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ABSTRACT

AN ACTUATED FLEXIBLE SPINAL MECHANISM
FOR A BOUNDING QUADRUPEDAL ROBOT

Utku Çulha

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. Uluç Saranlı

January, 2012

Evolution and experience based learning have given animals body structures and

motion capabilities to survive in the nature by achieving many complicated tasks.

Among these animals, legged vertebrates use their musculoskeletal bodies up to

the limits to achieve actions involving high speeds and agile maneuvers. More-

over the flexible spine plays a very important role in providing auxiliary power

and dexterity for such dynamic behaviors. Robotics research tries to imitate such

dynamic abilities on mechanical platforms. However, most existing robots per-

forming these dynamic motions does not include such a flexible spine architecture.

In this thesis we investigate how quadrupedal bounding can be achieved with the

help of an actuated flexible spine. Depending upon biological correspondences we

first present a novel quadruped robot model with an actuated spine and relate

it with our proposed new bounding gait controller model. By optimizing our

model and a standard stiff backed model via repetitive parametric methods, we

investigate the role of spinal actuation on the performance enhancements of the

flexible model. By achieving higher ground speeds and hopping heights we discuss

the relations between flexible body structure and stride properties of a dynamic

bounding gait. Furthermore, we present an analytical model of the proposed

robot structure along with the spinal architecture and analyze the dynamics and

active forces on the overall system. By gathering simulation results we question

how such a flexible spine system can be improved to achieve higher performances

during dynamic gaits.

Keywords: Bio-inspired robotics, Legged robots, Dynamic Locomotion,

Quadrupedal bounding, Spinal actuation, Gait optimization.
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ÖZET

SIÇRAYARAK KOS.AN DÖRT BACAKLI BİR ROBOT
İÇİN KONTROL EDİLEBİLİR ESNEK BEL OMURGA

MEKANİZMASI

Utku Çulha

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Assist. Prof. Dr. Uluç Saranlı

Ocak, 2012

Evrim ve tecrübe tabanlı öğrenme süreci hayvanlara doğada hayatta kalabilmeleri

için birçok karmas.ık görevi yerine getirebilen vücut yapıları ve hareket kabiliyet-

leri vermis.tir. Bu hayvanlar arasında özellikle bacaklı omurgalılar, yüksek hızlara

eris.mek ve keskin manevralar yapabilmek için kaslı iskelet vücut yapılarını kul-

lanırlar. Buna benzer dinamik davranıs.larda esnek omurga, havyana fazladan güç

ve esneklik desteği vererek önemli bir rol oynamaktadır. Robotik aras.tırmaları

buna benzer dinamik becerileri mekanik sistemlerde gösterebilmeyi amac.lar.

Buna rağmen günümüzde benzeri dinamik hareketleri yapabilen robotlar esnek

omurga sistemlerine sahip değillerdir. Biz bu tez ile kontrol edilebilir omurga

sisteminin dört bacaklı robotlarda sıçrayarak kos.ma hareketi üzerindeki etkilerini

aras.tırıyoruz. Biyolojik kaynaklara dayanarak, ilk olarak yeni bir kontrol edilebilir

omurgaya sahip dört bacaklı robot modeli sunuyor ve bu modeli yine yeni olarak

sunduğumuz sıçrayarak kos.ma kontrolü modeli ile bağdas.tırıyoruz. Çok tekrarlı

değis.kenli yöntemler kullanarak, sunduğumuz esnek robot ve standart robot mod-

elini eniyiles.tiriyor ve bununla beraber omurga kontrolünün sunduğumuz es-

nek robot modeli üzerindeki bas.arım etkilerini aras.tırıyoruz. Daha yüksek hız

ve zıplama yükseklikleri elde ederek esnek vücut yapısı ile dinamik sıçrayarak

kos.ma hareketinin adım özellikleri arasındaki bağı inceliyoruz. Ayrıca tezimizde,

sunduğumuz robot modelinin ve robottaki omurga sisteminin analitik incelemesini

yaparak, bütün sistemdeki dinamikleri ve kuvvetleri aras.tırıyoruz. Simülasyon

sonuçlarına bakarak esnek bir omurga sisteminin, robotlardan daha yüksek verim

alabilmek için ne dereceye kadar gelis.tirilebileceğini sorguluyoruz.

Anahtar sözcükler : Biyolojiden esinlenmis. robotlar, Bacaklı robotlar, Dinamik

hareket, Dört bacakla sıçrayarak kos.ma, Omurga kontrolü, Yürüyüs. eniyiles.tirme.
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Chapter 1

Introduction

1.1 Dexterous Robotics and Locomotion

As a result advances in materials science and manufacturing and production of

actuation technologies, it has become easier to design and build robots that are

more mobile and efficient and that can be used in many different areas in daily

life. Currently, mobile and dexterous robots have been used in various tasks such

as search and rescue, rehabilitation, surgical operations, exploration and many

others where human intervention could be risky or unnecessary [29]. The need

for robots increases in parallel with improvements in robotics technology. While

robots become more complex and their sets of skills increase, the desired actions

that they are asked to complete are also becoming more complex.

However, in almost all of these domains, locomotion, or the action of moving

the subject body from one point to another, is one of the most important parts

of the whole task. The method used for locomotion also depends on the desired

duty of the robot. While many robotic platforms prefer to use wheels due to

a large body of knowledge and experience on the design of their structure and

control, a relatively new research area focuses on the usage of legs in robots, in

manners similar to how they are used in nature.

1
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From this perspective, inspiration from nature plays a very important role in

designing leg structures for robots in order to succeed in performing locomotion

tasks that might occur frequently in robotic applications. When high speed and

maneuverability are required, there are many striking examples in nature which

successfully demonstrate the agility of leg morphologies [15]. Animals from the

cat family such as leopards and cheetahs and other mammals such as gazelles

and goats demonstrate very high performance while running with high speeds, or

avoiding obstacles during locomotion. These animals also use their leg and muscle

morphologies in the most efficient way to minimize energy consumption, resulting

in efficiency in catching their preys or running away from their predators on

complex and unstructured outdoor environments [33]. When locomotion patterns

and behaviors of these animals are investigated, it is found that the agility of

such maneuvers depends on how they maintain balance during their motion.

Compared to static balance requirements, where the center of mass of the subject

body must stay inside a triangle formed by the group of legs touching the ground

at the same time, dynamic balance does not impose such constraints. For different

locomotion gaits performed by these animals, there are phases of the gait when

none of the legs are touching the ground, but the animal is still in balance.

As a result, these animals can run with high speeds and overcome obstacles by

jumping high in the air. For these reasons, many researchers in the robotics field

have been inspired from these animals and their legged morphologies to create

their own bio-inspired multi-legged robots capable of performing gaits based on

dynamic balance [29].

Quadrupedal animals in nature adapt different dynamic gaits due to the re-

quirements of different tasks and actions. Considering locomotion in general,

gaits are classified with respect to the periods of each leg’s event of touching the

ground. As these events happen periodically, the whole gait can be represented by

only one period, showing the event times in one stride. While some quadrupedal

gaits like amble, canter and gallop have asymmetrical patterns with respect to leg

events, some gaits like trot, pace, bound and pronk have symmetrical leg patterns

[1]. Due to differing advantages and disadvantages of each of these gaits, animals
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prefer to switch between them during their locomotion. For example, while gal-

loping lets the animal achieve high speeds, bounding and pronking decrease the

speed but enable jumping over high obstacles.

Among these dynamic locomotion gaits, bounding stands out with its sym-

metrical pattern and its maneuverability. In nature, most quadrupedal animals

switch to the bounding gait in order to achieve obstacle avoidance in moderate

speeds [6]. The symmetrical pattern of the gait has also caught the attention

of most robotics researchers because it allows easy implementation with complex

mechanisms and control systems. Furthermore, by reducing this gait into simple

phases, many quadruped robots have performed bounding by using simple control

strategies and leg structures [13, 17, 24, 31].

When all current quadruped robots capable of dynamic locomotion gaits are

investigated, it can be seen that nearly all approaches focus on the structure and

design of the legs, the complexity and robustness of the control systems or the

type of actuation used in the mechanism. Even though these robots are inspired

from natural examples, one of the major mechanisms in animals seems to be

missing in the implementations: the flexible spine. Some of the fastest and most

agile land running mammals use their flexible spine to enhance their performance

and energy efficiency during high speed locomotion. The musculoskeletal spine

acts as a compliant mechanism to increase the body flexibility, as well as an

intermittent unit to transfer energy from front muscles to back or vice versa [3].

It is also used like a spring to give additional thrust to the subject body for

jumping tasks [20].

By observing the efficiency of spinal flexibility in nature and locomotion per-

formance of mentioned robotic applications, the question of how such a compliant

mechanism can be implemented for quadrupedal robots. The literature in this do-

main contains few attempts to answer this question by implementing an actuated

or passive spine structure to enhance dynamic locomotion gaits used [18, 32].

Even though the idea of implementing a spine mechanism similar to animals

sounds trivial, the researchers have focused on solving more basic problems in
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locomotion such as leg designs and controller systems. However, the state-of-the-

art robotic systems can now provide a large range of solutions to these problems

and the literature in this field has a big volume. Therefore, by depending on the

brought solutions to previous problems, it is now easier to focus on the question

of spinal actuation and its effects on dynamic locomotion.

1.2 Contributions

Our main contributions in this thesis are to first introduce a proof of concept

model for a spinal actuation mechanism for a planar quadruped robot, running

with a bounding gait. This model addresses the question of how a flexible spine

could enhance the locomotion performance compared to a stiff trunk. Along with

this concept, a new bounding controller that fits this flexible spine model has

also been proposed. The comparison of a state-of-the-art stiff backed quadruped

model and a newly proposed flexible spine model, running according to a widely

used bounding model and the proposed new bounding model has been presented

[9]. It is shown that the proposed structure and controller for a flexible spine

increases locomotion performance for horizontal body speed and jumping heights

both of which are found to be the results of increased stride length.

This thesis expands this concept’s contribution by also introducing a detailed

mathematical model of a planar quadruped robot model with a flexible spine. We

derive the equations of motion for this new spinal mechanism and find various

forces acting on the spine and legs. This derivation also enables us to investigate

spinal thrust and necessary compliant mechanisms to enhance the locomotion

performance as well as decreasing the power costs.

As an overview this thesis proves the positive effects of using a flexible spine

mechanism as in a manner similar to how it is used in many mammals, by com-

paring simulation results of a stiff backed quadruped robot with those of the

proposed flexible backed robot.
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1.3 Thesis Organization

In Chapter 2 we briefly give background information related to the scope of this

thesis. The chapter explains dynamic locomotion gaits used in animals and bio-

inspired robots. Then, we focus on bounding gait and present its widely used

and accepted control models. This chapter also gives examples from robotic

applications on bounding gait and the usage of flexible spine in quadrupedal

locomotion. We also explain major gait optimization techniques and focus on

the Nelder and Mead optimization algorithm which we used to optimize the

parameter set of our quadrupedal models.

In Chapter 3, we describe our proof of concept for a quadruped robot with

an actuated spine. In this chapter, the structural model of the robot, the newly

proposed bounding gait controller model, and the comparative simulation exper-

iments done are presented and evaluated.

Chapter 4 presents analytical derivation of equations of motion of flexible

quadruped model which gives information about dynamics and forces acting on

legs and spine. Additional features such as leg retraction and ground friction are

also explained. Simulations done with this model and their results are explained

at the end of this chapter, along with the discussion of the overall mechanism.

In the last Chapter 5 we give a summary of what we have presented in the

thesis and suggest further expansions our research.



Chapter 2

Background

2.1 Locomotion Gaits

2.1.1 Major Gait Types

Animals have adapted different locomotion types through evolution and learning

through experience. Even though animals differ greatly in size, functionality and

form, a big portion of them use common locomotion gaits. These gait types can

be classified with respect to the duration of feet contact with the ground and the

symmetry of events within a single stride [1].

Alexander describes a single stride in the whole gait as a complete cycle of

leg events starting from the touching down of one particular leg until its next

touchdown and all other legs touching the ground only for once during this period

[1]. He also uses a descriptor called dutyfactor of a foot β, which denotes the

fraction of a whole stride period for which the foot is on the ground. Considering

this factor, he selects a reference foot, which is generally the fore left foot, and

describes different types of gaits in quadrupedal mammals as in Figure 2.1.

It can be seen from the figure that amble, canter and gallops show asymmetric

patterns as each foot spends a different duration on the ground. However, other

6
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Figure 2.1: Quadrupedal gait types inspired from Alexander’s work. The group
on the left shows symmetrical patterns, while the four gait types on the right
have asymmetric periods for each leg.

gait types represent symmetrical patterns. Differences in each gait also brings

different advantages. While animals prefer symmetric gaits for slow speeds but

complex maneuvers, asymmetric gaits are generally preferred to achieve higher

speeds on dynamically stable tracks. Picturing a horse running at high speeds

with a rotary gallop and an antelope jumping over high obstacles using the pronk-

ing gait can give the reader an idea about the usage of these gaits.

In robotics, symmetric gaits are generally more preferred than asymmetric

gaits. The reason for such a choice lies within the simplicity of representing a

single stride with less complexity. This low complexity also helps researchers to

identify gait controllers on reduced space dimensions since groups of legs having

identical event durations and triggers can be represented as a single leg. For

example, as all of the legs in the pronking gait act identically within the stride,

all 4 legs can be represented as a single leg [2]. Also, legs on the same diagonal

line in the trot gait or legs on the same side of the body in the pace gait can

reduce control complexity in the overall system [27].
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2.1.2 A Gait Model For Bounding

Compared to the other dynamic locomotion gaits, bounding is the most imple-

mented on robotic platforms. Due to its symmetrical pattern and coupled event

maps for front and back legs, bounding reduces control complexity. However, in

order to understand the advantages of this gait, one must analyze the mechanics

of phases within a single stride of bounding.

First of all, the most appealing features of this gait is the coupled use of the

front and back legs [1]. In quadrupedal bounding, we see that both of the front

legs have exactly the same periods of motion within the overall stride. In other

words, they touch the ground at the same time, and leave the ground at the same

time. This is also true for the two back legs. When this symmetry is considered,

quadrupedal bounding becomes very easy to be restrict to the sagittal plane for

analysis.

The planarization of quadrupedal bounding reduces the dimension of the prob-

lem from a 3D world into a planar, 2D world [26]. In a planar world, a pair of legs

can be represented by only a single leg, which is a very efficient way of modeling

bounding. As bounding has the leg symmetry, the front legs and the back legs of

the quadruped can be summarized with a single leg for each corresponding pair.

This also reduces the number of controllers for each leg, as only one controller

will be needed to control each leg pair, which are now combined into a single leg

on the sagittal plane.

Considering this planarization, bounding has been represented by two differ-

ent approaches so far. Both of the approaches are widely used by many robotics

platforms due to their low level of complexity. Both of these methods represent

a single stride of bounding in four consecutive phases. Moreover, each method

relies on the detection of each leg contact event and change their controller pa-

rameters and strategies accordingly. Major events that need to be detected are

the touchdown and liftoff of each leg pair. By only depending on these leg events,

none of these bounding gait controllers need to consider the state of the body

explicitly. Detecting these two events for each leg, both models achieve successful
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dynamic locomotion via bounding.

