
REPRESENTATION, EDITING AND
REAL-TIME VISUALIZATION OF

COMPLEX 3D TERRAINS

a thesis

submitted to the department of computer engineering

and the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Çetin Koca

September, 2012

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Uğur Güdükbay (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. İbrahim Körpeoğlu

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Ahmet Enis Çetin

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii

ABSTRACT

REPRESENTATION, EDITING AND REAL-TIME
VISUALIZATION OF COMPLEX 3D TERRAINS

Çetin Koca

M.S. in Computer Engineering

Supervisor: Assoc. Prof. Dr. Uğur Güdükbay

September, 2012

Terrain rendering is a crucial part of many real-time computer graphics applica-

tions such as video games and visual simulations. It provides the main frame-of-

reference for the observer and constitutes the basis of an imaginary or simulated

world that encases the observer. Storing and rendering terrain models in real-time

applications usually require a specialized approach due to the sheer magnitude

of data available and the level of detail demanded. The easiest way to process

and visualize such large amounts of data in real-time is to constrain the terrain

model in several ways. This process of regularization decreases the amount of

data to be processed and also the amount of processing power needed at the cost

of expressivity and the ability to create interesting terrains.

The most popular terrain representation, by far, used by modern real-time

graphics applications is a regular 2D grid where the vertices are displaced in a

third dimension by a displacement map, conventionally called a height map. It

is the simplest and fastest possible terrain representation, but it is not possible

to represent complex terrain models that include interesting terrain features such

as caves, overhangs, cliffs and arches using a simple 2D grid and a height map.

We propose a novel terrain representation combining the voxel and height map

approaches that is expressive enough to allow creating complex terrains with

caves, overhangs, cliffs and arches, and efficient enough to allow terrain editing,

deformations and rendering in real-time. We also explore how to apply lighting,

texturing, shadowing and level-of-detail to the proposed terrain representation.

Keywords: Terrain representation, terrain visualization, caves, overhangs, cliffs,

voxel terrain, height map terrain.

iii

ÖZET

KARMAŞIK 3B ARAZİLERİN GERÇEK-ZAMANLI
OLARAK SİMGELENMESİ, DÜZENLENMESİ VE

GÖRSELLEŞTİRİLMESİ

Çetin Koca

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Assoc. Prof. Dr. Uğur Güdükbay

Eylül, 2012

Arazi görselleştirme, bilgisayar oyunları ve görsel benzetimler gibi gerçek-

zamanlı bilgisayar grafikleri uygulamalarının çok önemli bir parçasıdır. Arazi

görselleştirme, izleyiciye temel bir referans-çerçevesi sağlamasının yanında izleyi-

ciyi saran hayali veya benzetimli dünyanın temelini oluşturur. Gerçek-zamanlı

uygulamalarda arazi modellerinin saklanması ve görselleştirmesi genellikle veri

boyutu büyüklüğü ve talep edilen detay seviyesi nedeniyle bu iş için özelleşmiş

bir yaklaşım gerektirir. Böyle büyük boyutlu verilerin gerçek-zamanlı olarak

işlenmesi ve görselleştirilmesi için izlenecek en kolay yol arazi modellerinin birçok

yönden kısıtlanmasıdır. Bu kalıba uydurma işlemi, arazi modellerinin ifade

edilebilirliğinin ve ilginç arazi modelleri yaratma olanaklarının kısıtlanması pa-

hasına işlenmesi gereken veri boyutunu ve ihtiyaç duyulan işlem gücünü azaltır.

Çağdaş gerçek-zamanlı grafik uygulamaları tarafından en çok kullanılan

arazi gösterimi yükseklik haritasının üçüncü boyutta uygulandığı düzenli bir

2B ızgaradır. Bu gösterim, mümkün olan en basit ve hızlı işlem olanağı

sağlayan arazi gösterimidir; ancak mağara, asılı kaya, uçurum ve kemer gibi il-

ginç arazi özelliklerinin temsil edilmesine olanak sunmaz. Biz, hacimsel gösterim

ve yükseklik haritası yaklaşımlarını birleştiren, mağara, asılı kaya, uçurum ve

kemer gibi arazi özelliklerini içeren karmaşık arazi modellerini temsil edebilecek

ifade yeneğine sahip ve gerçek-zamanlı olarak arazi düzenleme, şekil değişikliği ve

görselleştirmesine izin verecek kadar verimli yeni bir arazi gösterimi öneriyoruz.

Aynı zamanda, önerilen arazi gösterimine ışıklandırma, kaplama, gölgelendirme

ve detay seviyesi belirleme işlemlerinin nasıl uygulanabileceğini inceliyoruz.

Anahtar sözcükler : Arazi modeli simgeleme, arazi görselleştirmesi, mağaralar,

asılı kayalar, kayalıklar, hacimsel arazi, arazi yükseklik haritası.

iv

Acknowledgement

First and foremost, I want to thank my dear family for providing me an envi-

ronment in which I could follow my passion and develop my skills. This thesis

could not have been possible without the love, care and support of my mother

and father. I am grateful to my dear brother for always being one of my best

friends, and to my beloved sister for making life more fun and enjoyable with her

jokes and smile.

I want to thank my friends Süleyman Fatih İşler and Fatih Karakuş for always

being there for me, sharing the happiest and the most stressful moments of my

life, and lending me a hand and a mind whenever I was in need.

I feel very lucky for having a chance to work with my advisor Uğur Güdükbay

as I learned so much from him within his lectures and during my thesis studies.

I am grateful to him for his support and encouragement through the course of

my M.Sc. studies, and for his sincere patience and understanding even when I

was not able to devote the time deserved by my studies. He always valued my

ideas and endeavors, sometimes even more than me, and shed light on my path

with his vision. I also want to thank the members of the thesis jury, İbrahim

Körpeoğlu and Ahmet Enis Çetin for evaluating the thesis and providing their

invaluable feedback.

I want to express my sincere gratitude to ASELSAN Inc., the company that

I am proud to be a part of, especially to my team leader, Fikri Dikmen and each

and every one of my teammates for their support and understanding during my

studies.

I want to thank David Arkenstone, Ludovico Einaudi, Debbie Wiseman,

Thomas Newman, James Horner, Hans Zimmer, Clint Mansell, Iron Maiden,

Nightwish, Korpiklaani, and many other great musicians and composers for al-

ways providing inspiration to me, refreshing my soul, and making the world a

much better and delightful place to live with their unique tunes.

Finally, I would like to thank TÜBİTAK (The Scientific and Technological

Research Council of Turkey) for valuing my ideas and financially supporting my

M.Sc. studies through their BİDEB scholarship.

v

Dedicated to my loving parents...

Happy birthday mom, I love you!

vi

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 3

1.3 Challenges . 4

1.4 Research Goals . 5

1.5 Overview of the Proposed Approach 6

1.6 Summary of Contributions . 7

1.7 Organization of the Thesis . 7

2 Background 9

2.1 Heightmap-based Terrain Representations 10

2.2 Volumetric Terrain Representations 16

3 The Proposed Approach 19

3.1 Goals . 19

3.2 Terrain Representation . 20

3.2.1 Heightmap-based Approaches 21

vii

CONTENTS viii

3.2.2 Voxel-based Approaches 22

3.2.3 The Proposed Hybrid Approach 22

3.3 Data Structures . 23

3.3.1 Voxel Structure . 25

3.3.2 Patch Structure . 30

3.3.3 Vertex Structure . 31

3.4 Surface Extraction . 33

3.4.1 Two-Dimensional (2D) Case 35

3.4.2 Three-dimensional (3D) Case 39

3.5 Terrain Surface Generation . 51

3.5.1 Generating Vertices . 51

3.5.2 Generating Faces . 59

3.5.3 Computing Face and Vertex Normals 62

3.5.4 Displacement of Terrain Surface Vertices 66

3.5.5 Terrain Deformation . 69

4 Visualization 77

4.1 Lighting . 77

4.2 Texture Mapping . 83

4.2.1 Generating Texture Coordinates 83

4.2.2 Multi-texturing . 89

4.2.3 Texture Splatting . 92

CONTENTS ix

4.3 Shadows . 93

4.3.1 Shadow Mapping . 95

4.3.2 Cascaded Shadow Maps 101

4.4 Level of Detail . 105

4.4.1 Basics of Level-of-Detail 106

4.4.2 Level-of-Detail Selection 109

4.4.3 Level-of-Detail Artifacts 111

4.4.4 Smooth Level-of-Detail Transitions 117

5 Implementation and Performance 123

5.1 Implementation Overview . 124

5.2 Terrain Editor . 125

5.2.1 Editing Coarse Terrain Model 125

5.2.2 Editing Terrain Surface . 127

5.2.3 Saving and Loading Terrain Data 131

5.3 Rendering Pipeline . 131

5.3.1 Vertex Buffer Updates . 133

5.3.2 Index Buffer Updates . 133

5.3.3 Generating Shadow Maps 135

5.3.4 Terrain Surface Rendering 135

5.4 Performance and Memory Usage 137

5.4.1 Test Environment . 137

CONTENTS x

5.4.2 Timers . 138

5.4.3 Test Scene . 139

5.4.4 Memory Usage . 139

5.4.5 Performance . 142

5.5 Discussion . 144

5.5.1 Expressiveness . 145

5.5.2 Simplicity . 146

5.5.3 Efficiency . 146

5.5.4 Visual Quality . 147

5.5.5 Content Creation . 148

5.5.6 Physics and Interaction . 149

6 Conclusions and Future Work 151

6.1 Conclusions . 151

6.2 Future Work . 152

Bibliography 154

List of Figures

3.1 Octree representation of a voxel space can be used to increase

resolution where it is needed. 24

3.2 Representation of voxel indices at level 1 28

3.3 Representation of voxel indices at level 2 29

3.4 Computing the position of a voxel given its voxel index 30

3.5 Intersection zone of four neighboring voxels 36

3.6 Sample voxel configurations in 2D-case 36

3.7 Splitting configurations for intersection zone normalization 37

3.8 The surface extracted by the proposed surface extraction algorithm. 38

3.9 Normalized vs. unnormalized voxel intersection volumes in 3D-case 39

3.10 Normalization of an unnormalized voxel intersection volume in the

3D case . 40

3.11 A sample normalized intersection volume configuration with six

filled voxels . 40

3.12 An instance of voxel intersection volume configuration where three

biquadratic Bézier surfaces are required to generate a connected

surface. 42

xi

LIST OF FIGURES xii

3.13 A sample normalized intersection volume configuration with three

filled voxels . 44

3.14 Unique voxel intersection volume configurations 45

3.15 Unique voxel intersection volume configurations with four filled

voxels . 45

3.16 Unique voxel intersection volume configurations with five filled voxels 46

3.17 Unique voxel intersection volume configurations with six filled voxels 46

3.18 The division of the actual intersection volume to several new and

smaller intersection volumes . 47

3.19 The final result of the surface extraction algorithm 48

3.20 The final result of the surface extraction algorithm as seen from a

different viewpoint . 48

3.21 The result of static surface culling 50

3.22 Approximation of a surface with vertices 53

3.23 Internal sharing of vertices within a surface patch 55

3.24 An example of an externally shared vertex 56

3.25 Merging two shared vertex lists 58

3.26 Different triangulation patters of surface vertices 59

3.27 Primitive triangulation pattern that is tiled across the surface . . 60

3.28 Normal vector of a triangle . 62

3.29 The effect of Gaussian filtering on surface displacement 68

3.30 Updating surface normals when a vertex displacement value is

modified . 72

3.31 Overview of the terrain geometry generation process. 74

LIST OF FIGURES xiii

4.1 The effect of lighting on terrain surface 78

4.2 The difference between lighting computations with per-face and

per-vertex normals . 80

4.3 The effect of different light directions on the terrain surface 81

4.4 Cave rendering with per-pixel point lights 82

4.5 The result of planar texture coordinate generation 85

4.6 Color-coded example of how tri-planar texture coordinate genera-

tion is applied to surfaces . 87

4.7 The result of tri-planar texture coordinate generation 88

4.8 A comparison of single-texture mapping and multi-texture mapping 91

4.9 An example use of multi-texturing where textures are blended ac-

cording to a noise function . 92

4.10 A sample usage of texture splatting 93

4.11 Presented texturing approach applied to a sample scene including

cliffs and caves . 94

4.12 The effect of Gaussian filtering on shadow mapping 99

4.13 Sample shadow maps . 100

4.14 An example of cascaded shadow mapping 103

4.15 Rendered cascaded shadow maps 104

4.16 Misaligned vertices because of the level-of-detail difference between

neighboring surface patches . 107

4.17 Aligning border vertices of surface patches with different level-of-

details . 108

4.18 The selection of surface patch vertices according to the level-of-detail108

LIST OF FIGURES xiv

4.19 Sample level-of-detail ranges . 110

4.20 Adjacent surface patches are rendered at different levels-of-detail. 111

4.21 A sample visual artifact caused by rendering adjacent surface

patches at different levels-of-detail 112

4.22 Preventing level-of-detail artifacts 114

4.23 The triangles in the interior region of the surface patch. 115

4.24 Triangulation pattern to prevent level-of-detail artifacts 116

4.25 The rendering of three surface patches that are adjacent to each

other and are at different levels-of-detail using the presented ap-

proach. 116

4.26 The geometry resulting from the application of level-of-detail . . . 117

4.27 Surface patch vertices and edges that disappear at a lower level-

of-detail . 119

4.28 Sample level-of-detail range including approximate transition points121

5.1 Manual editing of voxel model . 126

5.2 Editing surface terrain by modifying its heightmap 127

5.3 Sigmoid function that is used to compute the effectiveness of a

heightmap brush . 130

5.4 Rendering pipeline that is used in the sample application 132

5.5 Screen captures of the test scene 140

List of Algorithms

3.1 Surface extraction algorithm . 43

3.2 Generating triangle vertex indices given the index of the triangle . 61

3.3 Computing vertex normals of the terrain surface vertices 65

3.4 Finding out whether a vertex index is inactive and should not be

displaced . 70

3.5 Displacement of terrain surface vertices 71

3.6 Computing the set of neighbor patches of a given patch 74

3.7 Updating the displaced positions of a surface patch 75

3.8 Updating the surface normals of the effected vertices after editing

the heightmap of a surface patch 76

5.1 Computing the start and end positions of the ray in world coordi-

nates that is defined by the cursor 128

xv

List of Tables

5.1 Test environment of the reference implementation. 137

5.2 Coarse terrain model statistics of the test scene. 139

5.3 Terrain surface statistics of the test scene for different maximum

levels-of-detail. 139

5.4 Vertex attributes that are stored on the main memory. 141

5.5 Vertex attributes that are stored on the video memory (i.e., in

vertex buffers). 141

5.6 Main memory usage of the reference implementation for the test

scene. 141

5.7 Video memory usage of the reference implementation for the test

scene. 142

5.8 Video memory required to store shadow maps. 142

5.9 Performance of the terrain surface generation process. 143

5.10 Performance of real-time terrain surface deformation process. . . . 144

5.11 Performance of shadow map rendering passes. 144

5.12 Overall performance of the proposed rendering pipeline. 145

xvi

Chapter 1

Introduction

Terrain rendering has been one of the most popular topics of computer graph-

ics for a long time. It usually provides a canvas to the visualization on which

other details are added, such as vegetation, ponds, artificial structures, animated

characters, and vehicles. Terrain is, therefore, probably the most important and

influential element of such visualizations that require outdoor rendering of rural

areas.

Terrain rendering in real-time is a yet more interesting topic, and a unique

experience for the user as it allows roaming or flying around the terrain freely

at interactive speeds. Real-time terrain rendering is one of the most important

elements of virtual worlds. It has a broad application area covering education,

mapping, navigation, military strategic planning, simulation training, motion

picture, and last, but definitely not least, video games.

1.1 Overview

Real-time terrain rendering is a very challenging task. A real-time rendering

application must be able to execute its per-frame processing and the rendering

pipeline at a rate of at least 30 frames per second. This means that the algorithms

that run during the simulation have at most 30 milliseconds to perform their task

for each frame. Furthermore, the entire processing power is usually not reserved

1

CHAPTER 1. INTRODUCTION 2

solely for terrain rendering purposes since a real-time simulation, e.g., a video

game, have much more processing to do per-frame, such as collision detection,

artificial intelligence, networking, and managing and rendering elements of the

virtual world other than the terrain. Consequently, the algorithms that operate

on and render terrain data in real-time are expected to do a huge amount of work,

with limited processing power, and within a very strictly limited time frame.

The terrain data, even a moderately large and detailed one, is almost always

too large to be processed by simple brute-force algorithms in real-time. Repre-

senting and rendering terrain models in real-time applications usually require a

specialized set of algorithms due to the sheer magnitude of data available and

the level of detail demanded. It is a common approach to significantly constraint

the terrain representation so that it can be stored in a memory-efficient way,

and very simple algorithms can be used to operate on data, yielding high perfor-

mance. The more constrained the terrain representation is the simpler the data

structures and the algorithms are, and the easier it is to process and render it.

This benefit comes at a cost, though, as it decreases the expressive power of the

terrain representation.

The most popular terrain representation used for real-time rendering is based

on heightmaps. Heightmap-based approaches usually define the terrain surface

as a regular, uniform grid of vertices on a 2D plane. Each vertex on the plane

is then displaced along the height-axis according to the height value retrieved

from the heightmap for that vertex. There are variations of these approaches

where a non-uniform grid of vertices is used to approximate the terrain surface.

These approaches, however, still use heightmaps to represent the terrain sur-

face. This representation basically samples the terrain from a top-down view

and, consequently, is not able to represent volumetric terrain features such as

caves, overhangs and arches. Even truly vertical cliffs cannot be represented with

heightmaps since two vertices cannot be at the same position when viewed from

the top. In spite of these limitations, heightmap-based approaches are still the

most popular ones used in the industry, e.g., in almost all video games. This

is mainly due to the lack of different terrain representations that can relax the

constraints of the heightmap-based approaches, and of different algorithms that

can operate on these representations and render them efficiently in real-time.

CHAPTER 1. INTRODUCTION 3

Voxel-based volumetric representations are commonly used for offline render-

ing, where performance and efficiency is only of secondary importance. Volumet-

ric terrain representations are inherently able to represent all kinds of volumetric

features of a terrain since they sample a true 3D space. Volumetric representations

have their own set of problems, though. Rendering methods that can directly

render volumetric data, such as ray tracing, are still very slow for real-time high

resolution rendering of large and detailed terrains. Modern GPUs are designed

to render polygonal surfaces efficiently. Many real-time rendering applications

that use volumetric representations extract a polygonal surface of the volumet-

ric representation for rendering purposes to be able to use hardware-accelerated

rendering. This incurs an extra overhead to the approaches that are based on

volumetric representations. Heightmaps sample the space in 2D, whereas voxels

sample the space in 3D, meaning that the size of the voxel representation of a

terrain is several orders-of-magnitude larger than that of a heightmap represen-

tation. Volumetric representations usually need to be compressed for memory

efficiency which incurs yet another penalty on performance due to decompression

of terrain data in real-time. It is also difficult to use smoothly varying level-of-

detail techniques with voxel representations. Due to these difficulties of working

with volumetric terrain models in real-time, they are very rarely adopted.

1.2 Motivation

Even though real-time terrain rendering has been a hot topic for a long time, the

majority of the existing approaches are designed to render elevation data, e.g.,

heightmaps. Volumetric features, such as caves, overhangs and arches are not

supported by these approaches. In many real-time terrain rendering applications

these volumetric features are modeled as separate 3D meshes, due to technical

constraints, despite the fact that they are actually parts of the terrain model.

These 3D meshes are then located on the relevant sections of the terrain, just

like any other object in the world. These 3D meshes that are modeled separately

do not seamlessly blend with the terrain, though. Several tricks are used to

conceal the artifacts, such as placing rocks at the entrance of a cave to conceal

the artifacts that occur in the regions where the actual terrain model and the

3D cave mesh meet. Such hackish approaches also constraint the size and the

detail level of the volumetric features of the terrain as they now must be built as

CHAPTER 1. INTRODUCTION 4

separate 3D meshes and cannot use optimizations specific to terrain models.

Dedicated graphics hardware have become much more common and powerful

recently, and the quality of real-time renderings have greatly increased. Even

though the surface of the terrains can now be rendered in a much higher level of

detail now than ever, the complexity of the terrain models have not shown the

same sort of improvement due to the limitations of the traditional approaches.

We wish to propose a new terrain representation for real-time rendering that

can represent not only elevation data but also volumetric terrain features in a

unified way. We aspire that new terrain representations can be used in real-

time applications to create and visualize more interesting terrains than ever for a

unique experience in demanding applications of today, such as virtual worlds in

massively multi-player online games.

1.3 Challenges

Designing a new terrain representation for real-time rendering that supports vol-

umetric features is a challenging task. Some form of volumetric representation

must be adopted to be able to represent volumetric features. High quality real-

time rendering, on the other hand, is currently only possible with the use of

hardware-accelerated rendering techniques which are not designed for volumet-

ric rendering and can only efficiently work with polygonal surfaces. Hence, the

volumetric representation must be converted to a polygonal surface for rendering.

A terrain representation usually needs to be bundled with a whole set of al-

gorithms for real-time rendering. There are many simple and efficient algorithms

designed to operate on heightmaps. These are, however, not directly usable with

any other representation. Therefore, a new terrain representation must either be

designed to benefit from the existing algorithms or must come up with a whole

new set of algorithms to solve problems of real-time rendering.

The memory-usage and performance characteristics of the terrain representa-

tion and the algorithms designed to operate on that are also extremely important.

A large terrain with sufficient detail requires high amounts of data to represent

the terrain. Furthermore, unlike most other 3D objects, a terrain is usually ren-

dered very close to the surface as the observer walks on the terrain, and also

CHAPTER 1. INTRODUCTION 5

the sections of the terrain that are very far away are still visible to the observer.

This requires some kind of level-of-detail approach that can be used with the

terrain representation for efficient rendering without significantly decreasing the

visual quality. Visualization approaches that are usable with the terrain repre-

sentation must also be developed, such as approaches for lighting, texturing, and

shadowing.

1.4 Research Goals

The design of the terrain representation, the algorithms that operate on it and

the rendering pipeline used to render the terrain were influenced by the following

design goals:

• The terrain representation must be able to represent volumetric terrain

features such as caves, overhangs, arches, and vertical cliffs.

• Rendering performance of the terrain must be sufficient for real-time ren-

dering including each and every step required to render a complete virtual

world, such as lighting, textures, and shadows.

• The entire terrain surface must be represented in terms of smaller logical

parts. This enables the algorithms to be more efficient as they are able to

work at a level higher than that of primitives such as vertices and trian-

gles. The advantage is that each part can be rendered independently, the

data can be processed in chunks, culling algorithms can be used to discard

redundant parts in a view-dependent way and level-of-detail management

can be performed per chunks of primitives, rather than independently for

each primitive.

• The terrain representation must allow editing and deformation of the terrain

in real-time. Editing the terrain surface must only cause local changes. This

is desired for easy creation and manipulation of the terrain in real-time, for

more efficient algorithms to re-create or update only the relevant parts of

the terrain, and the visual quality of the rendering, where further parts of

the terrain are not affected by deformations to some arbitrary part.

CHAPTER 1. INTRODUCTION 6

• Visual artifacts must not occur during the extraction of the terrain surface,

rendering of the terrain, or at the level-of-detail boundaries where the reso-

lution of the terrain is changed abruptly to accommodate for the difference

in surface proximity.

• The terrain representation must be suitable with visualization elements

such as lighting, texturing and shadowing. Approaches for the real-time

application of such effects must be proposed with the terrain representation.

• The representations and algorithms that operate on it must be able to

handle fairly large terrains as long as they fit in the memory. Paging schemes

can be used to render extremely large terrain datasets that does not fit in

the memory. Such a usage, however, is out of scope of this research. We

assume that the entire terrain data can be loaded into the main memory.

• Another important design goal is to make it possible to benefit as much as

possible from existing simple and efficient algorithms related to real-time

terrain rendering, and avoid having to re-invent most of it from scratch.

1.5 Overview of the Proposed Approach

Heightmap-based representations cannot handle volumetric terrain features.

Voxel representations can represent anything, but they cannot be directly ren-

dered using hardware-acceleration, require very large amounts of memory, and

lack the extensive set of algorithms required for high quality real-time rendering.

We propose a hybrid terrain representation. A relatively low-resolution voxel

representation is used to model coarse volumetric features of the terrain. Then

2D surface patches are created to construct the polygonal terrain surface for

rendering. Heightmaps are used to displace these 2D surface patches in a third

dimension in order to further increase the resolution. In the proposed approach,

the surface patches are the logical units on which most algorithms that run on

CPU operate, except the actual rendering performed on the GPU which works

on vertices, triangles and pixels. Modern GPU features such as vertex and frag-

ment shaders are used in the rendering pipeline for visualization effects such as

level-of-detail management, lighting, texturing, and shadows.

CHAPTER 1. INTRODUCTION 7

1.6 Summary of Contributions

A complete and practical real-time terrain representation approach that can han-

dle volumetric terrain features is proposed in this thesis. Throughout the thesis,

the theoretical basis and implementation details of the approach are described

and typical performance characteristics are discussed. The specific contributions

of this thesis are as follows:

• A detailed survey of existing terrain representation and rendering ap-

proaches used for real-time terrain rendering, including visualization tech-

niques, such as level-of-detail approaches,

• A novel hybrid terrain representation that is able to represent terrains with

volumetric features such as caves, overhangs, arches, and cliffs,

• A surface extraction method that can be used to extract a polygonal surface

of a volumetric representation where the terrain surface is constructed using

surface patches,

• An artifact-free level-of-detail management scheme with geometry morphing

to support smooth transitions, that can be used with the proposed terrain

representation and rendering pipeline,

• A reference implementation for terrain creation and rendering using the

proposed approach, which is used to demonstrate the abilities of the pro-

posed terrain representation and practical performance characteristics of it,

and

• Methods for applying lighting, texturing and shadowing to the rendering

pipeline for the proposed terrain representation to achieve high-quality real-

time rendering are discussed.

1.7 Organization of the Thesis

The organization of the rest of this thesis is as follows:

CHAPTER 1. INTRODUCTION 8

• The related work in the field of real-time terrain rendering is described in

Chapter 2.

• The proposed terrain representation, data structures that are used to store

terrain data, and the method used to generate the terrain surface are dis-

cussed in Chapter 3.

• In Chapter 4, elements of real-time terrain visualization, such as lighting,

textures, shadows and level-of-detail, and how these methods can be used

with the proposed terrain representation are discussed.

• Chapter 5 discusses the implementation details of the reference rendering

pipeline and the sample application that is used to create and edit terrains

in addition to determine performance and memory usage characteristics of

the proposed approach in practice. It also includes a discussion of how the

proposed approach compares to other approaches.

• Chapter 6 concludes the thesis with concluding remarks and possible future

directions of research based on the proposed approach.

Chapter 2

Background

Real-time 3D terrain rendering has been a popular topic for decades in computer

graphics as it is essential for many types of applications. The research on this

topic has been going on for so long since there is no silver bullet solution that

addresses all kinds of needs and constrains of different types of applications.

Furthermore, real-time terrain rendering is a topic that is very closely coupled

with the advances in the GPU technology. As the GPU technology gets more

advanced, unique approaches are proposed to make better use of the technology

available.

Please note that the level-of-detail approaches are not separately investigated

as level-of-detail algorithms are extremely tightly coupled with the terrain repre-

sentation. Thus, the following sections describe terrain representation and level-

of-detail approaches together. We will investigate different approaches to real-

time terrain rendering in two categories depending on how the terrain model is

internally represented:

1. Heightmap-based terrain representations are the ones that are simply based

on displacement of a planar surface such as an approach that constructs

the terrain surface by displacing the vertices of a regular 2D planar grid

according to the values of the heightmap.

2. Volumetric terrain representations are the ones that are inherently able to

represent volumetric features of the terrains such as overhangs, caves and

9

CHAPTER 2. BACKGROUND 10

arches. Most prominent approaches in this category use voxels to repre-

sent the terrain model. Please note that the internal voxel representation

is usually converted to a form that can be used for hardware-accelerated

rendering, that is, a polygonal surface, for rendering purposes.

2.1 Heightmap-based Terrain Representations

These algorithms sample the top layer of the terrain surface, like in a top-down

view, and consequently they cannot represent volumetric features of a terrain,

such as caves and overhangs. The data that is constructed by such sampling

of terrain height from a reference height-level is usually called a height-field or

a heightmap. For every point on the terrain surface there is only one sample

of height value. This sampling can be performed regularly or irregularly and

different approaches use different methods of sampling.

Regular sampling, such as a uniform grid of vertices, is easy to work with

as the geometry is extremely constrained and well-defined, and very memory

efficient as well, since vertex positions and connections are implicitly defined by

the index of the element in memory. In this case, it is sufficient to just store

a grid of sampled height values. Consequently, regular grid representations are

very memory-efficient.

