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Abstract

Infinite level-dependent quasi-birth-and-death (LDQBD) processes can be
used to model Markovian systems with countably infinite multidimensional
state spaces. Recently it has been shown that sums of Kronecker products
can be used to represent the nonzero blocks of the transition rate matrix
underlying an LDQBD process for models from stochastic chemical kinet-
ics. This paper extends the form of the transition rates used recently so
that a larger class of models including those of call centers can be analyzed
for their steady-state. The challenge in the matrix analytic solution then
is to compute conditional expected sojourn time matrices of the LDQBD
model under low memory and time requirements after truncating its count-
ably infinite state space judiciously. Results of numerical experiments are
presented using a Kronecker-based matrix-analytic solution on models with
two or more countably infinite dimensions and rules of thumb regarding bet-
ter implementations are derived. In doing this, a more recent approach that
reduces memory requirements further by enabling the computation of steady-
state expectations without having to obtain the steady-state distribution is
also considered.

Keywords:

Email addresses: hendrik.baumann@tu-clausthal.de (H. Baumann),
tugrul@cs.bilkent.edu.tr (T. Dayar), morhan@cs.bilkent.edu.tr (M. C. Orhan),
werner.sandmann@uni-bamberg.de (W. Sandmann)

1Corresponding author. Tel: (+90) (312) 290–1981. Fax: (+90) (312) 266–4047.

1



Markov chain, level-dependent QBD process, Kronecker product, matrix
analytic method, steady-state expectation, call center, stochastic chemical
kinetics

1. Introduction

Continuous-time infinite levent-dependent quasi-birth-and-death
(LDQBD) processes [1, 2, 3] are continuous-time Markov chain (CTMC)
processes that have block tridiagonal transition rate matrices of the form

Q =















Q0,0 Q0,1

Q1,0 Q1,1 Q1,2

. . .
. . .

. . .

Ql,l−1 Ql,l Ql,l+1

. . .
. . .

. . .















when their states are appropriately ordered. This study is about their nu-
merical steady-state analyses, and hereafter, we shall be omitting the terms
continuous-time and infinite in designating the LDQBD models we consider
since they are all continuous-time and infinite.

In the following, all vectors are column vectors as in linear algebra, except
state vectors, consistent with the conventional definition of state probability
vectors as row vectors. e represents a column vector of 1’s. ei represents
the ith column of the identity matrix. diag(a) denotes a diagonal matrix
with the entries of vector a along its diagonal. The lengths of the vectors are
determined by the context in which they are used, T denotes transposition, ×
when used with sets denotes Cartesian product, ⊗ denotes Kronecker product
[4], 1 denotes the indicator function, Z and R stand respectively for the sets
of integers and real numbers, whereas Z+ and R≥0 denote their nonnegative
subsets.

Now, let S denote the irreducible state space of the LDQBD process
under consideration, the state of the LDQBD process at time t be given
by X(t) = (X1(t), . . . , Xn(t)) ∈ S, and {X(t) ∈ S, t ≥ 0} be the associ-
ated n-dimensional CTMC process. Furthermore, let the probability of the
LDQBD process being in state x = (x1, . . . , xn) ∈ S at time t be expressed
as Pr{X(t) = x} = Pr{X1(t) = x1, . . . , Xn(t) = xn}.

Levels define a partition of S; that is, S =
⋃∞

l=0 S
(l) and S(l) ∩ S(m) = ∅

for l 6= m and l, m ∈ Z+, where S(l) is the subset of states corresponding to
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level l. Therefore, the nonzero blocks at level l satisfy

Ql,l−1 ∈ R
|S(l)|×|S(l−1)|
≥0 , Ql,l ∈ R

|S(l)|×|S(l)|, Ql,l+1 ∈ R
|S(l)|×|S(l+1)|
≥0

with the exception that there are only two boundary blocks at level 0.
We consider ergodic LDQBD processes and investigate the numerical

computation [5, 6] of their steady-state probability measures. The steady-
state probability distribution row vector of an ergodic LDQBD process is
defined as π = limt→∞Pr{X(t)}, and it satisfies

πQ = 0,
∑

x∈S

π(x) = 1.

In particular, the steady-state vector of an ergodic LDQBD process can be
accordingly partitioned and expressed as

π = (π(0), π(1), . . .),

and its subvector at level (l + 1) can be obtained from the matrix analytic
equation

π(l+1) = π(l)Rl

as shown in [1], once the conditional expected sojourn time matrix at level l

Rl = Ql,l+1(−Ql+1,l+1 −Rl+1Ql+2,l+1)
−1

is determined for l ∈ Z+. Note that π(l) ∈ R
1×|S(l)|
≥0 , π(l+1) ∈ R

1×|S(l+1)|
≥0 , and

Rl ∈ R
|S(l)|×|S(l+1)|
≥0 . LDQBD processes are a generalization of QBD processes

originally proposed in [7, 8] and improved over the years [2, 9] with two
quadratically convergent algorithms for their steady-state analyses. These
algorithms are logarithmic reduction [10] and cyclic reduction [11]. In the
level dependent context, the situation is more complicated since the condi-
tional expected sojourn time matrix is not constant and changes from level
to level.

In many cases, the ergodicity of an LDQBD process can be established by
relatively easy to check conditions on the 1-dimensional CTMC defined over
its levels [12]. For computational purposes however, it is preferable to con-
sider Lyapunov function methods as discussed in [13, 14], so that lower and
higher level numbers (called Low and High, respectively) can be computed
as in [15, 16, 17] between which a specified percentage of the steady-state
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probability mass lies when the LDQBD is ergodic. It is the latter approach
we follow here. In this way, steady-state measures can be computed ex-
actly up to machine precision by choosing (High−Low) sufficiently large as
discussed in [17].

Systems of stochastic chemical kinetics [18, 19, 20, 21] and queueing net-
works [2, 5, 22, 23, 24] are two classes of problems that can be modeled
as LDQBD processes using the described n-dimensional state representation
with some countably infinite variables. For the former class of problems,
countably infinite variables represent numbers of molecules of each chemical
species existing in the system. The remaining variables, if any, are finite. Up
until recently, stochastic simulation [25, 26] seemed to be the only viable ap-
proach that would yield relatively accurate results for this class of problems.
However, it has been shown in [17] that systems of stochastic chemical kinet-
ics can be modeled as LDQBD processes with the level number determined
by the maximum value among the countably infinite variables. Inspired by
hierarchical Markovian models (HMMs) introduced in [22], the result in [17]
has been taken one step further in [16] by providing a Kronecker-based repre-
sentation for the nonzero blocks Ql,l−1, Ql,l, Ql,l+1 at each level to cope with
the multidimensionality of the product state space of variables and its reach-
ability. As suggested in [27] and as observed to be the best overall choice in
[17], again RHigh = 0 is employed to initiate the computational procedure
associated with the matrices of conditional expected sojourn times. Therein,
a comparative study between stochastic simulation and the matrix analytic
approach has also been undertaken. Naturally, the matrix analytic approach
yields an accuracy measure obtained by computing the residual norm of the
solution which is not possible with simulation.

It is the latter class of problems on which we concentrate in this paper
by considering various queueing network models of call centers with multiple
types of customers. In this context, the countably infinite variables represent
occupancies of queues with unbounded waiting space and finite variables
represent occupancies of server pools. The interplay between finite variables
and countably infinite variables in these models is more intricate than that
of models of stochastic chemical kinetics systems. This requires us to extend
the form of the transition rates used in [16]. To that end, we resort to
generalized functional transitions of stochastic automata networks (SANs)
[28, 29, 30], and let the form of the dependency of the transition rate on
the values of the variables be more general. As we shall see, the use of such
transition rates does not pose a computational efficiency problem, since a
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direct method in which each nonzero block is processed once is employed
in the matrix analytic solution. In other words, each function is evaluated
once for each state in the truncated state space

⋃High

l=Low S(l) during analysis.
An implication of this extension is that not only do we need to compute
partitions of state spaces of countably infinite variables as in [16], but now
we also need to compute subpartitions of these partitions and partitions of
state spaces of finite variables to obtain a Kronecker-based representation for
the nonzero blocks of Q.

We also consider the more recent approach in [31] that reduces memory
requirements further by enabling the computation of steady-state expecta-
tions without having to obtain the steady-state distribution. The approach
is inspired by a Horner-like computational scheme in which only the condi-
tional expected sojourn time matrix at level l needs to be allocated in step
l; otherwise, there are no time savings. In other words, not all Rl matri-
ces need to be stored simultaneously. With this memory efficient approach,
a tandem queueing network of two single server queues with infinite wait-
ing spaces and customers departing from the first queue leaving the system
with a probability depending on the length of the second queue is analyzed.
The steady-state measures computed are those that are based on average
costs or rewards, moments, and cumulants. However, there is one drawback;
it is the loss of the accuracy measure because the steady-state distribution
is no longer available. Ongoing work is concerned with obtaining accuracy
measures for this approach as well, but they are not yet available.

Taking into account the experience gained from the Matlab implementa-
tion used in [16], we provide an implementation in C based on the Nsolve
package of the Abstract Petri Net Notation (APNN) Toolbox [32]. Our ob-
jective in doing so is to have more control over memory usage and timings.
Since the number of states within each level increases with increasing level
number in the models we consider, we conduct numerical experiments with
timing results to see how and when memory should be allocated and deallo-
cated, and whether the conditional sojourn time matrices should be stored as
full or sparse matrices. With the existing continuous improvement in com-
puter technology, we believe we have reason to invest in numerical analysis
approaches for multidimensional Markovian models as those discussed here
to obtain more accurate results at a finer level of detail.

In the next section, we extend the specification for the class of models con-
sidered to build a Kronecker representation of the nonzero blocks in Q. In the
third section, we provide models of call centers to show how the specification
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is put to use in practice and we recall the models of systems of stochastic
chemical kinetics. In the fourth section, we discuss implementation issues
including the choice of Lyapunov functions and provide results regarding
memory usage for different implementations. In the fifth section, we report
on the results of numerical experiments with the matrix analytic approach
on the models introduced earlier to identify better implementations. In the
sixth section, we conclude.

2. Kronecker representation

We consider Markovian systems with interacting subsystems. The state
space S is irreducible, countably infinite, and n-dimensional with nI count-
ably infinite state variables and nF finite state variables, where nI ≥ 2,
nF ≥ 0, and n = nI + nF . Hereafter, we shall be omitting the word ‘state’
and referring to state variables as variables. The state space of variable xh

is denoted by Sh and Sh ⊆ Z+ for h = 1, . . . , n. Without loss of gener-
ality, we assume that the first nI indices correspond to countably infinite
variables. Hence, Sh is countably infinite for h = 1, . . . , nI and finite for
h = nI + 1, . . . , n. Clearly, not all states in the product state space ×n

h=1Sh

are necessarily reachable. However, each state in S is reachable from every
other state in S due to our assumption of irreducibility. In many cases, S is
a proper subset of the product state space (i.e., S ⊂ ×n

h=1Sh). Indeed, it is
as such in the models of call centers introduced in the next section.

