
rpPaToH: Replicated Partitioning Tool for Hypergraphs∗

R. Oguz Selvitopi

Computer Engineering

Department

Bilkent University

Ankara, 06800 Turkey

reha@cs.bilkent.edu.tr

roguzsel@gmail.com

Ata Turk

Computer Engineering

Department

Bilkent University

Ankara, 06800 Turkey

atat@cs.bilkent.edu.tr

Cevdet Aykanat

Computer Engineering

Department

Bilkent University

Ankara, 06800 Turkey

aykanat@cs.bilkent.edu.tr

July, 2012

∗This work is partially supported by Turkish Science and Research Council under grant 109E019.

Abstract

Hypergraphs are widely used to model various problems from different domains. With respect to
modeled problem domain, the utilized hypergraph partitioning models can either be directed or undi-
rected. The quality of the partitions obtained using hypergraph partitioning can further be improved
by using vertex or net replication. The replication in directional hypergraph partitioning models is a
well investigated subject in VLSI domain supported by various algorithms and tools. However, repli-
cation in undirectional hypergraph partitioning models is an immature research area. To fill this gap,
we propose novel algorithms for performing vertex replication in undirectional hypergraph partitioning
models. Our approach is one-phase, i.e., replication is performed simultaneously with the partitioning.
This is achieved by using an extension of the FM heuristic, called replicated FM (rFM), that support
replication and unreplication operations in addition to move operations. This algorithm is used as
the main refinement heuristic in the multilevel framework. Later, rFM is utilized in a recursive bi-
partitioning framework to obtain K-way partitions. Pin selection algorithms are proposed to compute
the final cutsize values. These algorithms and methods are realized in a tool called rpPaToH that
performs vertex replication in undirected hypergraphs. This technical report describes the replicated
hypergraph partitioning in short and gives detailed information about how to use the rpPaToH tool.

Keywords : replication, hypergraph, undirected, hypergraph partitioning, replicated hypergraph parti-
tioning, iterative improvement heuristic, recursive bipartitioning

2

Contents

1 Introduction 1

2 Replicated Hypergraph Partitioning for Undirected Hypergraphs 2

2.1 Replicated FM (rFM) Heuristic . 3
2.2 Recursive Bipartitioning (RB) . 3

2.2.1 Net Removal and Splitting . 4
2.2.2 Replication Amount Distribution . 4

2.3 Pin Selection . 4

3 Stand-Alone Program 5

3.1 Input and Output File Format . 7

I

1 Introduction

Replication in directional hypergraph partitioning (HP) models (note that this report assumes a back-
ground for hypergraph partitioning, see [2] for definitions and background on this subject) is a well-studied
problem in VLSI domain [4, 6, 8, 9, 10]. The purpose of replication in this domain is to reduce the in-
terconnection cost of the partitioned circuits and the pin counts by replicating gates, which are modeled
as vertices. There are various approaches for replication in directional HP models such as one-phase
iterative-improvement-based heuristics [8, 9] that generally extend the basic FM heuristic [5] or the
two-phase approaches that utilize linear programming [6] or flow-network formulations [10].

The replication in undirectional HP models in rather an immature research area and greatly differs
from the replication in directional HP models [11]. There are two basic differences between replication in
directional and undirectional HP models. First, vertex replication in directional HP models may bring
internal nets to the cut and can increase the cutsize of a partition. Second, whenever a vertex is replicated
in directional HP models, this replication may require further vertex/net replication which is due to the
input-output relation that is inherent in the nets of the directed hypergraphs. These two cases are specific
to directed hypergraphs and are not valid for undirected hypergraphs, thus the methods proposed for
directional HP models are not directly applicable for undirectional HP models. Fig. 1 and Fig. 2 illustrate
replication in directed and undirected hypergraphs, respectively. The replication of v3 in Fig. 1 increases
cutsize and requires further net replication whereas this is not the case for the replication of v3 in Fig. 2.

v4

VB

VA

n1 n2

n3

v6 v7

v2

v1 v3 v5

(a)

v6 v7

n
′
3

v
′
3

VA

VB

v4v2

n3

n1 n2

v1 v3 v5

(b)

Figure 1: Replication in a directed hypergraph: (a) Initial bipartition, (b) after replicating v3 .