The first method [2] assumes that there can be only one leg touching the

ground at a time. Consequently, every time a leg touches the ground and leaves it

afterwards in the half of the stride period, the other leg is controlled for touchdown

for the rest of the stride. On the left part of Figure 2.2, this controller’s state

machine can be seen. Although this gait controller has 4 visible phases, it has two

switching controller states. Whenever the current controlled leg leaves the ground

after the liftoff event, the controller switches to the other leg to complete another

cycle. By using this strategy, the same controller with different parameters can

be used for each leg by only detecting the touchdown and liftoff events.

The alternate method, [23], includes a double stance phase, hence differing

from the first method. As it can be seen from Figure 2.2, the state machine shown

on the right shows a double stance phase which is triggered by the touchdown

event of back leg, which happens before the liftoff event of the fore leg.

Figure 2.2: Two different planarized bounding models. (left) The first model
assumes that there could be at most one leg on the ground at a time. (right) The
second model has a double stance phase.

2.1.3 Legged Robots Capable of Dynamic Bounding

Some of the first contributions to bio-inspired legged robot research were done by

Raibert et al. [26], based on a dynamic model of a single leg. The Spring-Loaded

Inverted Pendulum (SLIP) model, was found to be very close in performance
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compared to animal legs when active forces and dynamics are investigated. As

implied by the name, the SLIP model consists of a point mass attached to a

spring, which touches the ground on the other end. Very similar to the dynamics

of an inverted pendulum, the overall body acts as an elastic pendulum on the

ground. When the tip of the spring touches the ground, the kinetic energy on

the point mass starts to be converted into potential energy, which is stored in the

compliant leg mechanism during stance. While the spring gets compressed due to

active forces, the point mass follows a sinusoid-like trajectory. When the spring

is in the full compression, the body mass reaches its lowest height on the overall

trajectory. After that point, the potential energy stored on the spring mechanism

starts to be transferred into kinetic energy with the leg entering its thrust phase.

Figure 2.3 shows an example trajectory of this model throughout a single stride.

Figure 2.3: The Spring-Loaded Inverted Pendulum (SLIP) model, showing an
example trajectory of the point mass during stance.

Despite being an approximation, the SLIP model has been and is still being

used as the basis for most hip actuated robot designs. One of the most important

aspects of this model is its simplicity. The leg itself is composed of a compliant

spring, so the contraction and retraction phases of the leg on the ground can

be maintained by the nature of spring dynamics without any external controls.

Leaving the ground dynamics of the leg to the passive spring, the only control

needed for the whole leg is for the hip joint which connects the leg rod onto the

body. This hip actuator’s job is to control the position of the leg with respect to

the body and adjust an angle differing with respect to the phases of a dynamic
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gait. Raibert’s quadruped robots use this basic design to achieve different dy-

namic gaits such as trotting, pacing and bounding [27]. He incorporates two levels

of control for quadrupedal bounding. The high-level controller for gait phases de-

cides on desired angles for legs for touchdown and liftoff events. This controller

is independent of body state, but only acts upon detected leg events. In contrast,

the low-level controller consists of a local PID feedback loops to maintain angles

selected by the high-level controller.

Figure 2.4: Raibert’s quadruped (left), SCOUT II platform (middle), PAW robot
(right)

Based on the same SLIP model, Buehler et al. introduced his quadruped robot

platforms SCOUT and SCOUT II [4, 22]. Similar to Raibert’s quadruped robots,

SCOUT platforms only include hip actuators to control the angles of legs and

base their dynamic locomotion gaits to compliant leg dynamics. With reduced

complexity in the robot design, SCOUT platforms achieved various dynamic gaits

successfully and further supported the use of simple controllers for dynamic legged

locomotion gaits.

RHex, a hexapod robot designed by Saranli et al [28], is also a bio-inspired

multi-legged robot. Trying to mimic a cockroach’s effective locomotion behaviors

over unstructured terrain, RHex has been successful by achieving stable locomo-

tion on different grounds. Apart from adaptive gaits with respect to the terrain,

RHex platform was also used for bounding experiments [5]. By deactivating mid-

dle legs of the hexapod, quadrupedal bounding gait was still possible even with

RHex’s different leg designs.

Somewhat differently than SCOUT platforms, Smith et al. developed a hybrid

leg system by placing a lockable wheel at the tip of each leg [30]. By using such
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a system, the PAW robot managed to overcome slippage problems encountered

during the ground phases of the legs. By virtue of being lockable, these wheels

could be adjusted to be fixed or rolling with respect to the phase of the gait or

the terrain conditions in means of roughness. One important aspect of this design

is that it incorporates a leg with a wheel to benefit from dynamic properties of

both structures.

Apart from the usage of passive dynamics on the legs, there have also been

other approaches on robotic designs to achieve bounding and other gaits. While

previous robot designs depended on passive dynamics of spring mechanisms of the

legs, these robots have multiple degrees of freedom (DOF) leg designs [13, 17, 25].

The multi-linked leg designs enabled a closer look into natural leg forms and

created more accurate results compared to SLIP approximations. However, all

these multi-links need additional actuation controls and sensors which increase

the level of complexity in the overall gait control designs.

2.2 Existing Work on Flexible Spine Structures

All robots performing dynamic locomotion behaviors explained so far adopt dif-

ferent approaches for control strategies and leg structures. However, one of the

main properties they have in common is their adaptation of a rigid trunk. Even

though bio-mechanics research shows the importance of spinal structures on a

flexible body [3, 10, 20] , there are few inquiries into their role in robotics re-

search.

The most detailed research done so far is Karl F. Leeser’s planar quadruped

and dynamic locomotion experiments done on this robot, presented in his thesis

[18]. Using the planarization method of Raibert, this quadruped was developed

on a reduced dimensional state space. The main motivation behind this platform

was to investigate the role of an articulated spine on the thrust given by the back

legs.

In order to understand the effects of the spine, Leeser designed a robot with
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Figure 2.5: Leeser’s planar quadruped with an articulated spine. All actuation is
done through hydraulically-powered motors. ( Figure adapted from [18] )

two prismatic legs and an articulated spine mechanism, consisting of three parts

controlled by hydraulically-powered actuators. As the robot has only two legs,

the robot was attached to a planarizing boom in order to maintain its balance

in the real world experiments, which is basically a rotating rod connecting the

robot body to a fixed point in the center of a circular test track. With this rod,

the robot was able to move on the circumference of the track as if it was running

on a 2D plane.

In his thesis, Leeser experimented on this robotic platform to achieve a bound-

ing gait. The design of this robot enabled the adjustment of spinal stiffness so

he was able to compare a stiff configured robot with a flexible configured robot.

Moreover he proposed two different control methods to analyze the spinal thrust

on the back of the body. In his first approach, he controlled the spinal joints to

maintain open loop static positions during various parts of the locomotion to ad-

just the rate of compression of leg springs. In his second approach, he positioned

these joints so that they could act as a vertical spring during the take off phase

of the gait cycle.

His research shows that, compared with a stiff backed system, an articulated

spine mechanism can give additional power and thrust to the robot in dynamic

gaits. It can be seen from his results that with both of his control techniques a

flexible spine slightly increases the hopping height and robot speed. However his
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second control approach, in which he positions the spine to give vertical thrust,

the compression rate on the back legs drops while the robot maintains a higher

jumping height. This shows that the spine takes on some part of the total thrust

activity and gives additional power to the system.

Even though Leeser’s work has not been improved since then, his initial re-

search gives an idea about how spinal flexibility can be achieved and under which

conditions it can be effective. His analytical and experimental work reveals an

undiscovered method in order to improve the dynamic behaviors that legged

robots can achieve.

Additional research done on spinal flexibility by Takuma et al., shows its

role on the yaw direction during quadrupedal locomotion [32]. By constructing a

simple quadruped robot, Takuma et al. investigates the role of spinal compliance.

Unlike previous robots, their robot does not maintain dynamic locomotion and

moves much more slowly. However, by means of showing a direction towards using

compliant bodies instead of rigid ones, this new research carries an importance

in the robotics field.

2.3 Gait Optimization Techniques

2.3.1 General Approaches

Locomotion plays a very important role in the robotics field and all legged robots

are required to complete their tasks by accommodating complex mechanics of

running or walking gaits. Although the output of gait control looks very simple,

a large set of parameters exist in the background. In order to get the best

performance from the legged gaits, these parameters need to be optimized for the

specific robot structure, desired output and terrain properties.

As stated before, animals have optimized their gaits through evolution and

learning by experience. It is clear that the evolution process cannot be fully



CHAPTER 2. BACKGROUND 15

applied to physical robots in a long time period, but numerical models and sim-

ulations can help to solve the problem of finding an optimal set of parameters by

trying and approximately evaluating a larger number of candidates. To this end,

a number of different methods have been proposed using on machine learning

techniques or adaptive control strategies.

The main idea in machine learning methods is to start with an initial set

of parameters that define gait properties and iteratively evaluate different sets

and try to find an optimal set to yield the best performance. Generally the

performance criteria is chosen to be the speed or the stability in the gait. For this

purpose, a cost function is generated by evaluating the results of an experiment

done with a particular parameter set. In order to get to the best parameter set,

different algorithms and functions may be used.

Genetic algorithms randomly choose a pair of parameter sets and crosses them

over to generate a new seed parameter set [16]. If this new seed set outperforms

the selected parent sets, then this new seed is placed over the parents. The

evaluation of the artificial evolution method is done with experiments run on a

robot trying to achieve a task given the generated gait parameters. At the end

of each gait, the results are given to the main algorithm to check whether the

genetically produced seed is better than the parents [8]. In another method named

Gaussian Process Regression, the elements in the parameter vector are considered

to be the randomly observed values of a non-observable larger function. Then

these values are given to a Gaussian function to generate an approximation of

this hidden larger function. By changing the values of these elements through

an evaluation process, the algorithm is expected to produce a function which

produces a Gaussian representation of an optimum parameter set [19]. In a similar

fashion, by using a policy gradient method the gradients of the cost functions of

each parameter set are explored. The best gradient yielding the optimum results

is selected to form another set. By repeating this process multiple times, a global

minimum is expected to reach [12].

In a different approach, controller parameters are changed online, while the
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robot is in motion, getting sensory feedback and adapting locomotion parame-

ters with respect to changing conditions. This method is called adaptive control

looks similar to adaptation in natural locomotion done by animals such as chang-

ing the stiffness of leg muscles due to the roughness of the terrain. In general,

adaptive control uses an additional observer system in a closed feedback loop,

which changes the desired gait controller parameters that are given to the local

controller by looking at the results of the gait. With this double loop, the ob-

server maintains stability and the desired performance of the gait itself, while the

local controller adjusts local parameters to perform the strides in the gait [34].

2.3.2 Nelder-Mead Optimization Algorithm

In this thesis, we will be using an optimization method by proposed by Nelder

and Mead [21]. The main idea in this method is to minimize a function with

n parameters, by evaluating it on (n+1) vertices of a simplex in the parameter

space. New parameters are generated depending on the values of these vertices,

replacing or displacing them as appropriate.

The algorithm starts by initializing parameter points Pi at user selected n+1

vertices. The iterative process starts by finding Ph and Pl, the highest and lowest

cost generating points. The algorithm then finds the centroid of the n points, with

Ph removed, called as P̄ . Following that, each Ph is compared with the results

of three different points generated by three methods: reflection, contraction and

expansion. The reflection phase finds a point called P ∗ that is defined as

P ∗ = (1 + α)P̄ − αPh

where α is a positive constant called reflection coefficient. The cost value of this

point, y∗ is calculated and compared with yl. If y∗ < yl, expansion phase starts

and another point P ∗∗ is calculated

P ∗∗ = (1 + γ)P ∗ − γP̄

where γ is the positive expansion coefficient. Similarly, the cost value of this point,

y∗∗ is found and compared with yl. If y∗∗ < yl the point found in expansion is
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replaced with Ph, however if case fails, point found in reflection is replaced with

Ph. On the other hand, if the comparison case fails in the reflection phase, the

algorithm enters the contraction state. If y∗ is larger than all yi except yh, then

Ph is replaced with P ∗, but if it is also larger than yh, then contraction phase

finds another point P ∗∗ as

P ∗∗ = βPh + (1− β)P̄

where β is the positive contraction coefficient. In case of y∗∗ of this point is greater

than either of yh or y
∗, all points in the simplex is replaced with (Pi+Pl)/2. On the

opposite case, Ph is replaced with P ∗∗ and algorithm ends its round by checking

if the best point has been found. These methods are used iteratively each round

until the convergence to the best point. This method proposed by Nelder and

Mead can be considered as a simplex that is manipulated to get to its smallest

size by extruding or pushing in the vertices. The detailed algorithm is given in

A.1.



Chapter 3

Bounding with Flexible Spine

In this chapter, we will present two basic structural models we use to compare

bounding with a stiff-spine robot to bounding with our new flexible-spine robot.

Moreover, we give a novel bounding gait controller suitable for use with our spine

actuated robot.

3.1 Planar Robot Models

3.1.1 Standard Model with a Stiff Back

In Chapter 2, we described a number of robotic platforms that use stiff trunks

but different leg structures and controller systems. In this section, we will focus

on robots that use the SLIP model as a basis for their leg designs and a rigid body

for their trunks. The model that will be presented here is widely used in many

robotic platforms which is why we use it as a reference. Based on this model, we

will focus on mainly three performance criteria: hopping height, horizontal speed

and power consumption.

Figure 3.1 shows a planar quadruped model with a stiff spinal structure. The

robot consists of three main parts: two passive spring legs and a stiff body trunk.

18
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Figure 3.1: The planar quadruped robot model with passively compliant legs and
a stiff body structure.

The body has mass mb and inertia Ib, and its center of mass (COM) is located

at point (xC , yC) in the inertial world frame W . It has a pitch angle θb, defined

in the counter-clockwise direction from the x axis of W .

Two identical legs with spring-damper systems with spring constant k and

damping constant b are attached to the body at di away from the COM. For the

sake of simplicity, the leg attachment points are assumed to be vertically aligned

with the COM. Both legs have a rest length of li, and have a toe mass of mt at

the tip of their toe. This toe mass is very small compared to the robot body mass

in order to reduce inertial effects during the flight phase of the leg. Despite the

fact that the legs are massless, the toe mass is nonzero to implement meaningful

flight dynamics.

Each hip is controlled with DC motor, producing an input torque τi. Legs

can be in either one of two phases: stance or flight. The equations of motion

for this model are derived in many other references in the literature [22, 23, 26].

In this chapter, we will be using Working Model 2D to numerically simulate its

dynamics.
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3.1.2 New Model with a Flexible Spine

In this section, we propose a new planar robot model with an actuated spine

mechanism. This robot model is one of the major contributions of our thesis.

Differing from the standard, stiff-backed model explained in the Section 3.1.1, our

model has flexible body structure similar to land mammals described in Chapter

2. This extension is expected to increase dynamic gait performances compared

to the rigid body robots. Again, our performance criteria will be hopping height,

horizontal speed and power consumption for this model.

Figure 3.2: The proposed planar quadruped model with an actuated spine joint
and hip actuated compliant legs attached. The model is inspired from nature in
order to increase the dynamic gait performance of the robot.

