, and O. Ulusoy, "Timestamp-based result cache invalidation for 

web search engines," Proceedings of the 34th international ACM SIGIR 

conference on Research and development in Information, ©2011 ACM, Inc. 

http://dx.doi.org/10.1145/2009916.2010046. Reprinted by permission.) 

 

 In Figure 4.3(b), we compare the performance of TIF that uses a score-based 

term TS update policy to those of the baseline strategies. Again, L ranges from 

0% to 2.5% and M is set to 1. When we compare the results in (a) and (b), we 
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see that TIF performs better when the term update decisions are given based on 

the scores, as expected. In this case, TIF yields about a half of the ST ratio 

values produced by TTL for the corresponding FP ratios for all values of τ. For 

instance, TIF yields around an ST ratio of 6% for an FP ratio of 23%, whereas 

TTL causes an ST ratio of 13% for almost the same number of false positives, 

i.e., at 22%.  

 

 While TIF can significantly outperform TTL baseline, its performance is 

inferior to CIP, although with a smaller margin at the smaller ST ratios. Our 

implementation of CIP is quite successful for reducing ST ratio; and it is even 

about 30% better than the best case reported in [8], which might be due to minor 

variations in the setup or other factors. However, this accuracy does not come 

for free, as CIP also involves some efficiency and practicality issues. On the 

other hand, our approach is tailored to provide a compromise between prediction 

accuracy and efficiency, and not surprisingly, placed between TTL and CIP 

strategies in Figures 4.3(a) and 4.3(b). In the following experiments, we also 

present cases where the gaps between TIF and CIP are further narrowed. In the 

rest of this chapter, we analyze the performance of TIF regarding: M, query 

length, frequency, result update frequency, and query processing cost. 

 

 Impact of M. In Figures 4.4(a) and 4.4(b), we report results with M = 2 for 

the cases corresponding to Figure 4.3. As expected, a higher value of M yields 

smaller false positive predictions but causes higher ST ratios. Surprisingly, even 

such a slight increase in M drastically affects the performance of TIF, rendering 

it almost the same as the TTL strategy. This indicates that, document revisions 

are the most important causes of stale results, at least in our setup.  
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(a) 

 

(b) 

Figure 4.4: ST vs. FP for TIF when M = 2: (a) frequency-based term TS update 

policy and (b) score-based term TS update policy (S. Alici, I. S. Altingovde, R. 

Ozcan, B. B. Cambazoglu, and O. Ulusoy, "Timestamp-based result cache 

invalidation for web search engines," Proceedings of the 34th international 

ACM SIGIR conference on Research and development in Information, ©2011 

ACM, Inc. http://dx.doi.org/10.1145/2009916.2010046. Reprinted by 

permission.) 

 

 Impact of query length. Previous works show that queries that are 

repeatedly submitted to a search engine have smaller lengths and, indeed, single-
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term queries constitute a large portion of them (e.g., see [35]). Therefore, it 

would be valuable to investigate the performance of cache invalidation 

approaches for single-term queries.  

 

 In Figure 4.5(a), we compare the performance of TIF with the frequency-

based TS update policy to TTL and CIP for single-term queries. When we 

compare Figure 4.3(a) and 4.5(a), we see that all strategies are more successful 

for single-term queries, as the absolute values of ST ratios drop. It also seems 

that, the relative gain of TIF over TTL is slightly improved for this case. For 

instance, in Figure 4.3(a), the ST ratios are around 9% and 13% for TIF and 

TTL for an FP ratio around 22%, respectively. Thus, the relative improvement 

of TIF over TTL is 31%. For the same FP ratio, Figure 4.5(a) reveals ST ratios 

of 10% to 5%, for TTL and TIF, respectively, indicating a relative improvement 

of 50%. 

 

 For TIF with the score-based TS update policy, the performance relative to 

baseline strategies is even better. In this case, TIF is not only superior to TTL, 

but it also performs very closely to the CIP strategy, as shown in Figure 4.5(b). 

As the TIF approach employed in this experiment takes into account the changes 

in top-10 postings per each term, it can more accurately predict the changes in 

the results of single-term queries. Nevertheless, the results of this experiment 

implies that for a real-life search engine where a significant amount of repeated 

queries include a single-term, the achievements of all invalidation strategies 

would be better and our TIF strategy would provide better prediction accuracy. 
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(a) 

 

(b) 

Figure 4.5: ST vs. FP for |q| = 1: (a) frequency-based and (b) score-based (S. 