In hypergraph partitioning the purpose is to obtain a K -way partition (Π) of a given hypergraph
H=(V ,N) where each part Vk ∈ Π satisfies the balance constraint:

W (Vk) ≤ (1 + ǫ)Wavg for k = 1, . . . ,K, (1)

where Wavg =W (V)/K , ǫ is predetermined maximum imbalance ratio, and W is the weight function.
The objective is to minimize the cutsize, which can be either the cut-net metric,

cutsize(Π) =
∑

nj∈NE

c(nj), (2)

1

v2 v4

n1 n2

VA

VB

n3

v6 v7

v1 v3 v5

(a)

v
′
3

n3

VA

VB

v7v6

v3 v5

v2 v4

n1 n2

v1

(b)

Figure 2: Replication in an undirected hypergraph: (a) Initial bipartition, (b) after replicating v3 .

or the connectivity metric,
cutsize(Π) =

∑

nj∈NE

(λ(nj)− 1)c(nj). (3)

Here, nj denotes the net j and c(nj) denotes its cost. Only the external nets are considered (NE) in
both cutsize metrics. In the connectivity metric in Equation 3, each net nj ’s connectivity set must be
used in cutsize computation, which is denoted as λ(nj).

In the replicated HP problem, compared to the HP problem, there is one more parameter, the replica-
tion ratio, ρ , which is a coefficient of the total vertex weight. Although both problems try to optimize the
same objective, replicated HP problem has one more constraint regarding replication ratio. In addition,
the balance constraint must be updated to include replication. Hence, given an undirected hypergraph
H=(V ,N), an imbalance ratio ǫ , and a replication ratio ρ , we are to find a K -way replicated partition
(possibly overlapping) satisfying the balance constraint:

Wmax ≤ (1 + ǫ)Wavg, where Wmax = max
1≤k≤K

W (Vk) and Wavg = (1 + ρ)W (V)/K, (4)

and the replication constraint:
K∑

k=1

W (Vk) ≤ (1 + ρ)W (V). (5)

Note that W (V) denotes the total vertex weight without replication while W (Vk) for each part stands
for the part weights with replication included.

We fill the necessity for replication in undirected hypergraphs by proposing a replicated hypergraph
partitioning tool rpPaToH [11]. rpPaToH is an extension to the successful hypergraph partitioning tool
PaToH [2] and performs vertex replication during the partitioning process by using a move, replication
and unreplication capable iterative improvement heuristic based on the basic FM heuristic.

2 Replicated Hypergraph Partitioning for Undirected Hypergraphs

rpPaToH utilizes various algorithms and methodologies to achieve partitioning and replication simulta-
neously. In the core of these algorithms and methodologies is the replicated FM heuristic (rFM) that

2

basically performs vertex replication. rFM is mainly utilized as the refinement algorithm in the uncoars-
ening phase of the multilevel framework. In this way, we are able to perform partitioning and replication
at the same time. To obtain K -way replicated partitions, rFM is utilized in a recursive bipartitioning
framework supported by rpPaToH. To this end, rpPaToH utilizes new net splitting techniques to supoort
vertex replication for both cutsize metrics given in Equations 2 and 3. Furthermore, to compute the final
cutsize or because of the requirements of the modeled application, it might be necessary to determine
which instances of the replicated vertices (replicas) will be used for the nets of the given hypergraph.
For this purpose, rpPaToH employs a basic set-cover heuristic. To utilize the given replication amount
efficiently, rpPaToH supports two replication distribution alternatives.