The n-dimensional Markovian models we consider are defined by a set of
K transition classes over S and x = (x1, . . . , xn) ∈ Z

1×n
+ denotes a state in S.

We relax some of the assumptions made in [16] so as to be able to analyze a
larger class of models. Observe in particular that we do not require product
form transition rates here (cf. Definition 1 in [16]).

Definition 1. The kth transition class is a pair (αk, v
(k)), where αk ∈ R≥0

and v(k) ∈ Z
1×n are respectively its transition rate and state change vector

for k = 1, . . . , K. The first element of the pair, αk(x), is a function of state
x ∈ S and specifies the transition rate from state x to state (x + v(k)) ∈ S.
The second element of the pair, v(k), specifies the successor state of the
transition, where v

(k)
h denotes the value change in variable xh ∈ Sh due to

the kth transition class.

The following definition associates transition matrices with each transi-
tion class in Definition 1. Being motivated by generalized functional transi-
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tions in SANs [28, 29, 30], we let the form of the dependency of the transition
rate on the values of the variables be more general. In order to achieve this,
the local state dependent transition rates are moved out of the transition
matrices and replaced with 1’s in their respective places (cf. Definition 2 in
[16]). As we shall see, the use of such transition rates, which are functions of
(global) state x ∈ S rather than product of functions of local states xh ∈ Sh

for h = 1, ..., n, does not pose a computational efficiency problem in this
context, since a direct method in which each nonzero block is processed once
is employed in the matrix analytic solution. In other words, each function is
evaluated once for each global state in the truncated state space

⋃High
l=Low S(l)

during analysis. Note that here we do not differentiate between countably
infinite variables and finite variables in defining the transition matrices (cf.
Definition 2 in [16]).

Definition 2. The transition matrix of variable xh ∈ Sh for the kth transi-
tion class, denoted by Z(k,h) ∈ R

|Sh|×|Sh|
≥0 , for h = 1, . . . , n and k = 1, . . . , K

is given entrywise as

Z(k,h)(xh, yh) =

{

1 if yh = xh + v
(k)
h

0 otherwise
for xh, yh ∈ Sh.

Our goal is to obtain a Kronecker representation for the nonzero blocks
of Q from the transition rates and the transition matrices of Definitions 1
and 2, respectively. To this end, we use the same level definition in [16] since
the maximum valued countably infinite variable xh ∈ Sh for h = 1, . . . , nI in
any state x ∈ S changes by at most one through any transition due to the
particular form of the state change vectors v(k) in the transition classes of
models we consider.

Definition 3. The subset of states corresponding to level l ∈ Z+ is given by

S(l) = {x ∈ S | l = max(x1, . . . , xnI
)},

so that S =
⋃∞

l=0 S
(l).

Note that the set operation underlying the Kronecker product is the
Cartesian product, and therefore the subset of states at each level needs to
be expressed as a union of Cartesian products of state space partitions of the
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countably infinite variables. Hence, level definitions, such as l =
∑nI

h=1 xh,
which have arithmetic dependencies among countably infinite variables seem
to be less suitable in trying to come up with a Kronecker representation.

For each level l, the values a variable can take depend on the values of
other variables. Therefore, as in [16] first we define partitions of state spaces
of countably infinite variables where there is no such dependency in a way
similar to HMMs in [22]. Then we introduce a partition of S(l) in Definition
3 based on the partitions of state spaces of countably infinite variables.

Definition 4. Let

S(l,u)
h =







{xh | 0 ≤ xh ≤ l − 1} if h < u
{l} if h = u
{xh | 0 ≤ xh ≤ l} if h > u

for h, u = 1, . . . , nI ,

and S
(l,u)
h = Sh for h = nI + 1, . . . , n, and u = 1, . . . , nI . Then the uth

partition of S(l), denoted by S(l,u), for u = 1, . . . , nI satisfies

S(l,u) = {x ∈ S(l) | (x1, . . . , xn) ∈ ×n
h=1S

(l,u)
h },

so that S(l) =
⋃nI

u=1 S
(l,u). Without loss of generality, the partitions S(l,u) are

assumed to be ordered within S(l) according to increasing partition index, u.

Note that partition S(l,u) consists only of reachable states, and is a subset
of the Cartesian product of state space partitions of all variables since certain
values of finite variables may yield unreachable states (cf. Definition 5 in

[16]). Therefore, we define partitions of S(l,u) and S
(l,u)
h in Definition 4 to

eliminate any unreachable states due to finite variables.

Definition 5. The ith partition of S(l,u), denoted by S(l,u,i), for i = 1, . . . , I(l,u)

is given by

S(l,u,i) = {x ∈ S(l,u) | (x1, . . . , xn) ∈ ×n
h=1S

(l,u,ih)
h },

so that S(l,u) =
⋃I(l,u)

i=1 S(l,u,i), where S
(l,u,ih)
h is the ihth partition of S

(l,u)
h for

h = 1, . . . , n, u = 1, . . . , nI , and ih = 1, . . . , I
(l,u)
h . Without loss of generality,

the partitions S(l,u,i) are assumed to be ordered within S(l,u) lexicographically
according to the corresponding partition indices, (i1, . . . , in).
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Note that, partition S(l,u,i) consists only of reachable states, and is a sub-
set of the Cartesian product of the state space subpartitions of all variables
since certain values of finite variables may yield unreachable states. As we
shall see, the values of I(l,u) and I

(l,u)
h for h = 1, . . . , n depend on the model,

and although I(l,u) =
∏n

h=1 I
(l,u)
h was true for all the models considered in

[16] (due to the fact that I(l,u) and I
(l,u)
h for h = 1, . . . , n were all 1’s), it need

not be true in general.
Now, we are in a position to introduce the Kronecker representation of

nonzero blocks in Q (cf. Definition 6 in [16]) following the partitions of
subsets of states at each level given by Definition 5.

Definition 6. The nonzero blocks Q0,0, Q0,1, Q1,0, and Ql,m for l > 0, m =
l− 1, l, l + 1 are respectively (1× 1), (1× nI), (nI × 1), and (nI × nI) block
matrices as in

Q0,0 =
(

Q
(1,1)
0,0

)

, Q0,1 =
(

Q
(1,1)
0,1 . . . Q

(1,nI)
0,1

)

,

Q1,0 =







Q
(1,1)
1,0
...

Q
(nI ,1)
1,0






, Ql,m =







Q
(1,1)
l,m . . . Q

(1,nI )
l,m

...
. . .

...

Q
(nI ,1)
l,m . . . Q

(nI ,nI)
l,m






,

where Q
(u,w)
l,m is an (I(l,u) × I(m,w)) block matrix given by

Q
(u,w)
l,m =









Q
((u,1),(w,1))
l,m . . . Q

((u,1),(w,I(m,w)))
l,m

...
. . .

...

Q
((u,I(l,u)),(w,1))
l,m . . . Q

((u,I(l,u)),(w,I(m,w)))
l,m









.

Furthermore, the blocks of Q
(u,w)
l,m can be written in terms of transition rates

and transition matrices as in

Q
((u,i),(w,j))
l,m =

{

Q̃
((u,i),(w,j))
l,m −D

((u,i),(w,j))
l,m if u = w and l = m

Q̃
((u,i),(w,j))
l,m otherwise

for i = 1, . . . , I(l,u), j = 1, . . . , I(m,w), u, w = 1, . . . , nI , and l, m ≥ 0, where

D
((u,i),(w,j))
l,m = diag





l+1
∑

m′=l−1

nI
∑

w′=1

I(m,w)
∑

j′=1

Q̃
((u,i),(w′,j′))
l,m′ e



 ,
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Q̃
((u,i),(w,j))
l,m =

∑K

k=1 αk(x)
(

⊗n

h=1Z
(k,h)(S

(l,u,ih)
h ,S

(m,w,jh)
h )

)

,

αk(x) is the transition rate computed at state x ∈ ×n
h=1S

(l,u,ih)
h and

Z(k,h)(S
(l,u,ih)
h ,S

(m,w,jh)
h ) denotes the submatrix of Z(k,h) incident on row in-

dices in S
(l,u,ih)
h and column indices in S

(m,w,jh)
h . The first summation in diag

should have a starting index of 0 rather than −1 for the equation of the

blocks Q
((1,1),(1,1))
0,0 , . . . , Q

((1,I(0,1)),(1,I(0,1)))
0,0 , and the second summation in diag

should have an ending index of 1 rather than nI for the equation of the blocks

Q
((1,1),(1,1))
1,1 , . . . , Q

((nI ,I
(1,nI)),(nI ,I

(1,nI )))
1,1 when m′ = l − 1.

The nonzero blocks are generally very sparse and have nonzero entries
that may depend on the level number. The off-diagonal entries of Q are
nonnegative, whereas its diagonal entries are negative. Clearly, the ordering
of states within a level is only fixed up to a permutation. Observe that
transitions are possible only between adjacent levels and the number of states
within each level increases with increasing level number. The latter is due
to the increase in the number of different possibilities for the nI countably
infinite variables according to the level definition being used.

3. Examples

We consider two groups of models. The first group consists of queue-
ing network models of call centers. The second group consists of models
of systems of stochastic chemical kinetics used before in [16] as test cases.
For completeness, we include the descriptions of the second group of models
as well. However, we refrain from providing transition matrices of models
in Kronecker form, since they all follow in a straightforward manner from
Definition 2 and the respective transition classes as was shown in [16].

3.1. Call centers

Example 1. (N–model) Consider the parallel service system in Figure 1
known as the N–model under the threshold routing control policy proposed
in [33]. In this model, there are two types of customers, two types of infinite
queues, and two types of server pools. Customers of type 1 can be in queue 1,
server pool 1, or server pool 2, but type 2 customers can only be in queue 2 or
server pool 2. Hence, x = (x1, x2, x3, x4, x5) is a possible state representation,
where x1, x3, and x4 denote the number of type 1 customers in queue 1, pool
1, and pool 2, respectively, whereas, x2 and x5 denote the number of type
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2 customers in queue 2 and pool 2, respectively. Then, n = 5, nI = 2, and
nF = 3. Type i customers arrive to the system according to a Poisson process
with rate λi and server pool i has Ni servers with exponentially distributed
service times for i = 1, 2. Hence, S1 = S2 = Z+, S3 = {0, . . . , N1}, and
S4 = S5 = {0, . . . , N2}. Upon arrival, a type 1 customer joins pool 1 if it has
idle servers (i.e., x3 < N1) and receives service at a rate of µ1,1. If there are
no idle servers in pool 1 (i.e., x3 = N1), an arriving type 1 customer joins
pool 2 if it has idle servers (i.e., x4 + x5 < N2) and receives service at a rate
of µ1,2. If there are no idle servers in either pool (i.e., x3 = N1, x4+x5 = N2),
an arriving type 1 customer enters queue 1. On the other hand, an arriving
type 2 customer joins pool 2 if it has idle servers (i.e., x4 + x5 < N2) and
receives service at a rate of µ2,2; otherwise (i.e., x4+x5 = N2) it enters queue
2. Upon departure of a customer from server pool 2, the first customer in
queue 1 joins it if the number of type 1 customers in queue 1 exceeds a given
threshold M (i.e., x1 > M); otherwise (i.e., x1 ≤ M) the first customer in
queue 2 joins it. Hence, type 1 customers take nonpreemptive priority over
type 2 customers in server pool 2 when the number of type 1 customers in
queue 1 exceeds M .