Triangulated irregular networks (TIN), on the other hand, sample the heights

irregularly [1]. An irregular triangulated network does not use a uniform grid of

samples and consequently can represent more detailed areas of the terrain using

more samples and decrease the number of samples in smooth areas. It can, thus,

approximate the terrain better with the same number of triangles as the regular

grid approach. Kumler, though, states that a regular grid representation requires

less storage space than a TIN in case their detail-level is equal [2]. The compu-

tation of a TIN is usually more complex, though. Algorithms such as Delaunay

triangulation [3] can be used to generate accurate TINs. The algorithm proposed

by [1] actually creates the optimal triangulation of a terrain surface for a given

number of triangles. It is also more difficult to manage TINs once they are cre-

ated, as the whole model needs to be re-created every time the resolution level

is changed, and texturing of TINs are also more complex than regular grids [4].

CHAPTER 2. BACKGROUND 11

Furthermore, TIN generation is a very CPU intensive process. Garland and Heck-

bert propose an optimized algorithm for generating a TIN from a heightmap [5].

The resulting TIN is not optimal, though, and may result in visual artifacts such

as very thin triangles unlike the TINs created with Delaunay triangulation.

The approaches mentioned so far do not use real-time view dependent level-of-

detail in terrain representation. Gross et al. propose an efficient real-time level-

of-detail computation approach that uses the quadtree data structure to represent

the terrain surface [6]. Cohen-Or et al. then propose a continuous level-of-detail

approach for TINs that are generated with Delaunay triangulation [7]. In this

approach, several, typically three or four, TINs at different levels-of-detail are

generated and blended in real-time to avoid inconvenient popping artifacts. The

blending is performed at the vertex-level and not at the pixel-level. Lindstrom

et al. propose a continuous level-of-detail approach for terrains that use regular

grid sampling of a heightmap [8]. Their approach divides the terrain up into

blocks of different levels-of-detail and represents the blocks in a quadtree. The

level-of-detail computation is performed at both the block-level by selecting the

appropriate block for rendering, and then at the vertex-level by selecting the

important vertices for rendering. Even though the internal representation of

the terrain in this approach uses a regular grid, the resulting geometry used for

rendering is, in fact, a TIN. As the approach uses a simple regular grid for internal

representation, it does not required the intensive preprocessing step of generating

TINs and consequently allows real-time terrain deformation unlike other TIN-

based approaches.

Hoppe proposes the progressive meshes algorithm in 1996 [9]. This algorithm

is not specific for terrains and, in fact, it can work on any type of mesh. This

approach defines the original mesh as a very coarse mesh and a set of edge-

collapse and edge-split operations that transform the coarse mesh to the original

mesh. This approach is stated to be more accurate than previously proposed

level-of-detail approaches. The approach is later updated to refine the mesh in

a view-dependent way taking the view frustum, surface orientation and screen-

space geometric error into account [10], and updated once more to utilize GPU

parallelism [11]. Hoppe later adapts the approach to real-time terrain rendering

and introduced geomorphs to provide temporal coherence [12].

Evans et al. propose a more restricted TIN representation in 1997, where

CHAPTER 2. BACKGROUND 12

the triangles have to be right-angled triangles unlike in typical a TIN [13]. This

approach is called right-triangular irregular network (RTIN) and makes use of

a bintree to ensure that the generated triangles are right-angled. The bintree

provides more detail where it is needed by iteratively splitting the triangles at a

higher level. This representation also allows for efficient level-of-detail computa-

tions according to the rendering viewpoint. Another advantage of this approach

over TINs is that the position and connections of vertices do not need to be stored

explicitly as these attributes are implied by the position of the triangle in the bin-

tree. The RTIN, in this respect, has the memory-efficiency advantage of regular

grids when compared to TINs. Duchaineau et al. propose another algorithm

that uses the RTIN representation called ROAM, real-time optimally adapting

meshes [14]. This algorithm is one of the most popular real-time terrain rendering

algorithms of all time as it addresses some of the most important and difficult

problems in an efficient way, such as level-of-detail, view frustum culling and cre-

ating triangle stripes for efficient rendering. The level-of-detail in ROAM is also

viewpoint dependent and level-of-detail changes are smooth thanks to geometry

morphing between different levels-of-detail. The ROAM approach utilizes frame-

to-frame coherence to reduce the CPU intensity of the algorithm by using parts of

the terrain surface that is computed in the preceding frame. ROAM is one of the

few real-time terrain rendering approaches that supports terrain deformation in

real-time. One advantage of ROAM is that it can control the generated triangle

count thanks to the hierarchical terrain representation used. This, however, is

also the reason why ROAM is not so popular on modern GPUs as it requires ge-

ometry updates on every frame. This is not a desired situation for modern GPUs

as the GPUs are much more powerful now the chances are very high that it will

stall waiting for the CPU to update the geometry and upload it to the GPU for

each and every frame rendered [15]. Consequently, several other algorithms are

proposed that are similar to ROAM but with rather more lightweight geometry

updates compared to ROAM and work on batches of primitives instead of on

individual primitives [16, 17, 18, 19].

Chunk-based level-of-detail algorithms are not very precise as they assume

that the required level-of-detail for the entire chunk is the same and approximate

by, usually, the distance to the center of the chunk rather than to the actual

vertices. Röttger et al. propose a precise continuous level-of-detail algorithm

for heightmap-based terrains [20]. This approach makes use of a quadtree data

structure similar to some other approaches mentioned so far and it works at the

CHAPTER 2. BACKGROUND 13

vertex-level. The surface is generated by recursively visiting the nodes of the

quadtree in a top-down manner. Not only the distance to the observer is re-

garded, though, but also the surface roughness is taken into consideration such

that smooth surface are rendered with fewer vertices even if they are closer to the

observer. The representation inherently supports level-of-detail as the iteration

of quadtree nodes can stop at a higher level depending on the distance or rough-

ness of the surface. The continuity of the surface, however, requires that there

is at most one level-of-detail difference on the borders. Smooth level-of-detail

is obtained by geometry morphing similar to some other approaches and view

frustum culling is easily performed by bounding box checking during the visiting

of quadtree nodes.

In the very early 2000s dedicated graphics processing units became main-

stream and more powerful than CPUs for graphics processing. The real-time

terrain representations and algorithms, consequently, adapted to this by reduc-

ing CPU intensity of the algorithms and trying to utilize the GPU more. As the

GPUs became much more powerful than CPUs, providing GPU enough primitives

to render at each frame became a problem. Thus, the newer algorithms focused

more on feeding GPU the data to render, even if some significant portion of it

is redundant, rather than trying to fine tune and sort out every single vertex on

the CPU. One such method is the use of geometrical mipmaps by de Boer [17].

The method is said to be using geometrical mipmaps because of the similarity of

the basics to texture mipmapping [21]. This approach uses a regular grid terrain

representation where the grid is divided into equal-sized square vertex batches.

The mipmaping is performed per-batch where each higher level of batch mipmap

contains a quarter of the vertices of the lower-level mipmap. The mipmap level of

a particular batch is determined by the distance of the batch to the observer and

vertex morphing is used to prevent popping. The unique feature of this method

is that it does not continuously update the geometry of the terrain but rather

updates the connection between vertices as necessary. Hence, at each frame much

less data is uploaded to the GPU.

Ulrich proposes an approach to render massive terrains by combining the

quadtree representation with RTINs [16]. In this approach, each internal node

of the quadtree stores its own chunk of geometry and texture and when a node

is to be rendered the geometry is sent to the GPU collectively making its use

efficient for modern GPUs. View frustum culling is easy as in most approaches

CHAPTER 2. BACKGROUND 14

whose terrain representation uses a quadtree. He also propose a paging scheme

where the data of a node is loaded on demand. This allows the algorithm to

render massive terrains that may not even fit in the main memory. A view-

dependent level-of-detail approach with vertex morphing is employed. Another

approach that works on batches of vertices is proposed by Cignoni et al. [22]

where a hierarchical representation of vertex batches are stored in a bintree.

Each vertex batch is, in fact, a TIN approximation of the area defined by the

bintree node. Each TIN patch and the bintree is constructed from a heightmap.

This algorithm allows the rendering of massive terrains as it does not require the

entire terrain data to be loaded in the main memory. The data is loaded when

it is demanded to be rendered. One downside of the algorithm is the complexity

of the pre-processing needed to create the data structures as it takes hours for

large terrains. They later extend this method to render planet-sized terrains [23].

The approach uses a pre-fetch algorithm to guess the soon-to-be-needed chunks

of data and loads it to the main memory. This helps the application to smoothly

run and not stall waiting for I/O operations to complete. The performance of

the rendering approach is stated to be mostly dependent on the GPU processing

power as its CPU intensity is very low.

Losasso and Hoppe propose the use of geometry clipmaps targeting a more

efficient level-of-detail scheme for modern GPUs [24]. This approach is based on

the texture clipmap algorithm [21] but operates on the geometry of the terrain

rather than the textures. It uses a regular grid representation for the terrain fa-

voring its simplicity and manageability. The terrain is divided to grids of different

levels-of-detail where the level-of-detail of a particular grid is simply determined

by its distance. The approach makes use of vertex buffers for efficient rendering as

vertex buffers are optimized for rendering. The fact that vertex buffers are stored

on the video memory, rather than the main memory, allows very fast access to

the data by the GPU. The entire terrain data is loaded in a compressed format

on the main memory. When a grid is needed to be updated, the relevant part of

the data is decompressed and the vertex buffers are updated. The approach uses

a similar level-of-detail scheme for texturing as well. The compression of terrain

data allows very large terrain datasets to be rendered in real-time. Transition

regions are defined to prevent visual artifacts caused by different levels-of-detail

where the border vertices are interpolated between different levels-of-detail. Each

vertex is also morphed geometrically between different levels-of-detail to prevent

popping artifacts. In this approach, the geometry is simply updated and sent to

CHAPTER 2. BACKGROUND 15

the GPU for rendering. This approach is soon updated by Asirvatham and Hoppe

such that almost all computation is done on the GPU [25]. This is one of the first

real-time terrain rendering approaches that uses the GPU processing power so

extensively. The original algorithm used vertex buffers, but vertex buffers cannot

be modified on the GPU. The new algorithm uses textures to store vertex data

and these textures are sampled in the vertex shaders. Vertex shader is essentially

the counterpart of vertex transform function in the old fixed-function rendering

pipeline which became programmable on modern GPUs in around 2001. Later

the GPUs gained the ability to sample textures in the vertex shader and, con-

sequently, it was possible to compute vertex coordinates based on a geometry

texture in the vertex shader. With this approach, almost all of the work done

on the CPU in the original geometry clipmap algorithm is moved to GPU. The

only operation that still takes place on the CPU is the decompression of the

compressed terrain data.

Vertex shaders are used to operate on vertices and compute vertex attributes.

Pixel shaders (i.e., fragment shaders), on the other hand, operate on pixels and

became programmable, soon after vertex shaders did, in around 2002. Pixel

shaders are usually used to create special image-based effects, e.g., post-processing

effects on the rendering. A very different approach, however, is proposed by

Mantler and Jeschke to perform ray casting in the pixel shader in order to render

a terrain model [26]. The CPU and the vertex shader do almost nothing in this

approach. The terrain data is stored as a texture representing the elevation data

where each texel of the texture stores a height value. Ray marching is the used in

the pixel shader to determine the point that the ray originating from that pixel

intersects the terrain model, that is, if there is an intersection. Otherwise the

pixel is discarded and nothing is rendered. Ray casting is optimized by an efficient

empty space skipping method very similar to the one proposed by Kolb and Rezk-

Salama [27]. Interestingly, the performance of this algorithm is independent from

the size of the terrain or the number of vertices. The performance of the algorithm

is merely dependent on the number of pixels that is used to render the scene since

all the computation is done per-pixel in pixel shaders. The maximum size of the

terrain is limited by the largest texture size the GPU supports, though, unless the

CPU is used to continuously update the elevation texture. Please note that this

approach uses ray casting but unlike most other ray casting renderers it cannot

render volumetric representations as the elevation data is stored as a texture as

in a heightmap rather than as a voxel representation. Therefore, it is not possible

CHAPTER 2. BACKGROUND 16

to render terrains with volumetric features using this approach, and any other

approach mentioned in this section for that matter.

Although the heightmap-based approaches cannot represent volumetric fea-

tures, some approaches use slight modifications to the heightmap-based regular

grid approach as to allow simple cases of volumetric features. One example of this

is introduced by McAnlis [28]. His approach to terrain representation initially uses

a regular grid representation of a heightmap but it allows individual vertices to

be displaced by a full vector-field displacement along the x-, y-, and z-coordinate

axes rather than only along the y-coordinate axis like a typical heightmap-based

approach. This makes it possible to add simple overhangs and vertical faces to

the terrain whereas even these features are not possible with a typical heightmap-

based approach. The downside of the approach is that the resolution of the terrain

needs to be increased significantly to make up for the displacement of vertices.

It is also still not possible to represent complex volumetric terrain features such

as complex overhangs, caves and arches using this approach. A similar approach

is proposed by McRoberts which uses geometry images to store the displacement

of regular grid vertices along three axes instead of one [29]. A typical heightmap

stores only a single channel of data per pixel representing the corresponding

height value. A geometry image, on the other hand, stores three channels per

pixel where the displacement of the corresponding vertex along the x-, y-, and

z-coordinate axes. Please note that the vertices still form a regular uniform grid

before the displacement is applied. The displacement along the three coordinate

axes just makes it possible to create simple overhangs and vertical faces. It is not

possible to represent complex volumetric features with this approach either.

2.2 Volumetric Terrain Representations

Volumetric terrain representations allow volumetric features of the terrain to be

defined, such as caves, overhangs and arches. Most of the volumetric represen-

tations are based on voxels in which case the terrain model is discretely defined

making it possible to fine tune the terrain. In several approaches, on the other

hand, the terrain representation is a density function that is procedurally com-

puted which makes it very difficult to control and fine tune the details of the

terrain model.

CHAPTER 2. BACKGROUND 17

The approach proposed by Geiss can use both a procedural density function

or a discrete representation stored as a 3D texture [30]. If a density function is

used, then the values returned by the density function is stored in a 3D texture

and this texture is used in a second rendering pass to do the actual rendering

of the terrain. We have already mentioned vertex and pixel shaders. The next

advancement in the programmable rendering pipeline of modern GPUs resulted

the programmable geometry shader. It was not possible to generate geometry on

the GPU before the geometry shader. Vertex and pixel shaders can only operate

on existing geometry. Geometry shader, on the other hand, can generate and

stream geometry, i.e., triangles for rendering. This approach utilizes geometry

shader to generate a polygonal surface for the volumetric representation of the

terrain. Almost all real-time terrain renderers that use a volumetric represen-

tation convert the volumetric data to polygonal surfaces for rendering purposes.

Otherwise, rendering the entire terrain using ray tracing, or even ray casting is

still not possible at interactive frame rates. Almost all approaches, like this one,

use the marching cubes algorithm [31] or a variant of it for this purpose. This ter-

rain representation, in theory, is able to render terrains with volumetric features.

The downside of the approach is that it is difficult to design density functions

to obtain a desired terrain model, although it is possible to generate interesting

arbitrary terrain models by using procedural modelling techniques [32]. It is also

extremely challenging, if possible, to create a density function for a given terrain

dataset. In the approach proposed by Geiss the surface normals and texture co-

ordinates are not precomputed and ready-for-use as the geometry is generated

on-the-fly. Surface normals are computed by the gradient of the density function

which is done by sampling the density function six times around the point for

which the normal is computed. Since the texture coordinates do not exist in this

case, traditional texturing approaches cannot be used. Planar texture projection

is instead used to project the geometry onto the three coordinate planes and the

surface normal is then used to select one of these projections.

Forstmann et al. propose a similar approach that renders terrains represented

by iso-surfaces [33]. This approach is based on the interactive view-dependant

iso-surface rendering approach proposed by Gregorski [34] and is inspired by the

geometry clipmaps approach of Losasso [24], which is basically the 2D counterpart

of what Forstmann et al. propose for 3D. The approach basically uses clip-boxes

in 3D instead of clipmaps in 2D. This approach is quite efficient as a volumetric

CHAPTER 2. BACKGROUND 18

rendering approach. It is able to reach a peek frame-rate of up to 120 with a hun-

dred thousand untextured polygons using 5 clip-boxes. The algorithm is stated

to be more memory efficient compared to the method proposed by Gregorski [34]

as it does not require the use of a tree data structure to store the representation.

The resolution of the rendered sample models, however, is quite low and fur-

ther details are added to the extracted surface by applying noise. Furthermore,

it shares most of the downsides of the method proposed by Geiss [30] as it is

difficult to represent a detailed terrain model with iso-surfaces. It is also very

difficult to fine tune a terrain represented by iso-surfaces as well as generating an

iso-surface representation of a given terrain model.

Rendering voxel-based large volumetric terrains in real-time has not been

very popular until recently due to the limitations of the GPU processing power,

memory limitations as well as problems originating from the surface extraction

algorithms that are used to extract polygonal surfaces of voxel representations.

One such problem that is very closely related to rendering terrains is the difficulty

of level-of-detail management in surface extraction. Marching cubes and other

similar algorithms do not work very well when the resolution of the sampling grid

is not constant. The level-of-detail approaches, however, require the sampling

grid resolution to vary among different levels such that a lower level-of-detail

produces less geometry. This causes inconvenient artifacts at the boundaries of

levels-of-detail where surfaces with different resolutions do not align and visual

artifacts such as cracks are inconveniently evident. Lengyel very recently proposes

the Transvoxel algorithm [35], which is arguably the best real-time voxel-based

terrain rendering approach. This approach eliminates all visual artifacts result-

ing from the use of marching cubes algorithm with varying grid resolution and

therefore allows level-of-detail management of the extracted surface in real-time.

The approach, however, is not without any problems. First of all, the popping

artifacts occur because there is no morphing between different levels-of-detail.

This degrades the visual quality of the rendering and requires much higher res-

olutions to be used so that the popping is not very disturbing. The approach is

CPU intensive as it frequently updates the geometry by re-computing parts of the

terrain surface as the viewpoint, and thus levels-of-detail of parts of the terrain

changes. CPU to GPU geometry updates are also frequent for the same reason.

The resolution of the terrains are typically low with this approach, though, where

a much higher resolution is required for very detailed large terrains.

Chapter 3

The Proposed Approach

This chapter presents our approach to representing a complex three-dimensional

(3D) terrain that may contain volumetric terrain features such as caves, over-

hangs, cliffs and arches for terrain editing and visualization in real-time applica-

tions. It describes the design goals of the approach and how each goal constrains

and affects the design of the representation in various ways.

3.1 Goals

There are several important goals that we want to achieve with the proposed

terrain representation approach and as a result each of these goals affected the

design decisions along the way:

• The terrain representation should be more flexible and expressive compared

to a simple grid and height map-based approach. More specifically, the

representation should be able to handle anything a height map approach

can and in addition it should be able to handle interesting terrain features

such as caves, overhangs, cliffs and arches.

• The representation should support interactive frame rates, preferable real

time; i.e., 30 frames per second. In order to achieve this it is required to

19

CHAPTER 3. THE PROPOSED APPROACH 20

benefit from hardware accelerated rasterized graphics. Hence, the represen-

tation should be suitable for rendering using a modern Graphics Processing

Unit (GPU).

• It should not be assumed that the terrain is completely static. The repre-

sentation should be dynamically editable and deformable in real-time. As a

result of the modifications, the data structures in the CPU and GPU must

be updated. Therefore, the algorithms to update these structures should be

able to work in real-time. The changes made to the data structures stored

in the CPU must also be reflected to the data structures in video memory

of GPU in real-time. As a result, the amount of data sent through the

CPU-GPU data bus should not exceed capabilities of a modern GPU.

• The representation should be able to handle fairly large terrains as long as it

can be stored in the main memory. This is roughly on the order of millions

of vertices or several hundreds of megabytes of data. It should be able to

yield about 1 meter resolution in each axis on a 1 km3 space. Extremely

large terrains can theoretically be stored on a high-speed secondary storage

device and portions of data fetched to main memory on an as-per-needed

basis. This, however, is outside the scope of this work as we assume that

the terrain data is completely available on the main memory for random-

access.

• The representation should be suitable for applying basic 3D visualization

elements such as lighting, texturing and shadowing.

• Rendering large terrains in real-time without proper level-of-detail support

is not plausible. Thus, a level-of-detail scheme should also be proposed with

the terrain representation as to allow real-time rendering of large terrains.

3.2 Terrain Representation

Since one of our main goals is real-time rendering, the internal representation

used to store the terrain data should be efficiently convertible to a suitable form

for rendering.

Modern GPUs are designed to accelerate rasterization-based rendering. They

CHAPTER 3. THE PROPOSED APPROACH 21

are not good at rendering volumetric data. In fact, they do not support rendering

volumetric data whatsoever. It is, however, possible to employ various hacks

to simulate volumetric rendering using rasterization. Benefiting from hardware

accelerated graphics requires converting any internal representation to a bunch

of polygons, usually triangles, for rasterization-based rendering.

3.2.1 Heightmap-based Approaches

Simple heightmap based approaches involve a regular, and often uniform, 2D

grid of vertices. These vertices are then connected in a straightforward manner to

create polygons that represent the surface of the terrain. The values stored in the

heightmap are used to displace these vertices in the third dimension and basically

determines the height of each vertex. The heightmap basically represents the

samples of Equation (3.1) at a fixed frequency, where x and z are the coordinates

of the vertices in the x- and z-axes, respectively, and y is the coordinate of that

vertex in the y-axis (i.e., the height of the vertex).

h(x, z) = y (3.1)

This is the simplest, most compact and efficient representation possible. Since

x and z values are implied by the structure of the regular 2D grid and do not

need to be stored explicitly. Only a few bytes of data per sample is required

to store the height map depending on the desired resolution in the height-axis.

The main downside of this approach is its extremely limited expressive power in

representing non-planar terrain features, such as caves, overhangs, and even steep

cliffs. This representation can basically only define the top-level surface of the

terrain. Everything below this surface is considered filled and everything above it

is considered empty. It only allows the definition of one and only one height value

per grid cell. Hence, it is not possible to represent volumetric features with this

approach. This representation is, therefore, not sophisticated enough to handle

complex terrains.

CHAPTER 3. THE PROPOSED APPROACH 22

3.2.2 Voxel-based Approaches

Voxel-based approaches divide the working space into 3D grid cells constructing a

regular 3D grid rather than a planar 2D grid like in heightmap-based approaches.

Each 3D grid cell is called a voxel, similar to a 3D version of pixels on a 2D image.

The most basic attribute of voxels are their status of being empty or filled. A

filled voxel represents a subspace filled with material while an empty voxel means

that subspace is not filled with material, i.e., filled with air. Depending on the

application, each voxel may have other attributes, such as a normal vector, color

information, and texture information.

Voxel representations are very popular in offline rendering and very rarely

used in real-time rendering. The reason behind this is the fact that a voxel rep-

resentation is not suitable to be directly used for rasterization-based rendering

since a voxel representation defines a volumetric structure rather than a polyg-

onal surface. Voxel representation suits well if rendering techniques such as ray

casting and ray tracing are to be used. For rasterization-based hardware accel-

erated rendering, however, the voxel representation must first be converted to

a polygonal surface and then the polygonal surface can be rendered efficiently.

Unfortunately, extracting the surface of a very large terrain represented in voxels

is not an easy and smooth process.

Voxel representations of large and detailed 3D models are also not memory

efficient enough to be used in real-time applications. In order to achieve a 1 meter

resolution in each coordinate axis in a 1 km3 working space it is required to store

at least a billion voxels ((103)3 = 109). Even if a single byte of data is used to store

each voxel, this representation would still require about 1 GB of memory just for

the voxel representation of the solid terrain model and nothing else. Processing

such large amounts of data for editing and visualization in real-time applications

is not very plausible.

3.2.3 The Proposed Hybrid Approach

Approaches based on heightmap and voxel representations alone do not suffice to

achieve the defined goals. The proposed hybrid approach combines the voxel- and

heightmap-based approaches in an effort to inherit advantages of both approaches:

CHAPTER 3. THE PROPOSED APPROACH 23

• expressive power of the voxel-based approach, and

• simplicity and efficiency of the heightmap-based approach.

In this approach, the terrain geometry is generated in two steps:

1. A relatively low-resolution voxel representation is used to define the geom-

etry of the terrain coarsely. The surface of the geometry is extracted using

a novel technique in such a way that the surface consists of regular terrain

patches.

2. Each terrain patch is then assigned a heightmap, which is used to displace

the vertices of that terrain patch. This process increases the resolution of

the terrain geometry in practice and allows for various details to be added

to anywhere on the terrain surface.

3.3 Data Structures

Our approach uses a uniform voxel grid for voxel representation of the terrain. In

such a representation the filled voxels and the empty voxels are usually grouped

together. We made the following assumptions:

• if a voxel is filled, its surrounding voxels are probably filled, and

• if a voxel is empty, its surrounding voxels are probably empty.

There will obviously be exceptions to this assumption in the voxel represen-

tation but it can still be exploited to make a more compact representation and

decrease the memory requirements for storing the voxel terrain data for typical

terrains. For this purpose, our approach uses an octree to store the voxel data.

The root node of the octree is the entire workspace of the terrain. Each octree

node can be divided into 8 equal-sized axis-aligned child nodes. This division is

only performed if the extra level-of-detail subspace is demanded in that subspace

(see Figure 3.1). If the subspace represented by an octree node is completely

CHAPTER 3. THE PROPOSED APPROACH 24

Figure 3.1: Octree representation of a voxel space can be used to increase reso-
lution where it is needed.

filled or completely empty then that node is not divided further into child nodes.

Hence, an internal node has either 8 children nodes or none at all. Employing

octrees prevents additional memory usage where extra level-of-detail is not needed

while being able to provide a higher resolution where it is needed. One downside

of octrees compared to storing an uncompressed 3D voxel array is that octrees

also store the internal nodes whereas a simple 3D voxel array only stores the

leaf nodes. In a full octree of height h, the number of internal nodes is given by

Equation (3.2), and the number of leaf nodes is given by Equation (3.3).

ni(h) = 1 + 8× 8h−1 − 1

7
, ∀h >= 1 (3.2)

nl(h) = 8h, ∀h >= 0 (3.3)

The ratio of the number of internal nodes to the number of the leaf nodes is

about 0.14. This extra cost of storing internal nodes is easily amortized in most

CHAPTER 3. THE PROPOSED APPROACH 25

cases, though. The number of leaf nodes in a full octree of height 6 is about

260, 000 and the number of total nodes, including intermediate nodes, is about

300, 000. Even if a quarter of the paths to the leaves stop at a height of 5 the

number of total nodes is reduced to about 234, 000. In practice the efficiency

gains in terms of storage are significantly higher since most of the paths do not

reach to the maximum height of the octree.

One of the most important advantages of using an octree is the greater ef-

ficiency of running different queries on the geometry in an hierarchical manner.

This is a feature that is required by terrain editors and is used for voxel selec-

tion and manipulation in the simple terrain editor that we have implemented

as well. It can also dramatically speed up collision queries, culling queries and

level-of-detail queries, especially in real-time applications.

3.3.1 Voxel Structure

Each voxel has a voxel index associated with it and this index is stored in memory

with the voxel. The relation between the set of voxels in the octree and the set

of voxel indices are one-to-one, meaning that

• any given voxel in the octree, whether it is a leaf node or an internal node,

has one and only one index, and

• any given voxel index points to one and only one voxel in the octree.

A voxel index is represented using four bytes in memory as follows:

voxel level : 4 bits,

x-index : 9 bits,

y-index : 9 bits, and

z-index : 9 bits.

CHAPTER 3. THE PROPOSED APPROACH 26

The voxel index structure uses a total of 31 bits of the four bytes. The final

bit is used to store whether the voxel is filled or empty when the voxel index is

stored within a voxel. This bit is not used if the voxel index is used merely to

point to a voxel.

A voxel index stored in this format allows up to nine additional levels to the

root level since the index fields are stored in 9-bits. Consequently, the maximum

height of an octree that uses this representation cannot exceed ten. An octree of

height ten has over one billion leaf nodes and storing that many voxels in memory

is not plausible. In practice, an octree that is of height five or six provides enough

resolution for most terrains.

The voxel level field is the level of the corresponding voxel in the octree where

the root voxel is on level 0, its child voxels are on level 1, etc. It is essentially

the distance of a voxel to the root of the octree.

The x-index, y-index and z-index fields store the index of the voxel respectively

in x, y and z axes. The i-th bit of these fields determine whether the voxel is

the first or the second child of the parent voxel in (i− 1)-st level of the octree on

the corresponding axis. The most significant bit of each field are considered the

first bits of the fields representing the child selection at level 0 of the octree, the

second bits represent the child selection at level 1 of the octree, and so on. The

number of meaningful bits in these fields is determined by and equal to the voxel

level. If the voxel level is 1, then only the first bits of each field is meaningful

since the child selection is done only on level 0 in this case.

This voxel index representation has several advantages compared to tradi-

tional memory pointers:

• It takes up just as much space as a memory pointer but stores additional

information about the voxel: the level of the voxel in the octree.