2.1 Replicated FM (rFM) Heuristic

Replicated FM heuristic is an extension to the basic FM heuristic [5] that runs on two-way partitions
(bipartitions) and is capable of move, replication and unreplication of vertices. To support replication
and unreplication of vertices, it defines a new state for vertices to indicate that a vertex can also be
replicated, besides that they can be in one of two parts. rFM supports these three operations (move,
replication and unreplication) by defining three types of gains: move, replication and unreplication gains.
A replicated vertex can only have unreplication gains whereas a non-replicated vertex can have move and
replication gains. Figs. 3 and 4 display examples of these operations.

v2

v3

v1

v4
n3

n2

n1

VA VB

(a)

ReplicationMove

n2

v4
n3

v2

VA VB

v1 v3

n1

(b)

v1

v4

n3

n2

n1

v3

v2

v1

VA VB

(c)

Figure 3: Move and replication of v1 .

v1

v5

v4
n4

v3 n3

n1

n2

VA VB

v2

(a)

Unreplication Unreplication
from VA

v5

v2 v4

v3
n3

n2

n4

n1

v1 v1

from VB

VA VB

(b)

v2

v3

v1

v5
n3

n2

n1

VA VB

v4
n4

(c)

Figure 4: Unreplication of instances of v1 .

rFM is used in the uncoarsening phase of the multilevel framework to be able to perform partitioning
and replication simultaneously. The coarsening and the initial partitioning phases are used as is (i.e.,
they are not altered to adopt the replicated vertices). rFM is linear in complexity (see [11] for a detailed
analysis).

An extension to rFM heuristic is the gradient methodology in which the replication is used in a more
intelligent manner. In this method, vertex replication is introduced in later stages of the rFM heuristic,
where the improvement achieved by only move operations drops below a pre-determined threshold. After
this threshold, rFM is allowed to replicate vertices.

2.2 Recursive Bipartitioning (RB)

There are two basic methods to obtain K -way partitions for both graphs and hypergraphs. One of them
is direct K -way partitioning [1, 7], and the other one, which is the most widely used, is the recursive

3

bipartitioning [3]. We utilized RB in rpPaToH. In the RB scheme, firstly a bipartition of the initial
hypergraph is obtained, and then this bipartition is decoded to construct two sub-hypergraphs using the
cut-net removal and cut-net splitting techniques (Section 2.2.1). Then, these two sub-hypergraphs are
further bipartitioned in a recursive manner till the desired number of parts is obtained.

2.2.1 Net Removal and Splitting

There are two basic cutsize computation metrics in hypergraph partitioning, the cut-net (Equation 2) and
the connectivity (Equation 3) metric. These two equations require different net removal and splitting
techniques to correctly capture the corresponding cost metric as mentioned in [2]. In rpPaToH, these
techniques are enhanced to support the replicated vertices. Like in PaToH, the cut-net removal technique
in rpPaToH requires removal of the nets in the cut. However, there is one exception in rpPaToH which
occurs when a net only connects nothing but replicated vertices. In such cases, this net is not in the
cut and thus can be considered internal to any one of the parts, which is chosen to be the first part in
rpPaToH.

For the cut-net splitting technique, we need to add the pins to replicas of the replicated vertices
of the split nets in order to perform move and/or replication operations on these vertices in further
bipartitionings. Likewise in the cut-net removal technique, the same exception occurs for the cut-net
splitting technique which is handled in the same way.

2.2.2 Replication Amount Distribution

RB scheme consists of multiple bipartitionings. The given replication amount can be distributed in various
ways to these bipartitionings. In rpPaToH, two alternative replication amount distribution schemes are
considered. The first of them is level-wise replication scheme where the given replication amount is
distributed evenly among the levels of the recursion tree of the RB scheme. The other one is bisection-
wise replication scheme where the given replication amount is distributed evenly among the bipartitionings
performed by the RB scheme. Note that rpPaToH may not be able to utilize all of the replication amount
it is provided. The used replication amount (a percentage of the given replication amount) is given in
the output statistics of the program.

V1

vs

vr

V2

vr

vn

vs

V3

vr vs

nj

(a)

V1

vs

vr

V2

vr

vn

vs

V3

vr vs

nj

(b)

V1

vs

vr

V2

vr

vn

vs

V3

vr vs

nj

(c)

Figure 5: Pin selection alternatives for net nj : (a) Initial partition before selection, (b) after the first
selection alternative, λ(nj) = 3, and (c) after the second selection alternative, λ(nj) = 1.