1

λ1

2

λ2

N1 N2

µ1,1 µ1,2 µ2,2

Figure 1: N–model
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The transition classes of this model are given in Table 1. Note that the
number of transition classes is K = 15, N1 and N2 are positive integers,
M ∈ Z+, and λ1, λ2, µ1,1, µ1,2, µ2,2 ∈ R>0.

Table 1: Transition classes of the N–model

k αk(x) v(k)

1 λ1 1x3=N1 1x4+x5=N2 eT1
2 λ1 1x3=N1 1x4+x5<N2 eT4
3 λ1 1x3<N1 eT3
4 λ2 1x4+x5=N2 eT2
5 λ2 1x4+x5<N2 eT5
6 µ1,1 x3 1x1=0 −eT3
7 µ1,1 x3 1x1>0 −eT1
8 µ1,2 x4 1x1=0 1x2=0 −eT4
9 µ2,2 x5 1x1=0 1x2=0 −eT5
10 µ1,2 x4 1x1>0 1x2=0 −eT1
11 µ2,2 x5 1x1>0 1x2=0 (−e1 + e4 − e5)

T

12 µ1,2 x4 1x1≤M 1x2>0 (−e2 − e4 + e5)
T

13 µ2,2 x5 1x1≤M 1x2>0 −eT2
14 µ1,2 x4 1x1>M 1x2>0 −eT1
15 µ2,2 x5 1x1>M 1x2>0 (−e1 + e4 − e5)

T

The partitions of S
(l)
h for h = 1, . . . , n and l ≥ 0 are computed from

Definition 4 as

S
(0,1)
1 = S

(0,1)
2 = {0}, S

(0,1)
3 = {0, . . . , N1}, S

(0,1)
4 = S

(0,1)
5 = {0, . . . , N2},

S
(l,1)
1 = {l}, S

(l,1)
2 = {0, . . . , l}, S

(l,1)
3 = {0, . . . , N1},

S
(l,1)
4 = S

(l,1)
5 = {0, . . . , N2},

S
(l,2)
1 = {0, . . . , l − 1}, S

(l,2)
2 = {l}, S

(l,2)
3 = {0, . . . , N1},

S
(l,2)
4 = S

(l,2)
5 = {0, . . . , N2} for l > 0.

The total number of type 1 and type 2 customers cannot exceed the
number of servers in pool 2, so x4 + x5 ≤ N2. Besides, a queue can be
nonempty only if all servers capable of serving that queue are busy. Then,

12



x3 = N1 if x1 > 0, and x4 + x5 = N2 if x1 > 0 or x2 > 0. Due to these
dependencies, partitions of S

(0,1)
h for h = 1, . . . , n and S(0,1) can be written

from Definition 5 as

I
(0,1)
1 = I

(0,1)
2 = I

(0,1)
3 = 1, I

(0,1)
4 = I

(0,1)
5 = N2 + 1,

S
(0,1,1)
1 = S

(0,1,1)
2 = {0}, S

(0,1,1)
3 = {0, . . . , N1},

S
(0,1,i)
4 = {i− 1}, S

(0,1,i)
5 = {N2 + 1− i} for i = 1, . . . , N2 + 1,

so that I(0,1) = (N2 + 1)(N2 + 2)/2 and

S(0,1,i) = {0} × {0} × {0, . . . , N1} × {x4} × {x5},

where i =
∑x4

j=1(N2+2−j)+x5+1 for x5 = 0, . . . , N2−x4 and x4 = 0, . . . , N2.

Partitions of S
(l,1)
h for h = 1, . . . , n and S(l,1) and l > 0 can be written

from Definition 5 as

I
(l,1)
1 = I

(l,1)
2 = 1, I

(l,1)
3 = 2, I

(l,1)
4 = I

(l,1)
5 = N2 + 1,

S
(l,1,1)
1 = {l}, S

(l,1,1)
2 = {0, . . . , l}, S

(l,1,1)
3 = {0, . . . , N1−1}, S

(l,1,2)
3 = {N1},

S(l,1,i)
4 = {i− 1}, S(l,1,i)

5 = {N2 + 1− i} for i = 1, . . . , N2 + 1,

so that I(l,1) = N2 + 1 and

S(l,1,i) = {l} × {0, . . . , l} × {N1} × {x4} × {x5},

where i = x4 + 1 and x5 = N2 − x4 for x4 = 0, . . . , N2.
Partitions of S

(1,2)
h for h = 1, . . . , n and S(1,2) can be written from Defini-

tion 5 as

I
(1,2)
1 = I

(1,2)
2 = 1, I

(1,2)
3 = 1, I

(1,2)
4 = I

(1,2)
5 = N2 + 1,

S
(1,2,1)
1 = {0}, S

(1,2,1)
2 = {l}, S

(l,2,1)
3 = {0, . . . , N1},

S
(1,2,i)
4 = {i− 1}, S

(1,2,i)
5 = {N2 + 1− i} for i = 1, . . . , N2 + 1,

so that I(1,2) = N2 + 1 and

S(1,2,i) = {0} × {1} × {0, . . . , N1} × {x4} × {x5},

13



where i = x4+1 and x5 = N2−x4 for x4 = 0, . . . , N2. Furthermore, partitions
of S

(l,2)
h and S(l,2) for h = 1, . . . , n and l > 1 can be written from Definition

5 as
I
(l,2)
1 = 2, I

(l,2)
2 = 1, I

(l,2)
3 = 2, I

(l,2)
4 = I

(l,2)
5 = N2 + 1,

S
(l,2,1)
1 = {0}, S

(l,2,2)
1 = {1, . . . , l − 1}, S

(l,2,1)
2 = {l},

S(l,2,1)
3 = {0, . . . , N1 − 1}, S(l,2,2)

3 = {N1},

S
(l,2,i)
4 = {i− 1}, S

(l,2,i)
5 = {N2 + 1− i} for i = 1, . . . , N2 + 1,

so that I(l,2) = 3(N2 + 1) and

S(l,2,i1) = {0} × {l} × {0, . . . , N1 − 1} × {x4} × {x5},

S(l,2,i2) = {0} × {l} × {N1} × {x4} × {x5},

S(l,2,i3) = {1, . . . , l − 1} × {l} × {N1} × {x4} × {x5},

where i1 = x4+1, i2 = (N2+1)+x4+1, i3 = 2(N2+1)+x4+1, x5 = N2−x4

for x4 = 0, . . . , N2.
The first few nonzero blocks of Q for the N–model with N1 = 1 and

N2 = 2 as flat sparse matrices are given by

(0
,
0
,
0
,
0
,
0
)

(0
,
0
,
0
,
0
,
1
)

(0
,
0
,
0
,
0
,
2
)

(0
,
0
,
0
,
1
,
0
)

(0
,
0
,
0
,
1
,
1
)

(0
,
0
,
0
,
2
,
0
)

(0
,
0
,
1
,
0
,
0
)

(0
,
0
,
1
,
0
,
1
)

(0
,
0
,
1
,
0
,
2
)

(0
,
0
,
1
,
1
,
0
)

(0
,
0
,
1
,
1
,
1
)

(0
,
0
,
1
,
2
,
0
)

Q0,0=

(0,0,0,0,0)
(0,0,0,0,1)
(0,0,0,0,2)
(0,0,0,1,0)
(0,0,0,1,1)
(0,0,0,2,0)
(0,0,1,0,0)
(0,0,1,0,1)
(0,0,1,0,2)
(0,0,1,1,0)
(0,0,1,1,1)
(0,0,1,2,0)







































∗ λ2 λ1

µ2,2 ∗ λ2 λ1

2µ2,2 ∗ λ1

µ1,2 ∗ λ2 λ1

µ1,2 µ2,2 ∗ λ1

2µ1,2 ∗ λ1

µ1,1 ∗ λ2 λ1

µ1,1 µ2,2 ∗ λ2 λ1

µ1,1 2µ2,2 ∗
µ1,1 µ1,2 ∗ λ2 λ1

µ1,1 µ1,2 µ2,2 ∗
µ1,1 2µ1,2 ∗







































,
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(1
,
0
,
1
,
0
,
2
)

(1
,
0
,
1
,
1
,
1
)

(1
,
0
,
1
,
2
,
0
)

(1
,
1
,
1
,
0
,
2
)

(1
,
1
,
1
,
1
,
1
)

(1
,
1
,
1
,
2
,
0
)

(0
,
1
,
0
,
0
,
2
)

(0
,
1
,
0
,
1
,
1
)

(0
,
1
,
0
,
2
,
0
)

(0
,
1
,
1
,
0
,
2
)

(0
,
1
,
1
,
1
,
1
)

(0
,
1
,
1
,
2
,
0
)

Q0,1=

(0,0,0,0,0)
(0,0,0,0,1)
(0,0,0,0,2)
(0,0,0,1,0)
(0,0,0,1,1)
(0,0,0,2,0)
(0,0,1,0,0)
(0,0,1,0,1)
(0,0,1,0,2)
(0,0,1,1,0)
(0,0,1,1,1)
(0,0,1,2,0)







































λ2

λ2

λ2

λ1 λ2

λ1 λ2

λ1 λ2







































,

(0
,
0
,
0
,
0
,
0
)

(0
,
0
,
0
,
0
,
1
)

(0
,
0
,
0
,
0
,
2
)

(0
,
0
,
0
,
1
,
0
)

(0
,
0
,
0
,
1
,
1
)

(0
,
0
,
0
,
2
,
0
)

(0
,
0
,
1
,
0
,
0
)

(0
,
0
,
1
,
0
,
1
)

(0
,
0
,
1
,
0
,
2
)

(0
,
0
,
1
,
1
,
0
)

(0
,
0
,
1
,
1
,
1
)

(0
,
0
,
1
,
2
,
0
)

Q1,0=

(1,0,1,0,2)
(1,0,1,1,1)
(1,0,1,2,0)
(1,1,1,0,2)
(1,1,1,1,1)
(1,1,1,2,0)
(0,1,0,0,2)
(0,1,0,1,1)
(0,1,0,2,0)
(0,1,1,0,2)
(0,1,1,1,1)
(0,1,1,2,0)







