Figure 3.2, depicts our planar quadruped model with a flexible spine. Unlike

the previous model, our robot consists of four main parts: two rigid body elements

connected to each other with a pin joint and two spring-damper compliant legs

attached to each body part. The main difference of this model is the spinal joint

connecting both of the body parts in the middle. Each body i has mass of mbi

and inertia Ibi, and its COM is located at (xCi, yCi) in W. The associated body

pitch angle θbi is defined similar to the previous model, in the counter-clockwise

direction from the x axis of W .
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The main focus of this model is on the spinal joint, which is the merging

point of the two body parts. Placing an electric motor on this joint, we are able

to produce a spinal torque τs between the bodies. The spinal joint is vertically

aligned and dsi away from the COM of each body. The angle between two body

parts, the spinal angle, is represented with βs.

Similar to the stiff backed model, we use two identical spring-damper legs

attached to each body segment. The rest length of each massless leg is denoted

with li and each leg is attached to the body through an actuated hip joint,

controlled with individual DC motors that produce a torque τi with respect to

leg angles φi, defined in the counter-clockwise direction from the body horizontal.

At the tip of each leg, there is a very small toe mass mt, assumed to be negligible

for their inertial effects on the body.

Figure 3.3: Two phases of the flexible spine; concave (left) and convex (right)

Like the standard stiff back model, each leg can be in one of two phases: stance

and flight. In addition to these, our gait controller can give body two separate

poses. As shown if Figure 3.3, the body can take a concave form or a convex

pose defined by the changes in the spine angle βs. By introducing these two body

poses, we claim that the robot will behave similar to its natural correspondences

which are explained in Section 1. Our gait controller bends and stretches the

body structure by changing the spinal angle, which is expected to increase the

stride length of the robot. In other words, the flexibility of the body will give the

legs a longer activity area which will eventually increase the length of a stride in

the cycle of the whole gait.
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3.1.3 The Working Model 2D Environment

Before a mathematical analysis of our model with, we compare the standard

bounding model with our new model in a dynamic simulation tool. For this

reason we have selected the Working Model 2D [11] simulation environment to

run our simulations and produce initial results for our model.

Working Model 2D is a simulation environment which solves dynamic equa-

tions and constraints in a planar world. The environment uses fixed but config-

urable time steps or variable time steps to integrate differential equation solutions

associated with a dynamical system. Either the Euler or the Kutta-Merson in-

tegrator can be chosen to solve the dynamics. Moreover, the user can configure

the resolution of overlap and integration errors.

In order to create a simulation world, the user can place geometric body

parts and define joints between these. Spring-damper systems, external forces

and torques, linear and rotational actuators and other types of gear systems can

be added into the simulation as constraints. However, two constraints cannot

be attached to each other without having a physical body unit in the middle.

The same rule applies to body parts as well: there must be a constraint defined

between two adjacent body parts. Mass, inertia, elasticity, static and kinetic

friction constants and electric charge of a body can be configured as well.

After defining the relations between these constraints and body parts, the se-

lected integrator solves dynamic equations with the selected time step. However,

the integrator can only solve up to 32 seconds of simulation. The user can also

define input and output monitors for every kind of constraint and state in the

system. As such, forces acting on different components can be tracked throughout

the whole simulation.

There is also a scripting feature of the Working Model 2D. It is similar to

the Basic programming language, and with it user can create, modify, configure,

control and track every possible body and constraint in the simulation environ-

ment. By using this tool, data output can also be obtained for further analysis



CHAPTER 3. BOUNDING WITH FLEXIBLE SPINE 23

of simulation results.

Figure 3.4: Flexible back (left) and stiff back (right) planar robot models cre-
ated in Working Model 2D environment. The stiff-backed model has an anchor
constraint between two body segments.

By using this tool, we created two robot models as shown in Figure 3.4. Based

upon the conceptual models shown in Section 3.1.1 and Section 3.1.2, the flexible

robot model has two body segments with a rotary actuator in the middle. For

different spinal angles, these body segments can assure different poses as shown

in Figure 3.3.

Because of the body-constraint-body rule, the legs are defined as a combina-

tion of bodies and constraints. As seen in the figure, the upper limb of the leg is a

physical body connected to a spring-damper constraint system. This limb part is

attached to the corresponding robot body part with a rotary actuator constraint

on the hip joint. The tip of the spring-damper constraint is attached to a circular

mass, which represents the toe. There is also a virtual vertical slider between the

upper limb of the leg and the toe to avoid the toe and the spring system to bend

in directions other than the radial during the compression phase. In other words,

this virtual slider lets the spring compress in the radial leg direction only. The

model on the right is the stiff backed robot. By converting the spine joint into a

fixed joint, we created a single rigid body trunk. The remaining body parts and

their physical properties are identical to those of the same with the flexible back

robot.
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3.2 Gait Controllers

3.2.1 A New Bounding Gait Model

In this section, we present our novel bounding gait model. The standard bounding

gait models explained in Chapter 2 can only be used for stiff-backed robots.

For a quadruped robot with an actuated spine, a new bounding gait controller

with flexible body phases needs to be designed. Consequently, relying on the

planarization method explained by Raibert in [26], we extend on the standard

bounding gait model to work with our new flexible robot system.

Figure 3.5: The new bounding gait model with different poses of the flexible spine
in our new model.

Figure 3.5 shows the state machine associated with the new bounding gait

model. It can be seen that a single stride in the bounding is represented with

four consecutive phases, each having a unique set of properties and triggering

events. Selecting the double flight phase as our reference, we can track the rest of
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the gait very easily. In the double flight phase, the spine takes up a convex pose

bending upwards, to extend the reach of front legs. In this phase, both of the

legs are positioned to their desired touchdown angles which are fixed parameters

of the gait controller. The touchdown angle is assumed to be non-negative to

increase the range of the legs and give them a longer stance period. Together

with the convex spine pose and the front segment’s extended angle, the range of

the front leg increases more than the stiff backed robot model. The double flight

phase ends with the touchdown event of the front leg. When the front leg stance

phase is initiated, the spine starts to bend in the opposite direction to form a

concave pose. The idea behind this inner bending is to increase the reach of the

back leg before it touches down. A similar approach cannot be applied to a stiff

back robot running for the bounding gait. After the front leg touches the ground,

it starts to swing back towards the center of the body, trying to maintain the

liftoff angle for that leg.

The front leg stance phase ends with the touchdown event of the back leg

and the double leg stance phase starts. In this manner our bounding gait looks

similar to Poulakakis’s model [23]. During this phase, the spine starts to bend in

the opposite direction again to its convex pose. The change of body the pose in

the double stance phase is designed to give additional thrust to the back leg in its

compression period. In addition to this, it also gives the front leg sufficient space

to lift off, without getting stuck on the ground. This choice enables the robot

to achieve higher speeds without losing its balance. While the front and back

legs are both controlled to maintain their liftoff angles, the front leg leaves the

ground triggering the entrance to the third phase of the gait model: back stance.

In this phase, only the back leg stays on the ground and the front leg starts to

swing forward to its touchdown angle while the spine continues to bend to reach

its maximum convex pose angle. This phase ends when the back leg also leaves

the ground and starts to swing forward similar to the front leg. A single stride

cycle in the bounding gait hence ends with this event and the robot re-enters its

double flight phase.

Compared to a standard bounding gait model, our new model uses the flexi-

bility of the spine and changes the body pose to exploit the abilities of a flexible
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body. First of all, the changes in the body pose give both legs an increased stride

length, which is useful to increase the horizontal speed of the robot. Moreover,

the bending of the front body segment outwards just after the double stance phase

pulls the front leg spring forward so that it can be lifted off from the ground eas-

ier and reduces the risk of falling. Finally, this bending strategy gives additional

thrust to the body during the double stance phase as the spinal joint acts like an

additional spring.

3.2.2 Design of Bounding Controllers

In this section, we give detailed descriptions of bounding gait controller parame-

ters used in both models we have presented: the standard gait model with double

stance phase and our proposed flexible spine controller. In both of these models

we only depend on leg touchdown and liftoff events, which are assumed to be

detected using pressure sensors at the toes of each leg. Apart from that, the only

sensors we use are encoders attached to hip joints and the spine joint in our new

model. Our controllers hence depend on angular position data from the encoders

and contact states of the legs. We also use the position encoders to track the

angular velocity of the legs during swinging to maintain a constant speed for the

legs.

From now on, we will be referring to gait controllers as the high level controller,

and the PID controllers that adjust leg and spine angles as the low level, or local

controller.

3.2.2.1 Stiff Backed Gait Controller

Table 3.1 shows different states of the state machine that controls the bounding

gait in the stiff-backed model, which was also used in other robotic platforms

and experiments [7, 24, 31]. The first column in the table shows the name of the

current phase in the gait cycle, whereas the last column shows the event that

initiates the start of this phase. The middle column shows target angles for each
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Table 3.1: High-level state machine for stiff-backed bounding.

State Target Angles Trigger Event

Double Flight (φbtd , φftd) Back leg lift-off
Front Leg Stance (φbtd , φflo) Front leg touchdown
Double Stance (φblo , φflo) Back leg touchdown
Back Leg Stance (φblo , φftd) Front leg lift-off

leg in the corresponding phase. The first row shows that the double flight phase

starts when back leg liftoff event is detected. In this phase, the back and front

legs are commanded to maintain their desired touch down angles φbtd and φftd

respectively. The second row shows that front leg stance phase starts with the

detection of front leg touchdown event. In this phase, the back leg continues to

maintain its touchdown angle as before and the front leg is given a new desired

angle φflo as its liftoff angle. The double stance phase starts after the touchdown

event of the back leg, following which back leg is given its new liftoff target angle

φblo . Finally the last phase starts when the front leg leaves the ground and is given

the desired touchdown angle as in the first double flight phase. In all of these

phases, the back and front legs are controlled to maintain an angular velocity of

φ̇b and φ̇f respectively.

All of these parameters are given to local PID controllers as explained in

Section 3.2.3. To reduce the number of parameters, we used the same PID gains

for both legs. So, along with the parameters given above, a particular instance

of the bounding gait can be represented with the following parameter vector

psb := [φbtd , φblo , φ̇b, φftd , φflo , φ̇f , Kp, Ki, Kd]
T , (3.1)

where Kp, Ki and Kd are PID controller gains for proportional, integral and

derivative terms.

3.2.2.2 Flexible Backed Gait Controller

Table 3.2 shows the state machine for flexible backed bounding. In this table,

the details of the controller are very similar to those of stiff backed bounding.
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So, by reusing the same events and sensors, we managed to extend the bounding

gait controller by including the spinal joint. Once again, the first column shows

the entered state, the middle shows target angles and the last column includes

triggering events.

Table 3.2: High-level state machine for flexible backed bounding.

State Target Angles Trigger Event

Double Flight (φbtd , φftd , βcx) Back leg lift-off
Front Leg Stance (φbtd , φflo , βcv) Front leg touchdown
Double Stance (φblo , φflo , βcx) Back leg touchdown
Back Leg Stance (φblo , φftd , βcx) Front leg lift-off

We previously mentioned that this flexible gait controller is very similar to

the stiff backed controller, so we will only explain different events in each phase.

In the double stance phase, the spine joint is commanded to bend outwards to its

convex spinal angle denoted with βcx. When the front leg touches the ground, the

spine is then commanded to bend inwards in the opposite direction, and position

itself to a concave spine angle βcv. When the double stance phase starts, the spine

bends outwards again to βcx in order to yield additional space for the front leg

to lift off. Entering the back leg stance phase does not change the desired angle

for the spine, which continues to maintain its convex angle to provide auxiliary

thrust to jump up higher.

Apart from the desired angular velocities for the legs, we now have a third

desired angular velocity for the spine motor; β̇s. Moreover, additional PID con-

troller gains are also required for the spine. With these new parameters added

to existing ones, a single parameter set for a flexible bounding gait can be repre-

sented with the following vector:

pfb := [φbtd , φblo , φ̇b, φftd , φflo , φ̇f , βcx, βcv, β̇s,

Kp, Ki, Kd, Kps, Kis, Kds]
T , (3.2)

where Kps, Kis and Kds are the low level proportional, integral and derivative

controller gains for the spine actuator.
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3.2.3 Local Controllers

In all phases of the bounding controllers in Section 3.2.2, we used local PID

controllers for each actuator to determine associated torque commands. Torque

commands for legs in both models and the spinal joint are computed as

τj = Kpej(t) +Kj

∫ t

0

ej(t)dt+Kd
dej(t)

dt
, (3.3)

where j represents either the leg number or the body joint. Leg and body tracking

errors are respectively defined as ei(t) := φ∗
i (t)−φi(t), and eb(t) := β∗

s (t)−βs(t).

The high level controller determines the desired angles for both legs and the

spine in all phases of the bounding gait. These angles, along with low level con-

troller gains and other parameters are collected in the parameter vectors psb and

pfb for the stiff-backed and flexible-spine models, respectively. The computation

of the desired angle at a single time instance involves the usage of both the de-

sired angle and angular velocity parameters given in the state vector. For both

models, the computation of the desired angles for the legs depend on whether

they are individually in stance or flight. During stance, we have

φ∗
i (t) =

{
φi(ttd) + φ̇i(t− ttd) if t− ttd <

φilo
−φitd

φ̇i
(3.4)

φilo otherwise .

Similarly, during flight, we have

φ∗
i (t) =

{
φi(tlo)− φ̇i(t− tlo) if t− tlo <

φitd
−φilo

φ̇i
(3.5)

φitd otherwise .

In the equations given above, i represents the leg index; back or front more

specifically. We can also see the details of the angular velocity control in equations

(3.4) and (3.5). For example, for the stance phase at a given time t, the low level

controller controls the time required to reach the desired liftoff angle. In order

to do that, the local controller first computes the time passed since the it has

positioned itself in the touchdown angle. This time interval is shown as t− ttd in

the formula above. Using the angular velocity parameter φ̇i and the computed

time, the controller updates the desired angle φ∗
i (t). With this method, the
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desired angle of a leg with respect to the state of the gait changes according to a

desired angular velocity. The change in the desired angle can be represented by

a graph as shown Figure 3.6.

Figure 3.6: Trajectory generation system shown for an angle control in a stance
phase of a leg. Compared to step change (left), trajectory tracking (right) updates
φ∗
i (t) in each time step with respect to slope or φ̇i.

So instead of changing the desired angle to its full value in a single time step

like it is shown on the left graph, we are using the angular velocity as a slope

to reach to the desired value. By using this method we can also regulate the

amount of torque produced at the actuators. With trajectory tracking, we also

eliminate peak torques that can be produced at step changes due to big amounts

of difference between current and desired angles.

The spine actuator is controlled in a similar fashion with its concave and

convex poses using the target angles determined by the parameter vector in 3.2.

The desired body angle for the concave body pose is computed as

β∗
s (t) =

{
βs(tftd) + β̇s(t− tftd) if t− tftd <

βcv−βftd

β̇s

βcv otherwise ,

whereas for the convex pose it takes the form

β∗
s (t) =

{
βs(tflo)− β̇s(t− tflo) if t− tflo <

βcx−βflo

β̇s

βcx otherwise .
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3.3 Simulation Results

In this section we present simulation experiments comparing our flexible model

with the standard stiff-backed model with the bounding gait. In order to make

a fair comparison we use optimization methods to find the best performing gait

parameters for both models. Subsequently we evaluate the results and compare

them to discuss the effects of spinal actuation on the bounding gait.

3.3.1 Configuration and Initialization

We implemented the models described in Section 3.1.3 using the Working Model

2D simulation environment. We used the Kutta-Merson integrator with a fixed

time step of 10−3s. To increase the accuracy of the system, the integrator, as-

sembly and overlap error tolerances were chosen to be less than 5× 10−3m. Due

to the limitations of the simulation environment, every test run lasted up to a

maximum of 32 seconds.