2.3 Pin Selection

After obtaining a K -way replicated partition, for each net that connects at least one replicated vertex, it
is necessary to decide which instance of the replicated vertices will be used by the nets that connect them.
This is required for two basic reasons. First, the final cutsize computation requires to make a decision
for selecting replicas for the nets that connect replicated vertices. Second, the modeled application may

4

require nets to make a choice about which parts the replicas will be used. This is done by using a
set-cover-based heuristic (see [11] for details). Fig. 5 shows different pin selection alternatives for net nj

which connects two replicated vertices (vr and vs) and one non-replicated vertex (vn).

3 Stand-Alone Program

rpPaToH is distributed as a stand-alone executable that accepts its parameters from command-line. It
supports most of the parameters supported by PaToH besides the replication related parameters. Note
that rpPaToH currently supports the replicated partitioning process for only the number of parts that are
power of 2! rpPaToH can be run as follows:

> rppatoh <hypergraph-file> <number-of-parts> RR=<repl_ratio>

[[parameter1] [parameter2]]

There are three mandatory arguments: the hypergraph file, the number of parts, and the replication
ratio. The optional parameters must be provided beginning with two letter abbreviation, followed by an
equal sign and the desired value of that parameter. See PaToH manual [3] for more information on these
parameters.

The replication related parameters are as follows:

• RR: Replication Ratio. This value is multiplied by the total vertex weight to get the total replica-
tion amount. Note that this is not the percentage of the total vertex weight. Thus, for example if
this parameter is given a value of 0.5 (RR=0.5), this means the replication amount will be 50% of
the total vertex weight.

• RD: Replication Distribution method. There are two alternatives for utilizing the given replication
amount: level-wise and bisection-wise. Thus, this parameter can get two values: “level” and
“bisection”. In most cases, level-wise replication obtains better results and thus it is the default
value.

• RT: Replication Type. This parameter chooses the replicated refinement heuristic to be used. It
can be the basic rFM heuristic (indicated via “basic” value) or the gradient rFM heuristic (indicated
via “gradient” value). In most cases, gradient rFM performs better and it is set to be the default
replicated refinement heuristic.

• WS: Write the Scheduling information to file or not. As mentioned in Section 2.3, replicated
vertices bring the problem of replica selection for nets. This parameter is for writing the pin selection
information using the proposed set-cover-based heuristic to the file. Note that different applications
may require different pin selection strategies to best utilize the given replicated partitioning scheme.
Thus, this information can be seen as a recommendation of rpPaToH. Also note that rpPaToH’s final
cutsize computation relies on this heuristic. This is a boolean parameter (0/1) and its default value
is 1.

> rppatoh ken-11.u 4 RR=0.25

+++

+++ PaToH v3.0 (c) Nov 1999, by Umit V. Catalyurek +++

+++

###

rpPaToH v1.0 January 2011, by R. Oguz Selvitopi

###

5

Table 1: rpPaToH parameter information

Parameter Abbreviation Type Value

Replication-related Parameters
repl-ratio RR float must be provided (> 0.0)
repl-dist RD string “level” (default), “bisection”
repl-type RT string “basic”, “gradient” (default)
write-scheduling WS int 0, 1 (default)

Various parameters heavily utilized in the replication process
write-info WI int 0,1
ref-passcnt RP int [1-]
ref-maxnegmove RN int [5-]
imbal IB float [0.00-]
init-imbal II float [0.00-]
final-imbal FI float [0.00-]
fast-initbal-mult FB float [0.5-2.0]

Other parameters (supported by rpPaToH and also found in PaToH)
UM, PQ, DP, VO, MT, FL, FM, CT, CK, ID, NM, FS, NT, IT,

CP, CM, PA, IR, IA, TB, SD, A<p>, OD, UW
Excluded parameters (found in PaToH but not in rpPaToH)

BO, NI, BV, SV, NR, TR, DI, DF, RA, RL, RF, LC, HC, HM, HD, 2D, FX, SP, JN

**

Hypergraph : ken-11.u #Cells : 14694 #Nets : 14694 #Pins : 82454

**

4-way partitioning results of rpPaToH:

