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1 Introduction

Markov chains (MCs) are widely used to model systems which evolve by vis-
iting the states in their state spaces following the available transitions. When
such systems are composed of interacting subsystems, they can be modeled
with various high-level formalisms. For analysis purposes, the high level formal-
ism is mapped to a multi-dimensional MC in which each subsystem normally
corresponds to a different dimension. Then the MC is analyzed probabilis-
tically for its steady-state or transient behavior [19] to improve the existing
system or to devise a new system that meets certain requirements. The prob-
lem considered in this paper arises in this context of state based modeling.

We consider multi-dimensional MCs that are used to model systems com-
posed of a finite number of interacting subsystems. The Cartesian product
of the subsystem state spaces is called the product state space of the system.
Due to semantic constraints, usually the system can only be in a proper sub-
set of its product state space. This set is called the reachable state space of
the system since its difference from the product state space consists of those
unreachable states which the system never occupies. Compact storage of the
matrix underlying the multi-dimensional MC incident on the reachable state
space and efficient implementation of relevant analysis methods using Kro-
necker operations require the set of reachable states to be represented as a
union of Cartesian products of subsets of subsystem state spaces [8]. We call
this the problem of Cartesian product partitioning of multi-dimensional reach-
able state spaces. Currently, there are only ad hoc methods that can be used
to this end, and to the best of our knowledge the study undertaken here is the
first for state based models.

A D-dimensional orthogonal polytope can be represented by a set of D-
dimensional vectors [3]. In such a representation, the Cartesian product of sets
of consecutive integers represents a hyper-rectangle. Hence, Cartesian prod-
uct partitioning of a D-dimensional reachable state space is equivalent to the
hyper-rectangular partitioning of the D-dimensional polytope that is repre-
sented by the reachable state space. Partitioning a two-dimensional orthog-
onal polytope into minimum number of hyper-rectangles is well studied and
there are polynomial time algorithms for this problem [12,15,18]. However, the
three-dimensional version of this problem is shown to be NP-complete [11]. In
[14], an algorithm to partition three-dimensional orthogonal polytopes into
hyper-rectangles is proposed. To the best of our knowledge, there is no algo-
rithm to partition a D-dimensional orthogonal polytope into hyper-rectangles
for D > 3.

Our motivation therefore is to automate the partitioning of a given multi-
dimensional reachable state space into Cartesian products of subsets of sub-
system state spaces. For practical purposes, the number of partitions in the
partitioning should be kept as small as possible. With this objective in mind,
we first show that the problem of partitioning the reachable state space of
a three or higher dimensional system with a minimum number of partitions
into Cartesian products of subsets of subsystem state spaces is NP-complete



Cartesian product partitioning of multi-dimensional reachable state spaces 3

[13]. Then we present two algorithms that can be used to compute possibly
non-optimal partitionings of the reachable state space into Cartesian products
of subsets of subsystem state spaces.

We assume without loss of generality that the subsystem state spaces are
defined on consecutive nonnegative integers starting from 0. Otherwise, it is
always possible to enumerate the subsystem state spaces so that they satisfy
this assumption. The first algorithm starts with partitions as singletons, each
representing a reachable state. Two partitions are merged if their union is also
a Cartesian product of sets of consecutive integers. The partitions are merged
until there are no partitions that can be merged with each other. We call this
the merge based algorithm. The second algorithm takes a different approach.
First, the unit distance graph of the reachable state space is constructed. The
vertex set of this graph is the reachable state space and there is an edge
between two vertices if the distance between them is one. Then this graph is
refined [17] by removing edges until no further refinement is necessary. We call
this the refinement based algorithm.

Through a set of problems from the literature [2,4,6] and those that are
randomly generated, the performance of the two algorithms is investigated.
Results indicate that although it may be more time and memory consuming,
the refinement based algorithm almost always computes partitionings with a
smaller number of partitions than the merge based algorithm. In many cases,
the partitionings computed by the refinement based algorithm are the optimal
ones. Furthermore, the refinement based algorithm is insensitive to the order
in which the states in the reachable state space are processed.

The next section introduces the notation and preliminary definitions used.
The third section defines the problem formally and provides the proof of NP-
completeness. The fourth section presents two algorithms that provide, possi-
bly non-optimal, solutions to the partitioning problem described in the third
section. The fifth section reports on experimental results with the two algo-
rithms. The last section concludes the paper.

2 Notation and definitions

Throughout the paper, calligraphic uppercase letters are used for sets. | · | and
× respectively stand for the number of elements in a set and the Cartesian
product operator. Vectors are represented with boldface lowercase letters and
used to denote multi-dimensional states. For a D-dimensional vector x, xd

denotes the dth element of the vector for d = 1, . . . , D. The vector ed denotes
the dth column of the identity matrix, that is, the dth principal axis vector,
and its length is determined by the context in which it is used. O(·) stands
for the big O notation. The complexities of the algorithms are worst case
complexities unless otherwise stated. R, Z≥0, and Z>0 denote the sets of reals,
nonnegative integers, and positive integers, respectively.