Alici, I. S. Altingovde, R. Ozcan, B. B. Cambazoglu, and O. Ulusoy, 

"Timestamp-based result cache invalidation for web search engines," 

Proceedings of the 34th international ACM SIGIR conference on Research and 

development in Information, ©2011 ACM, Inc. 

http://dx.doi.org/10.1145/2009916.2010046. Reprinted by permission.) 
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(a) 

 

(b) 

Figure 4.6: ST vs. FP for query frequency > 1: (a) frequency-based and (b) 

score-based (S. Alici, I. S. Altingovde, R. Ozcan, B. B. Cambazoglu, and O. 

Ulusoy, "Timestamp-based result cache invalidation for web search engines," 

Proceedings of the 34th international ACM SIGIR conference on Research and 

development in Information, ©2011 ACM, Inc. 

http://dx.doi.org/10.1145/2009916.2010046. Reprinted by permission.) 

 

 Impact of query frequency. The simulation setting that we adapted from [8] 

involves several simplifications to be able to cope with the dynamicity and 

complexity of the overall system. One such simplification is for the query set, 
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which is assumed to be repeated every day. In fact, among 10,000 sampled 

queries used in our experiments, only 610 of them are repeated more than once 

in the original log (within the sampling period of two weeks). So, in a separate 

experiment, we investigated the performance of invalidation strategies for these 

queries that are more amenable to be repeated in the future. These are basically 

the queries with a frequency higher than one. This is important, as repeated 

queries have different characteristics than those submitted only once [35]; i.e., 

they are shorter, may include more popular terms, etc. 

 

 In Figures 4.6(a) and 4.6(b) we present the results for TIF with frequency-

based term TS update policy and with score-based term TS update policy, 

respectively. In these experiments, we see that the performance trends are 

similar to those of single-term queries for all cases. The similarity of trends 

means that most of the frequent queries may involve only a single-term and we 

found that the fraction of single-term queries in queries repeated more than once 

reaches to 43%, whereas it is only 20% for our original query set. Again, this is 

an encouraging result indicating that the performance of invalidation polices 

would be better in more realistic settings, and the gains of TIF would be even 

more emphasized. 

 

 Impact of result update frequency. Depending on the collection change 

dynamics and the content of the queries, results of some queries may change 

rapidly (e.g., for a query about an event in news) while the results of some 

others may remain the same for a much longer time. We investigate the effects 

of the result update frequency on the invalidation policies. For each query, we 

computed the number of times the query result changes within our evaluation 

period (see Figure 4.7). Then, we obtained the average of these, which is 4.32.  
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Figure 4.7: Update frequency of queries (S. Alici, I. S. Altingovde, R. Ozcan, B. 

B. Cambazoglu, and O. Ulusoy, "Timestamp-based result cache invalidation for 

web search engines," Proceedings of the 34th international ACM SIGIR 

conference on Research and development in Information, ©2011 ACM, Inc. 

http://dx.doi.org/10.1145/2009916.2010046. Reprinted by permission.) 

 

 In Figures 4.8(a) and 4.8(b), we report the performance for queries that have 

higher or lower update frequency than this average value for the frequency-

based term TS update policy for TIF, respectively. In the former case, we see 

that for all invalidation approaches, ST ratios significantly increase for 

frequently changing query results (see Figure 4.8(a)). This is an interesting 

finding, and it implies that more intelligent mechanisms should be developed for 

such queries. We also note that, while TTL gets considerably worse in this setup 

(e.g., for τ = 2, ST ratio rises from 7% to 12%, a relative increase of 70%), the 

drop in the performance of TIF is more reasonable, as TIF gets closer to CIP for 

small ST ratios, which would be more preferable in practice. Conversely, for 

query results that change less frequently, a comparison of Figures 4.8(b) and 

4.3(a) shows that all invalidation strategies perform better in this case (i.e., 

absolute ST ratios drop). 
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(a) 

 

(b) 

Figure 4.8: ST vs. FP for frequency-based term TS update policy (a) updateFreq 

> avg and (b) updateFreq < avg (S. Alici, I. S. Altingovde, R. Ozcan, B. B. 

Cambazoglu, and O. Ulusoy, "Timestamp-based result cache invalidation for 

web search engines," Proceedings of the 34th international ACM SIGIR 

conference on Research and development in Information, ©2011 ACM, Inc. 

http://dx.doi.org/10.1145/2009916.2010046. Reprinted by permission.) 
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(a) 

 

(b) 

Figure 4.9: ST vs. FP for score-based term TS update policy (a) updateFreq > 

avg and (b) updateFreq < avg (S. Alici, I. S. Altingovde, R. Ozcan, B. B. 