µ1,1 2µ2,2

µ1,1 + µ1,2 µ2,2

µ1,1 + 2µ1,2

2µ2,2

µ1,2 µ2,2

2µ1,2

2µ2,2

µ1,2 µ2,2

2µ1,2







































,

(1
,
0
,
1
,
0
,
2
)

(1
,
0
,
1
,
1
,
1
)

(1
,
0
,
1
,
2
,
0
)

(1
,
1
,
1
,
0
,
2
)

(1
,
1
,
1
,
1
,
1
)

(1
,
1
,
1
,
2
,
0
)

(0
,
1
,
0
,
0
,
2
)

(0
,
1
,
0
,
1
,
1
)

(0
,
1
,
0
,
2
,
0
)

(0
,
1
,
1
,
0
,
2
)

(0
,
1
,
1
,
1
,
1
)

(0
,
1
,
1
,
2
,
0
)

Q1,1=

(1,0,1,0,2)
(1,0,1,1,1)
(1,0,1,2,0)
(1,1,1,0,2)
(1,1,1,1,1)
(1,1,1,2,0)
(0,1,0,0,2)
(0,1,0,1,1)
(0,1,0,2,0)
(0,1,1,0,2)
(0,1,1,1,1)
(0,1,1,2,0)







































∗ λ2

∗ λ2

∗ λ2

2µ2,211≤M ∗ µ1,1 2µ2,211>M

µ1,211≤M µ2,211≤M ∗ µ1,1 + µ1,211>M µ2,211>M

2µ1,211≤M ∗ µ1,1 + 2µ1,211>M

∗ λ1

∗ λ1

∗ λ1

λ1 µ1,1 ∗
λ1 µ1,1 ∗

λ1 µ1,1 ∗







































.
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Example 2. (W–model) Consider the parallel service system in Figure 2
known as the W–model under the fixed queue ratio routing control policy
proposed in [34]. In this model, there are three types of customers, three
types of infinite queues, and two types of server pools. Customers of type 1
can be in queue 1 or server pool 1, customers of type 3 can be in queue 3
or server pool 2, and customers of type 2 can be in queue 2 or either server
pool. Since the server pools do not differentiate between the two types of
customers they serve, x = (x1, x2, x3, x4, x5) is a possible state representation,
where x1, x2, and x3 denote the number of customers in queues 1, 2, and 3,
respectively, whereas x4 and x5 denote the number of busy servers in pools 1
and 2, respectively. Then n = 5, nI = 3, and nF = 2. Type i customers arrive
to the system according to a Poisson process with rate λi and server pool
i has Ni servers with exponentially distributed service times each working
at a rate of µi for i = 1, 2. Hence, S1 = S2 = S3 = Z+, S4 = {0, . . . , N1},
and S5 = {0, . . . , N2}. Upon arrival, a type 1 customer joins pool 1 if it
has idle servers (i.e., x4 < N1), otherwise (i.e., x4 = N1) it enters queue
1. Similarly, an arriving type 3 customer joins pool 2 if it has idle servers
(i.e., x5 < N2), otherwise (i.e., x5 = N2) it enters queue 2. As for type
2 customers, upon arrival the customer joins the server pool with largest
idleness imbalance if both pools have idle servers (i.e., x4 < N1, x5 < N2),
otherwise (i.e., x4 < N1, x5 = N2 or x4 = N1, x5 < N2) it joins the pool
which has an idle server. Idleness imbalance of a server pool is a function of
the number of idle servers in that pool, the total number of idle servers, and
the idleness imbalance ratio corresponding to the server pool. Letting the
idleness imbalance ratios of server pools 1 and 2 be denoted by p4 and p5,
their idleness imbalances are obtained as (N1 −x4)/(N1+N2− x4 −x5)− p4
and (N2−x5)/(N1+N2−x4−x5)−p5, respectively. If both pools of servers
are busy (i.e., x4 = N1, x5 = N2), an arriving type 2 customer enters queue
2. Upon departure of a customer from a server pool, head of the queue
with largest queueing imbalance among the queues feeding the pool joins
it. Queueing imbalance of a queue is a function of the number of customers
in that queue, total number of customers in all queues, and the queueing
imbalance ratio corresponding to the queue. Letting the queueing imbalance
ratios of queues 1, 2, and 3 be denoted by p1, p2, and p3, their queueing
imbalances are obtained as x1/(x1 + x2 + x3) − p1, x2/(x1 + x2 + x3) − p2,
and x3/(x1 + x2 + x3)− p3, respectively.

The transition classes of this model are given in Table 2. Note that
K = 19, N1 and N2 are positive integers, λ1, λ2, λ3, µ1, µ2 ∈ R>0, and
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1

λ1

2

λ2

3

λ3

N1 N2

µ1 µ1 µ2 µ2

Figure 2: W–model

p = (p1, p2, p3, p4, p5) ∈ R
1×5
>0 .

The partitions of S
(l)
h for h = 1, . . . , n and l ≥ 0 are computed from

Definition 4 as

S
(0,1)
1 = S

(0,1)
2 = S

(0,1)
3 = {0}, S

(0,1)
4 = {0, . . . , N1}, S

(0,1)
5 = {0, . . . , N2},

S
(l,1)
1 = {l}, S

(l,1)
2 = S

(l,1)
3 = {0, . . . , l},

S
(l,1)
4 = {0, . . . , N1}, S

(l,1)
5 = {0, . . . , N2},

S
(l,2)
1 = {0, . . . , l − 1}, S

(l,2)
2 = {l}, S

(l,2)
3 = {0, . . . , l},

S
(l,2)
4 = {0, . . . , N1}, S

(l,2)
5 = {0, . . . , N2},

S(l,3)
1 = S(l,3)

2 = {0, . . . , l − 1}, S(l,3)
3 = {l},

S
(l,3)
4 = {0, . . . , N1}, S

(l,3)
5 = {0, . . . , N2} for l > 0.

A queue can be nonempty only if all servers capable of serving that queue
are busy. Therefore, x4 = N1 if x1 > 0 or x2 > 0, and x5 = N2 if x2 > 0 or
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Table 2: Transition classes of the W–model

k αk(x) v(k)

1 λ1 1x4=N1 eT1
2 λ1 1x4<N1 eT4
3 λ2 1x4=N1 1x5=N2 eT2
4 λ2 1x4<N1 1x5=N2 eT4
5 λ2 1x4=N1 1x5<N2 eT5
6 λ2 1x4<N1 1x5<N2 1(N1−x4)−(N2−x5)≥(p4−p5)(N1+N2−x4−x5) eT4
7 λ2 1x4<N1 1x5<N2 1(N1−x4)−(N2−x5)<(p4−p5)(N1+N2−x4−x5) eT5
8 λ3 1x5=N2 eT3
9 λ3 1x5<N2 eT5
10 µ1 x4 1x1=0 1x2=0 −eT4
11 µ1 x4 1x1>0 1x2=0 −eT1
12 µ1 x4 1x1=0 1x2>0 −eT2
13 µ1 x4 1x1>0 1x2>0 1(x1−x2)≥(p1−p2)(x1+x2+x3) −eT1
14 µ1 x4 1x1>0 1x2>0 1(x1−x2)<(p1−p2)(x1+x2+x3) −eT2
15 µ2 x5 1x2=0 1x3=0 −eT5
16 µ2 x5 1x2>0 1x3=0 −eT2
17 µ2 x5 1x2=0 1x3>0 −eT3
18 µ2 x5 1x2>0 1x3>0 1(x2−x3)≥(p2−p3)(x1+x2+x3) −eT2
19 µ2 x5 1x2>0 1x3>0 1(x2−x3)<(p2−p3)(x1+x2+x3) −eT3

x3 > 0. Due to these dependencies, partitions of S
(0,1)
h for h = 1, . . . , n and

S(0,1) can be written from Definition 5 as

I
(0,1)
1 = I

(0,1)
2 = I

(0,1)
3 = I

(0,1)
4 = I

(0,1)
5 = 1,

S
(0,1,1)
1 = S

(0,1,1)
2 = S

(0,1,1)
3 = {0},

S
(0,1,1)
4 = {0, . . . , N1}, S

(0,1,1)
5 = {0, . . . , N2},

so that I(0,1) = 1 and

S(0,1,1) = {0} × {0} × {0} × {0, . . . , N1} × {0, . . . , N2}.

Partitions of S
(l,1)
h for h = 1, . . . , n and S(l,1) for l > 0 can be written

from Definition 5 as

I
(l,1)
1 = 1, I

(l,1)
2 = 2, I

(l,1)
3 = 2, I

(l,1)
4 = I

(l,1)
5 = 2,
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S
(l,1,1)
1 = {l}, S

(l,1,1)
2 = {0}, S

(l,1,2)
2 = {1, . . . , l},

S
(l,1,1)
3 = {0}, S

(l,1,2)
3 = {1, . . . , l},

S
(l,1,1)
4 = {0, . . . , N1 − 1}, S

(l,1,2)
4 = {N1},

S(l,1,1)
5 = {0, . . . , N2 − 1}, S(l,1,2)

5 = {N2},

so that I(l,1) = 5 and

S(l,1,1) = {l} × {0} × {0} × {N1} × {0, . . . , N2 − 1},

S(l,1,2) = {l} × {0} × {0} × {N1} × {N2},

S(l,1,3) = {l} × {0} × {1, . . . , l} × {N1} × {N2},

S(l,1,4) = {l} × {1, . . . , l} × {0} × {N1} × {N2},

S(l,1,5) = {l} × {1, . . . , l} × {1, . . . , l} × {N1} × {N2}.

Partitions of S
(l,2)
h for h = 1, . . . , n and S(l,2) for l > 0 can be written

from Definition 5 as

I
(l,2)
1 = I

(l,2)
2 = I

(l,2)
3 = 1, I

(l,2)
4 = I

(l,2)
5 = 2,

S
(l,2,1)
1 = {0, . . . , l − 1}, S

(1,2,1)
2 = {l}, S

(1,2,1)
3 = {0, . . . , l}

S
(l,2,1)
4 = {0, . . . , N1 − 1}, S

(l,2,2)
4 = {N1},

S
(l,2,1)
5 = {0, . . . , N2 − 1}, S

(l,2,2)
5 = {N2},

so that I(l,2) = 1 and

S(l,2,1) = {0, . . . , l − 1} × {l} × {0, . . . , l} × {N1} × {N2}.