A D-dimensional hyper-rectangle is defined to be a Cartesian product of
D intervals as in ×D

d=1[ad, bd], where [ad, bd] ⊆ R is an interval for ad < bd,
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ad, bd ∈ R, and d = 1, . . . , D. A point set X ⊆ R
D is convex if the line segment

between x and y is in X for x,y ∈ X . The convex hull of X is the smallest set
containing X . A D-dimensional convex polytope is the convex hull of a finite
set X ⊆ R

D [20]. A D-dimensional polytope is the union of a finite number of
D-dimensional convex polytopes. A D-dimensional polytope is orthogonal if it
is a union of D-dimensional hyper-rectangles [3].

Let G = (V , E) be an undirected graph with vertex set V and edge set E . A
graph G′ = (V ′, E ′) is a subgraph of G = (V , E) if V ′ ⊆ V and E ′ ⊆ {(x,y) ∈
E | x,y ∈ V ′}. A subgraph of G = (V , E) induced by V ′ ⊆ V is a graph
whose vertex set is V ′ and edge set is {(x,y) ∈ E | x,y ∈ V ′}. Two vertices
of a graph are said to be connected if there exists a sequence of edges that
lead from one of the vertices to the other. A subgraph of G = (V , E) forms a
connected component if each pair of vertices in the subgraph are connected. A
unit distance graph is a graph having a drawing in which all edges are of unit
length [16].

3 Problem definition

We consider multi-dimensional state based models with D interacting sub-
systems. The state space of the dth subsystem is denoted by Sd ⊆ Z≥0 for
d = 1, . . . , D and S = ×D

d=1Sd is said to be the product state space. In many
cases, the reachable state space of the system, denoted by R, is a proper subset
of S [8] and can be partitioned in a myriad of ways. We are interested in par-
titionings, where the partitions themselves are Cartesian products of subsets
of subsystem state spaces. Next we define the Cartesian product partitioning
problem.

Definition 1 The set {R(1), . . . ,R(K)} is said to be a Cartesian product par-

titioning of the multi-dimensional reachable state space R if R(k) = ×D
d=1R

(k)
d ,

the state space of the dth subsystemR
(k)
d ⊆ Sd consists of consecutive integers,

∪K
k=1R

(k) = R, and R(k) ∩ R(l) = ∅ for d = 1, . . . , D, k 6= l, k, l = 1, . . . ,K,
and K ∈ Z>0.

For practical purposes that aid the use of Kronecker operations, the number
of partitions in the Cartesian product partitionings of R should be as small as
possible. Therefore, our interest lies in minimizing the number of partitions in
the partitioning of R. Unfortunately, the decision problem derived from the
minimum Cartesian product partitioning problem is NP-complete [13] when
the system has three or higher dimensions as we next show.

Theorem 1 It is NP-complete to decide whether there is a Cartesian product
partitioning of the multi-dimensional reachable state space R with less than
KR partitions for given D ∈ Z>0, KR ∈ Z>0, and R ⊆ Z

D
≥0 when D ≥ 3.

Proof It is possible to check whether a set of states is a Cartesian product of
sets of consecutive integers, two sets are disjoint, and the union of given sets is
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equal to R in polynomial time. Therefore, the Cartesian product partitioning
problem is in class NP.

For a given arbitrary D-dimensional orthogonal polytope P ⊆ R
D and an

integer KR ∈ Z>0, it is NP-complete to decide whether P can be partitioned
into KR or less D-dimensional hyper-rectangles for D ≥ 3 since it is NP-
complete when instances are restricted to D = 3 [11]. Now, let V ⊆ P be the
vertex set of P and Vd = {xd ∈ R | x ∈ V} for d = 1, . . . , D. Furthermore,
assume that the elements of Vd = {vd,1, . . . , vd,|Vd|} are ordered so as to satisfy
vd,k < vd,l if and only if k < l for k, l = 1, . . . , |Vd| and d = 1, . . . , D.

(a) P (b) Q

Fig. 1 An arbitrary three-dimensional orthogonal polytope P and its transformation Q

Since P is an orthogonal polytope, there exists K ∈ Z>0 such that

P =

K
⋃

k=1

×D
d=1[a

(k)
d , b

(k)
d ],

where ×D
d=1[a

(k)
d , b

(k)
d ] is a hyper-rectangle for k = 1, . . . ,K. Note that P can

be transformed to an orthogonal polytope Q ⊆ R
D (see Figure 1) for which

the minimum hyper-rectangular partitionings of P and Q include the same
number of hyper-rectangles as we next show.