Table 3.3: System parameters for both bounding models.

Param. Value Param. Value

mbi 10 kg mb 20 kg
Ibi 1.3 kg-m2 Ib 3.85 kg-m2

di 0.365 m dsi 0.25 m
k 3500 N/m b 55 Nm/s
l 0.8 m τmax 200 Nm
µs 0.9 µk 0.8

i ∈ {f, b}, f : front, b: back
µs, µk : Static and kinetic friction

Physical properties were used for the robot models were inspired from the

morphology of a cheetah [10]. It is important to note that both robot models had

the same values for these parameters to enable a fair comparison. As the aim of

this thesis is to investigate the effects of spinal flexibility on dynamic bounding

gaits, we wanted to eliminate other differences between the two robot models.

Table 3.3 shows values of each system parameter used in the simulations. The
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values of these parameters can be adjusted when a practical application of this

research is to be implemented.

The mass of each robot body segment, mbi, was 10 kg which makes both

models weigh 20 kg in total. The length of each body segment was 0.5 m, making

the robot 1 m in total length. As the flexible back robot model consists of two

body parts, each part has a separate moment Ibi. However, the total inertia of

these two robot body parts is equal to the moment of the stiff back robot, Ib.

The distance between the center of mass of each body part and the spinal joint is

represented as dsi and it is the half the length of a body segment. The hip joints

are attached to the body parts 0.115 m away from the COM. While this distance

is represented as dli in the flexible robot model, it is depicted as di in the stiff

backed robot. Although the representations are different in each model, the total

distance between the legs is the same in both models assuming the spine in the

flexible model stays in its neutral angle making front and back body segments

parallel to each other.

Legs have an initial rest length li of 0.8 m and the constants for spring, k, and

damping, b, are 3500 N/m and 55 Nm/s respectively. Toes attached to these

legs have only 5×10−3kg of mass. The static and kinetic friction constants given

in the table to mimic contact relation between rubber on concrete. Moreover,

we use a saturation limit, denoted with τmax, on the DC motors to make the

simulation more realistic.

Given these static parameters and control parameters determined by the high

level controller, each simulation started with an initial forward speed of 1 m/s

and a height of 0.75 m. The pitch angle of the robots were chosen as 0 rad and

in order to make this, the spinal angle βs of the flexible robot was also chosen

as 0 rad. Throughout the whole simulation, a stability check was performed. A

simulation is considered stable if the norm of its state vectors at successive apex

points of the robot stay within a threshold value of 10−1 of their average for at

least 5 strides. If the run is successful, in other words the robot managed to stay

in the bounding gait without losing its balance, a cost function was calculated

at the end of the simulation. Being inspired from the widely used performance
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criteria of specific resistance [14], we have defined our cost function as

ϵ := P/mgv3,

where P denotes either the instantaneous or absolute power spent by all the

actuators on the robot and v is the average horizontal speed of the robot. If the

gait was found to be stable with respect to the criteria above, this cost function

takes the power and velocity values from the last 5 strides of the run. Otherwise,

to emphasize the high cost of unstable running, these values are taken from the

beginning of the simulation until the end. This last choice could remain the same

with stable running as the last 5 strides of an unstable gait would also yield larger

costs than a stable gait.

3.3.2 Nelder-Mead Optimization on Gait Parameters

Considering the details given in Section 3.3.1, our simulations on both models

are based on implementing the Nelder-Mead optimization algorithm explained in

Section 2.3.2. By giving an initial set of parameters for each robot model, the

algorithm runs a modified sets of parameters and finds their cost values at the

end. These cost values are then considered and the set of parameters are updated

until convergence is achieved. The convergence criteria C is defined as

C =

√∑
i

(ϵi − ϵ̄)2/(D + 1),

where ϵi denotes the cost value of each run, ϵ̄ is the mean of all cost values and D

the dimension of the parameter set. We have selected a threshold value of 10−3

and all optimization rounds continue until the result of the convergence function

falls below this level.

Regarding the number of parameters in the state vectors defined by the high

level controllers, the dimension of the parameter set for a stiff backed robot

is D = 9 and for a flexible backed model is D = 15. With respect to the

requirements of the Nelder-Mead algorithm, (n + 1) number of vertices for an n

parameter problem must be defined. The selection of these initial parameters for
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(n + 1) vertices can impact the time required for convergence to the optimum

set. The range of each parameter in a set should be defined properly to give the

algorithm a large variety of choices.

3.3.3 Results of Gait Optimizations

With given initial parameter sets and the convergence threshold, the Nelder-Mead

optimization algorithm found two optimal sets for both the stiff-backed and the

flexible-spine models. Figure 3.7 shows a snapshot from the convergence of cost

functions of the two robot models to the given threshold values.
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Figure 3.7: Progression of the Nelder-Mead optimization for stiff backed (left) and
actuated spine (right) models. Red squares plot the stopping criteria function C,
whereas blue stars represent the best vertex cost values for each simplex. Each
“turn” corresponds to five Nelder-Mead iterations.

The graph on the left shows the cost convergence for the stiff backed robot,

whereas the graph on the right shows the flexible backed model. Each data point

on the graph gives information about 5 consecutive Nelder-Mead cycles. In this

case, the optimum set for the stiff backed robot has been found in 45 cycles. It

took 5 more cycles to find the optimum set for the flexible backed robot model.

Although the trend in the graphs is descending towards the threshold value, at

some point the cost value seems to increase. For the flexible-backed model, these

particular cases are due to the failed contraction phase of the algorithm where

the only solution to find the global minimum is to expand the size of the vertices,
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which eventually increases the cost function at each vertex.

Once the algorithm converge to the optimal minimum, two sets of parameters

are produced for bounding gait parameters. The resulting parameter sets for

both models are shown in Table 3.4 and 3.5.

Table 3.4: Optimal gait parameters for Stiff Backed Bounding

Parameter Value

Kp, Ki, Kd (338.2, 0.08, 6.7)
φtdf , φlof , φ̇f (0.4 rad, -0.03 rad, 4.25 rad/s)
φtdb , φlob , φ̇b (0.27 rad, -0.11 rad, 4.5 rad/s)

Table 3.4 shows the optimum parameter values found for stiff-backed bound-

ing. It can be seen that the saturation limit of the motors and the angular velocity

control has limited PID gains and they have not exceeded realistic values. When

target angles for the legs are compared, it can be seen that the touchdown angle

for the front leg is larger than the back leg. We can reason from this difference

that the front leg aims to increase the range of its reach to both increase the

stride length and add stability to the system. The wider the front leg’s touch-

down angle, the more the amount of counteracting ground force on the body in

the opposite direction to the action. This would work as a breaking system for

the whole robot and it would keep the horizontal speed within a stable region.

Finding an optimum angle between two ends will ensure that the front leg will

both be keeping the robot in balance and increase its stride length as much as it

can.

Similarly, we see that the swing velocity of the back leg is slightly higher than

that of the front leg. This can be a result of the back leg’s role in providing thrust

to the system. The angular velocities for both legs should be adjusted reasonably

to guarantee that the back leg will be thrusting the robot up to a stability limit

and the front leg will keep the robot in balance without crashing onto the ground.

We can also reach this conclusion by looking at the target liftoff angles. It can

be seen that the back leg is swung backwards more than the front leg. By doing

so, the duration of the stance phase of the back leg increases as well as the spring

forces acting on the body. A higher ground reaction force due to the compliant
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legs will be created in the same direction with the locomotion of the robot if the

back leg is swung backwards more.

Table 3.5: Optimal gait parameters for Actuated Spine Bounding

Parameter Value

Kp, Ki, Kd (524.7, 0.11, 6.9)
Kps, Kis, Kds (1737, 0.03, 330.3)
φtdf , φlof , φ̇f (0.3 rad, 0.17 rad, 3.43 rad/s)
φtdb , φlob , φ̇b (0.3 rad, -0.12 rad, 4.93 rad/s)

βcx, βcv, β̇s (0.1 rad, -0.22 rad, 23.05 rad/s)

Table 3.5 shows optimal parameters found for the flexible back bounding gait.

By looking at the first two rows, we can see that, the gains for the spine joint

are larger than those of the hip joints. This can be the result of the need for a

stronger actuation mechanism for the spine system. We can also reason that the

spine joint deals with larger amounts of forces during locomotion when compared

to the legs. A valid reason for this result is that the weights and inertial forces of

two heavy robot bodies can put up a large amount of torque on the spinal joint

and that is why a stiffer actuator is needed.

If we look at the target angles for the legs, we can see that the roles of the legs

follow a similar fashion in the stiff backed bounding. Although the touchdown

target angles for both legs are found to be the same, in this model the spine angle

also changes the pose of the body as well as the touchdown angles of the legs.

We know from our bounding gait model that when the robot is in the double

fight phase, the body is in its convex pose. As this angle, βcx is found to be

0.1 rad, this offset needs to be added to the front leg and subtracted from the

back leg. So eventually, we will be seeing a difference between the touchdown

angles of both legs, confirming the role of legs as the front leg in stride length

increase and stability and back leg in thrusting. Liftoff angles also show the same

difference, however in this model, only the back leg is swung behind the vertical of

its attached body. This can be explained with the concave body pose due to the

negative concave spine angle. By including this offset created by the spine angle,

as we did for the touchdown angles, we can find changing liftoff angles which will

support the requirements of leg roles. Moreover, the swinging velocities differ
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from each other around 1.5 rad/s favoring the back leg. The swinging velocity

for the spine has been found to be much larger than both of the legs which tells

us the need for a faster spine actuation to react to the changing torques on the

spinal joint during locomotion.

3.3.4 Simulation Results

By using the optimal parameter values given in Table 3.4 and 3.5, we have run

both models with the bounding gait to gather data and compare their results.

We have used the same configurations and initial settings we explained in Section

3.3.1 for our robots. We ran the robots up to 32 seconds and collected data

from different parts by monitoring corresponding outputs. In this section, we

will present results we have obtained from these simulations.

3.3.4.1 Stiff Backed Bounding Results

The optimum parameter set for the stiff backed bounding resulted in a stable

and successful bounding gait of whose snapshots can be seen in Figure 3.8. The

figure shows a complete cycle in a single strike of the stiff backed bounding. We

can see that the execution of phases in a stride cycle follows the phases of the

standard stiff backed bounding we have shown in Chapter 2.

Figure 3.8: Snapshots of stiff backed bounding model during Working Model 2D
simulations.

Figure 3.9 shows the compression rate of the leg springs and the pitch angle

of the body during the gait. The graph on the top shows the leg lengths during
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the changing phases in the last 5 strides. It can be seen from the figure that the

back leg compresses more than the front leg. The back leg compresses down to

0.71 m while the front leg compresses down to 0.73 m. The graph on the bottom

shows the pitch angle of the stiff robot body. We can see that the pitch angle of

the body oscillates between -0.1160 rad and 0.1390 rad.
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Figure 3.9: Leg lengths (top) and body pitch angle (down) for the stiff backed
bounding model.

The next figure, Figure 3.10, is a compilation of different performance crite-

ria for the stiff backed bounding. Each of these graphs shows the data acquired

from the last 5 strides of the stiff backed robot during bounding. The topmost

graph shows the hopping height of the robot, taking the center of mass point as

a reference. It can be seen that the robot body oscillates between 0.735 m and

0.755 m in each stride. The green dashed line in the middle of the graph shows

the average height of the robot which is 0.7441 m. The next graph in the middle

of the figure shows the horizontal speed of the robot. With respect to the nature

of the bounding gait the horizontal speed changes due to the states in a cycle of

a single stride. The maximum speed is reached in the double stance phase and

the minimum speed is reached in the double flight phase. With the optimum pa-

rameters, the stiff backed model can reach up to 2.004 m/s of horizontal velocity.

However for a fair comparison, the average velocity is taken into consideration

which is 1.747 m/s which makes 1.74 bodylengths/s.
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Figure 3.10: Body height (top), horizontal velocity (middle) and foot clearance
(bottom) trajectories for bounding with the stiff-backed model. Green dashed
lines in the top two plots indicate the average horizontal speed and heights.
Shaded regions in the bottom indicate different controller phases.

The graph on the bottom includes data showing the foot clearance of the legs

and the duration of each phase in a single stride. By looking at the dashed and

solid lines in the graph, we can see that front foot has a ground clearance of

0.0380 m and back feet has 0.0160 m. The shaded regions on the background

of the graph show the duration of each of the four phases of the stiff bounding

gait. A single stride lasts approximately 0.32 s, and within this stride the list

of phases in the descending order of duration is back leg stance (0.13 s), front

leg stance (0.11 s), double stance (0.06 s) and double flight (0.02 s). Regarding

these results the stiff backed robot in the bounding gait spends only 1/16th of

the whole gait flying.

Figure 3.11 shows the trajectories of leg angles maintained by the hip actuators

governing the PID controllers. It can be seen that both of the legs reach their

corresponding target angles in stance and flight. This graph proves that the local

controller achieves the target angles presented in Table 3.4 for the stiff backed

model.
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Figure 3.11: Leg angles of the back leg (dashed blue line) and the front leg (solid
black line) during bounding motion.

Figure 3.12 consists of two graphs showing the power consumption and the

torque outputs of the hip actuators. By looking at the power consumption graph,

we see that neither of the hip actuators use more power than 400 W instanta-

neously. It can be seen that the graph shows also negative power values which

indicate that the average power consumption values for the hips will be much

lower. The graph on the bottom shows the torque output of each motor on the

hips. Although being limited with a saturation level of 200 Nm, none of the

motors exceed 90 Nm level.
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Figure 3.12: Power consumption (top) and torque output (bottom) of motors.
Blue dotted line represents front hip motor and black line back hip motor.
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3.3.4.2 Flexible Backed Bounding Results

We have run our flexible backed robot with the optimum parameter set found by

the Nelder-Mead algorithm and observed the successful bounding gait shown in

Figure 3.13. Similar to the stiff backed bounding snapshots before, this image

show frames from the consecutive phases in the flexible backed bounding gait we

have proposed in this research. The snapshots clearly shows that the spine angle

changes with respect to the state of the gait to adjust the body pose.

Figure 3.13: Snapshots of the flexible backed bounding model during Working
Model 2D simulations.

In Figure 3.14, the changing leg lengths and pitch angles of body parts of the

flexible robot model is given. On top graph, leg lengths follow a pattern similar

to the stiff backed robot; the back leg compresses more than the front leg. We

see that the amount of compression of the back leg is 0.105 m while it is 0.093 m

for the front leg. In the bottom graph the pitch angles of two body parts of the

robot is given. As the spine actuator changes the body pose, these body parts

have differing pitch angles with respect to the state of the gait. We see that back

body part oscillated between -0.151 rad and 0.146 rad, while front body part has

a range between -0.228 rad and 0.259 rad.

The Figure 3.15 includes three graphs showing the body height, horizontal

speed and the feet clearance of the flexible robot. In the first graph on the top,

we see the trajectory of the center of mass of the robot during bounding. The

center of mass of the whole system has a range of 0.08 m. As the whole robot

consists of two body parts attached together on the spine joint, the trajectory of

the center of mass point diverges from a smooth sinusoid curve. On the middle

graph we observe the instantaneous and average horizontal speed of the robot.
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Figure 3.14: Leg lengths (top) and body part pitch angles (bottom) of flexible
bounding gait model.