• Given a voxel index, the index of the parent voxel, that is the index of the

voxel that contains this one, can be computed just by decrementing the

value of voxel level by 1.

• Given a voxel index, the index of the child voxels can be computed by

incrementing the voxel level by 1 and setting the i-th bit of each index field

CHAPTER 3. THE PROPOSED APPROACH 27

to 0 or 1 where i is equal to the incremented voxel level. Indices of all 23 = 8

child voxels can be generated this way (see Figures 3.2 and 3.3).

• Given a voxel index, the index of the neighboring voxels at the same level

of the octree can be computed by incrementing, decrementing or keeping

the values of the each of the index fields. There are 3 possible operations

(increment, decrement and keep value) that can be performed on 3 index

fields to compute the voxel index of 33 = 27 voxels, one of which is the

current voxel. Therefore, voxel indices of all 26 neighboring voxels can be

computed extremely easily this way (see Figures 3.2 and 3.3).

• It simplifies the implementation of algorithms that work on the octree to

use voxel indices rather than traditional memory pointers to actual voxels.

A voxel index can be used to iterate voxels, move to neighboring voxels etc.

unlike a memory pointer which can only be used to access the data pointed

by it. Voxel indices are essentially higher-level abstractions compared to

memory pointers as they also contain contextual information.

• This representation also saves memory space. The size and position of

any voxel can be computed given the voxel index preventing the need to

explicitly store the size and position of each voxel in the octree in memory

(see Sections 3.3.1.1 and 3.3.1.2). Instead, only the voxel index of each

voxel is stored which only takes up 4 bytes of memory space per voxel.

3.3.1.1 Computing Voxel Size from Voxel Index

Computing the size of a voxel given its voxel index is extremely easy. The size of

all voxels at any level of the octree are equal since the size of a voxel depends only

on the level at which the voxel resides. Note that the size of the entire octree is

already known since it is defined while creating the octree. The size of the octree

is divided by 2 in each axis at each increment of level. The size of a voxel at level

i can be computed using Equation (3.4) where
−→
S and −→s are three dimensional

vectors representing respectively the size of the octree and the size of any voxel

at level l of the octree.

s(l) = −→s =

−→
S

2l
(3.4)

CHAPTER 3. THE PROPOSED APPROACH 28

Figure 3.2: Voxel indices in (voxel level, x-index, y-index, z-index) format at
level 1. Index fields are in binary representation.

CHAPTER 3. THE PROPOSED APPROACH 29

Figure 3.3: Voxel indices in (voxel level, x-index, y-index, z-index) format at
level 2. Index fields are in binary representation.

3.3.1.2 Computing Voxel Position from Voxel Index

The position of a voxel is defined as the center of the volume contained by that

voxel. In each level, a voxels position is displaced in each axis by an amount equal

to the half of the voxel size at that level in that axis depending on the value of

the index field bit for that level. Depending on whether the value of the index

field bit is 0 or 1 the displacement is applied through respectively the negative or

the positive side of the corresponding axis. px, the x-component of the position of

a voxel at level l, can be computed using Equation (3.5). Px is the x-component

of the center position of the entire octree, fx(l) is the value of the l-th bit of the

x-index field of the corresponding voxel index, and sx(l) is the x-component of

the size of a voxel at level l (see Equation (3.4)). Y-component and z-component

of the voxel position can be computed similarly (see Figure 3.4).

px = Px +
l∑

i=1

((
fx(i)× 2− 1

)
× sx(i+ 1)

)
(3.5)

CHAPTER 3. THE PROPOSED APPROACH 30

� � �

�

�

�

Figure 3.4: Computing the x and y components of the position of a voxel at
level 3 from its voxel index (xy cross section of the voxel space is depicted. The
z-coordinate would be computed similarly).

3.3.2 Patch Structure

The terrain patches are used to generate the surface geometry of the terrain

represented by voxels in the octree. Each patch surface is then subdivided into a

number of triangles that are used for rendering. Therefore, it is accurate to say

that the primitive type of proposed terrain representation is patches while the

primitive type used at the stage of rendering is triangles.

Each patch has the following attributes associated with it and stored in the

main memory with the patch:

• A number of control points that define the surface of the patch.

• A vertex buffer that stores the vertices approximating the surface of the

patch.

• An index buffer that stores the indices of the vertices in a particular order

so as to generate the triangle list for rendering the surface of the patch.

• A heightmap associated with the patch to be used as a displacement map

on the surface.

CHAPTER 3. THE PROPOSED APPROACH 31

• Pointers to linked lists for vertices that are shared with other patches on

the surface.

• Up to four pointers to neighboring patches with coinciding edges are stored.

These attributes are described in detail in the following sections.

3.3.3 Vertex Structure

Patches representing terrain surface cannot be directly rendered using hardware

accelerated rasterization-based rendering. The surfaces must first be approxi-

mated using a number of vertices and these vertices must be connected with

edges in a particular order to make up triangles. These triangle lists can then be

used to render the terrain surface.

Each vertex has a number of attributes associated with it. The representation

of vertices differ in main memory (used by the programs that run on CPU) and

in video memory (used by the programs that run on GPU). This is mainly due to

the fact that not all attributes that are stored in the main memory are required

by the programs that run on GPU and video memory capacity is usually consid-

erably smaller than the capacity of main memory. Hence, the unused attributes

are stripped off while the vertex data is streamed to video memory, and some

attributes are compressed.

Vertex representation in the main memory stores the following attributes:

• The original position of the vertex as a 3D floating point vector (12 bytes

of data).

• The displacement normal of the vertex as a 3D floating point vector (12

bytes of data). This defines the direction of displacement that is applied to

the vertex by the heightmap.

• The displaced position of the vertex as 3D floating point vector (12 bytes

of data). It is equal to the original position of the vertex displaced in

the direction of the displacement normal by an amount determined by the

corresponding heightmap value.

CHAPTER 3. THE PROPOSED APPROACH 32

• The actual normal of the vertex as a 3D floating point vector (12 bytes

of data). This is the normal of the vertex that is computed after all the

displacement operations are performed on the terrain. This normal vector

is used for accurate texturing and lighting computations.

• Color of the vertex as a 4D floating point vector (16 bytes of data). The

color can be applied as a post-processing effect on the color value obtained

from textures for artistic purposes. It is also used for debugging purposes

where some part of the visualized terrain data is desired to be highlighted.

• Level-of-detail transition distance of the vertex as a single floating point

value (4 bytes of data). This value determines the distance at which the

vertex will transform into a lower level-of-detail position and normal as-

signed to it by the level-of-detail management algorithm.

• Pointers to two other neighboring vertices that are on a lower level-of-detail

(8 bytes of data). These vertices are accessed to compute the lower level-of-

detail transition position and normal of the current vertex when the vertex

data is needed to be sent to the video memory.

• Index of the vertex in GPU vertex buffers as an unsigned integer value (4

bytes of data). This value is actually a pointer to the data of this vertex

stored in video memory and is used whenever the vertex data is updated

on the CPU in main memory and as a result the old data stored in the

video memory needs to be updated. The most significant bit of this field is

used as a flag to indicate whether or not the actual normal of this vertex

is invalidated and needs to be recomputed. This happens whenever one of

the heightmaps are modified in a way to require the actual normal of this

vertex to be recomputed.

Vertex representation in the video memory stores the following attributes:

• Position of the vertex as a 3D floating point vector (12 bytes of data).

• Normal of the vertex as a 3D floating point vector (12 bytes of data).

• Color of the vertex compressed to a 4D unsigned byte vector (4 bytes of

data).

CHAPTER 3. THE PROPOSED APPROACH 33

• Lower level-of-detail transition position of the vertex as a 4D floating point

vector (16 bytes of data). The w-component of this (x, y, z, w)-vector stores

the transition distance.

• Lower level-of-detail transition normal of the vertex as a 3D floating point

vector (12 bytes of data).

3.4 Surface Extraction

Surface extraction is the process of computing the coarse surface of the terrain

that is represented by the 3D voxel model. It should be noted that this is not

the ultimate form of the terrain surface but only an intermediate representation

which will later be used for terrain surface generation (cf. Section 3.5).

Marching Cubes algorithm and its derivations are very popular in extracting

the surface of a volumetric representation. In our approach, however, we cannot

use that kind of algorithm since its output is just a bunch of triangles, i.e., a

triangle soup. If the Marching Cubes algorithm is used to extract the surface

then the terrain model is reduced to a triangular irregular network (TIN) and

using heightmaps and level-of-detail approaches with a TIN representation is

considerably harder if possible. Our approach requires generating the surface

from regular patches on which the heightmaps can then be applied to achieve

higher resolution. There are several properties of the terrain patches that must

be ensured:

• The surface consisting of the patches must be entirely connected and con-

tinuous. There must be no holes, overlapping or colliding patches on the

surface. This is required to prevent rendering artifacts.

• Patches must be rectangular so that the vertices on the patch can be

mapped to planar (u, v) coordinates. This way, the values in the heightmap

can be used to displace the vertices on the patch.

• Being natural formations terrains are generally smooth surfaces. They usu-

ally lack sharp corners and edges. In order to be able to generate a smooth

CHAPTER 3. THE PROPOSED APPROACH 34

terrain surface all patches must be smooth on the interior. The combina-

tion of the patches must also not introduce sharp edges, corners or dramatic

slope changes for the same reason. It is possible to add these kinds of details

later by displacing the vertices on the smooth surface using heightmaps.

• Each edge of a patch must exactly align with one edge of one and only

one other patch. This is actually a requirement to simplify the surface

structure so that level-of-detail algorithms can work more efficiently and

produce visually better results.

• The vertices on the patch surface should be generated in a controlled manner

such that the vertices that are on the overlapping edges of two patches

coincide. This makes it easier to seamlessly combine patches since patches

can share vertices on the edges with the corresponding adjacent patch.

The choice of patch representation in the proposed technique is Bézier sur-

faces [36] (The term Bézier surface and terrain patch (or just patch) are used

interchangeably throughout the text). A Bézier surface is a three dimensional

specialization of Bézier curves. The Bézier curves (and surfaces) have several

useful properties that make it the best choice for our approach:

1. A Bézier curve has the endpoint interpolation property, meaning that the

curve is guaranteed to pass through its endpoints. Similarly a Bézier surface

is guaranteed to pass through all four control points that define the four

corners of the surface. This is essential for ensuring connectivity of the

patches generated.

2. Bézier surfaces are invariant under affine transformations and translations.

If the control points of a Bézier surfaces is transformed using affine trans-

formations and/or translations, then the surface will transform in the same

way as its control points. This property is useful in surface extraction phase

since many patch configurations can be obtained by either rotating or taking

the mirror of the control points of a base configuration.

3. All edges of a Bézier surface are Bézier curves defined by the control points

on that edge. This is useful for generating continuous and smooth surfaces

by combining patches at the edges.

CHAPTER 3. THE PROPOSED APPROACH 35

4. A Bézier surface is guaranteed to not exceed the convex hull of its control

points. This means that the bounding box of the control points is also the

bounding box of the corresponding Bézier surface. This is useful in making

the bounding box computations and range checks more efficient since it

is only needed to consider the control points in such computations rather

than all the vertices that result from the subdivision of the surface. Note

that the number of control points is usually several orders-of-magnitude less

than the number of vertices that result from surface subdivision.

5. Subdivision of Bézier surfaces are easier in computational efficiency com-

pared to other surface representations such as non-uniform rational basis

splines (NURBS) [37]. It is possible to easily generate an N ×M grid of

vertices approximating the surface where N and M are arbitrary numbers.

This is useful for controlling the subdivision level of the surface. NURBS

provide extra freedom and more specific control over the surface at the

expense of computational complexity. The proposed approach does not

benefit from these properties greatly since the generated surface is only

an intermediate form of representation which can then be enriched by the

application of heightmaps.

One problem with Bézier curves in general is that it is difficult to find the

intersection of a line and a Bézier curve. Thus, Bézier curves can almost never be

used directly for rendering in ray-casters and ray-tracers. This is not a problem

since the proposed approach uses a rasterization-based rendering scheme. Fur-

thermore, the surface representation is only an intermediate form in the proposed

approach where heightmaps are applied to patches for manipulation of surfaces.

In this case, one would need to compute the intersection of a line with the ultimate

form of the manipulated surface anyway, e.g., for collision detection purposes.

3.4.1 Two-Dimensional (2D) Case

Our approach obviously needs the surface extraction to work in 3D. A 2D case

of the surface extraction process, however, is quite similar to the 3D case while

being fairly easier to comprehend visually. The 2D case of surface extraction is

explained first in this section and the 3D case is built on top of that in the next

section.

CHAPTER 3. THE PROPOSED APPROACH 36

�

�������

������� ������	

������

Figure 3.5: Left: Four neighboring voxels in the 2D-case, right: the intersection
zone of these voxels. The vertex labeled with A is the center of the intersection
zone.

�� �� �� ��

Figure 3.6: Several sample voxel configurations in the 2D-case.

The surface extraction algorithm works on each vertex that is the intersection

of 4 voxels in the 2D-case. For each intersection vertex, the algorithm generates

a curve inside the intersection zone. Intersection zone is rectangular, centered at

the intersection vertex and its size is equal to the size of a voxel (see Figure 3.5).

In the 2D case the intersection zone overlaps 4 voxels. Each of these voxels can

be either empty or filled. Thus, there are 24 = 16 possible configurations for the

intersection zone. Several possible configurations are shown in Figure 3.6. Before

these configurations can be processed by the surface extractor the configurations

must be normalized. A normalized configuration is one where all filled voxels in

the configuration share an edge with another filled voxel in the same configuration.

By this definition, the configurations in Figure 3.6 (a), (b), and (c) are already

normalized while the configuration in Figure 3.6 (d) is not normalized and needs

to be before the surface is extracted.

In the normalization process, first each voxel is put in a separate normalized

group. Then the algorithm tries to combine any two groups by checking whether

the voxels in the groups share an edge. If it finds such a voxel then the groups

are combined. This step is repeated until no more normalized groups can be

CHAPTER 3. THE PROPOSED APPROACH 37

Figure 3.7: Configurations may be split into two during normalization.

combined. See Figure 3.7 for an example of normalization. Normalization is

useful for decreasing the complexity of the surface extraction algorithm since a

surface can be extracted for each normalized group and then combined if there

are more than one normalized groups.

As it is shown in Figure 3.6, each intersection zone in a normalized voxel group

has three control points for surface generation. Hence, the proposed approach uses

quadratic Bézier curves basically because they are the simplest and they suffice

for the job of generating smooth patch surfaces approximating the underlying

voxels. The position of the vertices that approximate the surface can then be

computed using the parametric curve equation of the quadratic Bézier curve as

in Equation (3.6) where P0, P1 and P2 are the three control points of the curve.

p(t) =
2∑

i=0

(
2

i

)
(1− t)2−itiPi (3.6)

= (1− t)2P0 + 2(1− t)tP1 + t2P2

The control points of the surfaces are depicted as filled circles and generated

curves are drawn with color red in Figures 3.6 and 3.7. It should be noted the

surfaces extracted for some configurations are simply flat lines as the situation

demands. The algorithm does not generate a surface in the following cases:

• all of the voxels in the intersection zone are filled, and

• none of the voxels in the intersection zone are filled.

To summarize the surface extraction algorithm in the 2D case, the following

steps are performed for each intersection zone in the voxel space:

CHAPTER 3. THE PROPOSED APPROACH 38

Figure 3.8: The surface extracted by the proposed surface extraction algorithm.

1. If all of the voxels in the intersection zone are filled or are empty, skip the

intersection zone without generating any surface.

2. Split voxels into normalized voxel groups.

3. Determine the three control points for the surface of each normalized voxel

group depending on which of the four voxels are filled.

4. Generate surfaces using the three control points for each normalized voxel

group.

Figure 3.8 shows the final result of the 2D surface extraction algorithm on a

simple voxel space. The blue rectangles are filled voxels, the white rectangles are

empty voxels, the filled circles are control points of the curves of each intersection

zone which are shown as green rectangles. The control points of the adjacent

intersection zones are placed in such a way that one of the control points is

shared between them. This ensures the continuity of the generated surface (cf.

Section 3.4). Note that this algorithm can also be used to produce more than

one surface that are not connected to each other if the voxel data represents such

a volume, as it is shown in Figure 3.8.

CHAPTER 3. THE PROPOSED APPROACH 39

Figure 3.9: Left: a normalized voxel intersection volume, right: an unnormalized
voxel intersection volume.

3.4.2 Three-dimensional (3D) Case

The surface extraction algorithm also works on intersection vertices in the 3D

case. In the 3D case, the intersection zone is a volume centered at the intersection

vertex. The size of the intersection volume is equal to the size of a voxel and it

overlaps eight voxels at a time. The intersection volume configuration is defined

by whether each of these 8 voxels are filled or not, so there are 28 = 256 possible

intersection volume configurations.

Configurations must be normalized before the surface extraction process is ap-

plied to the intersection volume similar to the normalization performed in the 2D

case. In the 3D case, however, each one of the filled voxels in a normalized inter-

section volume must share a face with another filled voxel in the same normalized

intersection volume rather than an edge as in the 2D case (see Figures 3.9 and

3.10). Computing whether a face is shared between two voxels is not a difficult

task. Index fields of the voxel indices can be used to determine what is shared

among two voxels that are in the same intersection volume:

• the two voxels share a face if two of the index fields are the same, e.g., the

x-index and z-index fields of voxel indices of both voxels are equal;

• the two voxels share an edge if one of the index fields are the same;

• the two voxels share a vertex if none of the index fields are the same.

CHAPTER 3. THE PROPOSED APPROACH 40

Figure 3.10: Normalization of an unnormalized voxel intersection volume in the
3D case.

Figure 3.11: A sample normalized intersection volume configuration where six of
the voxels are filled and the surface generated for this configuration.

In the 3D case, biquadratic Bézier surfaces are used to generate the surface

for each intersection volume. 3 × 3 = 9 control points are required to define a

biquadratic Bézier surface where eight of the control points are on the edges of the

surface and one is on the interior (see Figure 3.11). The position of the vertices

that approximate the surface of a biquadratic Bézier surface can be computed by

using the parametric surface Equation (3.7) where P00 . . .P22 are the 9 control

points that define the surface.

p(u, v) =
2∑

i=0

2∑
j=0

(
2

i

)
(1− u)2−iui

(
2

j

)
(1− v)2−jvjPij (3.7)

It should be noted that the algorithm does not generate a surface if all the

voxels in an intersection volume are filled or all of them are empty. For all the

other cases, there must be at least one Bézier surface for the intersection volume.

CHAPTER 3. THE PROPOSED APPROACH 41

For some configurations, however, one surface does not suffice for a connected

terrain surface and up to three Bézier surfaces may be required. This happens

whenever there are more than four edges that needs to be included in the surface.

In Figure 3.12, for instance, there are five edges that need to be patched up:

• Edge 1: A B C,

• Edge 2: C D E,

• Edge 3: E F G,

• Edge 4: G H J,

• Edge 5: J K A.

It is not possible to patch up five edges using a single biquadratic Bézier

surface since a biquadratic Bézier surface has only four edges. In this case, the

solution that our approach uses is to patch up the five edges using three different

biquadratic Bézier surfaces as it is shown in Figure 3.12. Two of these surfaces

patch up two external edges and one internal edge while one of the surfaces patch

up one external edge and two internal edges. External edges are the edges that

are shared between surfaces of different intersection volumes. Internal edges are

introduced when there are multiple surfaces in an intersection volume and the

edge(s) that are shared by the surfaces in the same intersection volume are called

internal edges. The nine control points of each of these three surfaces are:

• Surface 1: {A, B, C}, {A, L, D}, {A, L, E}

• Surface 2: {J, H, G}, {J, L, F}, {J, L, E}

• Surface 3: {A, L, E}, {K, L, E}, {J, L, E}

Note how internal edges {A, L, E} and {J, L, E} are shared between different

surfaces. This ensures connectivity of these surfaces. Also note that for some

configurations it is essential to collapse an edge of the Bézier surface in order to

obtain a surface with three edges (kind of a triangle instead of a quad). In this

case all three of the surfaces are generated in that way (see Figure 3.13 for a

different example). Three of the control points of surface 1, for instance, are all

CHAPTER 3. THE PROPOSED APPROACH 42

Figure 3.12: An instance of voxel intersection volume configuration where three
biquadratic Bézier surfaces are required to generate a connected surface.

A in which case one of the edges of surface 1 is essentially collapsed into a single

point. It is not a problem, though, since it is still possible to map this surface to

2D planar (u, v)-coordinates using the parametric Equation (3.7).

It is possible to compute a flag value of 8-bits that represents the intersection

volume configuration. Each bit of the flag value represents whether the corre-

sponding voxel is filled or not. This flag value can then be used as a pointer to

a lookup table to retrieve the precomputed control points for the surface of that

intersection volume configuration. There can be 9, 18 or 27 precomputed control

points for each intersection volume configuration depending on the number of

surfaces defined for that case. It is of utmost importance for the connectivity and

continuity of the terrain surface that the control points of the adjacent intersec-

tion volumes coincide. Furthermore, if a configuration contains multiple Bézier

surfaces, then the control points of each edge must either be shared with another

surface defined for the same configuration or must be shared with a surface defined

for an adjacent intersection volume configuration (see Figure 3.12). Algorithm 3.1

is used to extract the surface of the volumetric terrain representation.

Each of the generated surfaces is added to the list of Bézier surfaces that

is stored in one of the voxels in the corresponding intersection volume (as a

CHAPTER 3. THE PROPOSED APPROACH 43

voxelModel : (input) The voxel representation of the terrain
surfaces : (output) The list of surfaces, which is stored per-voxel

1 begin
2 foreach voxelIndex in voxelModel do

3 // construct the voxel intersection volume
4 voxelIndices[8]
5 for i← 0 to 8 do
6 // >> is the right-shift operator
7 // % is the modulus operator
8 voxelIndices[i] = getNeighborVoxelIndex(
9 i >> 2, (i >> 2) % 2, i % 2)

10 // normalize voxel intersection volume
11 normalizedVoxelGroups = normalize(voxelIndices)

12 foreach voxelGroup in normalizedVoxelGroups do

13 fillFlag = 0

14 for i← 0 to 8 do
15 // | = is the bitwise-or assignment operator
16 // << is the left-shift operator
17 fillFlag | = voxelGroup.isVoxelFilled(i) << i

18 // get control points for each surface
19 surfaces = getSurfaces(fillFlag)

20 // get voxel pointer
21 voxel = getVoxel(voxelIndex)

22 foreach surface in surfaces do
23 voxel.surfaces← surface

Algorithm 3.1: Surface extraction algorithm

CHAPTER 3. THE PROPOSED APPROACH 44

Figure 3.13: A sample normalized intersection volume configuration where three
of the voxels are filled and the surface generated for this configuration.

convention, our approach stores the surfaces generated for an intersection volume

in the voxel whose index fields in the voxel index have the minimum values). This

choice does not really matter as long as it is consistent. By doing so, it is ensured

that the adjacent voxels store the surfaces for the adjacent intersection volumes.

Although there are 256 different possible voxel intersection volume configura-

tions, most of these configurations are related to a unique base configuration in

one of the following ways:

• symmetric about the xy-, xz-, or yz-planes, and

• rotated by 90, 180 or 270 degrees around either x-, y-, or z-axes.

The surfaces for such configurations can be obtained by applying affine trans-

formations to the control points of the Bézier surfaces of the corresponding unique

base configuration (cf. Section 3.4). Applying such an affine transformation to

the control points also correctly transforms the surface definition. Of all the 256

possible configurations, there are only 12 such unique configurations excluding

the cases where no surface is generated (i.e., where either all or none of the voxels

in the intersection volume are filled). These unique configurations, the surfaces

CHAPTER 3. THE PROPOSED APPROACH 45

Figure 3.14: Unique voxel intersection volume configurations where, respectively,
1, 2, 3 and 7 of the voxels in the intersection volume are filled.

Figure 3.15: Unique voxel intersection volume configurations where four of the
voxels in the intersection volume are filled.

generated for each of them and the control points for the surfaces are shown in

Figures 3.14, 3.15, 3.16, and 3.17.

3.4.2.1 Handling Voxels at Different Levels

The surface extraction method presented here assumes that the size of all voxels

that are part of an intersection volume are equal, that is, they are at the same level

in the octree. In practice, however, this may or may not be true since the octree

allows neighboring voxels to be at different levels. To be able to handle these

cases, the surface extraction algorithm computes the minimum level of the voxels

in the intersection volume and then generates several new smaller intersection

volumes on the surface of each voxel that are at a higher level than the minimum

level (see Figure 3.18). Then the surfaces for these smaller intersection volumes

are generated rather than the actual larger one.

The new and smaller intersection volumes are generated only for the 3 faces

CHAPTER 3. THE PROPOSED APPROACH 46

Figure 3.16: Unique voxel intersection volume configurations where five of the
voxels in the intersection volume are filled (please note that the last two pictures
show the same configuration from different viewpoints).

Figure 3.17: Unique voxel intersection volume configurations where six of the
voxels in the intersection volume are filled (please note that the last two pictures
show the same configuration from opposite viewpoints).

CHAPTER 3. THE PROPOSED APPROACH 47

Figure 3.18: The division of the actual intersection volume (green rectangle) to
several new and smaller intersection volumes (red squares with yellow X inside)
as seen from a top-down view.

of larger voxels that overlap the actual intersection volume. The inner volume of

these larger voxels are not processed since no surface is meant to be generated

inside a voxel: even if such an intersection volume was generated, either all or

none of the voxels would be full and as a result no surface would be generated.

Note that the larger voxels are not actually split into smaller voxels, though.

The representation of the octree in does not change in memory. The smaller

intersection volumes are generated and processed on-the-fly and the queries for

smaller virtual sub-voxels are answered considering the larger voxel of which they

are a part. Simply, if the larger voxel is filled then all smaller virtual sub-voxels

that are a part of it are also filled and vice versa.

The result of the surface extraction method in the 3D case for a sample voxel

representation is shown in Figures 3.19 and 3.20.

3.4.2.2 Static Surface Culling

The presented voxel surface extraction algorithm generates surfaces considering

each and every voxel intersection volume. This method results in generation of

redundant surfaces that are never meant to be visible in practice. Think of the

CHAPTER 3. THE PROPOSED APPROACH 48

Figure 3.19: The final result of the surface extraction algorithm (patching surfaces
are rendered in different colors).

Figure 3.20: The final result of the surface extraction algorithm from another
viewpoint (patching surfaces are rendered in different colors).

CHAPTER 3. THE PROPOSED APPROACH 49

entire voxel model as a rectangular prism, for instance. Surfaces for each of the

six faces of the rectangular prism will be generated by the algorithm since it is

designed to generate connected and continuous surfaces without any holes. In

reality, however, the surfaces generated at the four sides and at the bottom of the

rectangular prism would never be visible to the observer, since the actual terrain

is on the top face of the rectangular prism. Thus, it is possible to optimize the

output of the surface extraction algorithm by culling these redundant surfaces

early in the surface extraction process.

The purpose of the static surface culling is to significantly decrease the number

of surfaces generated by discarding the surfaces that are never meant to be visible

in the first place in order to improve the performance and efficiency of the terrain

generation, editing and visualization. It is, fortunately, quite an easy task. The

axis-aligned bounding box of the 3D voxel space is already determined at the

creation time of the octree. As soon as a surface is generated, its control points

are checked against the bounding box to find out if the surface is redundant and

should be discarded. If all control points are either on the bottom face or one

of the side faces of the bounding box then the surface is considered redundant

and discarded. As a result of this process the extracted surface is not connected

anymore, but the visible part of the surface is still connected and continuous,

which is what matters for our purposes. In theory this process can discard as much

as 83% of the surface generated (e.g., five out of six faces of the rectangular prism

is culled). In practice the gains are lower since the top face of the rectangular

prism is much more complex structurally, as it contains all the detail about the

terrain, and therefore contains many more surfaces than the other faces. Our

experiments have shown that about 40% to 55% of the generated surfaces can be

safely discarded by this process on typical terrains. See Figure 3.21 for an example

application of the static surface culling. For this sample voxel model, the number

of generated surfaces is 8962 without culling and 3948 with culling. In this case,

the static surface culling process managed to discard 56% of the surfaces as they

are not meant to be visible. Discarding so many surfaces significantly improves

the performance and decreases the memory consumption of the application overall

without affecting the output visually in any way.

CHAPTER 3. THE PROPOSED APPROACH 50

Figure 3.21: The redundant surfaces are tinted with brown. Top-Left: top-
down view without static surface culling applied, top-right: top-down view with
static surface culling applied, bottom-left: bottom-up view without static surface
culling applied, bottom-right: bottom-up view with static surface culling applied
(back-face culling is disabled for visualization).

CHAPTER 3. THE PROPOSED APPROACH 51

3.5 Terrain Surface Generation

The 3D voxel model defines the coarse surface features of the terrain. Each voxel

is related to a number of surface patches that consist in the complete terrain

surface. These surface definitions are parametric definitions and they must be

approximated by a finite number of vertices and faces before they can be used to

visualize the surface using hardware acceleration. The process of approximating

the parametric surfaces by a finite number of primitives and applying heightmaps

to each surface patch in order to obtain the ultimate terrain surface is called

terrain surface generation (cf. Section 3.4).