Cambazoglu, and O. Ulusoy, "Timestamp-based result cache invalidation for 

web search engines," Proceedings of the 34th international ACM SIGIR 

conference on Research and development in Information, ©2011 ACM, Inc. 

http://dx.doi.org/10.1145/2009916.2010046. Reprinted by permission.) 

 

 We also present the performance for queries that have higher or lower update 

frequency than the average for the score-based term TS update policy in Figures 

4.9(a) and 4.9(b), respectively. The trends of these results are very similar to 
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those of the frequency-based results. When we compare Figures 4.8 and 4.9, we 

see that for all cases the absolute ST ratios drop in the score-based results. This 

drop is better recognized for the smaller ST ratio values. In addition, TIF is 

again closer to CIP for the score-based update policy results. 

 

 Effects of the query cost. In all experiments up to this point, we report false 

positive ratio, which is basically the fraction of queries that are executed 

redundantly. However, not all such queries have the same processing costs, and 

invalidation strategies may make different choices which may result in the same 

FP ratio but different processing burden on the search cluster. We investigate 

whether this phenomenon exists by modeling the processing cost of each query 

as the sum of its terms' posting list lengths (as in [36]) and repeating our 

experiments. In Figure 4.10(a) and 4.10(b), we report FP-cost ratio vs. stale 

traffic ratio, for the frequency-based and score-based update policies for TIF, 

respectively. A comparison of Figure 4.3(a) to Figure 4.10(a) reveals that the FP 

and FP-cost ratios are positively correlated for most cases. Furthermore, the 

results for the score-based update policy again follow the same trend and are 

closer to CIP than the frequency-based update policy. Therefore, we conclude 

that integrating query costs into the decision mechanisms of the invalidation 

mechanisms may not yield significant improvements. 
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(a) 

 

(b) 

Figure 4.10: ST vs. FP-cost ratio (a) frequency-based  and (b) score-based (S. 

Alici, I. S. Altingovde, R. Ozcan, B. B. Cambazoglu, and O. Ulusoy, 

"Timestamp-based result cache invalidation for web search engines," 

Proceedings of the 34th international ACM SIGIR conference on Research and 

development in Information, ©2011 ACM, Inc. 

http://dx.doi.org/10.1145/2009916.2010046. Reprinted by permission.) 
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4.3 Cost Analysis 
 

 

 

 Since our timestamp-based invalidation framework and the CIP approach [8] 

share common underlying assumptions (i.e., most importantly, an incremental 

index update scheme) and have similar experimental setups, it is natural to 

compare their efficiency. We should note that, our aim in this study is tailoring 

an efficient and practical invalidation strategy while providing prediction 

accuracies higher than the basic TTL scheme and close to that of the CIP. In the 

previous section, we showed that the latter goal is attainable, i.e., although CIP 

is generally superior to TIF, there are certain cases (especially for low ST 

values) where the prediction accuracy of TIF gets close to CIP. In this section, 

we turn our attention to the cost of making invalidation decisions and compare 

TIF and CIP in terms of practicality and efficiency. Here, we present the 

comparison between TIF with frequency-based term TS update policy and CIP.  

 

 A major difference between the two approaches is the underlying 

architecture. Our invalidation framework is distributed, i.e., each index node 

updates document and term timestamps for its own subset of collection (offline) 

and checks staleness of results in case of a cache-hit (online). In contrast, CIP 

involves one or more centralized modules that find all matching queries in the 

cache to every modified (added or updated) document (offline), which may 

cause a bottleneck in the system. In this respect, we envision that our approach 

is more practical to fit in a real search engine. Moreover, our architecture allows 

the changes on the underlying index to affect further staleness predictions as 

soon as they are reflected. In contrast, CIP should match each document 

synopsis to the cached queries; and since it may not be possible to process all of 

the arriving synopses concurrently at a CIP module (especially if the collection 

changes are accumulated and propagated to CIP in batches), some queries might 

be served stale until all predictions are completed. 
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Table 4.2: The cost formulas for CIP and TIF (S. Alici, I. S. Altingovde, R. 

Ozcan, B. B. Cambazoglu, and O. Ulusoy, "Timestamp-based result cache 

invalidation for web search engines," Proceedings of the 34th international 

ACM SIGIR conference on Research and development in Information, ©2011 

ACM, Inc. http://dx.doi.org/10.1145/2009916.2010046. Reprinted by 

permission.) 