Partitions of S
(1,3)
h for h = 1, . . . , n and S(1,3) can be written from Defini-

tion 5 as
I
(1,3)
1 = I

(1,3)
2 = I

(1,3)
3 = I

(1,3)
4 = 1, I

(1,3)
5 = 2,

S
(1,3,1)
1 = {0}, S

(1,3,1)
2 = {0}, S

(1,3,1)
3 = {1},

S
(1,3,1)
4 = {0, . . . , N1}, S

(1,3,1)
5 = {0, . . . , N2 − 1}, S

(1,3,2)
5 = {N2},

so that I(1,3) = 1 and

S(1,3,1) = {0} × {0} × {1} × {0, . . . , N1} × {N2}.
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Furthermore, partitions of S
(l,3)
h for h = 1, . . . , n and S(l,3) for l > 1 can be

written from Definition 5 as

I
(l,3)
1 = I

(l,3)
2 = 2, I

(l,3)
3 = 1, I

(l,3)
4 = 2, I

(l,3)
5 = 1,

S
(l,3,1)
1 = {0}, S

(1,3,2)
1 = {1, . . . , l−1}, S

(l,3,1)
2 = {0}, S

(1,3,2)
2 = {1, . . . , l−1},

S(l,3,1)
3 = {l}, S(l,3,1)

4 = {0, . . . , N1−1}, S(l,3,2)
4 = {N1}, S(l,3,1)

5 = {0, . . . , N2},

so that I(1,3) = 5 and

S(l,1,1) = {0} × {0} × {l} × {0, . . . , N1 − 1} × {N2},

S(l,1,2) = {0} × {0} × {l} × {N1} × {N2},

S(l,1,3) = {0} × {1, . . . , l − 1} × {l} × {N1} × {N2},

S(l,1,4) = {1, . . . , l − 1} × {0} × {l} × {N1} × {N2},

S(l,1,5) = {1, . . . , l − 1} × {1, . . . , l − 1} × {l} × {N1} × {N2}.

Example 3. (V–model with 3 types of customers) Consider the parallel ser-
vice system in Figure 3 known as the V–model with three types of customers
under the static priority control policy proposed in [35]. In this model, there
are three types of infinite queues for the three types of customers and one
pool of N servers with exponentially distributed service times each working
at a rate of µ. For i = 1, 2, 3, customers of type i arrive to the system ac-
cording to a Poisson process with rate λi and enter queue i if all servers are
busy. Since the servers in the pool do not differentiate among the types of
customers they serve, x = (x1, x2, x3, x4) is a possible state representation,
where xi denotes the number of customers of type i in queue i for i = 1, 2, 3
and x4 denotes the number of busy servers. Then n = 4, nI = 3, and nF = 1.
A customer of type 2 at the head of queue 2 has nonpreemptive priority over
customers of type 3 at the server, and a customer of type 1 at the head of
queue 1 has nonpreemptive priority over customers of types 2 and 3 at the
server. Hence, S1 = S2 = S3 = Z+ and S4 = {0, . . . , N}.

The transition classes of this model are given in Table 3. Note that
K = 10, N is a positive integer, and λ1, λ2, λ3, µ ∈ R>0.

The state space partitions from Definition 4 are

S
(0,1)
1 = S

(0,1)
2 = S

(0,1)
3 = {0}, S

(0,1)
4 = {0, . . . , N},
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Figure 3: V–model with 3 types of customers

S(l,1)
1 = {l}, S(l,1)

2 = S(l,1)
3 = {0, . . . , l}, S(l,1)

4 = {0, . . . , N},

S
(l,2)
1 = {0, . . . , l− 1}, S

(l,2)
2 = {l}, S

(l,2)
3 = {0, . . . , l}, S

(l,2)
4 = {0, . . . , N},

S
(l,3)
1 = S

(l,3)
2 = {0, . . . , l − 1}, S

(l,3)
3 = {l}, S

(l,3)
4 = {0, . . . , N} for l > 0.

A queue can be nonempty only if all servers that can serve that queue
are busy. Then x4 = N if x1 > 0, x2 > 0 or x3 > 0 holds. Then partitions of
S

(0,1)
h for h = 1, . . . , n and S(0,1) can be written from Definition 5 as

I
(0,1)
1 = I

(0,1)
2 = I

(0,1)
3 = I

(0,1)
4 = 1,

S
(0,1,1)
1 = S

(0,1,1)
2 = S

(0,1,1)
3 = {0}, S

(0,1,1)
4 = {0, . . . , N},

so that I(0,1) = 1 and

S(0,1,1) = {0} × {0} × {0} × {0, . . . , N}.

Partitions of S
(l,1)
h for h ∈ {1, . . . , n} and S(l,1) for l > 0 can be written from

Definition 5 as
I
(l,1)
1 = I

(1,1)
2 = I

(1,1)
3 = 1, I

(1,1)
4 = 2,
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Table 3: Transition classes of the V–model with 3 types of customers

k αk(x) v(k)

1 λ1 1x4=N eT1
2 λ1 1x4<N eT4
3 λ2 1x4=N eT2
4 λ2 1x4<N eT4
5 λ3 1x4=N eT3
6 λ3 1x4<N eT4
7 µ x4 1x1>0 −eT1
8 µ x4 1x1=0 1x2>0 −eT2
9 µ x4 1x1=0 1x2=0 1x3>0 −eT3
10 µ x4 1x1=0 1x2=0 1x3=0 −eT4

S
(l,1,1)
1 = {l}, S

(l,1,1)
2 = S

(l,1,1)
3 = {0, . . . , l},

S
(l,1,1)
4 = {0, . . . , N − 1}, S

(l,1,2)
4 = {N},

S
(l,2,1)
1 = {0, . . . , l − 1}, S

(l,2,1)
2 = {l}, S

(l,2,1)
3 = {0, . . . , l},

S
(l,2,1)
4 = {0, . . . , N − 1}, S

(l,2,2)
4 = {N},

S
(l,3,1)
1 = S

(l,3,1)
2 = {0, . . . , l − 1}, S

(l,3,1)
3 = {l},

S
(l,3,1)
4 = {0, . . . , N − 1}, S

(l,3,2)
4 = {N},

so that I(l,1) = I(l,2) = I(l,3) = 1 and

S(l,1,1) = {l} × {0, . . . , l} × {0, . . . , l} × {N},

S(l,2,1) = {0, . . . , l − 1} × {l} × {0, . . . , l} × {N},

S(l,3,1) = {0, . . . , l − 1} × {0, . . . , l − 1} × {l} × {N}.

We have also considered the V–model with two and four types of cus-
tomers. These models respectively have n = 4, nI = 3, nF = 1 and n = 6,
nI = 5, nF = 1 as dimension parameters. Since transition classes and state
space partitions of these models can be obtained in the same manner as those
of the V–model with three types of customers, we will not be including their
detailed descriptions here.
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3.2. Systems of stochastic chemical kinetics

We recall the test cases from [16] regarding systems of stochastic chemical
kinetics and remark that there is no need to resort to Definition 5 in any of
them. This is because in all four models, the reachable state space is equal
to the product state space.

Example 4. (Gene expression) Consider a system of stochastic chemical
kinetics modeling the biological process associated with a gene expression
[36]. The transition classes of this example are given in Table 4, where
x = (x1, x2), n = nI = 2, nF = 0, K = 4, and λ, µ, δ1, δ2 ∈ R>0, and
S1 = S2 = Z+.

Table 4: Transition classes of the gene expression model

k αk(x) v(k)

1 λ eT1
2 µ x1 eT2
3 δ1 x1 −eT1
4 δ2 x2 −eT2

The partitions of S
(l)
h for h = 1, . . . , n and l ≥ 0 are computed from

Definition 4 as

S
(l,1)
1 = {l}, S

(l,1)
2 = {0, . . . , l}, S

(l,2)
1 = {0, . . . , l − 1}, S

(l,2)
2 = {l}.

Example 5. (Metabolite synthesis with 2 metabolites and 1 enzyme) Con-
sider a system of stochastic chemical kinetics modeling the biological process
of metabolite synthesis with two metabolites and one enzyme [37]. The
transition classes of this model are given in Table 5, where x = (x1, x2, x3),
n = nI = 3, nF = 0, K = 7, and kA, kB, KI , k2, µ, KR, kEA

∈ R>0, and
S1 = S2 = S3 = Z+.

The partitions of S
(l)
h for h = 1, . . . , n and l ≥ 0 are computed from

Definition 4 as

S
(l,1)
1 = {l}, S

(l,1)
2 = S

(l,1)
3 = {0, . . . , l},

S
(l,2)
1 = {0, . . . , l − 1}, S

(l,2)
2 = {l}, S

(l,2)
3 = {0, . . . , l},

S
(l,3)
1 = S

(l,3)
2 = {0, . . . , l − 1}, S

(l,3)
3 = {l}.
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Table 5: Transition classes of the molecule synthesis model with 1 enzyme

k αk(x) v(k)

1 kAKIx3/(x1 +KI) eT1
2 kB eT2
3 k2 x1 x2 (−e1 − e2)

T

4 µ x1 −eT1
5 µ x2 −eT2
6 kEA

KR/(x1 +KR) eT3
7 µ x3 −eT3

Example 6. (Metabolite synthesis with 2 metabolites and 2 enzymes) Con-
sider a system of stochastic chemical kinetics modeling the biological process
of metabolite synthesis with two metabolites and two enzymes [37]. The tran-
sition classes of this model are given in Table 6, where x = (x1, x2, x3, x4),
n = nI = 4, nF = 0, K = 9, and kA, kB, KI , k2, µ, KR, kEA

, kEB
∈ R>0,

and S1 = S2 = S3 = S4 = Z+.

Table 6: Transition classes of the molecule synthesis model with 2 enzymes

k αk(x) v(k)

1 kAKIx3/(x1 +KI) eT1
2 kBKIx4/(x2 +KI) eT2
3 k2 x1 x2 (−e1 − e2)

T

4 µ x1 −eT1
5 µ x2 −eT2
6 kEA

KR/(x1 +KR) eT3
7 kEB

KR/(x2 +KR) eT4
8 µ x3 −eT3
9 µ x4 −eT4

The partitions of S
(l)
h for h = 1, . . . , n and l ≥ 0 are computed from

Definition 4 as

S
(l,1)
1 = {l}, S

(l,1)
2 = S

(l,1)
3 = S

(l,1)
4 = {0, . . . , l},
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S
(l,2)
1 = {0, . . . , l − 1}, S

(l,2)
2 = {l}, S

(l,2)
3 = S

(l,2)
4 = {0, . . . , l},

S
(l,3)
1 = S

(l,3)
2 = {0, . . . , l − 1}, S

(l,3)
3 = {l}, S

(l,3)
4 = {0, . . . , l},

S
(l,4)
1 = S

(l,4)
2 = S

(l,4)
3 = {0, . . . , l − 1}, S

(l,4)
4 = {l}.

Example 7. (Repressilator) Consider a system of stochastic chemical ki-
netics modeling the biological process of metabolite synthesis with repressi-
lator [38]. The transition classes of this model are given in Table 7, where
x = (x1, x2, x3, x4, x5, x6), n = 6, nI = 3, nF = 3, K = 12, and λ1, λ2, λ3, δ1,
δ2, δ3, β0, β1 ∈ R>0, and S1 = S2 = S3 = Z+, S4 = S5 = S6 = {0, 1}.