3.5.1 Generating Vertices

The first step of terrain surface generation is to generate a number of vertices

for each Bézier surface (i.e., terrain surface patch). The minimum number of

vertices to approximate each surface patch is nine in which case each vertex

coincide with one of the surface control points. The actual number of vertices

per surface patch is determined by the desired level-of-detail and is constrained

by the memory available for storing these vertices. As the number of vertices

generated per surface patch increases

• the approximation converges to the actual surface and as a result a rather

smoother approximation is achieved, and

• the resolution of the surface patch increases allowing us to apply higher-

resolution heightmaps to the patches and achieve a more-detailed terrain

surface.

At this stage of the surface generation, only the original positions of the

vertices are computed, rather than the displaced positions, since the heightmaps

will be applied at a later stage (cf. Section 3.3.3). Computing the positions of

vertices is straightforward using the parametric surface equation of biquadratic

Bézier surfaces (see Equation (3.7)). First, the (u, v)-coordinates for each vertex

are generated assuming a uniform grid of vertices. Then these (u, v)-coordinates

are used to compute the corresponding position on the surface by the parametric

CHAPTER 3. THE PROPOSED APPROACH 52

surface equation. In the proposed surface generation method, the number of

vertices in each edge of the surface are equal meaning that the u and the v

subspaces are sampled at the same frequency. Thus, the total number of vertices

on a surface patch is N2 where the number of vertices per edge is N . In theory,

it is possible to use different frequencies for u and v subspaces where edges that

align with one axis has N vertices and the other has M vertices, resulting in

a total vertex count of N ×M per surface patch. This usage has an undesired

side-effect of vertex alignment problems in neighboring surface patches that share

an edge, though, e.g., when one edge with N vertices coincide with an edge of M

vertices of another surface patch. It is ensured, therefore, that the vertices on the

edges of neighboring surface patches align correctly by generating N vertices on

each edge of the surface patches (please note that this constraint is later relaxed

for level-of-detail purposes, but for now we shall assume that it holds).

Each vertex generated for a surface patch can be categorized as either an

internal vertex or a border vertex (see Figure 3.22).

Border vertices are vertices that are part of at least one of the edges of the sur-

face patches. These vertices can easily be classified based on their assigned

planar (u, v)-coordinates:

• (u = 0, v = 0): First corner

• (u = 1, v = 0): Second corner

• (u = 1, v = 1): Third corner

• (u = 0, v = 1): Fourth corner

• (0 < u < 1, v = 0): First edge

• (u = 1, 0 < v < 1): Second edge

• (0 < u < 1, v = 1): Third edge

• (u = 0, 0 < v < 1): Fourth edge

Internal vertices are all vertices of a surface patch except the border vertices.

These vertices are located in the inner-area of the surface patch and have

planar coordinates such that (0 < u < 1, 0 < v < 1).

Border vertices are shared vertices, meaning that multiple vertices spatially

coincide and are located at exactly the same coordinates in the 3D working space.

CHAPTER 3. THE PROPOSED APPROACH 53

�

�

�������� ��������

�������	�������

������

�����	

�����

������

Figure 3.22: Vertices that approximate a surface are shown where N = 5. Red
lines are the edges, red boxes are the border vertices, green boxes are internal
vertices and blue circles are control points of the surface.

The vertices can be shared externally or internally relative to the surface patch

for which the vertex is generated.

External sharing of a vertex means that multiple vertices that belong to dif-

ferent surface patches are located at the same coordinates.

Internal sharing of a vertex means that multiple vertices that belong to the

same surface patch are located at the same coordinates.

Both external and internal sharing happen on the edges and corners of surface

patches. Thus, they are only defined for border vertices and not for internal

vertices. Internal vertices are never shared and are called unique vertices as each

of them is the only vertex located at that specific coordinate.

3.5.1.1 Internal Sharing of Vertices

Internal sharing of border vertices occurs whenever one edge of a surface patch

is collapsed into a single point such that there are three edges instead of four.

CHAPTER 3. THE PROPOSED APPROACH 54

In this case, all control points of the surface that are on the collapsed edge are

located at the same coordinates (cf. Section 3.4.2). Recall that all edges of a

Bézier surface are Bézier curves defined by the control points on that edge (cf.

Section 3.4). When all control points of an edge collapse into a single point, the

curve defined by that edge also collapses into a single point. Thus, all vertices

that are supposed to approximate that curve are located at the same coordinates,

that is, they are shared.

The separate storage of internally shared vertices is redundant. It is easy to

find out if any of the edges of a surface patch is collapsed (see Figure 3.23):

• If the seventh and the ninth control points are at the same location then

the first edge is collapsed.

• If the third and the ninth control points are at the same location then the

second edge is collapsed.

• If the first and the third control points are at the same location then the

third edge is collapsed.

• If the first and the seventh control points are at the same location then the

fourth edge is collapsed.

Please note that it suffices to only check the locations of the control points

that are on the corners of the surface to find out if an edge is collapsed. This is

due to the fact that there is no case in the presented surface extraction algorithm

where the two cornering control points are at the same location while the middle

control point is in another location. Thus, if two control points on adjacent

corners are in the same location then it implies that the control point in-between

them is also at that same location.

If an edge of the surface patch is determined to be collapsed by the mentioned

rules then only one vertex is generated on that edge and the generation of the

other vertices for that edge are skipped.

3.5.1.2 External Sharing of Vertices

External sharing occurs on two occasions:

CHAPTER 3. THE PROPOSED APPROACH 55

�

�

�

�

�

�

�

�

	

�
��
��

�

	

�

�

�

�

Figure 3.23: Left: a surface without internal sharing of vertices, right: a surface
where the third edge is collapsed and the vertices on the third edge are internally
shared (numbered are the control points of the surface).

• on the common edge of two neighboring surface patches, and

• on the common corners of multiple neighboring surface patches.

Vertices that are strictly on the edges of the surface patches (and not on the

corners) are shared by exactly two surface patches since each edge of a surface

patch can coincide with an edge of one and only one other surface patch (cf.

Section 3.4.2). Vertices that are on the corners, on the other hand, are shared

among at least four surface patches. In some configurations the number of sharing

surface patches of a corner vertex can be many more than four (see Figure 3.24).

Unlike internally shared vertices, it is not possible to detect externally shared

vertices before they are generated. This is due to the requirement that the lo-

cation of the vertices must be known for comparison with the locations of the

border vertices of neighboring surface patches. As a result, all vertices of a sur-

face patch, except the internally shared ones, are generated first and then the

ones that are found to be externally shared are discarded, except the one and

only instance of the shared vertex. The externally shared vertices can only be

shared by neighboring surface patches and neighboring surface patches must be

contained by neighboring voxels.

CHAPTER 3. THE PROPOSED APPROACH 56

Figure 3.24: An externally shared vertex is circled with red where it is shared by
six neighboring surface patches.

In order to find out the externally shared instances of a vertex that is part of a

surface patch P , therefore, it suffices to look at the vertices of the surface patches

of the current voxel P and the neighboring voxels of P . It should be noted that

there may be many surface patches related to a voxel depending on the level

of that voxel and the neighboring voxels in the octree (cf. Section 3.4.2.1). To

improve the performance of finding externally shared voxels, first the bounding

boxes of the surface patch pairs of the neighboring voxels are compared to see if

there is an overlap. Externally shared voxels are searched for only if the bounding

boxes overlap, since when the bounding boxes do not overlap there cannot be any

shared vertices between these surface patches. Another performance optimization

is possible by checking only border vertices of the surface patches instead of all

vertices. Checking against internal vertices would be redundant because

• two internal vertices of different surface patches cannot be at the same

location, and

• an internal vertex and a border vertex of different surface patches cannot

be at the same location.

Therefore, when searching for externally shared vertices of two surface patches,

only the locations of the border vertices of each surface patch are compared with

each other. This reduces the runtime complexity of the algorithm from O(V 2) to

O(V), where V is the number of vertices of a single surface patch.

CHAPTER 3. THE PROPOSED APPROACH 57

3.5.1.3 Storing Vertices

There are a total of N2 vertices in a surface patch where a single edge is approx-

imated by N vertices. Of those N2 vertices, 4× (N − 1) are shared (i.e., border)

vertices. The attributes of these shared vertices should not be stored separately

in each one of the surface patches that share them because

• storing the same attributes separately is redundant and causes the applica-

tion to use more memory space unnecessarily,

• the displaced positions of these vertices may differ since different heightmaps

are applied to different surface patches causing gaps in the terrain surface,

and

• storing these attributes separately causes the surface normals to be com-

puted incorrectly as it is explained in the next section.

Thus, for correct operation and efficiency of the terrain surface generation

algorithm, shared vertices must be stored in a common data structure used by

different surface patches that share the vertex. The number of surface patches

that share a border vertex is not a constant as it can be as few as one in the

case where all neighboring surface patches are culled by static surface culling,

and it can be quite a few patches depending on the voxel intersection volume

configurations around the vertex. A linked list is a good choice for storing the

shared vertex data where each node of the linked list represents an instance of the

shared vertex and each node is stored by a surface patch that shares the vertex.

Each shared vertex list node stores a pointer to the first and next node in

the list, a pointer to a surface patch that shares the vertex and a pointer to

the actual vertex where the vertex attributes is stored. The number of shared

vertex list nodes for a shared vertex is always equal to the number of surface

patches that share that vertex. Initially, that is at the stage of vertex generation,

a separate node is created for each border vertex. A vertex is created with each

node and each node points to a distinct vertex. Once all vertices are generated

for all surface patches, the algorithm searches for externally shared vertices by

comparing the vertices of neighboring surface patches. The locations of all border

vertices of the neighboring surface patches are compared and if two vertices are

CHAPTER 3. THE PROPOSED APPROACH 58

������

�������

�	
�	���

������

�������

�	
�	���

�

������

�������

�	
�	���

������

�������

�	
�	���

�

Figure 3.25: (a) two distinct shared vertex lists, each having one node and point-
ing to different vertices, (b) the shared vertex lists are merged into a single shared
vertex list, all of the nodes now point to the same vertex and the remaining ver-
tices (vertex 2 in this case) are deleted.

in the same location then their shared vertex lists are merged (see Figure 3.25).

After the merge operation, all nodes in the two former shared vertex lists are now

in the same shared vertex list and all nodes point to the same vertex data.

It should be noted that it is essential for the presented approach that the

mapping between the vertices of a surface patch and a 2D plane is maintained.

The vertices of a surface patch must, therefore, be quickly accessible with a 2D

vertex index in the format (i, j) as this representation provides a mapping between

the vertices and the 2D (u, v) coordinates of the heightmap (this relation is given

by Equations (3.8) and (3.9)). The range of both i and j is [0, N − 1] where N

is the number of vertices per edge.

u = i/(N − 1) (3.8)

v = (N − 1− j)/(N − 1) (3.9)

In order to allow fast access to vertices through 2D vertex indices a one-

dimensional array of vertex pointers of size N2 is created and filled with pointers

to the corresponding vertex attributes. The one-dimensional array index is then

computed as i+ j ×N . It should be noted that different indices of the array can

store pointers to the same vertices where the vertices are shared externally or

internally. The attributes of the shared vertices, however, are strictly stored at

one place in the main memory without any copies, although there may be many

CHAPTER 3. THE PROPOSED APPROACH 59

Figure 3.26: Two different patterns for connecting vertices of a surface patch
(N = 5) to form triangles. The pattern on the right yields better results when
used with level-of-detail algorithms. Please note that both patterns result in the
same number of triangles albeit in different orientations.

pointers from several surface patches to a particular vertex.

3.5.2 Generating Faces

The next step of terrain surface generation is the generation of faces. The most

efficient primitive type of faces in hardware accelerated rasterization-based ren-

derers is triangles. In this stage, the vertices generated for each surface patch are

connected in groups of three such that they form triangles that approximate the

surface without any holes and cracks. It is possible to use different connection

patterns for this task (see Figure 3.26). Although the pattern shown on the left

is quite straightforward and seems to do the job of connecting vertices to form

triangles, the pattern on the right yields better results when level-of-detail is in-

troduced to the presented approach. A more-detailed explanation about this is

given in the next sections. Thus, the presented approach uses the pattern shown

on the right.

Please note that the minimum number of vertices per edge N required by this

connection pattern is three (see Figure 3.27). The primitive connection pattern

of size 3× 3 can then be tiled in both the u- and the v-axes for N−1
2

times. This

places a constraint on the number of vertices per edge in a surface patch such that

N = 2 × k + 1 where k is a positive integer. The primitive pattern is then tiled

CHAPTER 3. THE PROPOSED APPROACH 60

������

������

������

������ ������

������
������

������ ������

Figure 3.27: Primitive vertex connection pattern for batches of 3 × 3 vertices.
The vertices are annotated with 2D vertex indices in (i, j) format.

k times in both the u- and the v-axes. The total number of triangles generated

for a surface patch is 8× k2 which is equal to 2× (N − 1)2.

The presented approach does not require the explicit storage of the triangle

vertex indices as they can easily be computed on-the-fly whenever required with

the help of a static lookup table that defines the primitive connection pattern of

the vertices. (see Algorithm 3.2). It should be noted that each vertex is shared by

multiple triangles not only those belong to the same surface patch but also by tri-

angles of different surface patches (through shared vertex lists). It is now possible

to render the surface of the terrain using a hardware-accelerated rasterization-

based renderer by sending the vertices to the renderer in this particular order and

using triangles as the rendering primitive.

It is extremely important that the triangles are always constructed in a way

such that the vertices of the triangle are ordered in a counter-clockwise direction.

This must be ensured for correct computation of the face and vertex normals

as well as correct visualization of the terrain surface. This is explained in more

detail in the next section about face and vertex normals.

CHAPTER 3. THE PROPOSED APPROACH 61

triangleIndex : (input) The zero-based index of the triangle
numVerticesPerEdge : (input) Number of vertices per edge (N)
vertexIndices : (output) The vertex indices of the vertices of the

triangle in (i, j) format

1 begin
2 const indices [8][3][2] = {
3 { {0, 0}, {0, 1}, {1, 1} }, // face-1
4 { {1, 1}, {0, 1}, {0, 2} }, // face-2
5 { {0, 2}, {1, 2}, {1, 1} }, // face-3
6 { {1, 1}, {1, 2}, {2, 2} }, // face-4
7 { {2, 2}, {2, 1}, {1, 1} }, // face-5
8 { {1, 1}, {2, 1}, {2, 0} }, // face-6
9 { {2, 0}, {1, 0}, {1, 1} }, // face-7

10 { {1, 1}, {1, 0}, {0, 0} }, // face-8
11 };
12 // % is the modulus operator;
13 // << is the left-shift operator;
14 // >> is the right-shift operator;
15 // & is the bitwise-and operator;
16 numFacesPerEdge = numVerticesPerEdge >> 1;
17 i = (batchIndex % numFacesPerEdge) << 1;
18 j = (batchIndex / numFacesPerEdge) << 1;
19 k = triangleIndex & 0x7;

20 for v ← 0 to 3 do
21 vertexIndices← (i + indices [k][v][0], j + indices [k][v][1]);

Algorithm 3.2: Generating triangle vertex indices given the index of the
triangle

CHAPTER 3. THE PROPOSED APPROACH 62

Figure 3.28: The normal vector
−→
N of the triangle BAC where

−→
AB is the first edge

and
−→
AC is the second edge.

3.5.3 Computing Face and Vertex Normals

The normals in 3D models are usually computed per face since it is an attribute

defined for flat surfaces such as triangles. A vector is called the normal vector

of a triangle if it is perpendicular to the triangle (see Figure 3.28). The normal

vector
−→
N of a triangle whose vertices are at locations

−→
P1,
−→
P2 and

−→
P3 can be com-

puted easily according to Equation (3.10). It is crucial for correct computation

of the triangle normal that the vertices
−→
P1,
−→
P2 and

−→
P3 are in counter-clockwise

orientation, otherwise the computed normal will point to the opposite direction

since we take the cross-product of the edge vectors and the order of the edge

vectors determine the direction of the normal vector.

−→v1 = P2 − P1

−→v2 = P3 − P2

−→
N = −→v1 ×−→v2 (3.10)

The computed normal vector is usually normalized such that its length is

equal to one before it is used in further processing (see Equation 3.11 where l is

the length of
−→
A and

−→
B is the normalized form of

−→
A). This is due to the fact

CHAPTER 3. THE PROPOSED APPROACH 63

that usually the length of the normals is not interesting as they merely define a

direction.

l =
√
Ax × Ax + Ay × Ay + Az × Az

−→
B =

−→
A × 1

l
(3.11)

The computation of triangle normals are discussed so far, rather than the

vertex normals. The presented approach requires vertex normals to be computed

since most operations are performed per-vertex and not per-triangle, such as the

displacement operation by the heightmap application. During the displacement,

the triangles are not displaced as a whole, but rather the individual vertices are

displaced depending on the values of the applied heightmap. Thus, the vertex

normals are required to compute the displacement of each vertex. In the proposed

approach each vertex is supposed to have two kinds of normals assigned to it:

1. The displacement normal merely defines the direction through which the

vertex is displaced according to the applied heightmap values. The displace-

ment normal depends only on the voxel definition of the terrain surface and

does not change as the vertices are displaced by a heightmap.

2. The surface normal is the actual normal of the vertex that is used for

visualization purposes such as lighting and texturing. The surface normal

of a vertex changes whenever the displaced position of that vertex or of

one of the connected vertices is modified. The surface normals must be

recomputed in these cases.

The vertices of a triangle defines a flat surface in 3D. As a result, the normal

vector of the triangle is also the normal vector of each of the vertices. There is a

problem, though. As it has already been mentioned in previous sections, a vertex

can be shared by many triangles that are part of different surface patches. A

vertex cannot have more than one normal vector assigned to it; i.e., one for each

triangle by which the vertex is shared. The solution is to compute the average of

normals of all triangles that share the vertex. This method of averaging normals

can yield awkward results when the slope of the neighboring triangles dramatically

CHAPTER 3. THE PROPOSED APPROACH 64

differ; i.e, in places where the derivative of the slope of the terrain is too high.

The proposed surface extraction method produces a smooth terrain surface with

the help of Bézier curves, though. As a result, dramatic changes in the slope of

neighboring triangles is normally not encountered in the proposed approach.

In our experiments, it is observed that the obtained results are slightly better

in most cases if the areas of the triangles that share a vertex are also taken into

account while computing the normal of that particular vertex. The area A of a

3D triangle with vertices P1, P2 and P3 can be computed by Equation (3.12).

−→v1 = P2 − P1

−→v2 = P3 − P2

A =
1

2
× |−→v1 ×−→v2 | (3.12)

Equation (3.12) implies that the area of a triangle is proportional with the un-

normalized normal vector of the triangle. Therefore, if the sum of normal vectors

are computed by taking the unnormalized normal vectors then the areas of the

triangles are also taken into account. Then the summation of the unnormalized

normal vectors can be normalized to obtain the ultimate normal vector for the

vertex. Algorithm 3.3 computes the vertex normals of the terrain surface vertices.

The same algorithm is used for computing both the displacement normals

and the surface normals of the vertices. Each vertex has two different position

attributes and each of these positions are used to compute a different kind of

normal for the vertex:

• The original position of the vertex is the position before any displacement

is applied to the vertex. This is an intermediate position that is used to

compute the displaced position of the vertex. The vertex is not rendered at

this location. This position is used to compute the displacement normals

of the vertices.

• The displaced position of the vertex is the position after displacement oper-

ation is performed on the vertex. This is the ultimate position of the vertex

that is used for computing the surface normals of the vertices as well as the

visualization of the vertex.

CHAPTER 3. THE PROPOSED APPROACH 65

octree : (input) Octree that defines the terrain model
vertexNormal : (output) Vertex normals of each vertex

1 begin

2 // initialize all vertex normals to zero
3 resetVertexNormals(octree)

4 // compute the sum of all triangle normals that share each vertex
5 foreach voxel in octree do
6 foreach patch in voxel do

7 for triangleIndex← 0 to numTrianglesPerSurfacePatch do
8 vertexIndices = getTriangleVertexIndices(triangleIndex)

9 for i← 0 to 3 do
10 vertices[i] = patch.getVertexByIndex (vertexIndices[i])

11
−→v1 = vertices[1] - vertices[0]

12
−→v2 = vertices[2] - vertices[1]

13
−→
N =

−→v1 ×−→v2
14 for i← 0 to 3 do

15 vertices[i].vertexNormal +=
−→
N

16 // normalize the sum of triangle normals
17 foreach voxel in octree do
18 foreach patch in voxel do

19 for triangleIndex← 0 to numTrianglesPerSurfacePatch do
20 vertexIndices = getTriangleVertexIndices(triangleIndex)

21 for i← 0 to 3 do
22 vertices[i] = patch.getVertexByIndex (vertexIndices[i])
23 x = vertices[i].vertexNormal.x
24 y = vertices[i].vertexNormal.y
25 z = vertices[i].vertexNormal.z
26 len = sqrt(x× x + y × y + z × z)
27 vertices[i].vertexNormal /= len

Algorithm 3.3: Computing vertex normals of the terrain surface vertices

CHAPTER 3. THE PROPOSED APPROACH 66

3.5.4 Displacement of Terrain Surface Vertices

The displacement of terrain surface vertices is the last step for the ultimate terrain

surface to be obtained. The displacement operation is quite simple once the

original positions and the displacement normals of the terrain vertices have been

computed as explained in detail throughout this chapter. In this section it is

assumed that heightmaps are already somehow prepared and ready for use. In

the next chapters a sample editor application and several methods for editing

terrain heightmaps are presented.

The displacement operation is performed for each vertex on each surface patch

of the terrain. The output of this process is the displaced positions of the vertices.

The displaced positions of the vertices can be computed by Equation (3.13) where
−→
P is the original position,

−→
N is the displacement normal and

−→
D is the displaced

position of the vertex. The 2D h(u, v) function is the heightmap function return-

ing a scalar value for planar (u, v) coordinates where the valid range for u and

v parameters are [0, 1]. The relation between the 2D vertex indices and planar

(u, v) coordinates is given by Equations (3.8) and (3.9).

−→
D =

−→
P +

−→
N × h(u, v) (3.13)

The displacement value of the neighboring vertices should not be too different

from each other as this will result in jagged edges and corners on the terrain.

In order to increase the visual quality and achieve better realism by generating

a smoother terrain surface, Gaussian filter is applied on the heightmap while

accessing the heightmap pixels. This filter helps to smooth the extreme values

of the pixels in the heightmap. The kernel size dramatically affects the resulting

terrain such that

• a larger kernel size will over-smooth the surface hindering the ability of

applying fine detail on the terrain surface, and

• a lower kernel size will not be sufficiently effective in reducing the jaggedness

of the edges and corners.

Using a larger kernel size for the Gaussian filter also considerably slows down

the displacement operation. Our experiments have shown that a Gaussian kernel

CHAPTER 3. THE PROPOSED APPROACH 67

of size 3 × 3 (see Equation (3.14)) usually yields sufficiently good results (see

Figure 3.29). The kernel is applied such that the pixel whose value is queried

is in the center of the 3 × 3 kernel. Each pixel in the kernel is then assigned a

weight depending on its distance to the pixel at the center of the kernel. The

summation of the values of each pixel multiplied by its weight is used as the

ultimate displacement value of the pixel at the center of the kernel. It should

be noted that the sum of weights assigned to the pixels in the kernel is equal

to one so there is no overall amplification or deamplification to the values of

the heightmap. The presented approach partly delegates the task of smoothing

parts of the surface to the editor application responsible from the creation of the

heightmaps. This is explained in more detail in Section 5.2.2.

G =


0.0625 0.1250 0.0625

0.1250 0.2500 0.1250

0.0625 0.1250 0.0625

 (3.14)

The displacement operation is performed on each vertex of all surface patches

of the terrain. However, due to the shared usage of vertices among surface patches,

displacement may be applied multiple times on some vertices. This is not a

desired consequence of the vertex displacement process. Therefore, the concept

of vertex owners is introduced for externally shared vertices. The owner of an

externally shared vertex is the surface patch that is pointed by the first node of

the shared vertex list of that vertex. Displacement is applied on externally shared

vertices only by the surface patch that owns the vertex. Consequently the chance

of multiple application of displacement to the same externally shared vertex by

different surface patches is eliminated.

The displacement operation can also occur multiple times on the internally

shared vertices as multiple vertex indices can point to the same vertex if an edge

of the surface patch is collapsed. In this case, the displacement must be applied

to only the first vertex index that points to the internally shared vertex. All other

vertex indices that point to an internally shared vertex is called inactive vertex

indices. Algorithm 3.4 is used to determine whether a vertex index is inactive.

If the vertex index is inactive, then the displacement is not applied to the vertex

pointed by that vertex index as that would be a re-application of displacement

to the same vertex. Algorithm 3.5 is used to apply displacement to the entire

CHAPTER 3. THE PROPOSED APPROACH 68

Figure 3.29: Top: the result of the displacement operation without Gaussian
filtering, bottom: the same displacement map applied with Gaussian filtering
(kernel size is 3 × 3). Note the extremely jagged edges when the displacement
map is applied without Gaussian filtering.

CHAPTER 3. THE PROPOSED APPROACH 69

terrain as explained in this section.

It should be noted that the computation of the surface normals must be

performed after the application of displacement maps to each and every one

of the surface patches. The vertex normals are computed using the displaced

positions of the vertices as explained in Section 3.5.3.

3.5.5 Terrain Deformation

One of the goals of the proposed terrain representation is that it should be editable

and deformable in real-time. Simple methods for terrain editing is explained

in more detail in the next sections as part of a sample editor and visualizer

application. How to deform the terrain, e.g., by erosion or by other objects in

the world, is beyond the scope of this thesis. The proposed approach, however,

tries to define a framework for making it possible to deform the terrain in real-

time. The limitation of the proposed approach, however, is that the deformation

of the terrain can only be performed at the heightmap-level in real-time. In

other words, it is not possible to smoothly modify the voxel model in real-time

as that would trigger the process of surface extraction process to rerun and cause

dramatic changes to the terrain. It is possible to modify the heightmaps assigned

to surface patches in real-time, though.

Editing heightmaps causes the displaced positions of the affected vertices to

change. Recomputing the new displaced position is quite an easy task. The mod-

ification of the displaced position of a vertex, however, invalidates the previously

computed face normals of all triangles of which the modified vertex is a part. It

does not, unfortunately, stop here since the invalidation of a face normal of a tri-

angle invalidates the surface normals of all vertices that constitute that triangle.

This ripple effect causes a modification to the heightmap of one particular surface

patch to spread to the vertices of the neighbor patches. See Figure 3.30 for an

example of this ripple effect. If the displaced position of vertex V is modified,

the face normals of the orange triangles are invalidated and must be recomputed.

The invalidation of the face normals of these triangles invalidates the surface nor-

mals of the vertices A, B, C and D to be invalidated. Now the surface normals

of these vertices have to be recomputed. Recomputing the surface normals of

these vertices, however, requires access to the orange and green triangles as these

CHAPTER 3. THE PROPOSED APPROACH 70

vertexIndex : (input) 2D Vertex index whose activity is queried
vertexIndexActivity : (output) True if the vertex index is active, false

otherwise

1 begin
2 switch collapsedEdge do
3 case None
4 return false

5 case Edge1
6 if vertexIndex.i == 0 and

vertexIndex.j == numVerticesPerEdge− 1 then
7 return true
8 else
9 return false

10 case Edge2
11 if vertexIndex.i == numVerticesPerEdge− 1 and

vertexIndex.j == numVerticesPerEdge− 1 then
12 return true
13 else
14 return false

15 case Edge3
16 if vertexIndex.i == numVerticesPerEdge− 1 and

vertexIndex.j == 0 then
17 return true
18 else
19 return false

20 case Edge4
21 if vertexIndex.i == 0 and vertexIndex.j == 0 then
22 return true
23 else
24 return false

Algorithm 3.4: Finding out whether a vertex index is inactive and should
not be displaced

CHAPTER 3. THE PROPOSED APPROACH 71

octree : (input) Octree that defines the terrain model
displacedPosition : (output) Displaced positions of each vertex

1 begin

2 uvScale = 1/(numVerticesPerEdge− 1)

3 foreach voxel in octree do
4 foreach patch in voxel do

5 for i← 0 to numVerticesPerEdge do
6 for j ← 0 to numVerticesPerEdge do

7 vertexIndex = {i, j}
8 if isVertexIndexActive(vertexIndex) == false then
9 continue

10 if isBorderVertex(vertexIndex) == true then
11 if getVertexOwner(vertexIndex) ! = patch then
12 continue

13 u = i× uvScale
14 v = 1− j × uvScale

15 displacementValue =
16 patch.heightmap.getFilteredValue(u, v)

17 vertex = patch.getVertexByIndex (vertexIndex);

18 vertex.displacedPosition = vertex.originalPosition +
vertex.displacementNormal× displacementValue;

Algorithm 3.5: Displacement of terrain surface vertices

CHAPTER 3. THE PROPOSED APPROACH 72

�

�
�

�

�

������� �������

Figure 3.30: The ripple effect of modifying the displaced position of a vertex V
causes the surface normals of the vertices A, B, C and D to be recomputed by
accessing the face normals of the colored triangles.

vertices are among the ones that are part of these triangles. Even though the

displaced position of an internal vertex of a surface patch is modified, it is now

required to access the face normals of the triangles of the neighboring surface

patches. The face normals are actually not stored in the proposed approach, only

the vertex normals are stored, so the face normals of these colored triangles must

now be recomputed. It should be noted that the vertex A is externally shared by

the first and second patches and its owner patch is not clear, it can either be the

first or the second surface patch. If its owner is actually the first patch, then not

only is it required to access the triangles and vertices of a neighboring surface

patch, but also to modify the attributes of its vertices.