‘Con - 1’ Cost: 2588

Replication usage: 20407 / 20613 (99.0 %)

Part Weights :

Min = 24366 (5.2 %)

Max = 26793 (4.2 %)

--

I/O : 0.016

I.Perm/Cons.H: 0.005 (1.4%)

Splitting : 0.004 (1.1%)

Coarsening : 0.241 (61.5%)

Partitioning : 0.038 (9.8%)

Uncoarsening : 0.074 (18.8%)

Finalizing : 0.005 (1.3%)

Total : 0.392 sec.

--

In the example above, rpPaToH is run to partition and replicate the hypergraph file “ken-11.u” to
obtain an 4-way replicated partition with 25% replication amount. This given replication ratio (RR)
parameter is multiplied with the total vertex weight to obtain the replication amount (so if the total
vertex weight is 1000, the replication amount will be 1000*0.25=400 if RR=0.25). The output gives
very basic information about the replicated partitioning process and the obtained replicated partition.
According to the output, the cutsize is 2588 (with the connectivity metric). As mentioned, rpPaToH
may not utilize all of the given replication amount. For the given replication amount of 20613, rpPaToH

6

utilized 99.0% of this amount. Next line gives information about the load imbalance for minimum and
maximum weighted parts, which are 5.2% and 4.2%. Then, somewhat detailed timing information is
given. It took 0.392 seconds for rpPaToH to obtain a 4-way replicated partition of the given hypergraph
file “ken-11.u”.

A few more examples that exploit the replication related parameters are given below:

> rppatoh ken-11.u 32 RR=0.25 RT=gradient RD=bisection WI=1 WS=0

> rppatoh ken-11.u 1024 RR=1.75 RT=basic RD=level WS=1 RP=3 IB=0.20 MT=11 PA=3

Table 1 gives information about the replication related parameters, their default values, some PaToH

parameters that are also heavily utilized in the replication process, the parameters supported by rpPaToH,
and the excluded PaToH parameters. For PaToH parameters that are also supported by rpPaToH, the user
is urged to see Section 5 of PaToH manual [3] as they can have a great impact on the quality of the
replicated partitions obtained by rpPaToH.

v1

v2

v5

v6

v8

v7

v6

v4

v2

v1

v3

v6

v7

v8

v1

v3

v5

v9

N = {n1, n2, n3, n4, n5}

V = {v1, v2, v3, v4, v5, v6, v7, v8, v9}

n1 = {v1, v5, v8}
n2 = {v1, v3, v4, v6}
n3 = {v1, v2, v3, v6}
n4 = {v2, v3, v6, v7}
n5 = {v5, v7, v8, v9}

V0 V1

V3V2

n1

n3

n4

n5

n2

Figure 6: A 4-way replicated partitioned hypergraph with nine vertices and five nets.

3.1 Input and Output File Format

As input file format, rpPaToH uses the same format as PaToH (see [3] for PaToH manual). However,
rpPaToH’s output file format and the number of output files it produces is different from those of PaToH’s.
Fig. 6 shows an example of a hypergraph that replicated and partitioned into four parts. The Fig. 7(a)
is the file for the input hypergraph.

rpPaToH produces two output files:

• Partitioning Information: This file indicates the replicated partitioning information about the
vertices and which parts they belong to (this file is produced by default, it can be turned off via
setting WI=0). If the original hypergraph file name is “hygr-file”, then the file that includes the

7

9 5 19 1
1 5 8
1 3 4 6
1 2 3 6
2 3 6 7
5 7 8 9

(a)

0 1 3
0 2
1 3
2
0 3
0 1 2
1 2
1 2
3

(b)

1 0 5 0 8 1
1 1 3 1 4 2 6 1
1 3 2 0 3 3 6 0
2 2 3 1 6 2 7 1
5 3 7 2 8 2 9 3

(c)

Figure 7: (a) The input hypergraph file corresponding to the hypergraph illustrated in Fig. 6, (b)
Output part information of the replicated partitioned hypergraph in Fig. 6, (c) Output scheduling (pin

selection) information of the replicated partitioned hypergraph in Fig. 6.

replicated partitioning information becomes “hygr-file.part.<K>” where K is the number of parts.
Each line in this file indicates a vertex and lines are numbered with respect to vertices (if there
are n vertices, there will be n lines). Each line consists of part numbers separated by a single
space. Fig. 7(b) shows the replicated partitioning information of the hypergraph given in Fig. 6.
For example, line 6 corresponds to v6 , whose entries are “0 1 2”. It means v6 is replicated to parts
0, 1, and 2, as seen in Fig. 6.