 

Cost Metric (per day) CIP TIF (with freq.-based TS update) 

Communication 

volume (bytes) 

No. of comparison 

operations 

C × (l(t) + l(p)) × u(d) 

 

C × ∑tϵd p(t) 

H × N × (l(q) + r(q) × l(r) + l(s)) 

 

H × (r(q) + u(q)) 

 

 To evaluate efficiency, we formalize the cost of TIF and CIP in terms of the 

communication volume they cause on the network and the number of 

comparisons they need to make a prediction. We also provide a back-of-the-

envelope calculation using some representative values of involved parameters in 

cost formulas, as described in Table 4.2. 

 

 Communication volume. The network cost of our policy involves the 

transfer of <q, R, TS(q)> triplets between the cache and index nodes for each 

cache hit. On the other hand, for CIP, the indexer should create a synopsis
7
 for 

each change on the collection (i.e., added or updated document) and propagate it 

to the CIP module. We assume that the synopses include the term string, its 

frequency in the document and the IDF value [8]. Note that the information in 

the synopses is needed to compute scores with matching queries in the CIP 

module. Moreover, the CIP module needs to transfer all cached queries and their 

results, so that it can make invalidation predictions and then forward its 

prediction for each query to the cache. In the formulas in Table 4.2, we neglect 

                                                 
7
 We assume this synopsis is created for the entire document content since it yields the best 

prediction accuracy. 
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these latter costs for simplicity and only consider the cost of transmitting 

synopses.  

 

 Number of comparisons during prediction. Another metric for comparing 

TIF and CIP is the number of in-memory operations to make a prediction. TIF 

(with the frequency-based TS update policy) simply compares query term 

timestamps and result document timestamps to the query timestamp, which is a 

negligible number of comparisons in the order of r(q)+u(q). In contrast, the CIP 

module should make expensive score computations between all document 

synopses and matching queries in the cache. This computation requires an 

inverted index on the cached queries and accessing the posting list of each term 

in a synopsis. 

 

 As a further complication, invalidating queries with deleted result documents 

would indeed require another inverted index on the cached results, i.e., an index 

mapping document ids to queries. This is not considered in cost formulas as its 

complexity would be similar to the score computation stage discussed above. 

 

 In Table 4.2, we provide the corresponding formulas for each cost metric 

discussed above. For a better comparison of TIF and CIP, we also consider a 

numerical example using the representative values provided in Table 4.3. We 

believe that the values presented in the table reflect the state-of-the-art for a 

large scale search engine. In particular, we consider a collection size of 50 

billion documents that is distributed over 5,000 index nodes. For simplicity, we 

assume that the textual part (after excluding mark-up etc.) of a document 

includes 500 unique terms and a query includes 2 unique terms, on the average. 

 

 Two key parameters in Table 4.3 are the collection change-rate and cache hit-

rate per day, as they essentially determine the cost of CIP and TIF strategies, 

respectively. The former is hard to determine and there are several works 

reporting different rates of change for different subsets obtained from the Web 
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(e.g., see [37-39]). Among these, the largest scale study of Web change has been 

conducted by Fetterly et al. [37], which reports that almost 3% of all Web 

documents change weekly. Relying on this finding, we set the daily change-rate 

of Web documents as 0.3% of the entire collection. That is, for a collection of 50 

billion documents, we assume the number of page additions, deletions and 

revisions add up to 150M per day, which seems like a reasonable -or, even 

conservative- estimation (e.g., we anticipate that even the news sites all over the 

world can be adding millions of new pages in a daily basis). For the cache-hit 

rate, most works in the literature report a value around 50% depending on the 

cache parameters (e.g., see [3]), so we also rely on this value. Thus, for a daily 

load of 100M queries, which is, again, a reasonable assumption for state-of-the-

art search engines, 50M queries result in as cache-hits. Finally, for the inverted 

index constructed over the cached query results in CIP, we assume average 

posting list length is 10; i.e., a term appears in 10 different queries, on the 

average. 

 

 When we plug the numbers of Table 4.3 into the formulas presented in Table 

4.2, we see that CIP is more efficient than TIF in terms of the communication 

volume metric. The daily bandwidth usage of CIP is 5% of that of TIF. The 

disadvantage of TIF is caused since result triplets are sent to each of the N index 

nodes. However, in practice, the updates in the collection can be accumulated 

for a short time period and reflected to the index in batch. In this case, it is not 

necessary to resend the queries that occur frequently within a short time (such as 

“wikipedia”) to the index nodes if the query timestamp is larger than the last 

batch's update time. We anticipate that this would significantly reduce the 

bandwidth usage of TIF in practice. Moreover, our calculation favors CIP as we 

assume just a single dedicated server for this purpose. In practice, there may be 

several CIP servers in the system, which makes the bandwidth usage of both 

approaches comparable. 
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Table 4.3: The parameters and representative values for a large-scale search 

engine (S. Alici, I. S. Altingovde, R. Ozcan, B. B. Cambazoglu, and O. Ulusoy, 

"Timestamp-based result cache invalidation for web search engines," 

Proceedings of the 34th international ACM SIGIR conference on Research and 

development in Information, ©2011 ACM, Inc. 

http://dx.doi.org/10.1145/2009916.2010046. Reprinted by permission.) 