The straightforward solution to this problem could simply be recomputing

the surface normals of the entire terrain as it is described in Section 3.5.3. Re-

computing the surface normals of the entire terrain is very slow, though, and it

is dependent on the size of the terrain. Even for moderately large terrains it may

not be possible to do this in real-time, and it is undoubtedly not plausible for

larger terrains with millions of vertices. The granularity of surface normal recom-

putations is defined as surface patches by the proposed approach. This means

that whenever the heightmap of a surface patch changes, the surface normals of

CHAPTER 3. THE PROPOSED APPROACH 73

all vertices of that surface patch are marked as invalidated and are required to

be recomputed. The update of surface normals is performed in four steps:

1. Invalidate all vertices of the modified surface patch.

2. Invalidate all triangles of the modified surface patch and neighboring surface

patches if at least one of the vertices of the triangle is invalidated.

3. Invalidate all vertices of all triangles that are invalidated.

4. Recompute the surface normals of the invalidated vertices.

This requires a 1-bit flag to be stored for each vertex and each triangle of the

surface patches so that the invalidation status of vertices and triangles can be

stored. Please note that the list of neighboring surface patches of a surface patch

are not stored explicitly in the proposed representation. One way to find the

neighboring surface patches is to scan the neighboring voxels in the octree and

check if the bounding boxes of the surface patches of neighboring voxels overlap

with the bounding box of the modified surface patch. Another yet faster method,

though, is to scan the shared vertex list of the border vertices of the modified

surface patch. Each node of each shared vertex list has a pointer to a patch

that shares the vertex pointed by the shared vertex list. Thus, the set of surface

patches that are pointed by the shared vertex lists of a surface patch is equivalent

to the set of the actual surface patch and its neighboring surface patches. The

proposed approach uses Algorithm 3.7 to update the displaced positions of the

vertices of the modified patch, Algorithm 3.6 to find the neighboring surface

patches of the modified surface patch and Algorithm 3.8 to update the surface

normals of the vertices effected from the surface modification.

An overview of the terrain geometry generation process, which is a combina-

tion of surface extraction and surface generation phases, is depicted in Figure 3.31.

CHAPTER 3. THE PROPOSED APPROACH 74

centerPatch : (input) The surface patch whose set of neighboring
surface patches are queried

neighboringPatches : (output) The set of neighboring surface patches of
centerPatch. This set also contains the centerPatch
itself.

1 begin

2 foreach sharedVertexListNode in centerPatch do
3 firstNode = sharedVertexListNode.firstNode

4 while firstNode ! = NULL do
5 neighboringPatches = neighboringPatches

⋃
firstNode.surfacePatch

6 firstNode = firstNode.next

Algorithm 3.6: Computing the set of neighbor patches of a given patch

���������	�
�����

����������������������	
������
�

�������
������	�

���������

�����
���������
�

�����	������������

�������
���
�������������
�

�����	�����
��������

�����
�

����
����������	�

���������

���� ����

�����
�������������

�����	���������

�����
�

�
������
�������
�

�
������
�������
�

�

�

�

�

�

�

!��������

Figure 3.31: Overview of the terrain geometry generation process.

CHAPTER 3. THE PROPOSED APPROACH 75

modifiedPatch : (input) The surface patch whose heightmap is
modified

displacedPosition : (output) Displaced positions of each vertex

1 begin

2 uvScale = 1/(numVerticesPerEdge− 1)

3 foreach vertex in modifiedPatch do
4 vertexIndex = vertex.vertexIndex

5 if isVertexIndexActive(vertexIndex) == false then
6 continue

7 if isBorderVertex(vertexIndex) == true then
8 if getVertexOwner(vertexIndex) ! = patch then
9 continue

10 u = vertexIndex.i× uvScale
11 v = 1− vertexIndex.j × uvScale

12 displacementValue = patch.heightmap.getFilteredValue(u, v)
13 vertex.displacedPosition = vertex.originalPosition +

vertex.displacementNormal× displacementValue

14 // invalidate the surface normal of the vertex
15 vertex.recomputeNormal = 1
16 // reset the surface normal of the vertex
17 vertex.actualNormal = {0, 0, 0}

Algorithm 3.7: Updating the displaced positions of a surface patch

CHAPTER 3. THE PROPOSED APPROACH 76

modifiedPatch : (input) The surface patch whose heightmap is modified
actualNormal : (output) Updated surface normals of the vertices effected

by the deformation

1 begin

2 neighboringPatches = getNeighboringPatches(modifiedPatch)
3 foreach patch in neighboringPatches do
4 foreach triangle in patch do
5 foreach vertex in triangle do

6 if vertex.recomputeNormal == 1 then
7 triangle.recomputeNormal = 1

8 foreach patch in neighboringPatches do
9 foreach triangle in patch do

10 if triangle.recomputeNormal == 0 then
11 continue

12 foreach vertex in triangle do
13 vertex.recomputeNormal = 1

14 foreach patch in neighboringPatches do
15 foreach triangle in patch do

16 vertices = triangle.vertices

17 if vertices[0].recomputeNormals == 0 and
vertices[1].recomputeNormals == 0 and
vertices[2].recomputeNormals == 0 then

18 continue

19
−→v1 = vertices[1] - vertices[0]

20
−→v2 = vertices[2] - vertices[1]

21
−→
N =

−→v1 ×−→v2
22 for i← 0 to 3 do
23 if vertices[i].recomputeNormals == 1 then

24 vertices[i].actualNormal +=
−→
N

Algorithm 3.8: Updating the surface normals of the effected vertices after
editing the heightmap of a surface patch

Chapter 4

Visualization

This chapter presents techniques used for visualization of the terrain surface

whose generation is explained in detail in the previous chapter. Some of these

techniques, such as the lighting and shadowing, aims to improve the visual qual-

ity and realism of the terrain rendering while others, such as level-of-detail and

culling, aims to improve the performance of the terrain rendering, sometimes at

the cost of a tolerable degradation in the visual quality.

4.1 Lighting

Lighting is crucial for all kinds of 3D rendering. Without proper lighting, the ren-

dering is nothing more than a silhouette of the rendered object from the viewpoint

of the observer (see Figure 4.1 to see the effect of lighting). Lighting can some-

what seem to be imitating shadows as well, when in fact it does not. Shadowing

is explained in detail in the succeeding sections.

It is possible to use different types of lights when rendering a 3D scene. Some

of these are point lights, spot lights, and directional lights. Point lights and

spotlights are located at a specific position in the 3D space. These light types

are usually used to simulate artificial lighting in the 3D scenes, such as the light

emitted by a light bulb or a street lamp. Directional lights, on the other hand,

are not located at a specific position. Directional lights are rather only defined

77

CHAPTER 4. VISUALIZATION 78

Figure 4.1: Top: rendering of a hill without lighting, middle: wireframe rendering
of the hill geometry, bottom: rendering of the hill geometry with lighting.

CHAPTER 4. VISUALIZATION 79

by the direction of light that they emit. This type of light usually suits better

to natural lighting for terrains, usually emitted by the Sun or the Moon. The

light emitted by the Sun and the Moon can be very closely approximated by

directional lighting on terrain models in spite of the fact that they both have

specific positions in the universe. This is due to the fact that they are both very

far away from the Earth and are very large compared to a terrain patch on Earth.

This causes the light rays emitted by the Sun and reflected by the Moon that

reach to a specific terrain patch on Earth to be almost parallel to each other. The

proposed approach uses a simple lighting scheme where only directional lighting

is used to simulate lighting of the Sun.

Typical matte materials reflect the most light when the surface is perpendic-

ular to the direction of the incoming light rays. As the surface rotates and faces

a different direction than the direction of the light rays the amount of reflected

light reduces gradually. The amount of light reflected by objects determines how

bright they are seen. Consequently, the most basic information required for light-

ing computation is the surface normals and the direction of the light rays, which

is constant for directional lighting. In this case, the angle between the direction

of the light rays and the direction of the surface normal at a particular point

determines how bright a light is reflected by the terrain at that point. The dot

product of vectors is commonly used in lighting computations as it yields the

cosine of the angle between two vectors. The lighting factor s can be computed

using the dot product by Equation (4.1) where
−→
Ns is the surface normal and

−→
Ld

is the direction of the light.

s =
−→
Ns · (−

−→
Ld) (4.1)

There are two important things to note in lighting computations:

1. The inverse lighting direction is used in Equation (4.1) as the direction

of the incoming light rays to the terrain surface point towards the surface

while the surface normals point outwards of the terrain surface.

2. The lighting factor s computed by Equation (4.1) is in the interval [−1, 1],

the interval of the cosine function. It must be clamped to the interval [0, 1]

before it is used in further lighting computations. A lighting factor of one

CHAPTER 4. VISUALIZATION 80

Figure 4.2: Left: lighting computed with face normals, right: lighting computed
with vertex normals. Notice how the lighting computed with face normals is
blocky and the boundaries of faces stand out.

means the surface reflects all the light that reaches to it and a lighting factor

of zero means the surface does not reflect any light at all and is completely

dark.

It is possible to use either the triangle normals or the vertex normals in light-

ing computations. The trade-off is that the computation of triangle normals is

fairly easy as it is a local computation per triangle and is independent from the

complexity of the geometry. The computation of the vertex normals, on the other

hand, can be fairly cumbersome especially for arbitrary 3D models depending on

the representation of the 3D model. If the face normals, i.e. triangle normals

in the presented approach, is used for lighting computations then the lighting is

said to be per-face. In this case, the surface normal is the same for every point

on the face, hence the lighting factor is also the same for every point on the face.

When per-face lighting is used, the lighting factor changes dramatically on the

borders of faces as a result of the immediate change of surface normals. This

results in a blocky rendering of the smooth surface where the borders of faces are

inconveniently visible (see Figure 4.2). It is required to render too many faces in

order to be able to achieve a smooth rendering with per-face lighting.

The proposed approach uses per-vertex lighting where the vertex normals are

used for lighting computations. In this case, each vertex has the average normal

value of all faces that are around it. The vertex normals are then interpolated for

CHAPTER 4. VISUALIZATION 81

Figure 4.3: Left: light rays are coming from the east (sunrise), middle: light rays
are coming from the above (midday), right: light rays are coming from the west
(sunset).

the points in the interior of the faces. This results in a very smooth rendering of

the surface and the smoothness of the lighting does not depend on the number

of faces or vertices since the vertex normals are interpolated for each and every

point on the surface. The computation of vertex normals for the proposed terrain

representation is explained in detail in Section 3.5.3. It should be noted that only

the surface normals, i.e. the actual normals, of the vertices are used in lighting

computations, rather than the displacement normals. It is possible to change

the direction of light based on the desired time-of-day of the rendering to obtain

different lighting effects (see Figure 4.3).

Other types of lights such as point lights can be used especially inside closed

spaces, e.g., caves, for artistic effects such as a torch on the wall of the cave (see

Figure 4.4). In this case the light is located at a specific position in the 3D world,

hence the direction of the light rays are not constant but depend on the position

of the surface fragment. The lighting factor s for a simple point light can be

computed by Equation (4.2) where
−→
Ps is the position of the surface fragment,

−→
Pl

is the position of the point light, d is the distance of the light to the surface,

and r is the maximum effective radius of the point light. More advanced terrain

lighting is definitely possible. It is, however, a topic on its own and considered

outside the scope of this thesis.

−→
Ld =

−→
Ps −

−→
Pl

d = |
−→
Ld|

s =

(
−→
Ns ·

(
(−
−→
Ld)×

1

d

))
× max{0, r − d}

r
(4.2)

CHAPTER 4. VISUALIZATION 82

Figure 4.4: Top-left: cave rendering only with directional lighting, top-right: the
effect of point light without directional lighting, bottom: the result of directional
lighting is combined with point light.

CHAPTER 4. VISUALIZATION 83

4.2 Texture Mapping

Texture mapping is the method of wrapping up 3D objects with image data.

Texture mapping is usually used for adding visual detail to 3D objects which

otherwise would require a very high number of vertices. This extra detail provided

by textures can be used for different visual attributes such as color data, lighting

data, geometry variation data etc. This thesis focuses on surface texture mapping

which is used to add color data to the terrain surface, such as a grass or dirt

texture. Texture mapping tremendously helps in improving the visual detail and

realism of virtual terrains and, thus, it is very important to provide ways to easily

apply texture mapping to a terrain representation.

4.2.1 Generating Texture Coordinates

A texture map is applied to individual polygons, which are triangles in the pre-

sented approach. Each vertex must have 2D texture coordinates assigned to it for

texture mapping to work. These texture coordinates actually map the 3D object

to a 2D plane, which is actually the texture plane. The triangles of the surface

must be mapped to a 2D plane such that the texture that is mapped to each

triangle seamlessly blends at the edges of the triangle. Computing a seamless

planar mapping for complex 3D objects is a very difficult task and it may not

even be possible for sufficiently complex objects. There is another disadvantage

to this technique. It requires extremely large texture image data for detailed

objects of high resolution since each vertex corresponds to a unique texel (i.e.,

texture element, or texture pixel).

The proposed approach instead uses procedurally generated texture coordi-

nates. In order to procedurally generate seamless texture coordinates for vertices

the 3D world coordinates of the vertices must be mapped to 2D texture coor-

dinates in some way. This is very easy for traditional heightmap-based terrain

representations since the terrain grid is already planar in this case. Assuming

that the terrain grid lies on the xz-plane the 2D texture coordinates (u, v) for a

vertex at position
−→
P can be computed by Equation (4.3) where s is the texture

mapping scale and
−→
C is the texture coordinate offset.

CHAPTER 4. VISUALIZATION 84

u = Px × s+ Cu

v = Pz × s+ Cv (4.3)

This basically projects the entire 3D geometry to the 2D xz-plane in order to

map the 3D vertex coordinates to 2D texture coordinates. For the proposed ter-

rain representation approach, though, this does not suffice and produce artifacts.

The proposed terrain representation allow very steep hills, and even cliffs that

are perpendicular to the xz-plane. Assume two different vertices V1 and V2 such

that V1 is at coordinates (x, 0, z) and V2 is at coordinates (x, 100, z). If xz planar

mapping is used to assign 2D texture coordinates to V1 and V2, the same 2D

texture coordinates will be assigned to both vertices as only the y-component of

the vertex coordinates differ and the y-component of the vertex coordinate has no

effect on the 2D texture coordinates generated (see Equation (4.3)). This causes

an artifact because these vertices are actually far away from each other in the 3D

world, nevertheless they have the same texture coordinates. This will cause the

texture map to be skewed and look awkward (see Figure 4.5). This does not cause

such a significant problem in traditional heightmap-based approaches where the

vertex grid is planar because such representations do not allow two vertices at the

same planar coordinates to have different heights. In other words both V1 and V2

cannot exist at the same time in such representations. This does not only happen

for vertices with the same xz-coordinates, though. It is also evident in very steep

hills and cliffs where the rate of change of the xz-coordinates is much less than

that of the y-coordinate of the vertices. In such cases, again, two vertices that

are geometrically very far away from each other are mapped very closely in the

texture plane.

In order to overcome the issues of planar texture coordinate generation, the

proposed approached uses another method called tri-planar texture coordinate

generation. Tri-planar texture coordinate generation, in fact, is very similar to the

planar texture coordinate generation. Tri-planar texture coordinate generation

also projects geometry to a 2D plane to generate texture coordinates. Instead

of projecting the geometry onto a single plane like in planar texture coordinate

generation, however, tri-planar variation of the algorithm projects the geometry to

3 planes simultaneously: the xy-, yz-, and zx-planes. Consequently, three different

2D planar texture coordinates are generated, one for each plane. Each of these

CHAPTER 4. VISUALIZATION 85

Figure 4.5: Top: planar texture coordinate generation yields sufficiently good
results when the rate of change of the xz-coordinates is greater than the rate of
change of the y-coordinate of vertices, bottom: for steep hills and vertical cliffs
planar texture coordinate generation produces visual artifacts.

CHAPTER 4. VISUALIZATION 86

three texture coordinates are then assigned weights for blending. The assignment

of the weights are performed according to the value of the vertex normal (i.e., the

actual surface normal of the vertex, not the displacement normal) such that

• the weight of the xy-plane coordinate is proportional to the magnitude of

the z-component of the vertex normal,

• the weight of the yz-plane coordinate is proportional to the magnitude of

the x-component of the vertex normal, and

• the weight of the zx-plane coordinate is proportional to the magnitude of

the y-component of the vertex normal.

Three texture coordinates obtained are used in three different texture lookups

and three different texture values are retrieved. These values are then blended

according to the weights of each of the texture coordinates that are used to

retrieve them (see Figure 4.6). One disadvantage of this method over planar

texture coordinate generation is that it requires three texture lookups rather

than one.

With the use of this method, if the vertex normal is pointing upwards (i.e.,

(0, 1, 0)) then only the zx-plane coordinate is used, just like the planar texture

coordinate generation. If the vertex normal is pointing sideways (e.g., (−1, 0, 0))

then only the yz-plane coordinate is used. If the vertex normal is in between

these values then the color values obtained by zx- and yz-plane coordinates are

blended accordingly. The artifacts caused by planar texture coordinate generation

is, therefore, prevented in this way (see Figure 4.7).

The tri-planar texture coordinates of a vertex at position
−→
P with surface

normal
−→
N can be computed by Equation (4.4) where s is the texture mapping

scale,
−−→
Rxy,

−→
Ryz and

−→
Rzx are planar texture coordinates for the three planes, and

−→
W is the normalized weight vector. It should be noted that the weights assigned

to the three texture coordinates must be normalized such that their sum is equal

to one. Otherwise the texture data that is retrieved and blended is amplified and

can cause visual artifacts (e.g., too dark or too bright colors).

CHAPTER 4. VISUALIZATION 87

Figure 4.6: Color-coded rendering shows the usage of each of the three planes
in the tri-planar texture coordinate generation, red: yz-, green: zx-, and blue:
xy-planes. Notice how the texture values retrieved by each of tri-planar texture
coordinates are blended in the areas where surface normals change.

CHAPTER 4. VISUALIZATION 88

Figure 4.7: Top: the result of planar texture coordinate generation, bottom: the
result of tri-planar texture coordinate generation.

CHAPTER 4. VISUALIZATION 89

−−→
Rxy = (Px × s, Py × s)
−→
Ryz = (Py × s, Pz × s)
−→
Rzx = (Pz × s, Px × s)
−→
Z = (max{0, |Nx| − ε},max{0, |Ny| − ε},max{0, |Nz| − ε})
−→
W =

−→
Z × 1

Zx + Zy + Zz

(4.4)

The scalar value ε in Equation (4.4) is just a factor to tighten up the width

of the blending zone. If the blending zone is too large and different textures

are used for different planes then the textures are blended almost everywhere on

the terrain surface. This can produce undesired results. Increasing the value of

ε decreases the area where the tri-planar texture coordinates are blended. We

have observed in our experiments that the values in the range [0.15, 0.25] tend

to produce good results. The ultimate texture value
−→
T , i.e., the color vector in

this case, can be computed by Equation (4.5) where the functions hxy, hyz, and

hzx are the texture lookup functions for the three planes. These functions can

be equal if the texture mapping of the three planes are desired to be performed

with a single texture (as in Figure 4.7)

−→
C1 = hxy(

−−→
Rxy)×Wz

−→
C2 = hyz(

−→
Ryz)×Wx

−→
C3 = hzx(

−→
Rzx)×Wy

−→
T =

−→
C1 +

−→
C2 +

−→
C3 (4.5)

4.2.2 Multi-texturing

The proposed approach to terrain visualization uses texture tiling as described in

the previous section. Tiling frequency is an important decision in texture tiling.

Higher frequencies of tiling gives good detail at close proximity and does not

CHAPTER 4. VISUALIZATION 90

require the usage of very high resolution texture images for detail. The disad-

vantage of higher frequency tiling is that as the observer views the surface from

further away the patterns start to show up inconveniently. These patterns show

up because the same texture image is repeated many times over the large terrain

surface. Lower frequencies of tiling, on the other hand, may help preventing the

visibility of the repeating patterns on the surface when the surface is viewed from

far away. However, close-up views of the terrain surface do not present enough

detail unless the texture image is very high resolution.

To improve the visual quality without sacrificing performance and memory us-

age by increasing the resolution of the textures our terrain visualization approach

uses multi-texturing, which is used commonly in terrain rendering anyway. In this

method, multiple textures are used for texture mapping a surface where each tex-

ture is sampled at a different frequency. Usually one texture is used for close-up

views and contains detail image data and another texture is used for far-away

views and contains variations to prevent patterns emerging from the use of the

first texture. It should be noted that the texture scale s in Equation (4.4) is

different for each texture in the use of this method. See Figure 4.8 for a simple

comparison of single-texture mapping and multi-texture mapping when the ter-

rain surface is viewed from different distances. Notice how the patterns caused

by single-texture mapping is evident when the terrain surface is viewed from far

away.

A noise function can be used to introduce more variation to the terrain sur-

face by applying another texture depending on the noise value. The presented

approach uses Simplex noise for this purpose. Simplex noise is a modified and

improved variant of the Perlin noise function [38, 39]. The noise function can be

sampled multiple times to obtain a more realistic variation such that different oc-

taves of noise are used in each layer. In Equation (4.6), for example, three octaves

are used where in each higher octave the amplitude is halved and the frequency

is doubled. The amplitude is slightly changed rather than exactly halved so that

the emerging patterns are prevented.

n = h(x) + h(x× 2)× 0.487 + h(x× 4)× 0.231 (4.6)

The computed noise value can then be used to smoothly blend and make a

CHAPTER 4. VISUALIZATION 91

Figure 4.8: A comparison of single-texture mapping and multi-texture mapping.
Top: the distance to the terrain surface is greatest, middle: the distance is mod-
erate, bottom: close-up view of the terrain surface.

CHAPTER 4. VISUALIZATION 92

Figure 4.9: The use of multi-texturing where transitions are made between tex-
tures according to a noise value computed by the world coordinates of the vertices.

transition between different textures on a surface (see Figure 4.9). A 3D noise

function is used in this case. The input to the noise function is computed from

the world coordinate of the corresponding point on the surface.

4.2.3 Texture Splatting

Texture splatting is the application of multiple textures on top of each other and

blending the color values according to an alpha channel. Since the terrain can

be modified and deformed dynamically in our approach, storing a static alpha

channel texture map would not be very useful. Instead the presented approach

dynamically computes texture weights based on different vertex attributes. The

two basic vertex attributes used for this purpose are the surface normal and the

height of the vertex. See Figure 4.10 for a sample application where a grass texture

is used in horizontal surfaces and a rock texture is used in vertical surfaces. The

transition is made between textures according to the y-component of the surface

normal. Another sample application could use vertex height such that surfaces at

a higher altitude could use a snow texture while surfaces at a lower altitude could

CHAPTER 4. VISUALIZATION 93

Figure 4.10: A sample usage of texture splatting where a grass texture is used
for the xz-plane and a rock texture is used for the xy- and yz-planes.

use a grass texture. The implemented terrain renderer also uses another texture

for cave ceilings. The cave ceiling texture is applied where the y-component of

the surface normal is a negative value and the grass texture is applied where

the y-component of the surface normal is a positive value. It is possible to add

various creative rules in this texturing framework.

4.3 Shadows

Shadows are another crucial visual element for realistic 3D rendering. It is ar-

guably even more important for the visualization of the proposed terrain rep-

resentation since the proposed representation allows irregular geometry such as

arches, caves and hanging cliffs. The terrain is a single surface and parts of the

terrain can project shadows on other parts of the terrain. One surface patch

can even project a shadow on itself depending on its geometry. This is called

self-shadowing. Shadowing scheme for a terrain rendering, therefore, must allow

CHAPTER 4. VISUALIZATION 94

Figure 4.11: Presented texturing approach applied to a sample scene including
cliffs and caves.

CHAPTER 4. VISUALIZATION 95

self-shadowing. This is one of the main reasons why shadow mapping is very pop-

ularly used in terrain rendering approaches. The presented terrain visualization

approach uses a variation of shadow mapping as well.

4.3.1 Shadow Mapping

Shadow mapping is quite a simple technique, compared to some other shadow

projection techniques, as it is a screen-space method and is mostly independent

from the geometry of the scene, although the complexity of the geometry still has

an effect on the visual quality of the shadows. To be able to apply shadowing to

a scene, a method is required for telling whether a scene fragment is in shadow

or not. If a scene fragment is visible by the light, such that there is no other

fragment between the light and that fragment, then that fragment is said to

be lit. Otherwise, the fragment is shadowed since the light rays is occluded by

another fragment and does not reach the shadowed fragment.

Shadow mapping basically renders the 3D scene from the point of view of the

light to produce a shadow map. This shadow map is actually a depth map. It

does not contain color data as usual texture maps, instead it merely contains

the depth values of the fragments that are visible by the light. These depth

values represent the closest distance where each light ray is occluded by a scene

fragment. When rendering the actual scene, the position of each fragment can

be transformed into the viewpoint of the light and then the depth value of the

fragment can be compared to the depth value that is retrieved from the shadow

map. If the depth value of the fragment is greater than the one retrieved from

the shadow map then the fragment is in shadow, otherwise it is lit.

Shadow mapping can be used with both point lights and directional lights.

Using a perspective projection for rendering the shadow map simulates shadows

projected by a point light, whereas using an orthogonal projection for rendering

the shadow map simulates shadows projected by directional lighting. The pre-

sented visualization approach uses directional lighting as described in previous

sections. Thus, orthogonal projection must be used for rendering the shadow

map.

Computation of the frustum of light is very important when using shadow

CHAPTER 4. VISUALIZATION 96

mapping. The frustum of light must contain the entire frustum of the observer

and any other objects that may cast shadows in the frustum of the observer. That

is, the frustum of light is actually a bounding box for the frustum of the observer.

The near side of the frustum of light must then be extended to accommodate all

objects that may cast shadows inside the frustum of the observer. We do this

by basically using the bounding box of the entire terrain since any part of the

terrain can cast shadows on the other parts.

The view matrix of the light Mlv is computed by Equation (4.7) where −→s , −→u
and
−→
f are the side, up and forward direction vectors of the direction of the light,

respectively.

Mlv =


s.x u.x −f.x 0

s.y u.y −f.y 0

s.z u.z −f.z 0

0 0 0 0

 (4.7)

The identity orthogonal projection matrix Mop is computed by Equation (4.8)

where n is the near and f is the far distance.

Mop =


1 0 0 0

0 1 0 0

0 0 1
f−n

0

0 0 −n
f−n

1

 (4.8)

The world coordinates of each corner point of the frustum of the observer is

then projected to the light space by multiplying with Mls given in Equation (4.9).

Mls = Mop ×Mlv (4.9)

Each corner point of the observer frustum is now transformed into the light

space, that is, the observer frustum is transformed into the light space. The

coordinates of the lower left (min) and upper right (max) corners of the bounding

box of the view frustum can now be easily computed from the eight transformed

corner points. Please note that this is an axis-aligned bounding box, hence two

CHAPTER 4. VISUALIZATION 97

corner points are sufficient to define it. It is now possible to compute the ultimate

projection matrix Mlp of the light by Equation (4.10) where the lower left (min)

and upper right (max) corners of the observer frustum bounding box is used.

Mlp =


2

maxx−minx
0 0 −maxx+minx

maxx−minx

0 2
maxy−miny

0 −maxy+miny

maxy−miny

0 0 1 0

0 0 0 1

×


1 0 0 0

0 1 0 0

0 0 1
minz−maxz

0

0 0 −maxz

minz−maxz
1


(4.10)

The view-projection matrix of the light is then computed as Mlvp = Mlp×Mlv.

If the model matrix of the scene is not equal to the identity matrix then it must

be multiplied with the view-projection matrix as well, in order to compute the

model-view-projection matrix of the light. This matrix is used to transform

each vertex while rendering to the shadow map. In the shadow map generation

process, the z-component of each scene fragment is stored in the corresponding

texel of the shadow map. It should be noted that writing the exact z-values of

the fragments to the shadow map usually causes artifacts called depth-fighting

(or z-fighting) where the fragments cast shadow on themselves on occasion as the

depth of the fragment is very close to the depth stored in the shadow map. In

order to prevent these artifacts a sufficiently large offset is added to the depth

values of the fragments before they are stored in the shadow map. If the offset is

too large, on the other hand, shadows cast by fragments close to each other may

not be rendered correctly. We have observed in our experiments that an offset

of ε = 0.0015 yields visually good results when a shadow map with 24-bit depth

values is used.