• Scheduling Information: This file indicates the pin selection information for the nets about which
replicas of the replicated vertices they use (this file is produced by default, it can be turned off via
setting WS=0). If the original hypergraph file name is “hygr-file”, then the file that includes the
replicated partitioning information becomes “hygr-file.schedule.<K>” where K is the number of
parts. Each line of this file corresponds to a net and a line’s contents are composed of the vertices
connected by the corresponding net and their selected part information. This information is given
in tuples, i.e., it consists of < vi,K > pairs where K is the part the vi is assigned to. Fig. 7(c)
shows the scheduling information of the replicated partitioned hypergraph given in Fig. 6. For
example, line 5 corresponds to n5 , whose entries are “5 3 7 2 8 2 9 3”. It means n5 uses v5 from
part 3, v7 from part 2, v8 from part 2, and v9 from part 3, as seen in Fig. 6.

8

References

[1] Cevdet Aykanat, B. Barla Cambazoglu, and Bora Uçar. Multi-level direct k-way hypergraph parti-
tioning with multiple constraints and fixed vertices. J. Parallel Distrib. Comput., 68:609–625, May
2008.

[2] Umit Catalyurek and Cevdet Aykanat. Hypergraph-partitioning-based decomposition for parallel
sparse-matrix vector multiplication. IEEE Trans. Parallel Distrib. Syst., 10:673–693, July 1999.

[3] Ümit V. Çatalyürek and Cevdet Aykanat. Patoh: partitioning tool for hypergraphs. Technical
report, Department of Computer Engineering, Bilkent University, 1999.

[4] M. Enos, S. Hauck, and M. Sarrafzadeh. Evaluation and optimization of replication algorithms for
logic bipartitioning. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 18(9):1237 –1248, September 1999.

[5] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network partitions. In
Proceedings of the 19th Design Automation Conference, DAC ’82, pages 175–181, Piscataway, NJ,
USA, 1982. IEEE Press.

[6] James Hwang and Abbas El Gamal. Optimal replication for min-cut partitioning. In Proceedings of
the 1992 IEEE/ACM international conference on Computer-aided design, ICCAD ’92, pages 432–
435, Los Alamitos, CA, USA, 1992. IEEE Computer Society Press.

[7] George Karypis and Vipin Kumar. Multilevel k-way hypergraph partitioning. In Proceedings of the
36th annual ACM/IEEE Design Automation Conference, DAC ’99, pages 343–348, New York, NY,
USA, 1999. ACM.

[8] C. Kring and A.R. Newton. A cell-replicating approach to minicut-based circuit partitioning. In
Computer-Aided Design, 1991. ICCAD-91. Digest of Technical Papers., 1991 IEEE International
Conference on, pages 2 –5, November 1991.

[9] Roman Kužnar, Franc Brglez, and Baldomir Zajc. Multi-way netlist partitioning into heterogeneous
FPGAs and minimization of total device cost and interconnect. In Proceedings of the 31st annual
Design Automation Conference, DAC ’94, pages 238–243, New York, NY, USA, 1994. ACM.

[10] Lung-Tien Liu, Ming-Ter Kuo, Chung-Kuan Cheng, and T.C. Hu. A replication cut for two-way
partitioning. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
14(5):623 –630, May 1995.

[11] R. Oguz Selvitopi, Ata Turk, and Cevdet Aykanat. Replicated partitioning for undirected hyper-
graphs. J. Parallel Distrib. Comput., 72(4):547–563, April 2012.

9