As it can be seen the robot can reach up to 2.23 m/s velocity, the average speed

of the system is 2 m/.

Similar to the stiff backed bounding graphs, the last graph includes the data

of feet clearance and the system states together. We see that in flexible bounding

the front legs are off the ground up to 0.177 m where back legs jump up to 0.046

m. We also see an extended bounding stride in the figure. A single stride takes

approximately 0.44 seconds and each phase has an increased duration compared

to the stiff backed model. In flexible bounding; back leg stance lasts 0.18 s,

double flight 0.10 s, front leg stance 0.11 s and double stance phase 0.05 s. We

observe that in the flexible bounding the double flight phase is nearly 1/4th of

the whole stride.

Figure 3.16 shows the angular trajectories of both legs and the spine during

locomotion. We can see that actuators placed on the corresponding joints manage

to achieve the target angles, which can also be seen from Table 3.5, found by the

optimization method. It can be seen that spine actuator bends the body in convex

and concave poses by looking at the bottom graph in the figure.

In Figure 3.17, the power consumption and torque outputs of each motor on
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Figure 3.15: Body height (top), horizontal velocity (middle) and foot clearance
(bottom) trajectories for bounding with the actuated spine model. Green dashed
lines in the top two plots indicate the average horizontal speed and heights.
Shaded regions in the bottom indicate different controller phases.

the robot model are shown. On the top graph we see the power consumption of

each motor in the system. Except from the spine motor, the hip motors consume

a similar amount of power with the stiff backed robot by not exceeding 500 W .

However, the spine motor reaches up to a level of 1200 W during locomotion

which shows the amount of work done by that particular actuator. In a similar

fashion we observe the torque outputs of each motor to be increased such that

spine motor saturates at the maximum torque level. Although the spine motor is

saturated at the limit, the hip joints produce torque outputs lower than 120 Nm

at maximum.
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Figure 3.16: Angular trajectory of the legs (top) and the spine (bottom) during
bounding motion.

3.4 Discussion

In Section 3.3, we used two different robot and bounding gait models to investi-

gate the effects of spinal actuation on dynamic locomotion. We developed a new

robot model with an actuated spine and a flexible bounding gait controller and

compared these two systems with a standard stiff backed model which are widely

used in other robotic platforms. For a fair comparison we used Nelder-Mead op-

timization algorithm to find the optimum controller parameter sets to maximize

the bounding performances of each robot. Finally we ran two simulations with

these optimum parameters applied to the corresponding robots to gather perfor-

mance data. In this section, we are using these information to discuss the effects

of spinal actuation on dynamic bounding gait.

However it is important to emphasize that, the performance results we found

are only bound to the parameters we selected for the robot structure, simulation

environment and calculation accuracy. With these results we are only comparing

the impact of spinal actuation on two robots with same structural background.

Therefore, we are not claiming that our robot models can outperform similar

robot structures running in dynamic gaits.
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Figure 3.17: Power consumption (top) and torque output (bottom) of hip and
spine actuators. Red dashed line represents the spine motor, blue dotted line
front hip motor and black line back hip motor.

3.4.1 Stride Length and Speed

Horizontal speed is our most important performance criteria, which is why we

used this parameter in our cost function which was defined as ϵ := P/mgv3,

where v is the average horizontal speed. If we look at the results, we see that

stiff backed robot can achieve an average speed of 1.74 m/s. On the other hand,

the flexible robot can run with an average speed of 2.02 m/ which shows a %17

of increase within a stable region during bounding.

The reason of the increase in the speed does not lay behind the used cost

function only. By using a flexible body structure we managed to expand the

reach of legs before touchdown events as well as bending the body to give an

additional thrust similar to the natural mechanisms [20]. As a result of this

behavior we succeeded in increasing the stride length of the robot which can also

be seen in Figure 3.18. Figure shows that for the stiff backed model, the average

stride length is approximately 0.58 m. In our model, this length is increased %48
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and became 0.86 m.
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Figure 3.18: Stride lengths for the back (left plot) and front (right plot) legs for
the last six bounding steps. Red stars illustrate stride lengths for the actuated
spine model whereas the blue squares correspond to the stiff backed model.

One interesting notice to add here could be the change in the stride frequency.

A careful eye can see the difference between our stiff back and flexible back models

by comparing the duration and number of strides in Figure 3.10 and Figure 3.15.

In these figures we see that the the duration of a single stride increases while the

stepping frequency decreases in the flexible model. These reasonings naturally

are coupled with the explanation of the increase of the stride length.

3.4.2 Hopping Height and Feet Clearance

Increase in the hopping height was another claim of our research on spinal ac-

tuation specifically on the bounding gait. When we compare the results in the

previous section, we see that the maximum hopping height of the stiff backed

robot is 0.755 m. The flexible model has an increase of %6 in the maximum

hopping with the ability to reach up to 0.8 m. Although this rate may seem

small, the important difference is between the feet clearance results. We observe

that there is a %150 of increase for the back leg which has changed from 0.02 m

to 0.05 m. A larger increase happens for the front leg, at a rate of %350 which

enabled the robot to raise the leg from 0.04 m to 0.18 m.

The basic idea behind this increase is again related with the flexible body poses
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of the robot which is adjusted by the actuated spine. In the flexible bounding gait

controller, we are bending our robot body outwards in order to take the convex

pose. While the back leg is still on the ground in the back stance phase, the

front leg is controlled to its touchdown angle position. Adding the spinal angle

in the convex pose to the touchdown angle of the front leg, we obtain a larger

space under the toe. Same logic increases the clearance of the back leg too. In

addition to the auxiliary power provided to the system from the spine motor and

the increase of leg clearances, the flexible robot jumps higher than the stiff backed

robot. So as a result, the spinal actuation indirectly increases the hopping height

by enabling a higher lift for the legs.

3.4.3 Additional Thrust

A question that needs to be asked is whether spinal actuation gives additional

thrust to the system during stance phases. The observations which raises this

question is the poses of the body changing with respect to the spinal angle. In the

flexible bounding gait, there is an important transition between body poses when

the robot is on the ground. When the double flight phase ends with the front leg

touchdown event, the spine angle is controlled to position itself to concave angle

βcv which bends the body inwards to the ground direction. When the back leg

touches the ground, the spine changes its angle towards the opposite direction to

form a concave pose. While the body pose is changing the front leg leaves the

ground leaving the back leg in its compression phase. According to the geometry

of the body at this state, the torques produced by the spine motor increases the

amount of force acting on the back leg towards the ground. This additional force

on the leg spring increases the amount of compression of the legs, which acts like

an auxiliary thrust for the whole mechanism.

Figure 3.19 shows the amount of reaction forces acting on the ground due

to the compression of the legs. The first graph compares these amounts in the

front legs of stiff backed and flexible backed models. We see that there is a small

increase in the amount around %11. However this change is more striking in the

back legs; while the maximum force is 282.5 Nm in the stiff backed model, it is
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Figure 3.19: Leg springs’ reaction forces on the ground comparing the stiff backed
and flexible backed model. The front legs (top) and back legs (bottom) are
compared.

386.3 Nm in the flexible model. Although we observe an increase of % 36.7 in the

maximum forces due the spring compression, it is not clear whether this increase

is due to only spinal actuation. In the previous section where we discussed the

hopping height, we have observed an increase in the maximum jumping height

of the robot. Regarding this increase, we cannot conclude that the changes in

the spring compression is solely because of spinal thrust. However, we can reason

that, both of these results are the evidence for an additional power provided by

the spine joint and the auxiliary thrust and higher jumping heights are coupled

observations that support each other.

3.4.4 Torque Output

Another dimension of the performance comparison is the amount of torque pro-

duced by the actuators we have used. If we look at the results of the stiff backed
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robot model, we see that neither of the hip joints exceeds the absolute level of

90 Nm. However, the hip joints of the flexible model produced up to 110 Nm

of torque. If compare the results by leg pairs, we see that there is an increase

of %22 for the front leg motors and %100 for the back leg motors in the flexible

robot. This could be the result of both the additional thrust provided by spinal

actuation and the increased hopping height which results in greater forces on the

legs.

Also another interesting observation shows us that in both of the models, the

torque produced in front legs are more than the one produced in back legs. Due

to the nature of the bounding gait, the double flight phase ends with the front

leg touchdown event. So the front leg will be compensating the impact forces

during first touch down in a stride. Considering the dynamics and the inertia

of the robot body during flight, these impact forces will be affecting the front

hip joint as well as the hip actuator which will be trying to adjust the leg angle.

This front motor facing a larger resistive force compared to the back motor is

naturally producing more torque to maintain its task without losing the balance

of the robot.

If we look at the spine motor’s torque output, we observe that it is saturated

at the predefined limit. In tests where we varied this saturation level, we observed

that spine motor can be used to produce up to 800 Nm to enhance the perfor-

mance of the bounding gait. Along with this higher limit, we achieved faster

horizontal speeds close to 3.2 m/s however, none of these saturation limits were

practical; therefore we selected 200 Nm as our realistic level. One important

thing to not here is that our flexible robot structure and bounding gait controller

enables higher horizontal speeds given the required actuation power. Even in

the tests where we increased the saturation limit up to 800 Nm, the optimum

parameter set for the stiff backed bounding did not change. It can also be seen

from the torque output figures in the previous section that none of the legs exceed

90 Nm level which shows us that the stiff body structure cannot outperform its

current speed even with higher torque limits.



CHAPTER 3. BOUNDING WITH FLEXIBLE SPINE 50

3.4.5 Power Consumption and Negative Work

The best overview where we can discuss the effects of spinal actuation is shown in

Table 3.6. This table shows the specific resistance values of both bounding models

with different modes of the power calculated. The first column with average

power is calculated as ϵ := P/mgv meaning that both positive and negative

values of power consumed at motors are considered. The other type of specific

resistance is calculated as ϵ := |P |/mgv3 with only the absolute values of power

is used. The first row has the information about the stiff backed bounding where

the other two rows belong to flexible backed bounding. We have calculated the

corresponding specific resistance values of the flexible backed bounding in two

ways where we included all motors and excluded the spine motor to detect its

own power consumption.

Table 3.6: Specific resistance values for bounding behaviors.

Model ϵ with Avg. Power ϵ with Avg. Abs. Power

stiff 0.127 0.309
flexible total 0.227 0.755
flexible legs 0.024 0.371

If we compare the rows of the last column where we have the specific resistance

calculated with the absolute values of the motor powers, we see that all cases of

flexible bounding results are higher than the stiff backed bounding. However

the most important fact here is the power consumption of the spine motor itself.

When the rows of flexible backed bounding is subtracted, we get ϵ = 0.384 for

the spine motor, which is, by itself, is larger than the sum of both motors in both

of the models. In the previous section where we showed the simulation results,

spine motor was consuming up to 1200 W . This result we get from the specific

resistance table also approves of this situation and shows us the role of the spine

in the overall gait. We see that spine motor faces with a great amount of force

during the gait and consumes a lot of power both to compensate it and give the

robot auxiliary power it needs to continue the bounding.

A careful eye can notice that the peaks of spine motor power consumption

happen in front leg and double stance phases. This is reasonable because the front
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leg stance phase is when the front leg faces the impact forces and these forces

are transferred onto the spine joint through body connection points. The spine

motor which is trying to maintain a specific angle, receives an external disturbing

force in this state and the low level controller commands the motor to restore its

position back to desired target angle. The situation in the double stance phase is

different than the impact force reaction. In this phase, robot body is controlled

to change its pose in the reverse direction, therefore the spine motor consumes

a lot of power to turn the heavy body parts into the desired angle. Other than

these states we observe the spine motor to follow a similar pattern with the legs.

The other important observation we make with this table is the amount of

negative work existing in both models. If we compare the specific resistance

values of average power with absolute power, we see that theses values are much

higher in the absolute power based functions. The reason for that is the amount

of negative work done by the motors on the robots. These actuators are asked to

position the joints to very different angles where actuators need to be turned in

opposite directions. As the energy needed to turn a joint in one way is not stored

in any kind of passive mechanism, this lost energy cannot be used when the joint

is needed to turn to its previous position.

We see that the rate of negative work in flexible bounding is more than in the

stiff backed version. This is mainly because there are three motors in the former

one including the spine motor which is shown to consume a large amount of power.

We know that our joints do not consist of any passive compliant mechanisms like

torsional springs. These results tell us the need of some passive mechanisms

like these springs to store the energy of motors during actuation and release the

energy back to the system when needed. If such a mechanism is used the specific

resistance values will be closer to each other meaning that the system can store

energy and transfer it to necessary parts when available.



Chapter 4

Mathematical Model of Flexible

Spine

In this chapter, we extend the contribution of our thesis and mathematically

derive the kinematics and dynamics of a flexible back quadruped robot and its

bounding locomotion.

4.1 Analytical Planar Model

4.1.1 System Kinematics

We start by explaining the structure of the model and derive its kinematic equa-

tions based on specified structural parameters of the robot. Figure 4.1 shows the

overall structure of our flexible backed robot model together with all parameters

that determine kinematic relations.

The model is based on two main coordinate frames; W representing the inertial

world frame and B representing the body frame. For ease of understanding,

parameter and point definitions will be represented with these superscript letters

to differentiate whether the parameter has been defined in world coordinates or

52
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Figure 4.1: Planar quadrupedal robot model with an actuated spine joint con-
necting two body segments. Parameters shown on the robot define kinematic
relations and properties.

body coordinates.

The robot consists of two body segments: front and back. Each of these

segments are connected to a hip actuated leg on points PW
li

and are connected to

each other with a single spine joint denoted as PW
i . For our kinematic formulation,

this single joint is also denoted with two points; PW
f & PW

b , each of which is

assumed to be located on corresponding body segments. Even though they are

on different body segments, those points are on the same location inW , sustaining

a constrained connection between body parts throughout locomotion.

Both leg joint points PB
li

and spinal joint points PB
i are vertically aligned

with corresponding bodies’ center of mass (COM) point, represented with the

parameter pairs of (xi, yi). While parameters lli and lpi represent horizontal offset

between corresponding joint and COM points, lbi and hbi represent absolute values

of body length and height. In body coordinates B, we represent these leg joint
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points using offset values shown as below:

PB
li

=

[
lli

0

]
(4.1)

PB
i =

[
lpi

0

]
(4.2)

As we have defined our joints vertically aligned with center of mass points, the

second row of each vector defined above is 0.

The two body angles θi are defined as the counter-clockwise angle between

the world x axis and the body x axis of bodyi. Likewise, leg angles φi are defined

as the counter-clockwise angles between the x axis of bodyi and the y axis of legi

in B.

Table 4.1: Kinematic parameters for body segments.

Param. Value

xi the x position of COM of body i
yi the y position of COM of body i
θi the body angle w.r.t global x axis
lbi the length of body i
hbi the height of body i
lli the horizontal distance btw. COMi & leg i joint PB

li

lpi the horizontal distance btw. COMi & spinal joint PB
i

βs the spinal angle formed between two body parts

i ∈ {1, 2}, 1: front, 2: back

Table 4.2: Kinematic parameters for leg parts.