The generation of the shadow map is described so far. The second stage of

rendering is to render the terrain from the point of view of the observer. This

is the actual rendering stage and in this case it uses the shadow map created

earlier to decide if shadow must be cast on a given fragment. In this stage, the

vertices are transformed by the model-view matrix of the observer. That is, the

coordinates of the vertices are in the observer space and must be transformed into

the light space before the depth values can be compared. This transformation can

be done by multiplying eye coordinates of each vertex in the observer space by the

matrix M given in Equation (4.11) where M−1
omv is the inverse of the model-view

CHAPTER 4. VISUALIZATION 98

matrix of the observer.

M = Mb ×Mlp ×Mlv ×M−1
omv (4.11)

Please note that the matrix Mb is applied to the projected coordinates of

vertices in the light space to transform the coordinates from the [−1, 1] range to

the [0, 1] range as the texture coordinates and depth values of the shadow map

are in the range [0, 1]. In order to do this, it basically multiplies the coordinates

by 0.5 and then adds 0.5. The bias matrix Mb is given in Equation (4.12).

Mb =


0.5 0 0 0

0 0.5 0 0

0 0 0.5 0

0.5 0.5 0.5 1

 (4.12)

Projecting scene fragments in the observer space to a single corresponding

texel in shadow map works in theory but causes aliasing on the edges of the

shadow. These artifacts get even worse when the observer view is changing since

the edges of the shadow appear to be sliding on the surface. In order get a

better visual result we apply a Gaussian filter on the corresponding area of the

shadow map. Instead of retrieving a single value from the shadow map, values of

the neighboring texels are also retrieved and assigned weights according to their

distance to the texel at the center. This method essentially blurs the edges of the

shadow while having no effect whatsoever on the interior area of the shadows.

The disadvantage of Gaussian filtering is that it requires N2 shadow map texture

fetches instead of a single one, where N is the width of the Gaussian kernel.

As the number of texture fetches increase quadratically it is not possible to use

much larger Gaussian kernels for rendering in real-time. We have observed in our

experiments that a kernel size of 3× 3 yields sufficiently good visual results (see

Figure 4.12) and going beyond that size does not gain much in terms of visual

quality while costing valuable performance.

Figure 4.13 shows the shadow map created for the scene in Figure fig:shadows

when it is viewed at that specific position and viewing direction.

CHAPTER 4. VISUALIZATION 99

Figure 4.12: Top: shadow mapping without Gaussian filtering applied, bottom:
shadow mapping with Gaussian filtering applied, kernel size is 3× 3.

CHAPTER 4. VISUALIZATION 100

Figure 4.13: Shadow map generated for the scene in Figure 4.12. The position
of the observer is shown with the red circle and approximate field of view of the
observer is drawn with red lines.

CHAPTER 4. VISUALIZATION 101

4.3.2 Cascaded Shadow Maps

Using Gaussian-filtered sampling on shadow maps helps with aliasing but does

not help much with the sliding edges of shadows when the observer is moving

around the scene, or even changing the direction slightly. This is a chronicle

problem of shadow mapping when used in large spaces like a large terrain as in

our case. Shadow mapping provides about the same resolution for scene fragments

regardless of their distance to the observer. In practice the fragments that are

close to the observer occupy more screen-space compared to the fragments that

are far away. As a result, ideally, we would like fragments that are closer to the

observer to have a higher resolution in the shadow map. Fragments that are far

away from the observer can have much lower resolution, without sacrificing visual

quality. There is no way to increase the resolution of the closer fragments in the

same shadow map without changing the shape of the frustum of light, which

would change the type and direction of light unexpectedly. Capturing everything

in a single shadow map requires impractically high resolution for the shadow

map. Increasing the resolution of the shadow map is very costly because as the

resolution increases

• the amount of valuable video memory used increases since the shadow maps

are stored in the video memory (48 Megabytes of video memory is required

to store a 24-bit 4096× 4096 shadow map), and

• the shadow map needs to be generated from scratch for each frame rendered

which costs millions of pixel fill operations to the graphics processing unit

(e.g., 16 million pixel fill operations per frame for a shadow map of size

4096× 4096).

Cascaded shadow mapping is using multiple shadow maps instead of a single

one. The number of shadow maps usually varies between two to four depending

on the size of the scene and the desired amount of detail. Each shadow map is

used to cover a different range of the observer frustum:

• The shadow map that is used to store the depth values of the fragments that

are close to the observer has the least amount of fragments. As a result,

the resolution available for each fragment is higher.

CHAPTER 4. VISUALIZATION 102

• The shadow map that is used to store the depth values of the fragments that

are far away to the observer, on the other hand, has the greatest amount of

fragments. As a result, the resolution available for each fragment is lower.

Using cascaded shadow maps is very similar to using a single shadow map:

• First, N frustums are computed, one for each shadow map, such that the

z-ranges of the each frustum cover a different part of the depth range of the

observer.

• Generate N shadow maps, rendering to one at a time, using the previously

computed frustums for each shadow map. It should be noted that this

results in a different projection matrix for each shadow map.

• Render the actual scene using the N shadow maps. To determine whether

a scene fragment is in shadow or not one of the N shadow maps must be

used. Which shadow map to use is determined depending on the z-value

of the fragment. If the z-value of the fragment is contained in the z-range

of the first shadow map, then it is used. Otherwise the z-range of the

second shadow map is checked against the z-value of the fragment and so

on. Depending on which shadow map is used to store the depth value for

the scene fragment, a different light matrix is used to transform the vertex

coordinates into the shadow map texture space.

Our experiments have shown that using three or more shadow maps with

a resolution of 2048 × 2048 yields visually very good results, not only for still

renderings but also for animations where the observer is moving (see Figure 4.14).

The cascaded shadow maps created for this scene are shown in Figure 4.15. It

should be noted that the order of the shadow maps are important because the

z-range of the most detailed shadow map is also contained by the z-range of

the least detailed one. The algorithm, therefore, compares the z-value of each

fragment to the first shadow map first and uses it if its z-range contains the z-

value of the fragment. Otherwise, it checks the z-range of the second shadow map

and so on.

CHAPTER 4. VISUALIZATION 103

Figure 4.14: Top: colored areas show the z-range of each cascaded shadow map
(four cascaded shadow maps are used, red shows the area covered by the most
detailed shadow map and yellow shows the area covered by the least detailed
one), bottom: the resulting rendering with cascaded shadow maps.

CHAPTER 4. VISUALIZATION 104

Figure 4.15: Four cascaded shadow maps created for the scene in Figure 4.14.
Top-left: first shadow map, top-right: second shadow map, bottom-left: third
shadow map, and bottom right: fourth shadow map.

CHAPTER 4. VISUALIZATION 105

4.4 Level of Detail

Real-time terrain rendering usually requires a level-of-detail management as well.

Terrains are usually very large in dimensions and without a level-of-detail scheme

the resolution must be high everywhere around the terrain as it is desired to

provide a highly detailed geometry close to the observer. This can easily mean

tens of millions of vertices for large and detailed terrains. Although modern

graphics processing units are very powerful, and getting more powerful everyday,

these numbers are still much more than what a real-time renderer can handle.

What is more is that rendering so many vertices so densely everywhere around

the terrain will cause aliasing artifacts on surface parts that are far away from

the observer. This is similar to the artifacts caused by sampling large textures in

small areas with high frequency, e.g., when texture mipmaps are not used. These

artifacts are essentially caused by an unfiltered many-to-one mapping; in this

case, many vertices are mapped to a single pixel because the further the surface

patch is from the observer the smaller the polygons become and eventually size

of a single polygon will become smaller than a pixel.

The solution, similar to cascaded shadow mapping described in the previous

section, is to provide high resolution where it is needed, i.e., close to the ob-

server, and lower resolution as it gets further away from the observer. This is,

in fact, one of the main reasons that heightmap-based terrains are so popular for

real-time rendering. Effective level-of-detail schemes can easily be implemented

for heightmap-based terrains. We propose a level-of-detail management scheme

that is very similar to simple level-of-detail schemes applied to heightmap-based

terrains but with slight modifications so that it can be used with the proposed

terrain representation.

The idea of level-of-detail for terrain rendering is easy. Its application to a

terrain representation, however, is not trivial as it comes with its own set of

problems:

• The primary aim of applying level-of-detail to terrains is to improve the

rendering performance. Level-of-detail management algorithms run on al-

most every frame, especially when the observer is moving fast over the

terrain. Even if the algorithm is not expected to run on every frame it

still has to finish processing in the time interval of one frame as immediate

CHAPTER 4. VISUALIZATION 106

drops in number of frames-per-second can be very inconvenient in real-time

rendering applications. Thus, the algorithm must have minimal overhead

and require the least amount of processing possible. Otherwise, it will slow

down the rendering more than it speeds it up. This is especially difficult

to balance in modern hardware as modern GPUs are usually much more

powerful than CPUs and level-of-detail algorithms usually run on CPUs. A

slow algorithm can cause the GPU to stall waiting for the CPU to feed data

to operate on. Thus the level-of-detail algorithm has to run entirely on the

GPU or must require very little processing such that it can be performed

on the CPU without stalling the GPU.

• The most basic parameter of level-of-detail algorithms is the distance of the

observer to the surface fragment. This can cause popping effects when the

distance exceeds a thresholds and the geometry of the terrain is suddenly

modified to switch to a higher- or lower-detail one. This is an undesired

effect especially for terrains that is rendered in real-time where the move-

ments of the observer cannot be predefined or controlled.

• It is difficult to maintain the smoothness and the continuity of the terrain

surface as it is modified continuously and dynamically in real-time. Sim-

ple and straightforward approaches to level-of-detail can introduce visual

artifacts such as holes and cracks on the terrain surface. Such artifacts

are unacceptable in most rendering applications as they can have a serious

negative impact on the visual quality and observer experience.

We propose a simple level-of-detail approach that tries to cope with each of

these problems.

4.4.1 Basics of Level-of-Detail

Level-of-detail algorithms usually cannot work on vertex- or triangle-level due to

performance considerations, as there are millions of these primitives in a typical

terrain geometry. These algorithms, instead, work on higher-level geometry ab-

stractions. The level-of-detail algorithm we propose work at the level of surface

patches. There are usually hundreds to thousands of triangles in a single sur-

face patch, hence there are quite a few orders-of-magnitude difference between

CHAPTER 4. VISUALIZATION 107

Figure 4.16: Left: a surface patch where k = 2, and right: a surface patch where
k = 3. Note how the red and green colored border vertices do not match at all.

the number of surface patches and the number of triangles in a typical terrain

geometry.

Each terrain patch is assigned a specific level-of-detail where level one is the

least detailed and the detail increases as the level-of-detail index of a surface patch

increases. The surface patches in the proposed approach have 2× k + 1 vertices

on each edge where k is a positive integer (cf. Section 3.5.2). This definition does

not play well with different levels of detail (see Figure 4.16). Note that the border

vertices of adjacent surface patches with different k values do not match. This

means that most of the border vertices cannot be shared among surface patches

anymore. This causes many more problems than it solves, e.g., the total number

of unique vertices increases and as each unique border vertex can be at different

locations it will be much more difficult to preserve the continuity of the surface

where adjacent surface patches are assigned different level-of-detail indices.

The definition of the surface patches are consequently changed such that there

are 2k +1 vertices on a surface patch where k is a positive integer. This represen-

tation suits much better to our level-of-detail approach. In this case k is equal to

the level-of-detail index of the surface patch. Neighboring surface patches that

are assigned different level-of-detail indices now correctly share aligned border

vertices (see Figure 4.17).

Level-of-detail indices of each surface patch can dynamically change at run-

time. Computing the locations and normals of vertices of a surface patch each

CHAPTER 4. VISUALIZATION 108

Figure 4.17: Left: a surface patch where k = 2, middle: a surface patch where
k = 3, and right: a surface patch where k = 1. Note how some of the border
vertices are aligned appropriately among neighbor surface patches.

time its level-of-detail index changes is too slow and impractical for a real-time

application. Instead, a constant maximum level-of-detail is statically determined

at the time of the creation of the terrain. All vertices at the highest level-of-detail

are then computed and stored with each surface patch. Once a maximum level-

of-detail is set, no surface patch can be rendered at a higher level-of-detail than

the maximum. When it is desired to render a surface patch at a lower level-of-

detail than the maximum, a subset of the vertices are selected accordingly (see

Figure 4.18).

The vertex data itself does not suffice for rendering. The connection between

vertices (i.e., triangle vertex indices) are required too. This data instructs the

GPU about which vertices to connect in order to render each triangle. The

�������

�������

�������

������	

Figure 4.18: Side-view of the same terrain patch rendered at different levels. The
maximum level-of-detail in this case is four. When a lower level-of-detail is to be
rendered, a subset of the vertices are selected as shown here.

CHAPTER 4. VISUALIZATION 109

triangle vertex indices need to be computed per level-of-detail as they cannot

be shared between different levels-of-detail. Although the connection pattern is

the same for different levels-of-detail, the vertices connected by each triangle is

different at each level. Thus, the triangle vertex index data must be computed

separately for each level-of-detail. Even computing the triangle vertex indices is

too slow for real-time processing, though.

Luckily, the triangle vertex indices never change once the surface patch is

created from the voxel model. Even if the heightmap assigned to the surface

patch is modified and the surface is deformed the connections between vertices

are preserved. This data can, therefore, be computed as a preprocessing step

during terrain surface generation.

The triangle vertex indices must be computed and stored separately for each

level-of-detail. There are 22×k+1 triangles at level-k. This means that each higher

level has four times more triangles than the lower level. Hence, storing index data

for each level-of-detail, rather than just the maximum one, increases the memory

required to store the index data by about 32%. This is an acceptable trade-off

between memory usage and performance. With this approach, whenever we need

to render a surface patch at an arbitrary level-of-detail all vertex and index data

that is required will have been already computed and ready for use. All that is

required then is to send the precomputed data to the GPU for rendering.

4.4.2 Level-of-Detail Selection

The most basic metric of selecting level-of-detail is the distance between the

surface patch and the observer. It is a very simple yet effective metric for de-

termining the correct level-of-detail. As the observer gets further away from the

surface patch the length of each triangle edge gets shorter. The length of an

edge is inversely proportional to the distance between the observer and the tri-

angle. The area of each triangle is then approximately inversely proportional to

the square of the distance between the observer and the triangle. Ideally, the ar-

eas of all triangles on the terrain surface should be equal such that the triangles

that are further away are rendered larger. This is approximated in the presented

level-of-detail approach. As the observer gets further away from a surface patch,

the level-of-detail of the surface patch get lower and the number of triangles that

CHAPTER 4. VISUALIZATION 110

� � � �

� ��� ���� �����

Figure 4.19: Sample level-of-detail ranges computed by Equation (4.13) where
kmax = 4 and dmax = 1000.

cover the same surface area decreases and, consequently, the area covered by a

single triangle increases. There are four times less triangles in each lower level-

of-detail, meaning that the area of triangles in each lower level-of-detail is four

times larger. If the distance between the observer and a surface patch is dou-

bled, then the area of each triangle on that surface patch decreases to 1
4

of its

original, and if the level-of-detail of the surface patch is lowered, then the area

stays approximately the same since 1
4
× 4 = 1. Thus, the relation between the

level-of-detail index k of a surface patch and its distance d from the observer is

given by Equation (4.13) where dmax is the maximum distance beyond which the

use of minimum level-of-detail is desired. It should be noted that the selected

level-of-detail, k, decreases linearly as the distance d increases by powers-of-two

(i.e., doubled), hence the use of logarithm in the relation between k and d. The

value k computed by this equation must then be clamped to the interval [1, kmax]

where kmax is the maximum possible level-of-detail.

dn =
d

dmax

k = 1− log2(dn) (4.13)

See Figure 4.19 for sample level-of-detail ranges computed by Equation (4.13)

where kmax = 4 and dmax = 1000 values are chosen. In practice, kmax must

be chosen considering the complexity of each surface patch and the targeted

maximum detail for each surface patch, and dmax must be chosen depending on

the far view range of the perspective camera that is used to render the scene.

Ideally, the distance d between the observer and a surface patch must be

computed as the average of the distances between the observer and each triangle

on the surface patch. This computation, however, requires the algorithm to go

down to the triangle level which requires too much processing. The proposed

approach, instead, approximates the actual distance by computing the distance

CHAPTER 4. VISUALIZATION 111

��������	
��
 ��������	
��

�

�

�

�

�

�

�

Figure 4.20: Adjacent surface patches are rendered at different levels-of-detail.
Visual artifacts can occur as the red vertices are rendered on the border of surface
patch-1 and not on surface patch-2.

between the observer and the bounding box of the surface patch. The center of

the axis aligned bounding box volume is used as the reference location for all

triangles on the surface patch. Please note that it is not the bounding box of

the control points of the surface that is used in this computation, but rather the

bounding box of the vertices that approximate the surface. If the vertices are

not displaced (i.e., no heightmap is applied) then both bounding boxes are equal.

They will differ in case the vertices are displaced, though, and the right one to

use, in this case, is the bounding box of the actual vertices on the surface since,

essentially, this is the bounding box of the surface patch triangles.

4.4.3 Level-of-Detail Artifacts

Rendering adjacent surface patches at different levels-of-detail can cause visual

artifacts at places where the rendered border vertices of each patch do not exactly

align. Figure 4.20 illustrates this situation. The vertices B and D, in this case,

are rendered for surface patch-1 at level-of-detail index k = 2. These vertices,

however, do not exist at level-of-detail index k = 1 and, hence, they are not

rendered as a part of surface patch-2. The edges AB and BC are rendered for

CHAPTER 4. VISUALIZATION 112

Figure 4.21: A sample visual artifact, a crack, caused by rendering adjacent sur-
face patches at different levels-of-detail. Left: the actual rendering of the surface
geometry, and right: the wireframe rendering of the same surface geometry.

surface patch-1 whereas the edge AC is rendered for surface patch-2, ignoring the

vertex B in the middle due to the level-of-detail index of the surface patch. This

can cause two similar but different problems:

• Visual artifacts called cracks can occur unless B is located on the edge AC

(see Figure 4.21). This situation can easily occur in the proposed approach

as each vertex can be independently displaced by the heightmap assigned

to surface patches.

• Even if B is positioned on the edge AC, visual artifacts called T-joints may

still occur. These visual artifacts are less disturbing than cracks, as they

usually show up as a thin black line (e.g., like a tear on the surface) rather

than a large hole on terrain surface. T-joint visual artifacts can occur be-

cause of floating-point rounding errors. In spite of the fact that the vertex B

is on the edge AC it may still be rendered in a slightly different position due

to floating-point rounding errors introduced during vertex transformations.

Another possible cause of T-joints is the visual effects applied at the vertex

level, e.g., per-vertex lighting computations. The attributes used for the

per-vertex effect may be interpolated differently for the AB and BC edges

compared to the AC edge. The surface normal for vertex B, for instance,

may not be equal to the interpolated surface normal of the fragment at the

location of vertex B on the edge AC.

CHAPTER 4. VISUALIZATION 113

The level-of-detail approach used by the proposed terrain representation con-

strains the levels of adjacent surface patches such that they cannot differ by more

than one levels. That is, the difference between the levels of adjacent surface

patches can be at most one. This constraint does not have any disadvantages in

practice as the minimum distance between level-of-detail boundaries is usually

much greater than the size of a single surface patch in which case it is already

not possible for the levels of two adjacent surface patches to differ by more than

one level. This minimum distance between level-of-detail boundaries dmin lod dist

can be computed by Equation (4.14). It is also not desired that adjacent surface

patches can differ in levels by more than one since this would cause a sudden

decrease in the level-of-detail perceived by the observer.

dmin lod dist =
22 × dmax

2kmax
, ∀ kmax > 1 (4.14)

When a surface patch is adjacent to a lower-level one it is required to re-

organize the triangles at the borders of these surface patches to get rid of the

mentioned artifacts. The presented level-of-detail approach render the lower-level

surface patch as it is and adapts the higher-level surface patch to the lower-level

one at the common edge such that the artifacts are prevented. This is achieved

by combining adjacent border triangles in the higher-level surface patch where

a border triangle is defined as a triangle whose two vertices are border vertices.

Figure 4.22 illustrates this, where two adjacent surface patches are rendered at

different levels. This result is achieved simply by getting rid of the FB edge by

combining the AFB and BFC triangles as they are shown in Figure 4.20. Instead

of these two triangles, only the AFC triangle is rendered in this case. The same

procedure is also applied for the CGE triangle. Please note that the previously

mentioned artifacts caused by different levels-of-detail are prevented in this case

since all A, C and E vertices that are used by both surface patches exist at the

corresponding level of each surface patch. Therefore, no cracks or T-joints can

form in this way.

The presented solution to the visual artifacts is not difficult but the application

of this solution in real-time is still slightly more involved as it requires operating on

the triangle level, which is a performance killer. The solution to the performance

problems, once again, is to precompute these triangle vertex indices for both cases

where

CHAPTER 4. VISUALIZATION 114

��������	
��
 ��������	
��

�

�

�

�

�

�

Figure 4.22: The rendering of two adjacent surface patches at different levels in
order to prevent the artifacts caused by the level-of-detail difference.

• the adjacent surface patch is at the same level, and

• the adjacent surface patch is at the lower-level

It should be noted that one of these two cases is true for each edge of the

surface patches independently. A surface patch may be adjacent to another sur-

face patch at the same level at an edge and adjacent to a surface patch at the

lower-level at another edge. Precomputing and storing the vertex indices for each

of these 24 = 16 possible cases increases the memory usage 16-times and it is

quite impractical. Instead, the proposed approach divides the surface patch into

five different regions and precomputes the vertex indices for each region indepen-

dently:

• Four regions for each of the border vertices that belong to the four edges

where a triangle is a border triangle if two of its vertices is located on an

edge.

• One interior region where all but the border triangles are located.

The vertex indices of the interior region is static and these triangles are always

rendered as they are regardless of the levels of the surrounding surface patches

CHAPTER 4. VISUALIZATION 115

Figure 4.23: The triangles in the interior region of the surface patch.

(see Figure 4.23). The reason for this is the fact that all border vertices that

are used by the triangles in the interior region exist at the lower level-of-detail

as well. The rest of the surface patch consist of the border triangles which is a

slightly more complex case. Each border triangle is associated with exactly one of

the edges on which two of the vertices of the triangle is located (see Figure 4.24).

The red vertices in this figure do not exist on the neighboring surface patches

as they are at the lower-level, and we respond to this situation by getting rid of

the edges that use these vertices. There are two vertex index batches for border

triangles of each edge, one for the case where the adjacent surface patch is at the

same level and the other for the case where the adjacent surface patch is at the

lower-level. For the bottom edge, for instance, if the adjacent surface patch is at

the same level as this surface patch the vertex index batch that contains E, F , G

and H triangles is used. If the adjacent surface patch is at the lower-level, then

another vertex index batch that contains T and U triangles is used.

Consequently, there are a total of nine vertex index batches that are precom-

puted and stored:

• One vertex index batch for interior triangles, and

• two vertex index batches for the border triangles of each of the four edges.

CHAPTER 4. VISUALIZATION 116

�

�

�

�

� � � �

	

�

�

���

�

�

� �

�

�

��

Figure 4.24: Left: the arrangement of border triangles where the level of each
adjacent surface patch is equal to the level of this surface patch, and right: the
arrangement of border triangles where the level of each adjacent surface patch is
lower than the the level of this surface patch.

When a surface patch is to be rendered at a specific level, the interior triangles

are always rendered as they are at that level-of-detail and the border triangles are

selected depending on the level-of-detail of each surface patch that is adjacent to

each of the four edges of the surface patch (see Figure 4.25). This is a very fast

operation as all of these vertex index batches are precomputed and only need to

be sent to the GPU for rendering.

Figure 4.25: The rendering of three surface patches that are adjacent to each
other and are at different levels-of-detail using the presented approach.

CHAPTER 4. VISUALIZATION 117

Figure 4.26: The geometry resulting from the application of level-of-detail. Top:
a flat surface rendered with level-of-detail, and bottom: part of a sample terrain
surface rendered with level-of-detail.

Sample geometry resulting from the application of the presented approach to

3D surfaces is shown in Figure 4.26. Please note that in a real application surface

patches that are so close to each other do not have different levels-of-detail. In this

case, however, dmax is deliberately chosen very small for demonstration purposes

so that surface patches at different levels can be observed in a very small area.

4.4.4 Smooth Level-of-Detail Transitions

Besides the visual artifacts caused by level-of-detail, another related problem is

the popping effect. Popping is evident when a the level-of-detail index of a surface

patch changes as this event triggers a sudden change of the geometry. Moreover,

in our approach, as in most other distance-based approaches, a group of surface

patches tend to change level-of-detail at about the same time as each of their

distances pass a preset threshold value. This is obviously not an issue for still

image rendering. Our approach, on the other hand, targets real-time rendering

applications where it is not unrealistic to expect an always-moving camera. This

sudden change in the geometry has a serious negative impact on visual quality in

animated renderings.

One solution to the popping geometry problem is to determine the surface

patches that are about to change the level-of-detail and render them twice, once

at a higher-level and then again at a lower level, and blend the resulting renderings

depending on the distance. This approach is simple as it is independent from the

representation and geometry of the terrain. It, however, requires rendering even

CHAPTER 4. VISUALIZATION 118

more triangles than rendering the surface patch at the higher level. It, somewhat,

diminishes the gains of level-of-detail. It also does not produce visually great

results since it is an image-based method and basically blends two images of the

surface patch at different levels.

The other solution is to gradually blend the geometry of the higher-level sur-

face patch to the lower-level geometry. This approach can produce visually very

satisfying results and it also does not require excessive rendering of triangles.

The difficulty of this approach is that blending two different geometries together

is a very difficult problem, one that is impractical for real-time rendering, if the

terrain representation is not designed for such a task.

The proposed terrain representation constrains the geometry of the terrain

in ways such that the resulting surface geometry is very similar to a regular flat

heightmap grid. Consequently, we are able to employ the geometry-blending

technique to solve the popping problem similar to its applications in heightmap-

based terrains.

In the presented level-of-detail scheme, at each lower-level triangles from the

higher-level are combined to obtain larger triangles, and as a result of this oper-

ation most of the vertices and edges that are rendered at the higher-level are not

rendered in the lower-level. Figure 4.27 shows which vertices and edges disappear

when the level of a surface patch decreases from two to one. It is possible to grad-

ually transition the positions of the disappearing vertices before they disappear

such that at the time they disappear there is visually no difference between their

existence and the lack of their existence. The AB and BC edges, for instance,

are rendered at level-2 and the AC edge is rendered at level-1. The transition

is then visually undetectable if the vertex B is located on the AC edge during

transition, because then rendering AB and BC separately essentially produces

the same result as rendering just AC.

It is very important to note that every red vertex (i.e., the vertices that

disappear at the lower-level) are on one-and-only-one black edge (i.e., an edge

that do not disappear at the lower-level). Each of these black edges have blue

vertices on each end of the edge. The blue vertices do not disappear at the lower-

level as well, and that is simply why the black edges do not disappear. This

means that there are exactly two blue vertices for each red vertex where we can

use the locations of the blue vertices to compute where the red vertex should be

CHAPTER 4. VISUALIZATION 119

� � �

�
� �

�
� 	

Figure 4.27: The vertices that disappear in a lower level-of-detail are colored red,
and the disappearing edges are colored gray.

at the moment of transition. For instance,

• B must be at the center of AC,

• D must be at the center of AG,

• E must be at the center of AJ ,

• F must be at the center of CJ , and

• H must be at the center of GJ .

The transition of the vertex position is desired to be gradual, however, con-

tinuous transition of vertex positions may as well reduce the visual quality. What

we want is to have the transition start sufficiently earlier than the change of level

and reach the desired position right at the moment when the level of the surface

patch changes. The proposed approach computes the position of each vertex P

by Equation (4.15) where

• k is the lowest level that this particular vertex can be rendered,

CHAPTER 4. VISUALIZATION 120

• dlod is the length of the range in which the surface patches are rendered at

level-k,

• lt is the length of the transition measured in distance-unit rather than time,

• σ is a constant in the interval [0, 1] and it determines the length of the

transition as a ratio of dlod,

• ts and te are the distances at which the transition starts and ends, respec-

tively,

• sp is the size of a single surface patch,

• dv is the distance of the vertex to the observer,

• dn is the normalized distance of the vertex to the observer which is in the

interval [0, 1],

• Po is the original position of the vertex, and

• Pt is the position where the vertex is desired to be at the end of the tran-

sition.

dlod =
22 × dmax

2k

lt = dlod × σ

ts = 2× dlod − lt −
sp
2

te = ts + lt

dn = max
{

0,min{1, dv − ts
te − ts

}
}

−→
P =

−→
Po × (1− dn) +

−→
Pt × dn (4.15)

Equation (4.15) results in linear translation of vertex positions. Our exper-

iments have shown that using a quadratic or spline motion curve instead of a

linear one does not result in any notably better results. Our experiments have

also shown that choosing σ = 0.3 yields visually good results in most cases.