Table 7: Transition classes of the molecule synthesis model with repressilator

k αk(x) v(k)

1 λ1 (1− x6) eT1
2 δ1 x1 −eT1
3 β0 x1 (1− x4) (−e1 + e4)

T

4 β1 x4 (e1 − e4)
T

5 λ2 (1− x4) eT2
6 δ2 x2 −eT2
7 β0 x2 (1− x5) (−e2 + e5)

T

8 β1 x5 (e2 − e5)
T

9 λ3 (1− x5) eT3
10 δ3 x3 −eT3
11 β0 x3 (1− x6) (−e3 + e6)

T

12 β1 x6 (e3 − e6)
T

The partitions of S
(l)
h for h = 1, . . . , n and l ≥ 0 are computed from

Definition 4 as

S(l,1)
1 = {l}, S(l,1)

2 = S(l,1)
3 = {0, . . . , l},

S
(l,2)
1 = {0, . . . , l − 1}, S

(l,2)
2 = {l}, S

(l,2)
3 = {0, . . . , l},

S
(l,3)
1 = S

(l,3)
2 = {0, . . . , l − 1}, S

(l,3)
3 = {l}.
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4. Implementation issues

In C, we implemented an LDQBD solver [39] built on the Nsolve package
[40] of the APNN toolbox [32], which includes data structures and functions
for sparse and Kronecker structured matrices. In this solver, we set RHigh = 0
as suggested in [27] and as observed to be the best overall choice in [17].

In the next two subsections, we first discuss how Low and High are
computed with the help of Lyapunov functions from stability theory. Then
we explain in detail how memory usage is monitored and reported during the
experiments.

4.1. Handling infiniteness

By judiciously choosing a Lyapunov function g(x) : S → R≥0 and there-

fore, g ∈ R
1×|S|
≥0 as its corresponding row vector ordered conformally with the

state indices in Q, we are able to compute the drift of the LDQBD process,
d(x) : S → R, or its corresponding row vector d ∈ R

1×|S| as dT = QgT again
ordered conformally, to prove that there exists a finite set C ⊂ S with posi-
tive scalars γ, c ∈ R≥0 for which c = supx∈S d(x) < ∞, −γ = maxx∈S\C d(x),
and the set of states g(x) attains a finite value is always finite if and only
if the LDQBD process is ergodic. When the LDQBD process is ergodic,
∑

x∈C π(x) ≥ 1 − ǫ, where ǫ = c/(c + γ) ∈ (0, 1). Since c is the supremum
of the drift over S, we compute the drift at the states in the neighborhood
of all extrema and choose its maximum value. In doing this, the result-
ing nonlinear equation systems are solved using the HOM4PS2-2.0 package
[41], an implementation of the polyhedral homotopy continuation method
as in [15, 16, 17]. Hence, we set Low = min{l ∈ Z+ | S(l) ∩ C 6= ∅} and
High = max{l ∈ Z+ | S(l) ∩ C 6= ∅}, so that the finite set

⋃High
l=Low S(l) con-

tains at least (1− ǫ) of the steady-state probability.
In all models, we set ǫ = 0.1. For the call center models, the Lya-

punov functions should be carefully chosen by considering the transitions
of the models since dependencies among their variables are more intricate.
For the models of systems of stochastic chemical kinetics, we use the same
Lyapunov functions in [16] and include them here for completeness. In the
following, for clarity we give example numbers as subscripts to g(x), d(x),
c, γ, (Low,High), and H(Low,High), where H(Low,High) represents the
number of states within levels Low through High.

Example 1. (N–model (cntd.)) We let λ1 = 40, λ2 = 32, µ1,1 = 7, µ1,2 = 8,
µ2,2 = 9, M = 4, N1 = 4, and N2 = 11 be the parameters. Then the drift is
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given by

d1(x1, x2, x3, x4, x5) =
(2(x1 + x3 − 4) + 1) (40(1x3=4 1x4+x5=11 + 1x3<4))

+ (2(x1 + x2 + x4 + x5 − 5.06) + 1) (40 1x3=4 + 32)
+ (−2(x1 + x3 − 4) + 1) (7x3 + (8x4 + 9x5)(1x1>0 1x2=0 + 1x1>4 1x2>0))
+ (−2(x1 + x2 + x4 + x5 − 5.06) + 1) (7x3 1x1>0 + (8x4 + 9x5))

for the Lyapunov function

g1(x) = (x1 + x3 − r1,1)
2 + (x1 + x2 + x4 + x5 − r1,2)

2,

where r1,1 = N1 and r1,2 = (λ1 − N1µ1,1)/µ1,2 + λ2/µ2,2 are used to obtain
a tighter upper bound. Note that r1,1 is the number of servers in pool 1.
Hence, (x1+x3− r1,1) is the number of customers in queue 1 if x3 = r1,1 and
x4+x5 = N2. It is the negated number of idle servers in pool 1 if x3 < r1,1 or
x4 + x5 < N2 (i.e., x1 = 0). On the other hand, r1,2 is the average number of
busy servers in pool 2 when there are no idle servers in pool 1 (i.e., x3 = N1).
In this case, (x1+x2+x4+x5−r1,2) is the total number of customers in queues
1 and 2 plus the average number of idle servers in pool 2 if x4 + x5 = N2. It
is the difference between the number of busy servers and the average number
of busy servers in pool 2 if x4 + x5 < N2 (i.e., x1 = 0, x2 = 0). In this way,
we have a Lyapunov function that depends on the real parameters of the
model. We obtain the global maximum drift as c1 = 218.22. For ǫ = 0.1, we
compute γ1 = 1, 963.98, (Low1, High1) = (0, 62), and H1(0, 62) = 50, 982.

Example 2. (W–model (cntd.)) We let λ1 = 15, λ2 = 16, λ3 = 13, µ1 = 5,
µ2 = 7, N1 = 9, N2 = 6, and p = (0.3, 0.8, 0.4, 0.7, 0.5) be the parameters.
Then the drift is given by

d2(x1, x2, x3, x4, x5) =
(2(x1 + x2 + x4 − 4.6) + 1) (15 + 16 1x5=6 + 16 1x4<9 1x5<6 13x5≥2x4)

+ (2(x2 + x3 + x5 − 3) + 1) (13 + 16 1x4=9 + 16 1x4<9 1x5<6 13x5<2x4)
+ (−2(x1 + x2 + x4 − 4.6) + 1)
(5x4 + 7x5 1x2>0(1x3=0 + 1x3>0 1−2x1+3x2−7x3≥0))

+ (−2(x2 + x3 + x5 − 3) + 1)
(7x5 + 5x4 1x2>0(1x1=0 + 1x1>0 13x1−x2+x3<0))

for the Lyapunov function

g2(x) = (x1 + x2 + x4 − r2,1)
2 + (x2 + x3 + x5 − r2,2)

2,
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where r2,1 = (2λ1 + λ2)/(2µ1) and r2,2 = (2λ3 + λ2)/(2µ2) are used to obtain
a tighter upper bound. Note that r2,1 is an approximation to the average
number of busy servers in pool 1. Hence, (x1 + x2 + x4 − r2,1) is an approxi-
mation to the total number of customers in queues 1 and 2 plus the average
number of idle servers in pool 1 if x4 = N1. It is an approximation to the
number of customers in queue 2 plus the difference between the number of
busy servers and the average number of busy servers in pool 1 if x4 < N1

(i.e., x1 = 0). The explanation for r2,2 is similar. In this way, we again
have a Lyapunov function that depends on the real parameters of the model.
We obtain the global maximum drift as c2 = 82. For ǫ = 0.1, we compute
γ2 = 738, (Low2, High2) = (0, 26), and H2(0, 26) = 20, 142.

Example 3. (V–model with 3 types of customers (cntd.)) We let λ1 = 32,
λ2 = 24, λ3 = 21, µ = 4, and N = 25 be the parameters. Then the drift is
given by

d3,3(x1, x2, x3, x4) = 2(x1 + x2 + x3 + x4 − 19.25)(77− 4x4) + (77 + 4x4)

for the Lyapunov function

g3,3(x) = (x1 + x2 + x3 + x4 − r3,3)
2,

where r3,3 = (λ1 + λ2 + λ3)/µ is used to obtain a tighter upper bound.
Note that r3,3 is the average number of busy servers in the pool. Hence,
(x1 + x2 + x3 + x4 − r3,3) is the total number of customers in queues 1, 2,
and 3 plus the average number of idle servers in the pool if x4 = N . It is
the difference between the number of busy servers and the average number
of busy servers in the pool if x4 < N (i.e., x1 = 0, x2 = 0, x3 = 0). Again we
have a Lyapunov function that depends on the real parameters of the model.
We obtain the global maximum drift as c3,3 = 152.5. For ǫ = 0.1, we compute
γ3,3 = 1, 372.5, (Low3,3, High3,3) = (0, 28), and H3,3(0, 28) = 24, 414.

As for the V–model with 2 types of customers, we let λ1 = 50, λ2 = 47,
µ = 4, and N = 25 be the parameters. Then the drift is given by

d3,2(x1, x2, x3) = 2(x1 + x2 + x3 − 24.25)(97− 4x3) + (97 + 4x3)

for the Lyapunov function

g3,2(x) = (x1 + x2 + x3 − r3,2)
2,
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where r3,2 = (λ1 + λ2)/µ is used to obtain a tighter upper bound. We
obtain the global maximum drift as c3,2 = 192.5. For ǫ = 0.1, we compute
γ3,2 = 1, 732.5, (Low3,2, High3,2) = (0, 321), and H3,2(0, 321) = 103, 709.

Finally, for the V–model with 4 types of customers, we let λ1 = 21,
λ2 = 17, λ3 = 14, λ4 = 11, µ = 4, and N = 25 be the parameters. Then the
drift is given by

d3,4(x1, x2, x3, x4, x5) = 2(x1+x2+x3+x4+x5−15.75)(63−4x5)+(63+4x5)

for the Lyapunov function

g3,4(x) = (x1 + x2 + x3 + x4 + x5 − r3,4)
2,

where r3,4 = (λ1 + λ2 + λ3 + λ4)/µ is used to obtain a tighter upper bound.
We obtain the global maximum drift as c3,4 = 126.5. For ǫ = 0.1, we compute
γ3,4 = 1, 138.5, (Low3,4, High3,4) = (0, 9), and H3,4(0, 9) = 10, 025.

Example 4. (Gene expression (cntd.)) We let λ = 0.2, µ = δ2 = 0.05, and
δ1 = 0.015 be the parameters. Then the drift is given by

d4(x1, x2) = −0.03x2
1 − 0.1x2

2 + 0.1x1x2 + 0.465x1 + 0.05x2 + 0.2

for the Lyapunov function

g4(x) = x2
1 + x2

2.