Param. Value

xti the x position of COM of toe of leg i
yti the y position of COM of toe of leg i
φi the leg angle w.r.t body i x axis
li the current length of leg i

li
0 the rest length of leg i

i ∈ {1, 2}, 1: front, 2: back

Table 4.1 and Table 4.2 show the names and descriptions of kinematic param-

eters used in our mathematical derivations and the equations for motion of the
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flexible backed robot model. By using the parameters in these tables, a robot

configuration vector q is formed as

q = [x1, y1, θ1, x2, y2, θ2, xt1 , yt1 , xt2 , yt2 ] (4.3)

Parameters in this vector define the configuration of the system at any time

given during the locomotion. By using these parameters, any point on the robot

and relations between these points and other parts of the robot can be derived.

Depending on this vector q, system dependent variables such as PW
li

and PW
i ,

and further kinematic relationships such as βs, li and φi shown in Figure 4.1 and

Figure 4.2 can be found.

Figure 4.2: Kinematic relationships on a single leg.

We define the rotation matrix RΘ and its first and second derivatives as;

RΘ :=

[
cosΘ − sinΘ

sinΘ cosΘ

]

ṘΘ :=

[
− sinΘ − cosΘ

cosΘ − sinΘ

]
Θ̇

R̈Θ :=

[
− cosΘ sinΘ

− sinΘ − cosΘ

]
Θ̇2 +

[
− sinΘ − cosΘ

cosΘ − sinΘ

]
Θ̈
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Based on the assumptions explained above, the kinematic formulation of the

planar robot model is explained in the following equations. First of all, the leg

and spine joints on the robot body, PB
li
and PB

i , and their corresponding positions

in the world frame are found as

PW
li

=

[
xi

yi

]
+RθiP

B
li

˙PW
li

=

[
ẋi

ẏi

]
+ ˙(

RθiP
B
li

)
(4.4)

PW
i =

[
xi

yi

]
+RθiP

B
i

˙PW
i =

[
ẋi

ẏi

]
+ ˙(RθiP

B
i ) . (4.5)

The spinal angle βs is defined to be the positive angle difference between the

body angles of both robot body parts. The spinal angle velocity is also defined

in the same manner as follows

βs = θ1 − θ2 (4.6)

β̇s = θ̇1 − θ̇2 , (4.7)

and the leg length is defined as the vector formed between the toe and leg joint

points on the robot as

li =
√

(Pli
W
y − yti)

2 + (Pli
W
x − xti)

2 (4.8)

l̇i =
(Pli

W
y − yti)(

˙Pli
W
y − ẏti) + (Pli

W
x − xti)(

˙Pli
W
x − ẋti)

li
. (4.9)

The leg angle φi is the positive angle defined between the horizontal world axis

and the vector defined between leg joint point and toe points. The body angle of

the robot part is also involved to complete the leg angle definition as follows:

φi = arctan

(
Pli

W
y − yti

Pli
W
x − xti

)
− θi (4.10)

φ̇i =
(Pli

W
x − xti)(

˙Pli
W
y − ẏti)− (Pli

W
y − yti)(

˙Pli
W
x − ẋti)

l2i
− θ̇i . (4.11)
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4.1.2 Force Equilibrium

In this section, active forces on the legs and body segments will be presented.

Based on the assumption that the legs have negligible mass compared to the

body, the leg forces differ in stance and flight phases. Consequently, total leg

forces during flight since they are assumed to be massless.

In order to distinguish these two phases, a binary value called the stance chart,

denoted by si, is defined. The value for this variable will be 1 if the corresponding

leg is in the stance phase and 0 when it is in flight phase.

Figure 4.3: Free body diagram of the robot showing relevant forces and torques.

The model is symmetrically structured for both body segments. Therefore,

derivations for a single leg and toe will generate to both legs. The leg model is

an instance of the SLIP model, which expresses the whole leg-toe system as a

massless spring-damper attached to a point mass at the toe. In this model, the

spring-damper is still massless, but is accompanied by a small toe mass at the

end of the leg.

The definition of forces in the system is shown in Figure 4.3 and their descrip-

tions are given in Table 4.3. As stated before, the leg is defined to be a massless

spring-damper system. Consequently, forces related with the spring-damper and



CHAPTER 4. MATHEMATICAL MODEL OF FLEXIBLE SPINE 58

Table 4.3: Parameter names and definitions for forces acting on joints.

Param. Value

(Fx, Fy) the forces acting on spine joint
(Flix

, Fliy
) the forces acting on hip joint i

FliT
the force produced by hip torque τi

FliS
the force produced by spring-damper in leg i

i ∈ {1, 2}, 1: front, 2: back

the torque applied on the leg can be derived as

FliS
= −ki(li − li

0)− dil̇i (4.12)

FliT
= τi/li . (4.13)

Depending on the assumption that the leg is massless, the leg itself does not

have any dynamics. Therefore, it only acts as a means of transferring forces

created by the spring-damper system and the torque applied on the leg joint.

This can also be seen in Figure 4.3. The corresponding force balance equation is

shown below.

[
Flix

Fliy

]
= R(θi+φi)

[
FliS

FliT

]
(4.14)

4.1.3 System Dynamics

In this section, the dynamics of the entire system is investigated. Based on the

system configuration vector defined in Equation 4.3, the dynamics of the system

computes the second derivatives of these state variables. However, the spinal joint

has an associated unknown force vector which must also be solved along with the

system dynamics. The components of this vector are shown in Figure 4.3 as Fx

and Fy.

The state of our system, including velocities, can be defined by the vector

S = [x1, y1, θ1, ẋ1, ẏ1, θ̇1, x2, y2, θ2, ẋ2, ẏ2, θ̇2, xt1 , yt1 , ẋt1 , ˙yt1 , xt2 , yt2 , ẋt2 , ˙yt2 ] .
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In order to find second order differential equations in the following sections,

the derivative of this state vector must be defined as

Ṡ = [ẋ1, ẏ1, θ̇1, ẍ1, ÿ1, θ̈1, ẋ2, ẏ2, θ̇2, ẍ2, ÿ2, θ̈2, ẋt1 , ˙yt1 , ẍt1 , ÿt1 , ẋt2 , ˙yt2 , ẍt2 , ÿt2 ] .

The first derivatives, or the velocities, of the states given in Ṡ can be directly

taken from the state vector itself. But the second derivatives, or accelerations,

must be calculated through dynamical equations. However, in addition to the

state vector components, the spinal joint forces Fx and Fy also need to be cal-

culated. Including these forces, we can form the the unknown dynamics vector,

denoted with U as

U = [ẍ1, ÿ1, θ̈1, ẍ2, ÿ2, θ̈2, ẍt1 , ÿt1 , ẍt2 , ÿt2 , Fx, Fy] .

4.1.3.1 Toe Dynamics

At the beginning of this section, we explained that toes in our model are assumed

to be fixed on the ground during stance. In order to do that, we use the stance

chart variable si in the equations, yielding the dynamics of toes. This variable is

set in stance phase and unset in flight phase, and multiplies the force parameters

with either (1− si) or si. Following this method, the dynamics equations for the

toes can be derived as

mti

[
ẍti

ÿti

]
=

(
R(φi+θi)

[
−FliS

−FliT

]
−

[
0

mtig

])
(1− si) (4.15)

Itiφ̈i = τi . (4.16)

4.1.3.2 Body Dynamics

The front and back body segments of the robot are symmetric and identical in

terms of structure and control. They only differ by the direction of spine joint
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forces and the torque produced by the spine motor. Considering these differences,

the dynamical equations of each body segment can be derived uniformly. Note

that forces and torques related with hip joints are only effective on the robot

while the legs are in stance phase. As mentioned before, our legs as massless

and the toes have relatively small masses with respect to body. The dynamics of

these particles dynamics under flight conditions do not affect the body segments

as opposed to their effects in the stance phase. As such, the dynamics for the

body segments are given by

mb1

[
ẍ1

ÿ1

]
=

[
Fl1x

Fl1y

]
s1 +

[
Fx

Fy −mb1g

]
(4.17)

Ib1 θ̈1 = −τ1s1 + τs +

((
Rθ1P

B
l1

)
×

[
Fl1x

Fl1y

])
s1

+
(
Rθ1P

B
1

)
×

[
Fx

Fy

]
(4.18)

mb2

[
ẍ2

ÿ2

]
=

[
Fl2x

Fl2y

]
s2 +

[
−Fx

−Fy −mb2g

]
(4.19)

Ib2 θ̈2 = −τ2s2 − τs +

((
Rθ2P

B
l2

)
×

[
Fl2x

Fl2y

])
s2

+
(
Rθ2P

B
2

)
×

[
−Fx

−Fy

]
. (4.20)

4.1.3.3 Spine Joint Constraints

The equations associated with the toes and the body segments of the robot are

sufficient to solve the dynamics of the system. However, because of the spinal joint

and the associated unknown force vector, further constraints must be investigated

and solved. As the robot model consists of two separate body segments connected

with a joint in the middle, defining the constraint on this joint will suffice.



CHAPTER 4. MATHEMATICAL MODEL OF FLEXIBLE SPINE 61

Although there are two definitions for the spine joint; P1 and P2 for front

and back segments respectively, these two points actually must correspond to

the same body position and therefore they must have the same dynamics for the

robot to keep it connected. The definitions of these points were already given in

Section 4.1.1. Following constraint is added with respect to the acceleration of

these points as

¨PW
1 = ¨PW

2 (4.21)[
ẍ1

ÿ1

]
+ ¨(Rθ1P

B
1 ) =

[
ẍ2

ÿ2

]
+ ¨(Rθ2P

B
2 ) (4.22)[

ẍ1

ÿ1

]
+ R̈θ1P

B
1

+2Ṙθ1
˙PB
1 +Rθ1P̈

B
1

=

[
ẍ2

ÿ2

]
+ R̈θ2P

B
2

+ 2Ṙθ2
˙PB
2 +Rθ2P̈

B
2

. (4.23)

As the points PB
i are defined on rigid bodies, both first and second derivatives

of these points will yield 0. Therefore, the last equation could be simplified as

[
ẍ1

ÿ1

]
+ R̈θ1P

B
1 =

[
ẍ2

ÿ2

]
+ R̈θ2P

B
2 . (4.24)

4.1.4 Overview of the Equations of Motion

With the addition of this last equation to the system dynamics, twelve second

order differential equations for twelve unknowns in the vector U are obtained.

The following equations summarize the solution to the whole system:
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mb1ẍ1 = Fl1xs1 + Fx (4.25)

mb1 ÿ1 = Fl1y s1 + Fy −mb1g (4.26)

Ib1 θ̈1 = −τ1s1 + τs +
(
ll1 cos θ1Fl1y − ll1 sin θ1Fl1x

)
s1

+(lp1 cos θ1Fy − lp1 sin θ1Fx) (4.27)

mb2ẍ2 = Fl2xs2 − Fx (4.28)

mb2 ÿ2 = Fl12
s2 − Fy −mb2g (4.29)

Ib2 θ̈2 = −τ2s2 − τs +
(
ll2 cos θ2Fl2y − ll2 sin θ2Fl2x

)
s2

+(−lp2 cos θ2Fy + lp2 sin θ2Fx) (4.30)

mt1ẍt1 =
(
−Fl1S

cos (φ1 + θ1) + Fl1T
sin (φ1 + θ1)

)
(1− s1) (4.31)

mt1 ÿt1 =
(
−Fl1S

sin (φ1 + θ1)− Fl1T
cos (φ1 + θ1)−mt1g

)
(1− s1) (4.32)

It1φ̈1 = τ1 (4.33)

mt2ẍt2 =
(
−Fl2S

cos (φ2 + θ2) + Fl2T
sin (φ2 + θ2)

)
(1− s2) (4.34)

mt2 ÿt2 =
(
−Fl2S

sin (φ2 + θ2)− Fl2T
cos (φ2 + θ2)−mt2g

)
(1− s2) (4.35)

It2φ̈2 = τ2 (4.36)

ẍ1 + (−lp1 cos θ1)θ̇1
2

+(−lp1 sin θ1)θ̈1
=

ẍ2 + (−lp2 cos θ2)θ̇2
2

+(−lp2 sin θ2)θ̈2
(4.37)

ÿ1 + (−lp1 sin θ1)θ̇1
2

+(lp1 cos θ1)θ̈1
=

ÿ2 + (−lp2 sin θ2)θ̇2
2

+ (lp2 cos θ2)θ̈2
. (4.38)

As the main idea behind the solution is to find the system dynamics vector U ,

a simple linear formulation can be used. If all the equations above are rewritten

so that the members of the U vector and their coefficients are on the left hand side

and the remaining known values are put on the right hand side of the equations, a

simple matrix equation can capture the system dynamics vector. Assuming that

all the coefficients of the unknown variables are put into matrix M and the known
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values are put into matrix K, the following equation will be the summarization

of the intended linear operation:

MUT = K and UT = KM−1 , (4.39)

where, the matrices M and K take the following form:

K =



Fl1xs1

Fl1y s1 −mb1g

−τ1s1 + τs +
(
ll1 cos θ1Fl1y − ll1 sin θ1Fl1x

)
s1

Fl2xs2

Fl12
s2 −mb2g

−τ2s2 − τs +
(
ll2 cos θ2Fl2y − ll2 sin θ2Fl2x

)
s2(

−Fl1S
cos (φ1 + θ1) + Fl1T

sin (φ1 + θ1)
)
(1− s1)(

−Fl1S
sin (φ1 + θ1)− Fl1T

cos (φ1 + θ1)−mt1g
)
(1− s1)(

−Fl2S
cos (φ2 + θ2) + Fl2T

sin (φ2 + θ2)
)
(1− s2)(

−Fl2S
sin (φ2 + θ2)− Fl2T

cos (φ2 + θ2)−mt2g
)
(1− s2)

(lp1 cos θ1)θ̇1
2 − (lp2 cos θ2)θ̇2

2

(lp1 sin θ1)θ̇1
2 − (lp2 sin θ2)θ̇2

2


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M
=

                          m
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1
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0
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0

0
0

0
0

0
0

0
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0

0
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0
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l p
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n
θ 1

−
1

0
l p

2
si
n
θ 2

0
0

0
0

0
0

0
1

l p
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θ 1
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−
l p

2
co
s
θ 2

0
0

0
0

0
0

                          
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4.2 Bounding Gait Controller

For the planar quadruped detailed in this chapter, we used the same bounding

gait model we have defined in Chapter 3. As a reminder, the bounding gait

we implement consists of four consecutive phases that are separated from each

other by conditions on state vector components. Along with these conditions, the

stance chart variable si plays the most important role, as it is an indicator of the

state of each leg.

The event detection for leg touchdown and liftoff was assumed to be handled

by pressure sensors at the tip of each toe in the previous model. When the

second order dynamic equations given in Section 4.1.4 are integrated throughout

a period, we can find the velocities of toe points at a time instance t. By looking

at the value of ẏti(t) we can understand whether the toe is in flight or stance

phase. In a similar fashion, we can detect the apex point of the center of mass of

the whole system, denoted as COMS, as

COMS =

([
x1

y1

]
mb1 +

[
x2

y2

]
mb2

)
/(mb1 +mb2)

˙COMS =

([
ẋ1

ẏ1

]
mb1 +

[
ẋ2

ẏ2

]
mb2

)
/(mb1 +mb2) ,

by calculating the value of the second equation. The second row of ˙COMsystem

will yield the vertical velocity of the robot, which can be used to detect the apex

height. By using leg events, we can implement the dynamic bounding gait for

this model as well. The apex height can also be used for further extensions of the

system.