CHAPTER 4. VISUALIZATION 121

� � � �

� ��� ���� �����

��� ��� ���

Figure 4.28: Sample level-of-detail range including approximate transition points
where the green arrows show the points where the transition starts and red arrows
show the points where the transition ends.

It should be noted that in the proposed approach the actual level-of-detail

algorithm that determines the level-of-detail of each surface patch runs on the

CPU. This algorithm cannot run at the vertex-level, hence we approximate the

distance between the observer and each vertex of surface patch by computing the

distance between the observer and the center of the bounding box of the vertices

of that surface patch. The algorithm that computes the actual position of each

vertex by using Equation (4.15), on the other hand, works on the GPU and does

actually run at the vertex-level. In fact, the algorithm that runs on the GPU does

not know anything about the surface patches, it only knows about the vertices.

Thus, the distance computed by the transition algorithm is the actual distance

of the vertex to the observer. There is a slight difference between the distances

computed by two different algorithms, the on that runs on the CPU and the one

that runs on the GPU. This can cause the level-of-detail index of a surface patch to

change before each of its vertices completes the transition. This is the reason the

half size of the surface patches sp/2 is subtracted while computing ts. By doing so,

we guarantee that all vertices complete the transition at the point of level-of-detail

change. The side-effect of this is that some vertices may complete their transition

slightly earlier, but this is not a serious problem as it is visually undetectable.

Figure 4.28 shows an example level-of-detail range including the transition points

that are computed by Equation (4.15) where kmax = 4, dmax = 1000, and σ = 0.4.

sp is disregarded in this case as it is too small, in typical scenes it is equal to about

dmax × 0.01.

It should be noted that this transition prevents geometry popping, neverthe-

less it does not help with other effects unrelated to the positions of the vertices

such as texturing and lighting. Texturing and lighting uses vertex normals and

even though vertex positions are smoothly transitioned the vertex normals still

change suddenly at the point of level-of-detail change. This causes the textures

CHAPTER 4. VISUALIZATION 122

and lighting effects on the surface to change suddenly, which is sometimes even

worse than geometry popping as it usually affects a greater area on the screen.

Our proposed approach interpolates the surface normals as well to overcome this

problem. It is essentially the same as vertex position transition, but instead the

normals of the surrounding vertices are used to compute the transition normal.

The presented smooth level-of-detail transition algorithm is required to run

during shadow map generation, too. Otherwise the shadows will continue to pop

even though the actual geometry does not since the geometry that is used to

compute the shadows is not transitioned. The proposed approach uses vertex

position transition both at the shadow map generation stage and the actual ren-

dering stage to get rid of shadow popping. The transition of surface normals,

on the other hand, is redundant during shadow map generation as the surface

normals are irrelevant to shadow computations.

Chapter 5

Implementation and Performance

During the course of this research, a sample application is designed and developed

for

• creating and editing sample terrains to use during the experiments,

• analyzing the memory usage of the proposed terrain representation in typ-

ical use cases,

• analyzing the performance of the proposed algorithms, and

• evaluating the visual quality of the real-time terrain rendering obtained by

using the proposed rendering pipeline.

This chapter discusses the implementation details of the sample application

developed, the details of the sample scene as well as the hardware and software

configuration of the test environment used to evaluate performance and memory

usage, and the overall performance and efficiency of the proposed approach for

typical use cases. A discussion about how the proposed approach performs in

comparison to other approaches is also included at the end of this section.

123

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 124

5.1 Implementation Overview

The application is implemented entirely in the C++ programming language as a

native application for the Microsoft Windows operating system using the Win-

dows application programming interface (API), also known as the Win32 API.

The implementation, though, is almost entirely platform independent and in the-

ory it could easily be ported to other operating systems, e.g., to Linux. Specifi-

cally, the implementation of the proposed real-time terrain rendering system does

not rely on any exclusive features of the underlying operating system, such as a

paging system or an API that is exclusive to an operating system (e.g., Direct3D

for 3D rendering). The application code is compiled and linked by the Microsoft

Visual Studio 2010 development environment and its C++ compiler. An exhaus-

tive list of the external libraries that are used are as follows:

Open Graphics Library (OpenGL) [40] is a standard specification that

defines an API for developing applications that produce 2D and 3D computer

graphics. OpenGL is used to implement the entire rendering pipeline that is pre-

sented in this thesis, using hardware-accelerated rendering capabilities of modern

GPUs.

The OpenGL Extension Wrangler Library (GLEW) [41] is a cross-

platform open-source C/C++ extension loading library for OpenGL extensions.

Many advanced graphics features that are supported by modern GPUs are not

added to the core OpenGL functionality until they become mainstream, since all

the GPUs that support OpenGL would then have to implement them. These

features are instead added as extensions to OpenGL. The presented rendering

pipeline makes heavy use of such advanced features and GLEW makes it very

easy to manage and use these extensions.

The Developer’s Image Library (DevIL) [42], which is also known as

the Open Image Library (OpenIL), is a cross-platform open-source image library

with powerful image loading and saving capabilities. It is basically used to load

image data for textures and heightmaps from files, and save image data to files,

such as screen captures. It supports all of the image file formats used in the

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 125

sample application, such as bitmap (BMP), portable network graphics (PNG),

and tagged image file format (TIFF).

FreeType [43] is a cross-platform open-source software font engine that is

used to produce high-quality glyph images of the symbols in fonts. It is used

to generate textures for rendering text using OpenGL on the viewport. Text

rendering is mainly used for debugging and performance evaluation purposes.

All of the code for the sample application, except for the libraries listed above,

are written specifically for this project without the use of any other external

libraries and dependencies.

5.2 Terrain Editor

One of the features of the developed sample application is its ability to create and

edit terrain in real-time using the terrain deformation abilities of the proposed

approach. The terrain creation process can be divided into two steps as follows:

1. Create the coarse volumetric representation of the terrain outlining all vol-

umetric terrain features.

2. Edit terrain surface and apply fine details at an increased resolution over

the coarse terrain model by modifying heightmaps that are applied to the

surface patches.

5.2.1 Editing Coarse Terrain Model

The coarse terrain model is represented by the voxel representation. It is edited

by turning each voxel on and off. The resolution is not static as an octree data

structure is used to store the voxel representation. The coarse terrain model can

be edited manually by selecting a specific voxel at a specific level of the octree and

setting whether the voxel is filled or not. It can also be automatically created,

entirely or partly, from a heightmap. After the heightmap is converted to the

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 126

Figure 5.1: Manual editing of voxel model where the highlighted voxel is shown
as a red box. Left: the highlighted voxel is empty, right: the highlighted voxel is
filled.

voxel model, the voxel model can then be edited manually to create volumetric

terrain features at the desired locations on the terrain.

The generation of the coarse model from heightmap data is quite simple. The

heightmap is first divided into blocks depending on the desired resolution of the

coarse terrain model. Then the average height of each block is computed. In

this case, a set of voxels lined up along the y-axis corresponds to each heightmap

block. The ones that are below the average height are then set as filled with

matter while the other ones are left empty. This voxel model can then be carved

manually to generate the volumetric terrain features, such as a cave.

The voxel editor mode is very simple, probably too simple for an artist. It is

sufficient for our purposes, though. The editor lets the user to select the level of

octree on which he wants to operate. Then the position of the cursor is used to

compute a ray through the scene and the closest voxel at the selected level that

intersects the ray is highlighted. The highlighted voxel can then be set as filled or

empty (see Figure 5.1). Changing the fill status of a voxel at lower levels of the

octree automatically increases the level of the octree at that branch by creating

child in each higher level. Changing the fill status of a voxel at a higher level

gets rid of its subtree in the octree for optimization, since that space can now be

entirely represented by a single voxel.

The computation of the voxel selection ray is performed by a number of trans-

formations applied to the 2D cursor position. Algorithm 5.1 is used to compute

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 127

Figure 5.2: Editing terrain surface can be done by modifying the heightmap that
is applied to the surface. Left: the heightmap applied to the surface patch, right:
the surface patch being edited.

the voxel selection ray given the 2D coordinates of the cursor on the screen. This

finite ray is then used to determine the closest intersecting voxel at the desired

level of the octree.

5.2.2 Editing Terrain Surface

The terrain surface can be edited by applying deformations to the heightmaps.

Each voxel is associated with a number of surface patches depending on the

voxel configurations. Once a voxel is selected by the user, one of the surface

patches that are associated with the selected voxel can be edited by editing the

heightmap associated with that surface patch. A heightmap is always displayed

as a 2D square texture on the user interface to allow simple editing operations.

The surface patch on which the heightmap is applied, on the other hand, can be

in various different shapes and orientations. The mapping between the heightmap

and the surface patch can sometimes be unintuitive. In order to help user un-

derstand which part of the heightmap corresponds to which part of the surface

patch, the edges of the heightmap and the wireframe skeleton rendered on the

selected surface patch are colored accordingly (see Figure 5.2).

The heightmap can be directly edited by the user. The changed to the

heightmap values are immediately reflected to the surface patch in real-time so

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 128

cursorPos : (input) 2D position of the cursor on application viewport
viewport : (input) Viewport attributes on which the rendering is done
camera : (input) Attributes of the perspective camera that is used for

rendering
rayStart : (output) Starting position of the ray in world coordinates
rayEnd : (output) Ending position of the ray in world coordinates

1 begin

2 // compute normalized cursor coordinates
3 normalizedCursorX = (cursorPos.X / viewport.width) × 2 - 1
4 normalizedCursorY = 1 - (cursorPos.Y / viewport.height) × 2

5 if viewport.width > viewport.height then
6 normalizedCursorX = normalizedCursorX× viewport.width /

viewport.height;
7 else
8 normalizedCursorY = normalizedCursorY× viewport.height /

viewport.width;

9 // the field of view is in radians
10 fovFactor = tan(camera.fieldOfView× 0.5)
11 normalizedCursorX = normalizedCursorX× fovFactor
12 normalizedCursorY = normalizedCursorY× fovFactor

13 // compute the starting position of the ray
14 rayStart = {
15 normalizedCursorX× camera.nearClipDistance,
16 normalizedCursorY× camera.nearClipDistance,
17 -camera.nearClipDistance, 1}
18 // compute the ending position of the ray
19 rayEnd = {
20 normalizedCursorX× camera.farClipDistance,
21 normalizedCursorY× camera.farClipDistance,
22 -camera.farClipDistance, 1}
23 // transform ray definition into world space;
24 inverseViewMatrix = inverse(camera.viewMatrix);
25 rayStart = inverseViewMatrix× rayStart;
26 rayEnd = inverseViewMatrix× rayEnd;

Algorithm 5.1: Computing the start and end positions of the ray in world
coordinates that is defined by the cursor

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 129

that the user can see the resulting effects of his actions. This immediate feed-

back is supported by the proposed terrain representation and rendering approach,

since it supports terrain deformation in real-time, and this feature is certainly very

valuable to terrain designers.

The heightmap can be edited by the user through the use of several different

types of brushes. The sample application defines the following types of brushes

for editing heightmaps:

Extrude brush is used to elevate corresponding parts of the surface patch

depending on where the brush is applied of the heightmap. The brush has three

parameters: radius, strength and displacement factor.

• Radius defines the effective radius of the brush such that the pixels of the

heightmap that are outside this radius will not be affected by the brush.

• Strength determines how the effect of the brush will diminish as it is applied

to the pixels further away from the brush application position.

• Displacement factor determines the magnitude of the displacement applied

by the brush. If the displacement factor is positive than the vertices are

displaced along the direction of their displacement normals, otherwise the

vertices are displaced in the opposite direction.

It is usually desired that the effectiveness of the brush drops as it is applied

to pixels that are further away from the center of the region where the brush is

applied. This is useful to make smooth touches to the terrain surface. We use a

sigmoid function to compute the effectiveness of the brush at a given distance.

The effectiveness is computed according to Equation (5.1) where r is the radius

of the brush, s is the strength and d is the distance of the pixel to the brush

application position. The constant δ is used to convert the distance of normalized

pixel coordinates on the image space to a distance comparable to brush radius.

It is chosen δ = 20 in the sample application. Figure 5.3 demonstrates the

effectiveness functions for two sample brushes with different strengths.

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 130

0 1 2 3 4 5 6 7
−2

−1

0

1

2

distance

b
ru

sh
eff

ec
ti

ve
n
es

s

s = 0.5
s = 2.0

Figure 5.3: Sigmoid function that is used to compute the effectiveness of a brush
at a particular distance. Blue: a brush with radius r = 3 and strength s = 0.5,
red: another brush with radius r = 3 and strength s = 2.

tanh(x) =
e2x − 1

e2x + 1

f(d) = tanh
(
(r − d× δ)× s

)
(5.1)

Smoothing brush is used to smooth parts of the terrain where the brush is

applied. It has three parameters similar to the extrude brush: the radius, strength

and the smoothing factor. The radius and strength are the same as the extrude

brush. The smoothing factor determines how aggressively the smooth operation

is desired to be performed. If the smoothing factor is large then the roughness of

the surface patch is quickly smoothed out.

Noise brush is used to simply add fine detail in the form of noise on the

heightmap. 3D Simplex noise [38, 39] is used to create noise where the input to

the noise function is the actual world coordinates of the vertices that correspond

to the edited pixels of the heightmap. This way, the continuity of the 3D surface

is guaranteed after the application of the noise as the 3D world coordinates of

the vertices are continuous.

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 131

5.2.3 Saving and Loading Terrain Data

The sample application is also able to save and load terrains. The saved terrain

data only includes the coarse voxel model and the heightmaps for each surface

patch. It does not store the entire content of the data structures in memory, such

as vertices that approximate surface patches, shared vertex lists, displacement

normals, and surface normals. The only data that needs to be persistent is the

coarse voxel model and the heightmaps. Everything else is re-computed when

the terrain data is loaded from file. First, the coarse voxel model is loaded and

the surface extraction process is executed. Then, the surface generation process

is executed, and finally the heightmaps are loaded from the file and applied to

the corresponding surface patches. This greatly decreases the disk space required

to store the terrain data at the cost of longer loading times, which is not that

important for our purposes.

5.3 Rendering Pipeline

The rendering pipeline of the proposed approach is implemented using OpenGL

version 3.2. Fixed function pipeline is completely removed from OpenGL in

this version. The rendering pipeline presented in this section is implemented

completely by programming the GPU using custom vertex and fragment shaders

for rendering. The shader programs are written in the GL Shading Language

(GLSL) [44].

Figure 5.4 shows an overview of the rendering pipeline. The rendering pipeline

can be divided into four major steps:

1. Vertex buffer updates (green parts on Figure 5.4),

2. index buffer updates (red parts on Figure 5.4),

3. generating shadow maps (blue parts on Figure 5.4), and

4. terrain surface rendering (orange parts on Figure 5.4).

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 132

���������	

��
���������

��
����������

�������������

���������	�

�������
�������

����
���������� �����������
���

���������	

����������������

�������
���

�������� �����

��
���������

�������� �����

�������
�������

������������

Figure 5.4: Rendering pipeline that is used in the sample application.

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 133

5.3.1 Vertex Buffer Updates

The proposed approach uses vertex buffers to store vertex attributes, such as

the vertex position, vertex normal, and geometry morphing parameters. The

advantage of vertex buffers is that they are stored directly on the video memory.

Consequently,

• GPU access to data stored in vertex buffers is extremely fast, and

• data that is stored in the main memory do not need to be transferred

to the GPU in each frame, causing a possible CPU-to-GPU data transfer

bottleneck.

The vertex buffers are filled with data once the terrain surface generation is

completed and the terrain surface is ready to be rendered for the first time. As

long as the terrain surface is not deformed, it is not needed to update vertex

buffers since all vertex data that is needed for rendering is already in the video

memory. Whenever some part of the terrain surface is deformed, the attributes

of the vertices that are affected by the deformation are updated. These updates

are initially performed in the main memory by the algorithms discussed in Sec-

tion 3.5.5. The relevant parts of the vertex buffer must then be updated with the

data in the main memory.

5.3.2 Index Buffer Updates

Index buffers are also stored in the video memory, similar to vertex buffers, but

they store the connection information for vertices, that is, how they should be

connected to form triangles. Index buffer is the actual list of primitives to be

rendered by the GPU. If the index buffer is empty, the GPU renders nothing as

it does not know what to make of the vertices in the vertex buffer. Therefore,

the number of primitives represented by the index buffer actually determines the

rendering performance. Because of this, the index buffer is updated at each frame

as the frustum culling and level-of-detail functions are executed.

The algorithm that updates the index buffer operates on the octree. Each

node of the octree is first checked to see if its terrain surface bounding box

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 134

is completely outside the frustum. It it is, then the subtree of that node is

completely eliminated from further processing as it does not contribute to the

rendering process in any way and any further processing would be redundant as

a consequence. The level-of-detail of the surface patches that are associated with

the voxels that pass the frustum test are then computed. The corresponding

triangle vertex index data of these surface patches are copied to the index buffers

as it is described in Section 4.4.3.

5.3.2.1 Frustum Culling

Frustum culling is a method that is used to improve rendering performance. Its

main goal is to discard large portions of the scene with simple occlusion checks to

prevent redundant processing of geometry that is not supposed to contribute to

the rendering. An occlusion check basically tells whether a particular geometry

is inside the view frustum or not. Performing a frustum check on a complex

3D object is very expensive. Thus, frustum checks are usually performed on

bounding boxes of objects where each corner of the bounding box is tested against

the frustum planes. If every corner of the bounding box is on the outside of at

least one of the frustum planes then the bounding box is definitely not inside the

frustum, not even partially, and the object represented by the bounding box can

safely be discarded.

It should be noted that in the proposed terrain representation it is not possible

to use the voxels in frustum checks since the displaced terrain surfaces may over-

flow voxel limits. For frustum culling, therefore, a hierarchy of surface bounding

boxes are computed and stored in the octree. These bounding boxes are com-

puted in a bottom-up manner. The leaf nodes in the octree are assigned bounding

boxes that are computed by the bounding boxes of the surface patches assigned

to them. Then, the bounding box of each higher-level node is computed by tak-

ing the union of the bounding boxes of each child node. When a surface patch is

deformed, its bounding box is updated as well. In this case, the bounding boxes

of all octree nodes on the path from the root to the leaf node that contains the

deformed surface patch are updated, again in a bottom-up direction. This is not

an expensive operation as the depth of an octree is not very high in the proposed

representation, since the octree only defines a coarse representation of the terrain.

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 135

Please note that frustum culling must be repeated whenever the view frustum

changes, meaning that when four cascaded shadow maps are used, frustum culling

is repeated four times for rendering the shadow maps and another time for the

rendering of the actual terrain surface at each frame. Frustum culling, however,

helps improve rendering performance even when it is repeated multiple times

per frame since, depending on the viewpoint, usually a very small portion of the

terrain is in the frustum.

5.3.3 Generating Shadow Maps

The terrain surface geometry is rendered once for each cascaded shadow map as

it is described in Section 4.3 in detail. The vertex and fragment shaders used to

render shadow maps are relatively simple.

The vertex shader basically computes the distance of the vertex to the ob-

server and then applies geometry morphing to the vertex as it is described in

Section 4.4.4 in detail. It then multiplies the computed world coordinate with

the model-view-projection matrix of the light to compute the projected fragment

coordinate. The fragment shader then takes the z-component of the fragment

coordinate, adds an offset to it to prevent z-fighting, and writes the computed

value to the shadow map.

5.3.4 Terrain Surface Rendering

Once the shadow maps are generated, the actual rendering can be done using the

terrain surface geometry, shadow maps and the other textures. The vertex and

fragment shaders that are used at this stage are more complex.

The tasks performed by the vertex shader is as follows:

• The vertex shader normalizes the surface normal since it is not normalized

by the CPU. Normalizing surface normals by the CPU requires another

pass over all vertices which is quite expensive, but it is required to be done

only once unless the surface geometry is updated. The cost of normaliza-

tion by the GPU is almost zero but it has to be performed at each frame.

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 136

The reference implementation normalizes surface normals on the GPU as it

improves performance when the terrain surface is constantly updated (e.g.,

during terrain editing).

• The distance of the vertex to the observer is computed.

• The level-of-detail transition position of the vertex is computed using the

distance to the observer.

• The level-of-detail transition normal of the vertex is computed using the

distance to the observer.

• The world coordinate of the vertex is projected into the eye space by mul-

tiplying by the view-projection matrix of the perspective camera.

The tasks performed by the fragment shader is as follows:

• The fragment shader normalizes the interpolated vertex normal since inter-

polating between two normalized vertex normals does not always result in

a normalized vertex normal.

• Tri-planar texture coordinates are computed as it is described in Sec-

tion 4.2.1 in detail.

• Simplex noise values are computed for use in multi-texturing.

• Multi-texturing and texture splatting is applied as it is described in Sec-

tions 4.2.2 and 4.2.3 in detail.

• Per-pixel directional lighting computations are performed.

• Per-pixel point light computations are performed for each point light in the

scene.

• Shadow maps are sampled several times and blended using Gaussian filter-

ing.

• Output color values of the texturing, lighting and shadowing phases are

blended to compute the final pixel color.

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 137

5.4 Performance and Memory Usage

This section discusses the performance and memory usage of the reference imple-

mentation.

5.4.1 Test Environment

The hardware and software features of the reference implementation test envi-

ronment are specified in Table 5.1. Please note that the most influential element

on rendering performance is the GPU and the GPU that is used in our tests is

about four years old at the time of writing this thesis. It still supports most of

the advanced techniques and is considered as a modern GPU. The performance

results presented in this section, nevertheless, do not imply an upper limit as

the GPU used in these tests are not state of the art. Using the most powerful

consumer GPU available today could easily double, triple, and even quadruple

the performance figures presented. The proposed approach and the reference im-

plementation is still efficient enough to render large terrains in real-time, though.

Using a more powerful GPU, on the other hand, could easily allow real-time

rendering of much larger terrains with better visual quality.

Operating system Windows 7 Professional x64, SP1
CPU Intel Core i7-2600K 3.4 GHz
CPU cores 4 + 4 (Hyper-Threading)
Main memory 8 GB DDR3
GPU nVidia GeForce GTX260
GPU driver version 301.42
GPU graphics clock 650 MHz
GPU processor clock 1400 MHz
GPU memory clock 1000 MHz
Video memory 896 MB GDDR3
CPU-GPU data bus PCI Express x8 Gen2

Table 5.1: Test environment of the reference implementation.

Although many efficiency related improvements have been made in the ref-

erence implementation, the implementation is not in a production-ready state.

There are many possible optimizations that can be applied to different stages

of the rendering pipeline. The implementation does not use vendor-specific and

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 138

hardware-specific extensions available in OpenGL. These extensions could easily

improve the performance further. Since multi-threading is not used in the refer-

ence implementation, only a single core of the eight-core CPU is utilized. The

sample application uses CPU merely for terrain rendering and the CPU intensity

of the proposed approach is very low, even when the terrain deformations are

applied in real-time. Consequently, the CPU, stalls most of the time waiting for

the GPU to finish its job. More CPU tasks could be set up to run in the idle-

time, such as occlusion culling, artificial intelligence, and physics computations,

without having a negative impact on the rendering performance.

5.4.2 Timers

High-resolution timers are used to measure the time it takes to complete an

operation. Measuring time spent by the CPU is relatively easy. A high-resolution

Windows-specific timer [45] is used for this task. The granularity of the CPU

timers are on the order of nanoseconds.

Measuring time spent by the GPU is slightly more complex. The GPU has

a job queue, and the OpenGL commands are converted to GPU tasks by the

GPU driver and added to the queue. The GPU then executes these tasks asyn-

chronously. Measuring the CPU time only gives the time it takes to add the com-

mand to the job queue of the GPU, and is therefore meaningless. We use GPU

timer queries [46] provided by the OpenGL specification. These timer queries are

added to the job queue of the GPU by the CPU before and after a particular

command is executed. The GPU, consequently, executes the timer tasks before

and after that particular command is executed. The results of the timer queries

are asynchronously received by the CPU after the execution of the corresponding

commands are completed by the GPU. Although the resolution of these GPU

timers are hardware-dependent, the GPU we used for these tests have a timer

granularity in the order of nanoseconds.

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 139

5.4.3 Test Scene

Statistics of the sample terrain that is created for performance evaluation is given

in Table 5.2. The number of nontrivial voxel intersection volumes are those for

which one or more surface patches are generated.

filled voxels 24239
nontrivial voxel intersection volumes 2544
surface patches (without static surface culling) 7481
surface patches (with static surface culling) 3560

Table 5.2: Coarse terrain model statistics of the test scene.

The terrain surface is generated with different parameters throughout the

testing. The statistics of the terrain surface are given in Table 5.3 for different

parameters.

maximum # patch # patch # total # total
lod vertices triangles vertices triangles
1 3× 3 8 32K 28K
2 5× 5 32 89K 114K
3 9× 9 128 288K 456K
4 17× 17 512 1M 1.8M
5 33× 33 2048 3.9M 7.3M
6 65× 65 8192 15M 29.2M

Table 5.3: Terrain surface statistics of the test scene for different maximum levels-
of-detail.

Figure 5.5 show several screen captures of the test scene from different view-

points.

5.4.4 Memory Usage

Most of the memory usage is required to store the vertex attributes, both on the

main memory and on the video memory. The vertex attribute data structure

that is stored for each vertex on the main memory is shown in Table 5.4.

Vertex attributes are stored in a similar data structure on the video memory

as shown in Table 5.5. This data structure is filled using the attributes that are

stored on the main memory and then loaded to the video memory.

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 140

Figure 5.5: Screen captures of the test scene.

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 141

vertex attribute data type size
original position float [3] 12-bytes
displacement normal float [3] 12-bytes
actual normal float [3] 12-bytes
displacement float 4-bytes
lower level-of-detail neighbor [2] pointer [2] 8-bytes
level-of-detail index unsigned int 3-bits
re-compute normals unsigned int 1-bit
vertex buffer index unsigned int 28-bits

Table 5.4: Vertex attributes that are stored on the main memory.

Storing the attributes of each vertex requires 52-bytes both on the main mem-

ory and on the video memory. It should be noted that it is required to store the

vertex attributes on main memory so that when the terrain is deformed the ver-

tex attributes can be updated. The vertex attributes in the main memory can be

completely discarded if real-time terrain deformations are not needed.

vertex attribute data type size
position float [3] 12-bytes
normal float [3] 12-bytes
geomorph transition threshold float 4-bytes
geomorph transition position float [3] 12-bytes
geomorph normal float [3] 12-bytes

Table 5.5: Vertex attributes that are stored on the video memory (i.e., in vertex
buffers).

The main memory usage of the reference implementation for the test scene

is shown in Table 5.6. Memory space required to store the vertex attributes

and triangle vertex indices are the most significant, rest of the memory usage is

negligible.

maximum vertex shared index heightmaps
lod attributes vertices data
1 0.3 MB 0.67 MB 512 KB 0.1 MB
2 1.6 MB 1.5 MB 1.7 MB 0.4 MB
3 9 MB 3.2 MB 7.3 MB 1.2 MB
4 40 MB 6.5 MB 29 MB 4.1 MB
5 175 MB 13.3 MB 117 MB 15.5 MB

Table 5.6: Main memory usage of the reference implementation for the test scene.

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 142

The video memory usage of the reference implementation for the test scene is

shown in Table 5.7.

maximum vertex index data textures
lod attributes (avg.)
1 1 MB 60 KB 6 MB
2 3 MB 125 KB 6 MB
3 12 MB 250 KB 6 MB
4 46 MB 1 MB 6 MB
5 188 MB 4 MB 6 MB

Table 5.7: Video memory usage of the reference implementation for the test scene.

Video memory space required to store shadow maps are not included in Ta-

ble 5.7 since it depends on the number of cascaded shadow maps used. Table 5.8

shows the memory usage of the shadow maps on video memory. Please note that

shadow maps used in the reference implementation have 24-bit depth.

cascaded resolution size
shadow maps

1
1024× 1024 3 MB
2048× 2048 12 MB
4096× 4096 48 MB

2
1024× 1024 6 MB
2048× 2048 24 MB
4096× 4096 96 MB

3
1024× 1024 9 MB
2048× 2048 36 MB
4096× 4096 144 MB

4
1024× 1024 12 MB
2048× 2048 48 MB
4096× 4096 192 MB

Table 5.8: Video memory required to store shadow maps.

The reference implementation uses four cascaded shadow maps of resolution

2048× 2048, hence the video memory required is 48 MB.

5.4.5 Performance

This section discusses the runtime performance of the reference implementation.