We obtain the global maximum drift as c4 = 12.21. For ǫ = 0.1, we compute
γ4 = 109.89, (Low4, High4) = (0, 205), and H4(0, 205) = 42, 436.

Example 5. (Metabolite synthesis with 2 metabolites and 1 enzyme (cntd.))
We let kA = kB = 0.3, KI = 16, k2 = 0.05, µ = 0.1, KR = 8, and kEA

= 0.02
be the parameters. Then the drift is given by

d5(x1, x2, x3) =

(9.6x1x3 + 4.8x3)/(x1 + 16) + (0.32x3 + 0.16)/(x1 + 8)− 0.1x2
1x2

− 0.1x1x
2
2 + 0.1x1x2 − 0.2x2

1 − 0.2x2
2 − 0.2x2

3 + 0.1x1 + 0.7x2 + 0.1x3 + 0.3

for the Lyapunov function

g5(x) = x2
1 + x2

2 + x2
3.
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The HOM4PS2-2.0 package requires the equation systems to consist of poly-
nomials. Therefore we put the partial derivatives of x1 and x3 over a common
denominator. We use the numerator of the derivative as input since the de-
nominator is always positive for the chosen parameters. Then we obtain the
global maximum drift as c5 = 4.63. For ǫ = 0.1, we compute γ5 = 41.67,
(Low5, High5) = (0, 24), and H5(0, 24) = 15, 625.

Example 6. (Metabolite synthesis with 2 metabolites and 2 enzymes
(cntd.)) We let kA = kB = 0.3, KI = 50, k2 = 0.05, µ = 0.2, KR = 25,
and kEA

= kEB
= 0.02 be the parameters. Then the drift is given by

d6(x1, x2, x3, x4) =

(30x1x3 + 15x3)/(x1 + 50) + (x3 + 0.5)/(x1 + 25)
+ (30x2x4 + 15x4)/(x2 + 50) + (x4 + 0.5)/(x2 + 25)
− 0.1x2

1x2 − 0.1x1x
2
2 + 0.1x1x2 − 0.4x2

1 − 0.4x2
2 − 0.4x2

3 − 0.4x2
4

+ 0.2x1 + 0.2x2 + 0.2x3 + 0.2x4

for the Lyapunov function

g6(x) = x2
1 + x2

2 + x2
3 + x2

4.

We proceed as in the previous example and compute the global maximum
drift as c6 = 0.98. For ǫ = 0.1, we obtain γ6 = 8.82, (Low6, High6) = (0, 8),
and H6(0, 8) = 6, 561.

Example 7. (Repressilator (cntd.)) We let λ1 = λ2 = λ3 = 1.3, δ1 = δ2 =
δ3 = 0.6, β0 = 1, and β1 = 0.5 be the parameters. Then the drift becomes

d7(x1, x2, x3, x4, x5, x6) =
− 3.2x2

1 + 2x2
1x4 − x1x4 − 2.6x1x6 + 5.2x1 − 1.3x6 + 1.3

− 3.2x2
2 + 2x2

2x5 − x2x5 − 2.6x2x4 + 5.2x2 − 1.3x4 + 1.3
− 3.2x2

3 + 2x2
3x6 − x3x6 − 2.6x3x5 + 5.2x3 − 1.3x5 + 1.3

for the Lyapunov function

g7(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6.

We obtain the global maximum drift as c7 = 9.9. For ǫ = 0.1, we compute
γ7 = 89.1, (Low7, High7) = (0, 10), and H7(0, 10) = 10, 648.

Observe that Low turns out to be 0 in all models for the chosen pa-
rameters. If this were not the case, it would still be possible to work with
RHigh = 0 as shown in [17].
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4.2. Reporting memory usage

We consider the solution of the linear system of equations

RlAl = Bl starting from l = High− 1 down to 0

for the rectangular matrix Rl of unknowns, where

Al = Ql+1,l+1 +Rl+1Ql+2,l+1

is the square coefficient matrix and

Bl = −Ql,l+1

is the rectangular matrix of multiple right-hand sides such that

Rl ∈ R
|S(l)|×|S(l+1)|
≥0 , Al ∈ R

|S(l+1)|×|S(l+1)|, and Bl ∈ R
|S(l)|×|S(l+1)|. Clearly,

Rl+1 must be readily available at step l for this to be possible.
Having observed in our previous Matlab implementation [17] that the Rl

matrices are not necessarily very sparse (see Figure 4), we considered their
full and sparse storages. We remark that models of Examples 4, 5, and 6 have
only one state at level 0. Hence, R0 is (1 × 1) and positive, which directly
implies a nonzero density of 100% for l = 0 in these examples (see Figures
4 (f), (g), and (h)). If we exclude the change in the value of the nonzero
density at the boundary level when going from 1 to 0 and observe its value
for l ≤ High− 1, we see that it is at least 45% and attained by the V–model
with 4 type of customers (see Figure 4 (e)).

In order to compute Rl, we need to obtain the nonzero blocks Ql+1,l+1

and Ql+2,l+1 of Q, form Al by multiplying Rl+1 with Ql+2,l+1, and then add
Ql+1,l+1 to the product. At the end, Al should be LU factorized and the
linear system solved for each right-hand side vector in Bl. The matrix–
matrix multiplication Rl+1Ql+2,l+1 can proceed in two different ways. First,
Ql+2,l+1 may be generated from the Kronecker representation as a sparse
matrix and the pre-multiplication with Rl+1 performed. Second, the efficient
vector–Kronecker product algorithm [4, 28] can be used to multiply rows of
Rl+1 with Ql+2,l+1 while the latter operand is being held in Kronecker form.

When theRl matrices are chosen to be stored as full matrices, a temporary
matrix in full storage needs to be kept to form Al and then compute its LU
factorization in place. Since RHigh = 0, the sparsity pattern of AHigh−1 is
equal to that of QHigh,High. Therefore, it makes sense to obtain RHigh−1 using
sparse LU factorization even though it will be stored as a full matrix. Now,
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(c) V (2 types)
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(d) V (3 types)

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Level

N
on

ze
ro

 d
en

si
ty
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(i) Repressilator

Figure 4: Nonzero densities of Rl matrices at levels l = 0 . . . , High− 1 for the models

although all the Rl matrices should be kept until the end of the computation
to obtain the steady–state solution and the sizes of the matrices are known at
the outset (i.e., Rl is (|S

(l)| × |S(l+1)|) and Al is (|S
(l+1)| × |S(l+1)|)), it is still

possible to use two different memory allocation–deallocation schemes for the
Rl matrices and the temporary matrix. First, memory to store all Rl matrices
from l = High−1 down to 0 and the largest temporary matrix, AHigh−1, can
be allocated at the outset and deallocated at the end of the computation.
In this scheme, successive Al matrices will overwrite the same temporary
matrix. Second, it is possible to deallocate the memory of Al at the end of
step l and allocate the memory for Rl−1 and Al−1 at the beginning of step
(l−1). When the temporary matrix is allocated once at the beginning of the
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program, peak total memory usage is higher especially when nI is larger. See
Table 8 in which peak total memory usage values are computed analytically
in Megabytes (MB) using the sizes of the matrices across all models for
the full storage of Rl matrices, Rl matrices plus temporary matrix AHigh−1

at the outset, and Rl matrices plus Al at each level. In the next section,
these analytically obtained values will be used to verify the memory usage
measurements in the numerical experiments. On the other hand, when the
Rl matrices are chosen to be stored as sparse matrices, the temporary matrix
to form Al is also stored as a sparse matrix and memory is allocated at each
level. This implies that extra memory needs to be allocated for the sparse
LU factorization of Al since there is expected to be fill-in.

Table 8: Peak total memory usage of full storage Rl matrices, Rl matrices plus AHigh−1

at outset, and Rl matrices plus Al matrices at each level for the models

Model High Peak Rl Rl, AHigh−1 at Rl, Al at each
(MB) outset (MB) level (MB)

N 62 0 412 431 412
W 26 5 192 228 192

V (2 types) 321 0 354 358 354
V (3 types) 28 6 270 318 270
V (4 types) 9 7 125 219 150

Gene expression 205 2 93 94 93
Met. syn. 1 enz. 24 6 127 153 127
Met. syn. 2 enz. 8 6 57 106 71
Repressilator 10 6 116 172 120

We monitor the memory allocation of the LDQBD solver with the pidstat
command of the sysstat package under Linux. This command returns the
memory allocated by the program at run time in one second intervals. When
the Rl matrices and the temporary matrix are allocated at each level, the
peak total memory usage is attained at a particular level, say Peak, between
0 and High − 1 (see Table 8). If allocated memory is monitored at Peak
(meaning granularity of the monitoring period is small enough), peak total
memory usage is obtained correctly. When Peak is close to 0 and the Rl

matrices around level 0 are computed relatively fast, peak total memory us-
age may not be reported correctly. In order to circumvent this measurement
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problem, we repeated the numerical experiments three times for each model,
reported the maximum of the peak total memory usages, and indicated the
level at which the maximum is attained as Peak.

In the proposed Kronecker representation of Definition 6, nonzero entries
of transition matrices of variables should be available during computation
when required. In many cases, transition matrices have specific nonzero
structures such as being subdiagonal, diagonal, or superdiagonal. If two
transition matrices belonging to the same transition class have the same
nonzero structure, then it is possible for the two matrices to share the storage
space of one vector. The vector will be allocated as long as the larger state
space size of two variables in this case. Besides, when I

(0,1)
h = 1 and I

(l,u)
h = 1

for h = 1, . . . , n, u = 1, . . . , nI , and l > 0, memory required to store the
nonzero entries of submatrices of transition matrices at a given level is smaller
than that of a higher level. In this case, it is feasible to allocate memory to
store submatrices once at the highest level and keep reusing it when moving
from level High down to 0. Otherwise, memory necessary to store nonzero
entries may be allocated and deallocated on the fly. Furthermore, vector–
Kronecker product multiplication requires an additional vector over vector–
matrix multiplication. When Rl and Al are stored as sparse matrices, an
additional temporary vector is used to compute, compact, and store the
rows of Al. Besides, adding a row of a matrix in Kronecker form to a vector
requires two additional vectors. We also store the values of the transition
rate functions for states in levels l− 1,l,l+1 when processing level l in order
not to evaluate the functions more than once. We allocate all the additional
vectors at the beginning of the program and deallocate them at the end.
Amount of memory allocated for all these vectors is negligible compared to
the total amount of memory allocated for the Rl matrices. Hence, we do not
report them separately.