In this chapter, we use a PD instead of a PID controller for the control of joint

motor positions. Except for the integral term in the controller, the formulation

and derivation of torque outputs for this model are the same with those explained

in Chapter 3. We also used the same trajectory tracking method to maintain a

constant angular velocity during leg swings and body pose changes.
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4.3 Extensions to the Model

Recall that the Working Model 2D simulation environment was used for our

models in the Chapter 3. It was able to solve the dynamic equations by itself,

without revealing mathematical details to the user. In addition to the dynamics of

the robot, it also solves various dynamics such as ground and air friction, elasticity

and electric charge. Despite the fact that we do not know the mathematical

models of the simulation tool, we were able to use it for our previously presented

simulations.

For the mathematical model we present in this chapter, we needed to include

some additional features as well. In this section, we present these additional

features that can also be used with our robot and bounding model in order to

increase the level of realism. For instance we implemented a ground friction force

model and an alternative bounding gait controller and observed their effects on

the bounding performance.

4.3.1 Ground Friction

Various friction models attempt to model forces generated between two bodies in

contact, in the opposite direction of motion. There can be two types of force with

respect to this model, static and kinetic friction forces. Generally each type of

these force is generated as a function of the normal force on the contact surface

and a friction coefficient related with body material. These forces can be derived

as

|Fs| ≤ µs|FN | |Fk| = µk|FN | , (4.40)

where FN is the normal force on the surface and µs, µk are static and kinetic

friction coefficients for materials used. According to this model, a moving force

F must exceed the static friction force Fs in order to move a body towards a

direction. If this force is lower than the static friction force, then a body will not

move. Whenever static friction force is exceeded by the moving force, a constant

kinetic friction force is applied to the moving bodies as long as the normal force
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FN stays same.

In order to implement such a model, an additional event for the toes must be

detected. By monitoring the horizontal speed of the toe mass, ẋti , a switching

function to generate a friction force according to the given cases must be im-

plemented. However, despite being realistic, embedding such a function based

on an additional event detection into our dynamic equations and the integration

method we use has computational and implementation costs. In addition to these,

the dynamics of the toe mass needs to be changed by integrating this discrete

force function into the equations given in Section 4.1.3. Therefore, instead of this

model, we preferred to use a simpler first order model.

In our viscous friction model, we assumed that the friction force acts upon

with the velocity of the toe instead of its acceleration. By using a single type of

friction force, we can relate the velocity of the toe with the force applied on it.

Because of this, we do not need to detect additional events, friction force can be

initiated by the detection of already used leg touchdown events. Working in the

same fashion with any kind of friction force, the force exerted on the body must

exceed the total friction to initiate motion. According to the horizontal force Fx,

our function f(Fx) produces the output shown in the figure below.

Figure 4.4: Viscous friction force as a function of total horizontal force on the
toe, Fx.

In Figure 4.4, the net coming from the friction model, f(Fx), is assumed to

be linearly proportional to the total horizontal force Fx exerted on the toe mass.

This total force Fx is defined as Fx = Fxti − Fs where Fxti is the force applied
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on toe mass by robot dynamics, and Fs being the friction force. The function

output is symmetric with respect to the vertical axis, meaning that it works for

forces on positive and negative directions. It is important to note that, the net

force is zero for the interval where the friction force is equal to the force applied

on toe mass by system dynamics.

To integrate this viscous friction model, we need to revise the derivative of the

system state vector Ṡ defined in Section 4.1.3. Since we are not using the friction

force in dynamic equations deriving the accelerations, the friction function output

will be applied directly on the horizontal speed of the toe masses. In order to

do that, we use a switching law that depends on the state of the leg as being in

flight or stance, regulating the derivative of the system state vector. While the

derivation of this vector remains the same in the flight phase with the derivations

above, it takes up the following form during the stance phase:

Ṡ = [ẋ1, ẏ1, θ̇1, ẍ1, ÿ1, θ̈1, ẋ2, ẏ2, θ̇2, ẍ2, ÿ2, θ̈2, Fx1K1, 0, 0, 0, Fx2K2, 0, 0, 0] .

The last 8 states shown in the vector belong to toe mass velocities and accel-

erations. We see that the first derivatives of toe masses in the horizontal direction

are defined by the friction force output multiplied with a constant Ki to regulate

the rate of the friction effect. We also see that the second derivatives of each toe

mass is given zero to ensure that their dynamics are neglected on the ground.

This type of friction model will ensure that feet on the ground will only be mov-

ing in the horizontal direction only when the maximum friction force is exceeded.

The motion on vertical direction is suppressed until leg lifts off from the ground.

4.3.2 An Alternative Bounding Controller

An alternative to the flexible bounding gait controller we defined in Section 3.2.1

can be an approach similar to the stiff backed gait controller proposed by Berke-

meier et al. [2], in which only one leg can be in the stance phase at a time.

In order to adapt this idea to our flexible robot, four consecutive phases of the

bounding can be represented as in Figure 4.5.
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Figure 4.5: An alternative flexible bounding gait in which four consecutive phases
follow each other, guaranteeing that only one leg can be in stance at a time.
Therefore there are no double stance phases.

In this alternate flexible bounding gait, we can remove the double stance phase

and place another double flight phase. It can also be seen from Figure 4.5 that,

only one leg can be in the stance phase. The robot starts the gait in the double

flight phase, where spine controls the body to form a convex shape. Similar to

the previous flexible controller, this phase aims to increase the range of the front

leg before it touches the ground. After the front leg touchdown occurs, the front

leg is swung back until it reaches its target liftoff angle, while the spine bends

inwards to form a concave pose. The event that ends this phase is one of the

main differences from the previous gait controller. Recall that in the previous

controller, the back leg touchdown event ends this phase and the gait enters the

double stance phase. However in this alternative controller, the front leg leaves

the ground before the back leg touches and the robot enters another double flight

phase. But this time, the pose of the body is conserved within the concave shape

in order to increase the back leg’s range this time. The robot body flies in the

air, while front leg is swung forward to reach its touchdown angle. Whenever
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the back leg touches the ground and initiates the next back leg stance phase,

the spine starts to bend outward to give the robot a convex pose. The same

mechanism works in this phase with the previous gait controller, as the back leg

swings backwards and the spine changes the body position for additional thrust.

Eventually, the back leg leaves the ground and the robot body shifts to its convex

pose, completing one stride within the flexible bounding gait.

We implemented this alternative idea within our existing controller by giving

our robot increased chances of maintaining a better gait. We will see in the

results of our simulation that, this alternative bounding is preferred because of

its additional thrust and stride length enhancements.

4.4 Simulations

4.4.1 Simulation Environment and Setup

We used MATLAB to simulate the flexible bounding gait and our mathematical

model by using the dynamics equations described in Section 4.1.3. As we have

defined our system with a state vector S, which involves the system configuration

components and their first derivatives, we can use the associated second order

differential equations to find solutions to the trajectories of the entire system

spanning a given time interval.

4.4.1.1 Hybrid Dynamical Systems

Based on the nature of our system and its dynamics, we used an extension of

MATLAB’s ode45 ordinary differential equation solver. This function takes in

three parameters; a function in the form of ẏ = f(t, y), an initial vector y0 and

a time span t =
[
t0 tf

]
. Given these three parameters, ode45 computes the

numeric integral of the function f from t0 until tf , using variable time steps

within the given time interval. In addition to function f , user needs to specify
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a function describing the list of events that need to be monitored. Throughout

integration, if any of these events happen, the integrator stops and finalizes the

output with additional information about the event and its time of occurrence.

The user can define events related to any kind of calculation within the system

at a time ti. An event can be defined with three attributes; its value, direction

and terminal case. The value of the event can be a series of calculations based on

system states. The direction describes the direction of zero-crossing of this value;

it can be from the positive domain, negative domain or from both sides. And the

terminal case defines the event as a terminal event that stops the integration.

For a hybrid dynamic system like our model, the ode45 function needs to

be invoked repeatedly as long as the events keep on happening. Therefore, we

needed to modify it by adding our own controller functions. For our simulations,

we used a wrapper function called hybrid dynamical system specification or HDSS

in short, which calls ode45 function repeatedly as events occur. This wrapper

ensures that the integration continues until the absolute final time tf , unless a

critical stopping error occurs. In addition to ode45 function parameters, we added

a transition function and a system chart function to evaluate our simulation for

flexible bounding.

The transition function is a system invoked after the ode45 function termi-

nated with respect to an event. This transition function controls the output of

ode45, the events happened and creates a new initial vector which is basically the

last state of the system before it terminated with that event. In this transition,

we perform required calculations, store the system trajectory and start another

integration phase with ode45 with an initial vector created inside our transition

function. With such a method, we enable our system to evaluate many events and

continue integration until a given final time tf . However, in cases when system

fails with no chance of restoring, such as robot crashing on the ground or starting

to run in the reverse direction, our transition function stops the integration cycle

as there is no need to continue the simulation because of unrecoverable results.

The system chart function defines a vector c, which describes the discrete

state of the overall system. According to our chosen bounding gait controller, a
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single chart of the system can be defined by the contact states of each leg. In

this case, our system consists of four different charts as each leg can be in either

stance or flight. This system chart function is called in many functions in the

overall simulation but mainly by gait and local controllers which must decide

their functionality based on the state of the legs. So we can say that our system

chart function represents the touchdown sensors in a practical application of our

robot.

The event function in our system finds the leg and body events required for

system transitions. In total, we have five events, of which two belong to legs and

the other to the body. The leg events depend on the state of each leg; if the

leg is in stance the event is based on the total force on the toe, if the leg is in

flight, it is based on the toe position. When the leg is in stance, the total force

on the toe is generated by both the spring and the torque produced from the

hip. While the normal force on the toe stays positive, it is forced to stay on the

ground. Whenever the value of this normal force crosses zero from the positive

domain, FN ≤ 0 in other words, the event is triggered. As the flight of the toe is

described with respect to the vertical distance between the toe and the ground,

when this distance becomes zero, the event is triggered. The body related events

act similar to this idea. Two of these events check the vertical distance between

the center of mass of body parts and the ground to detect whether the body hits

the ground. The remaining event checks the apex time of the center of mass of

the whole system. The apex is defined as ˙yCOM = 0 meaning that the vertical

velocity of the system reaches zero.

We defined our vector field function f as the function where we calculate the

results of dynamic equations shown in previous sections. As we find the system

solution vector Ṡ upon the state vector S, our vector field function takes the for

of ÿ = f(t, y, ẏ) which makes it a second order ordinary differential equation.
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4.4.1.2 Simulation Setup

By using the hybrid dynamical system defined above, we created a simulation

of our robot and bounding gait in MATLAB. The physical attributes and initial

conditions of the robot in this simulation are directly copied from our Working

Model 2D simulations explained in the previous chapter. However, this time

we did not use a model for a stiff backed robot, we only used simulations to

evaluate our analytical model for the flexible backed robot. On the other hand,

we used Nelder-Mead optimization method again to find an optimal set for both

our model and gait controller. After finding an optimal set of parameters for the

flexible bounding gait, we ran another simulation with this best parameter set

and collected data to evaluate the performance.

Every bounding simulation lasts up to 30 seconds. The robot starts the sim-

ulation with a height of 0.9 m and 0.6 m/s horizontal speed. The integrator

we used has an absolute maximum tolerance of 10−8 for overlap and integration

errors.

4.4.2 Extended Optimization Set

We used the Nelder-Mead optimization method again to find the best bounding

gait controller parameters for the mathematical flexible backed robot. However,

unlike the previous simulations we did in Working Model 2D, we used an enlarged

set for the parameters needed for the bounding gait.

pfb := [φbtd , φblo , φ̇b, φftd , φflo , φ̇f , βcx, βcv, β̇cx, β̇cv,

Kpb , Kdb , Kpf , Kdf , Kps, Kds]
T (4.41)

The parameter set for the flexible bounding gait is defined as pfb. It can be

seen that we have enlarged this set compared to the previous model by including

a separate group of PID controller gains for each leg and two angular velocity

parameters for each pose of the spine. With these additional parameters, the

optimization algorithm is asked to differentiate the controllers of each leg as well
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as the speed of spinal bending changing with respect to the body pose.

By giving an initial simplex consisting of 17 vertices, Nelder-Mead optimiza-

tion algorithm found the optimum controller parameter set after 118 repetitive

rounds. Table 4.4 shows the values of optimum parameters found after these

rounds.

Table 4.4: Optimal gait parameters for actuated spine bounding of the mathe-
matical model

Parameter Value

Kpf , Kdf (508.95, 4.77)
Kpb , Kdb (479.79, 5.81)
Kps , Kds (1631.2, 110.85)

φtdf , φlof , φ̇f (0.34 rad, -0.04 rad, 5.71 rad/s)
φtdb , φlob , φ̇b (0.31 rad, -0.01 rad, 3.83 rad/s)

βcx, βcv, ˙βcx, ˙βcv (0.19 rad, -0.17 rad, 16.89 rad/s, 9.64rad/s)

The first two rows of the table shows the PD gains of the hip controllers. It

can be seen that due to the different roles of the legs, their PD controller gains

are also different. We see that front leg is slightly stronger than the back leg

in means of reacting to angular error, but back leg is more sensitive to angular

velocity errors. This shows us that front leg will be swung faster than the back

leg, keeping its stance duration shorter. According to this behavior, front leg will

be acting like a break system rather than a thrust unit. However, when we look

at the back leg we see the opposite of this behavior, it is swung slower and its

time in stance phase is longer. By these means, back leg acts more like a thrust

spring and keeps the robot running in its balance by restoring the lost energy

during the other phases of the gait. Behaviors of the legs are also supported by

target angles and angular velocities. We cannot observe large differences between

target angles but, the difference in angular velocities point us the same behavior.

When the parameters related with the spine motor is investigated, we observe

this actuator is needed to be stronger and faster than hip motors. This is sup-

ported by the optimal PD gains shown in the third row of the table. Also we see

that the angular velocity parameters differ with respect to the pose of the body.

While the motor is adjusting the joint for the convex positions, it moves faster
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than the body is adjusted to concave pose. We know from the alternative bound-

ing we have chosen that body changes its pose from concave to convex during

back leg stance phase. This is also considered to be the thrust phase among the

rest of the cycle where back leg is swung back and spine aids the compressions.

With comparably a faster spinal joint in this phase, the rate and impact of the

auxiliary power could be increased to fulfil the job of the spine. As the thrust

impact is not necessary in front leg stance phase, observing the difference between

angular velocities of the spine joint with respect to the body pose supports the

idea of flexible spine’s thrust role in the back leg stance phase.

4.4.3 Results

In this section we will present the data obtained after running the flexible backed

robot with the optimized bounding gait controller parameters. The figures that

we will present here will be extracted from the last 2 seconds of the 30 second

lasting simulation, in which the robot has already maintained a stable bounding

gait. These last 2 seconds also correspond to the last 5 stable strides of the gait.

Figure 4.6 shows a compilation of graphs where system’s center of mass hop-

ping height, horizontal velocity and each foot clearance along with gait phases

are presented. The first graph presents the center of mass hopping height of the

robot. We can see that robot’s center of mass oscillates between 0.754 m and

0.788 m with a total hopping interval of 0.034 m. As the system consists of two

jointed body parts, the center of mass follows a curved trajectory, however the

dashed line in the graph tells us that the system has an average hopping height

of 0.774 m.