 

 Parameter Value 

D no. of documents in the collection 50 billion 

N no. of index servers 5K 

Q no. of queries per day 100M 

C no. of changed documents in D per day 0.003 × D 

H no. of cache-hits per day 0.5 × Q 

u(d) no. of unique terms in document d 500 

u(q) no. of unique terms in query q 2 

l(q) length of query q (in bytes) 20 

r(q) no. of cached results for query q 10 

p(t) posting list length of a term t (in the index 

over the cache) 

10 

l(r) length of a unique result identifier (in bytes) 8 

l(p) length of a posting (in bytes) 8 

l(s) length of a timestamp (in bytes) 4 

l(t) length of a term (in bytes) 8 

 

 In terms of the number of comparison operations for invalidation predictions, 

TIF is a clear winner over CIP. In this latter case, CIP makes 1500 times more 

daily comparisons (i.e., by traversing the posting lists of the index over the 

cached queries) than TIF, which makes only a constant number of TS 

comparisons (e.g., 12 comparisons per cache hit according to Tables 4.2 and 

4.3). 
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 Finally, we note that, although we assume a daily load of 100M queries, a 

search engine may cache a much larger number of queries, maybe all queries 

seen within a month, mimicking an infinite cache as discussed before. In this 

case, TIF performance would remain the same, as it only depends on the daily 

hit rate, but not the queries stored in the cache. In contrast, CIP has to access all 

cached queries to be able to invalidate them, which may further complicate the 

synchronization with cache servers and increase the costs. 

 

 Our analysis and example calculations show that although TIF causes a 

higher bandwidth usage, its prediction mechanism is very fast. CIP (at a single 

server) has lower bandwidth requirements, but actual prediction is much slower, 

which would be a bottleneck if the change-rate of the collections is high. 

Furthermore, TIF can be applied on top of a distributed search setup without an 

additional burden, whereas CIP needs to synchronize CIP and cache servers. 

Hence, we conclude that TIF is a more practical and efficient policy than CIP, 

while providing better accuracy than TTL strategy, and a reasonably good 

accuracy in comparison to CIP. 
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Chapter 5 
 

 

Conclusion 
 

 

 

 

 

 

In this thesis, we aim to achieve a compromise between a cheap-yet-inaccurate 

time-to-live based (TTL) strategy and a recently proposed accurate-yet-

expensive strategy [8] for invalidating stale results in a web search engine's 

cache. Throughout the chapters, we first present introductory information about 

web search engines. Then, we provide detailed information about the related 

works in literature and the background information. Following that, we present 

our timestamp-based approach. Lastly, we investigate the performance of our 

approach by comparing it to the baseline strategies.  

 

 From a general point of view, we present a simple yet effective approach that 

maintains timestamps for posting lists and documents, indicating their last 

revision times. These timestamps are compared with the generation time of 

cached query results to give invalidation decisions. Through a realistic and 

detailed simulation setup, we verify that the invalidation accuracy of our 

approach is better than TTL and reasonably close to that of the sophisticated 

invalidation strategy [8]. Moreover, our approach is easier to implement and 

incurs less overhead on system resources, rendering sophisticated invalidation 

strategies less attractive. 
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 Result cache invalidation is a recent and active area of research, open to 

significant improvements. Existing works so far only concentrate on the 

accuracy of staleness decisions, ignoring other factors, such as the financial cost 

of these decisions on the search engine company or the satisfaction of users. As 

a future work, we plan to work on a unified invalidation framework that takes 

into account all these factors. As another future work, for document revisions, it 

is also possible to consider other features relevant to the underlying score 

function while determining the new TS value. For instance, when the DOM 

structure or PageRank of an existing document changes (e.g., more than a 

predefined threshold), the document TS can also be updated. We leave exploring 

alternative score functions and their impact on invalidation as a future work. 

 

 Furthermore, it is also possible to reduce the cost of the score-based update 

policy by employing a hybrid approach. For instance, it is possible to apply the 

score-based policy only for terms that appear in the most frequent queries (as 

can be obtained from previous query logs), whereas the frequency-based policy 

can be applied to other terms. Alternatively, the terms to apply the score-based 

policy can be determined based on the collection frequency or update frequency. 

These promising ideas are also left as a future work. 
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