The more recent approach in [31] that reduces memory requirements by
not having to store all Rl matrices for l = High−1 down to 0 simultaneously
is also implemented. The approach is based on a Horner-like computational
scheme. In order to evaluate K different functions of the steady-state dis-
tribution, (K + 1) temporary vectors as long as the number of states within
levels 0 through High must be used. For instance, if the mean is to be com-
puted for K = nI countably infinite variables, (nI + 1) temporary vectors
of length H(0, High) must be allocated. The additional vector is employed
for normalization purposes. At step l, Rl is computed as usual and stored.
This implies that Rl+1 from the previous step need not be in memory any
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longer, and hence, Rl is the only conditional expected sojourn time matrix in
memory at step l in this approach. Then Rl is multiplied with the subvectors
corresponding to level (l+1) of the (K+1) temporary vectors. The product
is added to the running sum of subvectors corresponding to level l of the
(K+1) temporary vectors in order to keep on accumulating steady-state ex-
pectations. This alternative approach is not able to compute the steady-state
distribution and does not introduce any time savings, but yields significant
memory savings at the expense of loss of the accuracy measure as we shall
see in the next section.

5. Numerical results

We performed experiments on a PC with an Intel Core2 Duo 1.83GHz
processor and 4 Gigabytes (GB) of main memory. The Rl and Al matrices
are allocated at each level having observed that it is the more memory ef-
ficient implementation in Table 8. We considered the eight LDQBD solvers
listed in Table 9, where π indicates that the solver computes the steady-state
distribution and Eπ indicates that the solver uses the alternative memory ef-
ficient approach [31], thus computing steady-state expectations but not the
distribution. Timing results are provided in seconds (s) of CPU time.

Table 9: LDQBD solvers used

Solver Type Rl Ql+1,l

1 π Full Kronecker
2 Sparse
3 Sparse Kronecker
4 Sparse
5 Eπ Full Kronecker
6 Sparse
7 Sparse Kronecker
8 Sparse

In the first set of results in Table 10 we present, solver Eπ emerges as
the better one in terms of memory usage. This is in line with our expecta-
tions. Memory savings can be substantial as in the N–model, V–model with
2 types of customers, and the gene expression model. In between full and
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sparse storages of Rl matrices, full storage is better in all models of systems
of stochastic chemical kinetics and the W–model. These are models having
very high nonzero densities in the Rl matrices for l = 0, . . . , High − 1 (see
Figure 4). In the call center models except the W–model, sparse storage
yields better results than full storage in terms of memory usage. When there
are memory savings with sparse storage of Rl matrices, the respective time
savings are even more substantial. In this case, the LU factorization of Al

seems to be benefiting considerably from sparsity. On the other hand, there
is no significant difference between using sparse versus Kronecker represen-
tations of the Ql+1,l matrices. We believe this to be the case because each
subdiagonal nonzero block is used once and the sparse generation procedure
associated with it and the premultiplication with Rl+1 amount to perform-
ing the same number of floating-point operations as would be done by the
vector–Kronecker product multiplication algorithm between the rows of Rl+1

and the subdiagonal nonzero block when the latter is kept in Kronecker form.
Tables 11 and 12 indicate that solver Eπ is able to compute mean values

of variables stably as solver π. The reported relative errors of the mean
values obtained with solver Eπ with respect to those obtained with solver π
are close to machine precision in all cases.

In Figures 5 and 6, we investigate the scalability of the eight LDQBD
solvers for increasing values of High. Note that we have three models with
nI = 2 (N–model, V–model with 2 types of customers, and gene expres-
sion model), four models with nI = 3 (W–model, V–model with 3 types
of customers, molecule synthesis model with 1 enzyme, and repressilator
model), and two models with nI = 4 (V–model with 4 types of customers
and molecule syntesis model with 2 enzymes). Since time complexity of Al’s
LU factorization at level l is cubic in the order of |S(l)| for dense Rl matri-
ces and |S(l)| is a polynomial with degree (l− 1), time requirements become
more pronounced for models with higher nI values. The situation regarding
memory is better since the requirements at level l is quadratic in |S(l)| for
dense Rl matrices. Clearly, the time and memory requirements are much
better when the Rl matrices are sparser.

In Table 13, we provide the residual norms obtained with solver π for
the steady-state solutions π̃ of models with six different increasing values of
High. The results confirm our recent findings in [17] that it is possible to
improve the accuracy of the solution in the residual norm (toward machine
precision) by considering larger values of High in each model.
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Table 10: Time in s (Ti) and memory requirements in MB (Mi) for LDQBD solver i,
i = 1, . . . , 8, in the models

Model High T1 T2 T3 T4 T5 T6 T7 T8

M1 M2 M3 M4 M5 M6 M7 M8

N 62 149 146 51 48 150 146 51 47
417 416 363 364 43 43 28 28

W 26 79 78 106 105 79 78 106 105
196 194 284 284 71 71 93 93

V (2 types) 321 44 43 16 15 44 42 15 15
358 359 341 340 11 10 9 7

V (3 types) 28 127 126 21 20 127 127 21 20
273 273 205 202 93 93 44 44

V (4 types) 9 46 46 8 8 45 46 8 8
154 154 88 89 148 148 57 57

Gene expression 205 10 10 14 14 10 10 14 14
97 96 143 142 6 6 8 7

Met. syn. 1 enz. 24 42 43 67 67 43 42 68 67
128 130 189 190 52 51 72 72

Met. syn. 2 enz. 8 18 18 25 25 18 18 25 25
75 75 106 106 75 75 85 85

Repressilator 10 45 45 61 60 45 45 61 61
124 124 148 148 98 98 108 108

6. Conclusion

We have considered the Kronecker representation of nonzero blocks of
transition matrices underlying level-dependent QBD processes. A represen-
tation proposed recently for models from systems of stochastic chemical ki-
netics has been extended so that queueing network models of call centers can
also be analyzed for their steady-state. The improved representation requires
the partitions of state spaces of countably infinite state variables obtained
recently and the state spaces of the finite state variables to be partitioned to
eliminate unreachable states from the product state space of the model.

An analysis regarding peak memory usage has suggested that it is better
to allocate memory for the matrix of conditional expected sojourn times and
the coefficient matrix of the linear system to be solved at each level before
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the computation at that level commences rather than at the outset. Having
decided on when to allocate memory for the matrices used in the matrix an-
alytic solution, an extensive numerical study is undertaken in which full ver-
sus sparse storages of the matrices of conditional expected sojourn times and
sparse versus Kronecker representations of the subdiagonal nonzero blocks
are considered for implementation. Results indicate that it is better to opt
for full storage of the matrices of conditional expected sojourn times when
they are relatively dense, whereas either of sparse and Kronecker representa-
tions of the subdiagonal nonzero blocks can be used. Besides, a more recent
approach that enables the computation of steady-state expectations without
computing the steady-state distribution has been shown to perform stably
and can be utilized to improve memory usage at the expense of losing the
accuracy measure associated with the solution. Ongoing work is concerned
with obtaining accuracy measures for this approach as well, but they are
not yet available. Both the more recent approach and the original matrix
analytic solution have room for improvement regarding their scalability for
models with a large number of countably infinite state variables.
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Table 11: Mean values of variables, their errors and relative errors for solver Eπ with
respect to the mean values obtained with solver π in call center models

Model High Variable Mean Error Rel. Err
N 62 X1 0.03944 2e− 15 5e− 14

X2 0.03051 1e− 15 3e− 14
X3 3.15592 1e− 13 4e− 14
X4 2.23857 2e− 13 7e− 14
X5 3.55556 1e− 13 3e− 14

W 26 X1 0.00831 2e− 16 3e− 14
X2 0.00351 1e− 16 3e− 14
X3 0.06069 2e− 15 3e− 14
X4 3.74418 9e− 14 3e− 14
X5 3.61130 1e− 13 3e− 14

V (2 types) 321 X1 0.83072 2e− 14 3e− 14
X2 25.96154 5e− 13 2e− 14
X3 26.54969 4e− 13 2e− 14

V (3 types) 28 X1 0.07139 3e− 15 4e− 14
X2 0.12167 3e− 15 2e− 14
X3 0.31274 1e− 14 4e− 14
X4 19.24928 8e− 13 4e− 14

V (4 types) 9 X1 0.00570 3e− 17 5e− 15
X2 0.00743 2e− 17 3e− 15
X3 0.01001 5e− 17 5e− 15
X4 0.01299 4e− 17 3e− 15
X5 15.74957 8e− 14 5e− 15
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Table 12: Mean values of variables, their errors and relative errors for solver Eπ with
respect to the mean values obtained with solver π in models of systems of stochastic
chemical kinetics

Model High Variable Mean Error Rel. Err
Gene expression 205 X1 13.33333 4e− 14 3e− 15

X2 13.33333 9e− 14 7e− 15
Met. syn. 1 enz. 24 X1 0.28097 4e− 15 1e− 14

X2 2.73546 2e− 14 9e− 15
X3 0.19442 2e− 15 8e− 15

Met. Syn. 2 enz. 8 X1 0.14287 2e− 15 1e− 14
X2 0.14287 2e− 15 1e− 14
X3 0.09945 1e− 15 1e− 14
X4 0.09945 1e− 15 1e− 14

Repressilator 10 X1 0.92229 2e− 16 2e− 16
X2 0.92229 1e− 15 1e− 15
X3 0.92229 4e− 16 5e− 16
X4 0.57422 4e− 15 7e− 15
X5 0.57422 4e− 15 7e− 15
X6 0.57422 4e− 15 7e− 15
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Figure 5: Time and memory requirements of LDQBD solvers for increasing High values
of the call center models
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(d) Repressilator

Figure 6: Time and memory requirements of LDQBD solvers for increasing High values
of the models for systems of stochastic chemical kinetics
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Table 13: Six different (High, ‖π̃Q‖∞) pairs obtained with solver π for models with in-
creasing values of High

Model Six (High, ‖π̃Q‖∞) pairs
N (62,2e-15) (65,2e-15) (68,2e-15)

(71,2e-15) (74,2e-15) (77,2e-15)
W (26,2e-14) (28,3e-15) (30,2e-15)

(32,2e-15) (34,2e-15) (36,2e-15)
V (2 types) (321,4e-6) (351,1e-6) (381,6e-7)

(411,2e-7) (441,1e-7) (471,4e-8)
V (3 types) (28,8e-5) (30,5e-5) (32,3e-5)

(34,2e-5) (36,1e-5) (38,6e-6)
V (4 types) (9,1e-4) (10,6e-5) (11,3e-5)

(12,2e-5) (13,9e-6) (14,5e-6)
Gene expression (205,2e-17) (225,2e-17) (245,2e-17)

(265,2e-17) (285,2e-17) (305,2e-17)
Met. syn. 1 enz. (24,4e-15) (26,5e-16) (28,4e-17)

(30,5e-17) (32,5e-17) (34,5e-17)
Met. syn. 2 enz. (8,3e-6) (9,8e-7) (10,2e-7)

(11,4e-8) (12,8e-9) (13,2e-9)
Repressilator (10,9e-6) (11,2e-6) (12,3e-7)

(13,4e-8) (14,8e-9) (15,1e-9)
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