The second graph in the figure shows the horizontal speed of the system

center of mass. We can see that robot achieves a maximum instantaneous speed

of 3.83 m/s while maintaining an average of 3.55 m/s. This average speed also

corresponds to the same value of body length / second, which is a common measure

of velocity for dynamic running robots, as the length of our robot model is 1 m.
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Figure 4.6: Center of mass height (top), center of mass horizontal velocity (mid-
dle) and feet clearance with gait cycle phases (bottom) of the flexible backed
robot model. Green dashed lines in top two graphs show the average values.

The last graph in the figure merges the feet clearance with consecutive phases

in a gait stride. The dashed lines represent the trajectory followed by the front

foot and the solid line belongs to back foot. We can see that front foot can be

lifted from the ground up to 0.22 m while the back foot’s maximum clearance

is 0.06 m. As the phases of a single stride can be defined by the phases of each

foot, we can also show the gait cycle in this graph too. There are three different

shaded regions on the graph which represent back leg stance, double flight and

front leg stance if sorted from the darkest to the lightest grey tone. We observe

that there is not double stance phase as we have defined before. Each stride lasts

about 0.37 s which means that the robot has a 3 Hz running frequency. When

we investigate each phase in the stride, we see that the longest phase is the back

stance phase which takes approximately 0.16 s. This is followed by front leg

stance phase (0.13 s), double flight in convex pose (0.05 s) and double flight in

concave pose (0.03 s).
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Figure 4.7: Angular trajectory of the spine during bounding motion.

Figure 4.7 shows the trajectory of the spine angle during the bounding lo-

comotion. It can be seen that spine motor manages to adjust the spine so that

the target angles for the spine, which are also shown in Table 4.4, are reached

successfully.
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Figure 4.8: Instantaneous power consumption (top) and torque output (bottom)
of hip motors during bounding gait.

Figure 4.8 shows the power consumption and torque output of hip motors

used in the robot. The most striking attribute of both graphs is the torque and
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power peaks at particular phases of the gait. When we look at the graphs we can

see that back hip motor produces a torque amount not greater than 130 Nm on

its standard course. However the front hip motor produces a greater torque than

the back, reaching up the levels of 198 Nm. According to these values, except

from the peak levels, the maximum power consumption of back hip motor is 641

W and 601 W for the front motor. If the last graph in Figure 4.6 is investigated

carefully, it can be noticed that these peaks correspond to the liftoff time instances

of each leg. With respect to the fuzzy state where ground friction is disabled, the

trajectory tracking system fails and PD controllers produce a larger torque than

they should have. Because of that, the hips produce a peak torque saturated at

200 Nm which causes the motors to consume instantaneous power at levels of

3000 W . These peaks can be neglected as the duration of them are smaller than

0.001 s
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Figure 4.9: Instantaneous power consumption (top) and torque output (bottom)
of spine motor during bounding gait.

Figure 4.9 presents power consumption and torque output of the spine motor

during the flexible bounding gait. We can observe that spine motor saturates

at certain phase of the gait by reaching the top level of 200 Nm. Except from

the saturations, motor produces a maximum torque of 85 Nm. Naturally, the
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power consumption values are closely related with the torque output; during

the saturation period spine motor consumes a maximum level of nearly 610 W .

However it should be noted that the peaks observed in the hip motors do not

exist in spine motor because of the continuous state flow of the PD controller.

4.5 Discussion

When we look at the results of the simulations of this model, we can clearly

say that the conceptual idea presented in Chapter 3 is mathematically proved

to be working and showing sound evidences of flexible spine architecture and its

auxiliary role in the dynamic bounding gait. By following this conceptual idea,

we have derived the dynamics and force equilibriums in the system and showed

analytical inspection on the overall idea. As we have derived all the possible

systems within the whole, we managed to cover a larger part of the details that

we could not in the previous simulations. In addition to the required dynamic

equations, we also analyzed ground friction forces and trajectory tracking system

with more detail.

4.5.1 Hopping Height and Speed

If we look at the results of the simulation on hopping height and foot clearance,

we do not see very important changes compared to the previous simulations.

However, a very important change observed in this part is the great increase in

the horizontal velocity. We managed to achieve an average speed of 3.55 m/s for

our 20 kg weighing robot during a dynamic bounding gait. If the body length of

the robot is concerned, this value corresponds to 3.55 bodylength/second which

is an important measure for the system.

There are some obvious reasons which produce such a result. The most im-

portant reason is the change in the amount of leg spring compression in this
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simulation. Although we have used the same spring constants and other at-

tributes used in the previous simulations, the maximum compression rate of the

leg springs were let up to the total length of the spring, that is 0.8 m. It is impor-

tant to remind that, in the other simulations explained in the previous chapter,

the rest length of the spring was also 0.8 m, however it was bound to compress up

to 0.5 m only. For this reason, we observed a stiffer spring system in our model

this time.

4.5.2 Gait Frequency

We also observe a higher frequency in the stride this time. If we look at the feet

clearance graphs, we can see that there are 3 complete cycles in 1 second, which

means that robot runs with 3 Hz. The reason for this is closely related with

the natural frequency of springs. The damped natural frequency of a spring is

described as follows:

fn =
1

2π

√
k

m

ζ =
c

2
√
km

fd =
√

1− ζ2fn

where given mass m, spring constant k and damping constant c,fn is the natural

frequency free of damping, ζ is the damping ratio and fd is the damped natural

frequency of a spring-damper system.

When our system is considered, the damped natural frequency of a single leg

is found to be approximately 2.95. Having defined that, we see that our robot

moves very close to this frequency meaning the system is stabled within the leg

natural frequency. Along with this compliance, the body parts move faster than

the previous robot, resulting in a faster gait. It is also for this reason, the robot

does not have a double stance phase which requires softer springs and slower

gaits.
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4.5.3 Ground Friction and Trajectory Tracking

In our system we implemented a ground friction system which is slightly different

than the mechanics of the Coulomb friction. In our which we defined in Section

4.3.1, we used a discrete state functionality where the ground friction force was

applied on the horizontal velocity of the toe mass instead of its acceleration. By

using such a method, we disabled the Newtonian dynamics of the toe in the

stance phase and enabled them again in the flight. This method gave us the ease

for implementation as no additional event declaration was required. However,

we have a drawback of this method which can be seen on the trajectories of toe

masses.
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Figure 4.10: Rotational velocity (top) and position (bottom) of each hip joint
during bounding gait.

Figure 4.10 shows the rotational velocity and position of each hip joint where

the effects of trajectory tracking and ground friction can be seen. We see that

the positioning of each leg works smoothly with respect to the PD controllers,

however the ground friction force disturbs the trajectory tracking during stance

phase. When investigated closely, one can see that when the legs are leaving the

ground the rotational velocity of each leg reaches a peak with the intervention
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of the PD controller. At this state, the ground friction force disappears and

leaves the dynamics of the toes in a fuzzy state. According to this situation, the

the legs behave out of the control of the trajectory tracking system and moves

very fast bounded with the saturation level of hip motor torque. However, we

observed that these peaks give the robot an additional acceleration and have an

important effect on the achieved ground speed. When we ran simulations in order

to eliminate these peaks, we observed that robot cannot run with high speed with

the given optimum parameter set.

4.5.4 Spinal Actuation

The main focus of this research is the effects of spinal actuation on the bounding

gait and we can see the results of this theory by looking at the graphs showing

increases in hopping height and horizontal speed. However, in order to understand

the details of the spine we must investigate the spine motor torques and how they

behave according to phases of the gait.

If we revisit the torque output of the spine motor in Figure 4.9, we can see

that there are two major saturation periods in a single stride. The details of

torque output with respect to the phase properties can also be seen below in

Figure 4.11.

The figure shows 4 consecutive phases in a single stride of the flexible bounding

gait along with the torque output of the spine motor. The shaded regions can be

listed from darkest to lightest grey as double flight phase with concave body pose,

back leg stance phase, double flight with convex pose and front leg stance phase.

In the back stance phase, we see that spine motor produces a positive torque to

change the body pose from concave to convex. We also observe that this positive

torque affects the spring compression of the back leg and eventually gives an

additional thrust to the robot. After this phase, the robot enters the double

flight phase with convex pose, therefore the torque level of the motor becomes

nearly zero. The most interesting observation from this graph is the behavior of

the motor during the front stance phase. We know that in this phase, robot faces



CHAPTER 4. MATHEMATICAL MODEL OF FLEXIBLE SPINE 83

28.4 28.45 28.5 28.55 28.6 28.65 28.7 28.75

−250

−200

−150

−100

−50

0

50

100

150

200

250

Time (s)

T
or

qu
e 

(N
m

)

Figure 4.11: Torque output of the spine motor in a single stride that consists of
4 consecutive parts each shown with different shaded regions.

a great deal of impact forces on the front leg which is then transferred to spine

joint. In the beginning of this phase, we see the motor reaching the saturation

level to overcome the impact forces acting on the spine joint. In order to keep the

robot in balance and the correct pose, this period of saturated positive torque

lasts for some time until the impact forces are beaten. After that, the body is

moved to the concave pose where we observe a torque in the negative direction.

This output reaches to a saturated negative level after some point, which can be

explained as the torque needed to keep the robot in the concave pose while the

front leg experiences the thrust forces of the spring system. This thrust forces

of the spring also acts on the spine joint which results in the saturation of the

motor. We see that whenever the front leg leaves the ground, or the thrust forces

of the spring disappears, the spine motor exists the saturation and returns back to

normal torque output. This change in the output can be clearly seen the double

flight phase with concave pose.

From this graph, we understand that spine motor uses a lot of power in the

front leg stance phase in a stride. We observe this by looking at the two extreme

outputs of the motor which are due to impact forces and the spring thrust forces

acting on the spine joint. One interesting note we can express can be the trend
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of torque output in this phase. We see the torque level going from the positive

extreme to negative extreme which can be soften by a passive compliance used.

The damping of this compliance can resist the active forces on the joint and

reduce the amount of torque produced by the spine motor in front leg stance

phase. By using such a system, the power consumption can also be reduced.



Chapter 5

Conclusion

In this thesis we presented a novel flexible backed quadruped robot and a novel

flexible bounding gait controller that are both inspired from the agile and fast

land mammals in nature which use their flexible spine and musculoskeletal bodies.

We first presented the state-of-the-art quadruped robots with changing controller

strategies and leg structures. These robots achieved different performances due to

their designs and controllers but they all shared a stiff trunk which we believed

to limit their performances. We also presented different dynamic locomotion

gaits performed by quadrupedal land mammals and investigated the properties

of these gaits. We then focused on the bounding gait which is also commonly

used by the multi-legged robot platforms due to its symmetric pattern and ease

of implementation.

Having defined the background of the research, we presented our flexible

backed quadruped robot with the spinal actuation. We defined a conceptual

planar model with three motors on the robot, where two of them placed on the

hips and the other one on the spinal joint. In order to make a comparison, we

presented a stiff backed robot model with the same physical properties with our

flexible model except from the actuated joint mechanism which connects two

separate body parts. Being inspired from cheetah, we presented a novel flexible

bounding gait that will fit our flexible robot. After that we used a repetitive

85
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optimization algorithm to find the best parameters that yields the best perfor-

mance for bounding for both of these robot models. After creating a fair ground

for comparison, we ran simulations in Working Model 2D environment to observe

the performance differences between these two models. We observed that by us-

ing an actuated spine we can achieve a %17 increase in the horizontal speed and

%6 increase in the hopping height of the system. We also noted that feet clear-

ance had an increase of %150 and %350 for back and front legs respectively. We

saw that total amount of power consumed in the flexible robot exceeded the stiff

backed motor due the extensive usage of the spine motor. The results showed us

that spine motor was used to give additional thrust to the system by increasing

the amount of compression for the legs. In addition to these, we showed that the

flexible body pose related with the phases defined in the flexible bounding con-

troller increased the stride length of the robot which resulted in higher locomotion

speeds.

In order to validate our conceptual model, we presented the mathematical

investigation of the flexible backed robot system. We redefined the physical

properties of the robot and derived all dynamic relations in the robot system.

By finding the dynamics and the force equilibrium of the robot we managed to

find a second order differential system which allowed us to create a simulation

using integration techniques. We extended our model by adding detailed trajec-

tory tracking and ground friction forces to increase the level of realism. For this

robot model, we used an alternative bounding gait controller which we believed

to enhance the locomotion performance. In the simulations ran in MATLAB

environment, we observed that our robot achieved much faster locomotion with

increased feet clearance. We noted that the changes in the spring stiffness and

the discrete state ground friction force affected the result of the bounding gait by

increasing the stride frequency. By looking at the resulting graphs, we validated

our conceptual model and showed the spine role during the bounding gait.

We started our research by observing the absence of a flexible body in the

dynamic running robot platforms. Inspiring from the nature, we believed that

using an actuated spine would increase the locomotion performance by bringing

robots one step closer to their natural correspondences. We presented novel
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models for a flexible backed quadruped robot and flexible bounding gait and

showed that a flexible spine can increase the locomotion performance by means

of giving additional thrust and power to the system as well as increasing the

stride length.

5.1 Future Work

When we look at the torque outputs and power consumptions of the motors, we

observe that there is a great deal of negative work done throughout the gait. One

possible extension to the overall system could be implementing additional passive

compliant mechanisms on joints which are actuated by motors. Mechanics of the

rotational spring-damper systems can resist the extensive torque acting on the

joints due to impact or thrust forces. Such systems can also reduce the amount of

power consumed by the motors as they will be required to produce less torques.

One possible direction for the research is to find a passive compliant system

for the spinal joint that will fit in the natural frequency of the gait. The ideal case

will be this passive compliant system change the body poses as long as the robot

moves in coordination with the natural frequency of the system. In such a case,

the spine motor will only be used to restore the energy lost during one stride and

let the robot enter the natural frequency again. Our current research results show

directions for finding a suitable compliance whose damping and spring constants

can be adjusted to make the robot reach the limit cycle. However, the structure

of this system remains unclear as a simple rotational spring can also be as useful

as a complex multi-body spine structure. Despite the fact that the structure of

the mechanism cannot be foreseen, it is clear that such a system will increase the

performance criteria of the robot as well as moving the overall design one step

closer to its natural correspondences.

Another possible extension for this research could be investigating the role of

foot retraction. Fast running land mammals use this method commonly in order

to avoid land collision during high speed actions [10]. After the leg is swung
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backwards in the stance phase, it is retracted inside, towards the body to create

a larger space between the tip of the toe and the ground. When the legs are

pulled inside to a certain point, it becomes safer to place them for the touchdown

position as the trajectory of the leg does not collide with obstacles on the ground

or the ground itself. Implementing such as system for a fast running robot like

ours can increase the chances of reaching higher speeds without colliding with

the ground.
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Appendix A

Code

A.1 Nelder-Mead Optimization Method Algo-

rithm

Calculate initial Pi and yi

While ( minimum not reached )

Determine h, calculate P̄

Form P ∗ = (1 + α)P̄ − αPh

Calculate y∗

If y∗ < yl

Form P ∗∗ = (1 + γ)P ∗ − γP̄

Calculate y∗∗

If y∗∗ < yl

Replace Ph by P ∗∗

Else

Replace Ph by P ∗

Else

If y∗ > yi, i ̸= h

If y∗ ≤ yh
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Replace Ph by P ∗

Form P ∗∗ = βPh + (1− β)P̄

Calculate y∗∗

If y∗∗ > yh

Replace all Pi’s by (Pi + Pl)/2

Else

Replace Ph by P ∗∗

Else

Replace Ph by P ∗

Calculate convergence

End