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 143

5.4.5.1 Terrain Surface Generation Performance

The performance-related statistics of the terrain surface generation process is

shown in Table 5.9.

maximum surface surface shared normals indices
lod extraction approximation vertices
1 40 ms 15 ms 55 ms 6 ms 4 ms
2 40 ms 20 ms 70 ms 22 ms 13 ms
3 40 ms 40 ms 110 ms 60 ms 50 ms
4 40 ms 90 ms 230 ms 240 ms 150 ms
5 40 ms 210 ms 660 ms 890 ms 460 ms

Table 5.9: Performance of the terrain surface generation process.

The columns in Table 5.9 represent the time required to

• extract the surface of the coarse voxel model,

• approximate the surface patches by creating vertices,

• find shared vertices between surface patches,

• compute displacement and surface normals, and

• compute triangle vertex indices for each surface patch and different levels-

of-detail.

The surface extraction step does not depend on the maximum level-of-detail

as it is not affected by the number of vertices each surface patch is approximated

with. Please note that these steps are performed only once, at the terrain creation

or loading step.

5.4.5.2 Terrain Surface Deformation Performance

When the terrain is deformed in real-time, the vertex displacements are com-

puted, surface normals are re-computed, and updated vertex attributes in the

main memory are copied to vertex buffers. Table 5.10 lists the execution time

of updating vertex displacements, re-computing surface normals, and updating

vertex buffers on video memory.

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 144

maximum updating vertex re-computing updating vertex
lod displacements normals buffers
1 0.6 µs 6 µs 16 µs
2 2 µs 25 µs 22 µs
3 6 µs 0.1 ms 74 µs
4 24 µs 0.3 ms 0.28 ms
5 0.1 ms 1.2 ms 1.1 ms

Table 5.10: Performance of real-time terrain surface deformation process.

5.4.5.3 Rendering Performance

The rendering pipeline renders the scene geometry in N + 1 passes, where N is

the number of cascaded shadow maps. The first N passes render each one of the

N shadow maps, and the final rendering pass renders the actual terrain surface

using the shadow maps and applying various per-pixel effects, such as lighting

and texturing. The performance-related statistics of the shadow map rendering

passes for shadow maps of resolution 2048× 2048 are listed in Table 5.11.

maximum # shadow frustum index buffer rendering
lod maps culling updates

4
1 0.05 ms 0.04 ms 0.6 ms
2 0.1 ms 0.14 ms 1.1 ms
4 0.2 ms 0.3 ms 2.3 ms

5
1 0.05 ms 0.3 ms 2.1 ms
2 0.1 ms 0.6 ms 4.3 ms
4 0.2 ms 1.1 ms 8.5 ms

Table 5.11: Performance of shadow map rendering passes.

Table 5.12 shows the overall rendering performance of the reference imple-

mentation. The last column indicates the number frames-per-second rendered by

the rendering pipeline.

5.5 Discussion

In this section, we will discuss how the proposed real-time terrain representation

and rendering approach performs when compared to the heightmap- and voxel-

based approaches. The comparison is split into subsections for the sake of clarity.

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 145

maximum # shadow frustum index buffer rendering FPS
lod maps culling updates

4
1 0.05 ms 0.15 ms 3.9 ms 235
2 0.1 ms 0.25 ms 4.4 ms 205
4 0.25 ms 0.4 ms 5.4 ms 160

5
1 0.05 ms 0.7 ms 10 ms 91
2 0.1 ms 1 ms 12.1 ms 74
4 0.25 ms 1.5 ms 16 ms 57

Table 5.12: Overall performance of the proposed rendering pipeline.

5.5.1 Expressiveness

Expressiveness is defined as the ability to create interesting terrain features using

a terrain representation. A heightmap samples the terrain in 2D, hence it has a

very limited expressive power. It is not possible to represent volumetric terrain

features using a heightmap-based representation, such as caves, overhangs, arches,

and even vertical cliffs.

Voxel-based representations, on the other hand, sample the true 3D space

surrounding the terrain. Thus, the voxel-based representations are extremely

good in terms of expressiveness. In fact, assuming an infinitesimal voxel size such

that the resolution is extremely high, it is possible to represent all possible kinds

of terrain, and any other 3D object for that matter. This is not the case for

heightmaps. Heightmaps cannot represent volumetric features even if the resolu-

tion is infinitely high. Increasing voxel resolution, though, has serious practical

implications such as extremely high memory usage. Doubling the voxel resolution

in each axis causes memory usage to increase eightfold.

The proposed hybrid approach basically provides a trade-off between voxel

and heightmap representations in terms of expressiveness. It converges to a voxel-

representation as the resolution of the coarse voxel model increases, and converges

to a heightmap-based representation as it decreases. The practical expressiveness

of the proposed approach is less than that of a voxel representation, because as the

coarse model gets higher resolution the efficiency of the representation gets worse.

However, it is not possible to render very high resolution voxel models in real-time

anyway. The proposed approach is able to provide high voxel resolution where

volumetric features are dense and complex, and can benefit from the simplicity

of the heightmap-based approaches where it is redundant in order to increase the

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 146

efficiency overall.

5.5.2 Simplicity

By simplicity, the simplicity of the algorithms that operate on the terrain data

is meant. Heightmaps are very simple representations and the algorithms that

operate on them are also simple. Voxel representation is also quite simple, as a

form of volumetric representation. It is possible to write simple algorithms that

work on voxel data. It is, however, not plausible to use them in real-time applica-

tions. Voxel data is usually huge which increases the complexity of the algorithms

that now have to deal with paging data in and out of memory, generating rele-

vant parts of the surface from the voxel model at every frame, compressing and

decompressing voxel data, etc.

The proposed representation tries to make use of heightmaps and regular grid

surfaces as much as possible. The algorithms, such level-of-detail system, is quite

simple thanks to this feature of the proposed representation. It is basically a

heightmap representation applied not on a uniform and flat 2D plane, but on a

coarse voxel model. This makes it possible to benefit from existing approaches

for heightmap-based regular grid representations with minimal changes required

for adaptation to the proposed representation.

5.5.3 Efficiency

Efficiency basically covers the memory usage and the processing power demanded

by the real-time terrain rendering approach. Heightmaps are quite unbeatable

in this respect. It is a very simple, regular and usually a uniform representation

of the terrain surface. Its memory requirements are extremely low, even for

extremely large terrains. Almost all vertex attributes are implicit in heightmap-

based approaches making it redundant to even store the vertices at all. It is,

in fact, so simple that given a heightmap image the GPU can create the entire

geometry including attributes such as surface normals in an extremely efficient

way. This is the very reason why heightmap-based approaches are so dominant

in the industry.

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 147

One of the design goals of our approach was to benefit from the simplicity

and efficiency of heightmap representations. The terrain surface in the proposed

approach is quite similar to a regular grid heightmap surface. The proposed

approach is obviously not as efficient as heightmap-based representations. This is,

however, the cost of the expressiveness that our approach provides. Our approach

is, in terms of both memory usage and demanded processing power, still efficient

enough to be used in a real-time terrain rendering application meeting with our

design goals.

Voxel-based representations, on the other hand, usually require extremely high

amounts of memory when they are stored uncompressed and at very high reso-

lution. The memory efficiency can be increased at the cost of processing power

by compressing and decompressing the voxel representation as needed. This is,

however, very difficult in a real-time rendering application. Voxel representations

cannot be directly used for rendering and, unlike heightmaps, it is not straightfor-

ward to generate the polygonal surface of a voxel model. Doing this in real-time

and at every frame, such as for level-of-detail and culling algorithms, is even more

difficult to manage. As a result, voxel-based terrain representations are not very

popular in real-time applications, except for technology demos and experimental

work.

5.5.4 Visual Quality

Visual quality is extremely dependent on the methods used for lighting, texturing,

shadowing etc. What we mean by visual quality, in this context, is the visual

quality of the terrain surface generated from the internal representation of the

terrain. The surface geometry of a heightmap is quite simple. Therefore, it is easy

to generate the terrain surface geometry of a heightmap without visual artifacts.

Level-of-detail management of a heightmap surface geometry is also very easy as

the terrain surface is greatly constrained and the connections between vertices

are well-defined and simple.

Generating a polygonal surface for a volumetric representation is not an easy

task. Relatively simple methods, such as the original marching cubes algorithm,

generate visual artifacts in some cases. This can be prevented with the use of

better and more complex algorithms, though. Level-of-detail is also problematic

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 148

with voxel representations because most of the surface extraction methods do

not support a sampling grid with different resolutions in different areas. Without

level-of-detail it is not plausible to render large and detailed terrains. Even meth-

ods that can use some kind of level-of-detail approach with a volumetric surface

extraction, such as [35], cannot support smooth level-of-detail transitions, which

significantly degrades the visual quality.

The proposed surface extraction method is able to generate a smooth terrain

surface for the coarse volumetric representation of the terrain without artifacts.

The terrain surface consists of surface patches which are very similar to regu-

lar grid heightmap terrain surfaces. It is, therefore, possible to adapt simple

level-of-detail approaches for use with the proposed approach. We have also pre-

sented a level-of-detail approach for the proposed terrain representation which

also supports smooth level-of-detail transitions by geometry morphing.

5.5.5 Content Creation

Ease of content creation is also important for a terrain representation. Content

creation can be performed by procedural techniques, manual editing by artists,

or a combination of both. A quasi-random terrain data is usually created by

procedural techniques, which can be controlled by a set of parameters to some

extent, and then fine details are added on top of it by artists.

Successful procedural techniques for heightmap creation are available as it is

a relatively simple process. A heightmap is a 2D image and it is possible to create

sufficiently realistic terrains in a controllable way using noise functions at several

octaves. Manually editing this heightmap is also easy as it can be done with an

image editor as well as a specialized 3D heightmap terrain editor. It is easy to

create and edit terrains with heightmaps, but it is impossible to create interesting

terrain features regardless of how hard you try.

Procedural content creation techniques are also available for volumetric ter-

rains. It is easy to create interesting terrain models with lots of volumetric

features that are not very similar to the ones in the real world. It is more difficult

to control these techniques to create meaningful terrain features, though, such

as mountains, hills, caves and arches as they would appear in reality. Manually

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 149

editing voxel terrains, on the other hand, is very easy. A single voxel defines

whether the volume defined by that voxel is filled with matter or not. It is a

simple and straightforward definition making it easy to edit the terrain simply

by turning voxels on or off.

The proposed representation makes use of both voxel and heightmap repre-

sentations. Therefore, it is possible to use procedural techniques for volumetric

terrains to create the coarse model of the terrain and procedural techniques for

heightmaps to create the terrain surface details. Manual editing is easy as in both

voxel and heightmap representations. It can, however, sometimes be unintuitive

due to displacement normals of the terrain surface. This is a disadvantage that

can be neutralized by using a terrain editor that is specifically designed for editing

terrains represented with the proposed terrain representation.

5.5.6 Physics and Interaction

Many applications that use real-time terrain rendering do not use the terrain rep-

resentation merely for rendering purposes. Other elements of the virtual world,

such as creatures and vehicles, can be desired to be in interaction with the terrain

model. This requires physics computations on the terrain data, such as collision

detection. Furthermore, depending on the type and purpose of application, it is

occasionally desired to modify the terrain in runtime according to these interac-

tions.

Voxel terrain models are very easy to edit intuitively by simply turning voxels

on and off. Modification of the voxel model may require regeneration of the entire

surface, though, since most surface extraction approaches do not support local

updates. Simple queries are usually efficient because checking whether a voxel

is empty or not merely requires a very fast lookup. The performance of more

advanced physics computations depend on the data structure used to represent

volumetric data.

Editing heightmaps is also easy but there is less control over the updates

as only the height of a vertex can be changed. Local updates are also easy

as it only requires changing the height of corresponding vertices and does not

require changing vertex connections. Heightmap terrains, therefore, can easily be

CHAPTER 5. IMPLEMENTATION AND PERFORMANCE 150

deformed in real-time but the level of control over deformations is very limited.

Not all types of deformations can be applied to a heightmap as the vertices can

only be moved in one axis. The performance of physics queries, such as collision

detection, is simple since a given position in the space maps one to four samples,

at most, on the heightmap. The fact that heightmap representation allows very

limited terrain configurations also makes physics computations simpler as there

are fewer problematic cases.

The proposed terrain representation is deformable at the surface patch level in

real-time. That is, the coarse representation of the terrain cannot be modified in

real-time. The deformations applied to surface patches are handled very efficiently

and only cause local changes on the terrain surface. Coarse voxel model can be

used to answer some queries but it is not very dependable as it does not regard

heightmap displacements applied to surface patches. We believe that it is possible

to create a voxel representation of the terrain in the proposed approach for the

sole purpose of answering physics queries efficiently. In this case, the performance

of the proposed approach and other voxel-based approaches become equivalent.

The resolution of this voxel representation can be determined according to the

desired level of precision in computations. Since this representation is used only

for physics computations, it does not require storing of visualization attributes

of voxels which makes it possible to store the voxel representation efficiently.

This topic, however, is considered outside the scope of this thesis and can be an

interesting topic for future research.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

We proposed a new hybrid terrain representation that combines voxel- and

heightmap-based approaches. The proposed representation models volumetric

terrain features, such as caves, overhangs, arches and vertical cliffs, using a coarse

voxel-based approach. The resolution of the terrain surface is then increased fur-

ther to add surface detail by applying heightmap displacement to the terrain

surface. In order to be able to do this, a method for extracting terrain surface

from the voxel model is used, where the extracted terrain surface consists of sur-

face patches similar to the blocks of a 2D regular grid heightmap-based approach.

The proposed approach provides a useful trade-off between the simplicity and

efficiency of the heightmap-based approaches, and the expressiveness of the voxel-

based approaches. Since the terrain surface consists of surface patches that can

easily be mapped to 2D planar coordinates, it is possible to use many existing

algorithms that are designed to work on regular grid terrain surfaces with minimal

changes required for adaptation.

Several visualization techniques, such as lighting, texturing and shadowing,

are discussed throughout the thesis that can be used with the proposed ter-

rain representation for high quality real-time terrain rendering. A level-of-detail

scheme is presented to allow the real-time rendering of much larger terrains and

151

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 152

geometry morphing is used to make smooth transitions between levels-of-detail

possible.

6.2 Future Work

The terrain representation proposed in this thesis give birth to a number of in-

teresting research problems. A new terrain representation means a whole new set

of algorithms to operate on that representation, possibly some adapted from pre-

vious work and some designed from scratch. A number of interesting extensions

and improvements that can be built on the proposed approach are listed in this

section.

Vector field displacement can be used to apply displacement on surface patches

along all directions rather than just the direction of the displacement nor-

mal. A similar approach is proposed by [28]. This extension could increase

the expressiveness of the representation greatly.

Hardware-accelerated tessellation is one of the newest methods supported by

modern GPUs. It can be used to tessellate terrain surface patches so as to

increase the terrain surface resolution much higher.

Surface extraction can be improved to handle voxels at different resolutions.

The proposed surface extraction algorithm cannot handle voxels at differ-

ent resolutions. This limits the maximum resolution of the coarse voxel

representation.

Collision detection algorithms can be designed to work with the proposed terrain

representation. Many types of real-time terrain rendering applications re-

quire some form of collision detection, even if a very simple one. This could

definitely be a useful extension to the proposed approach. We believe that

it is possible to create a voxel representation of the terrain in the proposed

approach for the sole purpose of answering physics queries efficiently. The

resolution of this voxel representation can be determined according to the

desired level of precision in computations. Since this representation is used

only for physics computations, it does not require storing of visualization

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 153

attributes of voxels which makes it possible to store the voxel representation

efficiently.

Portals and occlusion culling algorithms can be designed to work with the pro-

posed terrain representation to cull parts of the terrain that are blocked by

other parts that are closer to the observer. The use of occlusion culling can

significantly increase the rendering speed depending on the terrain model.

Portals are usually used for occlusion culling of in-door scenes that are

divided to rooms. We believe that it is also applicable to the proposed rep-

resentation as it can represent caves with similar structure to such scenes.

Terrain synthesis techniques can be developed to convert a high resolution voxel

representation to the proposed terrain representation. This could be per-

formed by first lowering the resolution of the given voxel representation

depending on a desired resolution or an error metric. This low resolution

voxel representation would be the coarse terrain representation in the pro-

posed approach. The displacement values of each surface patch could then

be computed to approximate the actual high resolution voxel representa-

tion with displacement of surface patch vertices. This can be very useful

for content creation as it is much easier and intuitive to create and edit

terrains in voxel representation.

Ambient occlusion technique can be adapted for use with the proposed approach

for more realistic and better lighting.

Blend maps can be used to apply more realistic texturing to the terrain surface.

The current approach to multi-texturing adopted by the proposed approach

blends all pixels of the textures to compute the final color. Blend maps

define how to blend two textures together in a more realistic way as the

blend map is created specifically for each texture.

Parallax mapping can be used to add fine detail at a very high resolution. This

could greatly improve the visual quality of the terrain rendering, especially

on cave walls, ceilings, cliffs, and rocks.

Bibliography

[1] T. K. Peucker, R. J. Fowler, and J. J. Little, “The Triangulated Irregular

Network,” in Proceedings of the ASP Digital Terrain Models (DTM) Sympo-

sium, (St. Louis, Missouri), Oct. 1978.

[2] M. P. Kumler, “An Intensive Comparison of Triangulated Irregular Networks

(TINs) and Digital Elevation Models (DEMs),” Cartographica: The Inter-

national Journal for Geographic Information and Geovisualization, vol. 31,

pp. 1–99, Oct. 1994.

[3] B. N. Delaunay, “Sur la Sphére Vide,” Izvestia Akademii Nauk SSSR, Otde-

lenie Matematicheskikh i Estestvennykh Nauk, vol. 7, pp. 793–800, 1934.

[4] M. Fan, M. Tang, and J. Dong, “A Review of Real-time Terrain Rendering

Techniques,” in Proceedings of the 8th International Conference on Computer

Supported Cooperative Work in Design, vol. 1, pp. 685–691, may 2004.

[5] M. Garland and P. S. Heckbert, “Fast Polygonal Approximation of Terrains

and Height Fields,” Tech. Rep. CMU-CS-95-181, School of Computer Sci-

ence, Carnegie Mellon University, 1995.

[6] M. H. Gross, R. Gatti, and O. Staadt, “Fast Multiresolution Surface Mesh-

ing,” in Proceedings of the 6th IEEE Conference on Visualization (VIS ’95),

pp. 135–142, 446, Oct. 29 - Nov. 3 1995.

[7] D. Daniel Cohen-Or and Y. Levanoni, “Temporal Continuity of Levels of

Detail in Delaunay Triangulated Terrain,” in Proceedings of the 7th IEEE

Conference on Visualization (VIS ’96), pp. 37–42, Oct. 27 - Nov. 1 1996.

[8] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A.

Turner, “Real-time, Continuous Level of Detail Rendering of Height Fields,”

154

BIBLIOGRAPHY 155

in Proceedings of the 23rd Annual Conference on Computer Graphics and

Interactive Techniques (SIGGRAPH ’96), (New York, NY, USA), pp. 109–

118, ACM, 1996.

[9] H. Hoppe, “Progressive Meshes,” in Proceedings of the 23rd Annual Confer-

ence on Computer Graphics and Interactive Techniques (SIGGRAPH ’96),

(New York, NY, USA), pp. 99–108, ACM, 1996.

[10] H. Hoppe, “View-Dependent Refinement of Progressive Meshes,” in Proceed-

ings of the 24th Annual Conference on Computer Graphics and Interactive

Techniques (SIGGRAPH ’97), (New York, NY, USA), pp. 189–198, ACM

Press/Addison-Wesley Publishing Co., 1997.

[11] L. Hu, P. V. Sander, and H. Hoppe, “Parallel View-Dependent Refinement

of Progressive Meshes,” in Proceedings of the Symposium on Interactive 3D

Graphics and Games (I3D ’09), (New York, NY, USA), pp. 169–176, ACM,

2009.

[12] H. Hoppe, “Smooth View-Dependent Level-of-Detail Control and its Ap-

plication to Terrain Rendering,” in Proceedings of the IEEE Conference on

Visualization (VIS’98), (Los Alamitos, CA, USA), pp. 35–42, IEEE Com-

puter Society Press, 1998.

[13] W. Evans, D. Kirkpatrick, and G. Townsend, “Right-Triangulated Irregular

Networks,” Algorithmica, vol. 30, pp. 264–286, 2001. 10.1007/s00453-001-

0006-x.

[14] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and

M. B. Mineev-Weinstein, “ROAMing Terrain: Real-time Optimally Adapt-

ing Meshes,” in Proceedings of the 8th IEEE Conference on Visualization

(VIS ’97), pp. 81–88, Oct. 1997.

[15] M. White, “Real-time Optimally Adapting Meshes: Terrain Visualization in

Games,” International Journal of Computer Games Technology, vol. 2008,

Jan. 2008.

[16] T. Ulrich, “Rendering Massive Terrains Using Chunked Level of Detail Con-

trol,” in Super-size It! Scaling up to Massive Virtual Worlds, ACM SIG-

GRAPH ’02 Course Notes, No. 35, (San Antonio, TX, USA), ACM, 2002.

BIBLIOGRAPHY 156

[17] W. H. de Boer, “Fast Terrain Rendering Using Ge-

ometrical Mipmapping.” flipCode Featured Articles,

http://www.flipcode.com/archives/article geomipmaps.pdf, Oct. 2000.

[18] J. Levenberg, “Fast View-Dependent Level-of-Detail Rendering Using

Cached Geometry,” in Proceedings of the IEEE Conference on Visualization

(VIS’02), pp. 259–265, Nov. 2002.

[19] A. A. Pomeranz, “ROAM Using Surface Triangle Clusters (RUSTiC),” Mas-

ter’s thesis, University of California at Davis, 2000.

[20] S. Röttger, W. Heidrich, and H.-P. Seidel, “Real-Time Generation of Con-

tinuous Levels of Detail for Height Fields,” in Proceedings of the Sixth In-

ternational Conference in Central Europe on Computer Graphics and Visu-

alization (WSCG ’98) (V. Skala, ed.), pp. 315–322, 1998.

[21] C. C. Tanner, C. J. Migdal, and M. T. Jones, “The Clipmap: A Vir-

tual Mipmap,” in Proceedings of the 25th Annual Conference on Computer

Graphics and Interactive Techniques (SIGGRAPH ’98), (New York, NY,

USA), pp. 151–158, ACM, 1998.

[22] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and

R. Scopigno, “BDAM – Batched Dynamic Adaptive Meshes for High Perfor-

mance Terrain Visualization,” Computer Graphics Forum, vol. 22, pp. 505–

514, September 2003. Proc. Eurographics 2003 – Second Best Paper Award.

[23] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and

R. Scopigno, “Planet-Sized Batched Dynamic Adaptive Meshes (P-BDAM),”

in Proceedings of the 14th IEEE Conference on Visualization (VIS’03),

(Washington, DC, USA), pp. 147–154, IEEE Computer Society, Oct. 19-24

2003.

[24] F. Losasso and H. Hoppe, “Geometry Clipmaps: Terrain Rendering Using

Nested Regular Grids,” ACM Transactions on Graphics (TOG) (Proceedings

of ACM SIGGRAPH ’04), vol. 26, no. 3, pp. 769–776, 2004.

[25] A. Asirvatham and H. Hoppe, “Terrain Rendering Using GPU-Based Geom-

etry Clipmaps,” in GPU Gems 2, pp. 46–53, Addison-Wesley, 2005.

BIBLIOGRAPHY 157

[26] S. Mantler and S. Jeschke, “Interactive Landscape Visualization Using GPU

Ray Casting,” in Proceedings of the 4th International Conference on Com-

puter Graphics and Interactive Techniques in Australasia and Southeast Asia

(GRAPHITE ’06), (New York, NY, USA), pp. 117–126, ACM, 2006.

[27] A. Kolb and C. Rezk-Salama, “Efficient Empty Space Skipping for Per-

Pixel Displacement Mapping,” in Proceedings of International Workshop on

Vision, Modeling and Visualization (VMV’05), pp. 407–414, 2005.

[28] C. McAnlis, “Halo Wars: The Terrain of Next Gen,” in Game Developers

Conference, March 2009.

[29] D. A. K. McRoberts, “Real-time Rendering of Synthetic Terrain,” Master’s

thesis, University of Johannesburg, July 2011.

[30] R. Geiss, “Generating Complex Procedural Terrains Using the GPU,” in

GPU Gems 3, pp. 7–37, Addison Wesley, 2007.

[31] W. E. Lorensen and H. E. Cline, “Marching Cubes: A High Resolution 3D

Surface Construction Algorithm,” in Proceedings of the 14th Annual Confer-

ence on Computer Graphics and Interactive Techniques (SIGGRAPH ’87),

(New York, NY, USA), pp. 163–169, ACM, 1987.

[32] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Worley, Texturing

& Modeling: A Procedural Approach. San Diego, CA, USA: Elsevier Science,

3 ed., 2003.

[33] S. Forstmann and J. Ohya, “Visualization of Large ISO-Surfaces Based on

Nested Clip-Boxes,” in ACM SIGGRAPH 2005 Posters, (New York, NY,

USA), ACM, 2005.

[34] B. Gregorski, M. Duchaineau, P. Lindstrom, V. Pascucci, and K. I. Joy, “In-

teractive View-Dependent Rendering of Large Iisosurfaces,” in Proceedings

of the IEEE Conference on Visualization (VIS’02), (Washington, DC, USA),

pp. 475–484, IEEE Computer Society, 2002.

[35] E. Lengyel, Voxel-Based Terrain for Real-Time Virtual Simulations. PhD

thesis, University of California at Davis, 2010.

[36] P. Bézier, Mathematical and Practical Possibilities of UNISURF. New York:

Academic Press, 1972.

BIBLIOGRAPHY 158

[37] L. Piegl and W. Tiller, The NURBS Book. Berlin: Springer-Verlag, 2 ed.,

1997.

[38] K. Perlin, “Noise Hardware,” in Real-Time Shading, ACM SIGGRAPH ’01

Course Notes, No. 24, (Los Angeles, CA, USA), ACM, 2001.

[39] S. Gustavson, “Simplex Noise Demystified.” http://webstaff.itn.liu.

se/~stegu/simplexnoise/simplexnoise.pdf, March 2005.

[40] Silicon Graphics, Inc., “OpenGL: Open Graphics Library.”

http://www.opengl.org/, 2012.

[41] M. Ikits and M. Magallon, “GLEW: The OpenGL Extension Wrangler Li-

brary.” http://glew.sourceforge.net/, 2012.

[42] D. Woods, N. Weber, and M. Dario, “DevIL - A Full Featured

Cross-platform Image Library.” http://webstaff.itn.liu.se/~stegu/

simplexnoise/simplexnoise.pdf, 2012.

[43] S. Gustavson, “The FreeType Project - A Free, High-Quality, and Portable

Font Engine,” 2012.

[44] Silicon Graphics, Inc., “GLSL: OpenGL Shading Language.”

http://www.opengl.org/documentation/glsl/, 2012.

[45] Microsoft Corp., “MS Windows, QueryPerformanceCounter function,” 2012.

[46] Silicon Graphics, Inc., “OpenGL SDK, glGetQueryObject function,” 2012.

http://webstaff.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
http://webstaff.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
http://webstaff.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
http://webstaff.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf

	Introduction
	Overview
	Motivation
	Challenges
	Research Goals
	Overview of the Proposed Approach
	Summary of Contributions
	Organization of the Thesis

	Background
	Heightmap-based Terrain Representations
	Volumetric Terrain Representations

	The Proposed Approach
	Goals
	Terrain Representation
	Heightmap-based Approaches
	Voxel-based Approaches
	The Proposed Hybrid Approach

	Data Structures
	Voxel Structure
	Computing Voxel Size from Voxel Index
	Computing Voxel Position from Voxel Index

	Patch Structure
	Vertex Structure

	Surface Extraction
	Two-Dimensional (2D) Case
	Three-dimensional (3D) Case
	Handling Voxels at Different Levels
	Static Surface Culling

	Terrain Surface Generation
	Generating Vertices
	Internal Sharing of Vertices
	External Sharing of Vertices
	Storing Vertices

	Generating Faces
	Computing Face and Vertex Normals
	Displacement of Terrain Surface Vertices
	Terrain Deformation

	Visualization
	Lighting
	Texture Mapping
	Generating Texture Coordinates
	Multi-texturing
	Texture Splatting

	Shadows
	Shadow Mapping
	Cascaded Shadow Maps

	Level of Detail
	Basics of Level-of-Detail
	Level-of-Detail Selection
	Level-of-Detail Artifacts
	Smooth Level-of-Detail Transitions

	Implementation and Performance
	Implementation Overview
	Terrain Editor
	Editing Coarse Terrain Model
	Editing Terrain Surface
	Saving and Loading Terrain Data

	Rendering Pipeline
	Vertex Buffer Updates
	Index Buffer Updates
	Frustum Culling

	Generating Shadow Maps
	Terrain Surface Rendering

	Performance and Memory Usage
	Test Environment
	Timers
	Test Scene
	Memory Usage
	Performance
	Terrain Surface Generation Performance
	Terrain Surface Deformation Performance
	Rendering Performance

	Discussion
	Expressiveness
	Simplicity
	Efficiency
	Visual Quality
	Content Creation
	Physics and Interaction

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