Let

fd(xd) =

{

k − 0.5 + gd(xd) if vd,1 ≤ xd < vd,|Vd|

|Vd| − 0.5 if xd = vd,|Vd|

be the transformation function, where

gd(xd) = (xd − v
(k)
d )/(v

(k+1)
d − v

(k)
d )



6 Tuǧrul Dayar, M. Can Orhan

for xd ∈ [vd,k, vd,k+1), k = 1, . . . , |Vd| − 1, and d = 1, . . . , D. The function
fd : [vd,1, vd,|Vd|] → [0.5, |Vd| − 0.5] is continuous and increasing, so the trans-
formation of an interval is also an interval, that is,

{yd ∈ R | xd ∈ [ad, bd], yd = fd(xd)} = [fd(ad), fd(bd)].

Then the set

Q = {y ∈ R
D | x ∈ P , yd = fd(xd) for d = 1, . . . , D}

= {y ∈ R
D | x ∈ ∪K

k=1 ×
D
d=1 [a

(k)
d , b

(k)
d ], yd = fd(xd) for d = 1, . . . , D}

=
K
⋃

k=1

×D
d=1[fd(a

(k)
d ), fd(b

(k)
d )]

is an orthogonal polytope since it is a union of hyper-rectangles, and

[fd(x
(k)
d ), fd(b

(k)
d )] ∩ [fd(a

(l)
d ), fd(b

(l)
d )] = ∅

holds if [a
(k)
d , b

(k)
d ]∩ [a

(l)
d , b

(l)
d ] = ∅ for k 6= l, k, l = 1, . . . ,K, and d = 1, . . . , D.

Therefore, if P can be partitioned into K hyper-rectangles, then Q can be
partitioned into K or less hyper-rectangles. The inverse of the function fd is
also increasing and continuous. Hence, Q can be transformed to P similarly.
So, we conclude Q can be partitioned into K hyper-rectangles if and only if
P can be partitioned into K hyper-rectangles.

Now, we transform the orthogonal polytope Q to the D-dimensional reach-
able state space,R. Each vertex v ofQ satisfies vd−0.5 ∈ Z≥0 for d = 1, . . . , D,
so

Q =

M
⋃

m=1

×D
d=1[x

(m)
d − 0.5, x

(m)
d + 0.5],

where {x(1), . . . ,x(M)} = Q∩ Z
D
≥0 for some M ∈ Z>0 [3].

Let R = Q∩ZD
≥0 and {R(1), . . . ,R(K)} be a Cartesian product partitioning

of R, where R(k) = ×D
d=1R

(k)
d for k = 1, . . . ,K. Then Q can be written as a

union of disjoint hyper-rectangles, that is,

Q =
⋃

x∈R

×D
d=1[xd−0.5, xd+0.5] =

K
⋃

k=1

×D
d=1[min(R

(k)
d )−0.5,max(R

(k)
d )+0.5].

Therefore, if R can be partitioned into K Cartesian products of sets of con-
secutive integers, then Q can be partitioned into K or less hyper-rectangles.

Now, let {Q(1), . . . ,Q(K)} be a hyper-rectangular partitioning of Q, where

Q(k) = ×D
d=1[a

(k)
d , b

(k)
d ] for k = 1, . . . ,K. Then

R =
K
⋃

k=1

(Q(k) ∩ Z
D
≥0) =

K
⋃

k=1

×D
d=1([a

(k)
d , b

(k)
d ] ∩ Z≥0),
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where [a
(k)
d , b

(k)
d ] ∩ Z≥0 is a set of consecutive integers if it is not empty for

k = 1, . . . ,K and d = 1, . . . , D. Besides, R(k) ∩ R(l) = ∅ for k 6= l and
k, l = 1, . . . ,K. Then {R(1), . . . ,R(K)} is a Cartesian product partitioning of
R. Therefore if Q can be partitioned into K hyper-rectangles, then R can
be partitioned into K or less Cartesian products of sets of consecutive inte-
gers. Thus, R can be partitioned into K partitions if and only if Q can be
partitioned into K hyper-rectangles. Therefore, R can be partitioned into less
than KR partitions if and only if P can be partitioned into less than KR

hyper-rectangles. Then it is NP-complete to compute the Cartesian product
partitioning of R ⊆ Z

D
≥0 with less than KR partitions. ⊓⊔

4 Cartesian product partitioning algorithms

In this section, we present two algorithms to compute Cartesian product parti-
tionings of the multi-dimensional reachable state space R. The first algorithm
starts with partitions as singletons, each representing a reachable state. A
partition is merged with another partition if their union is also a Cartesian
product of sets of consecutive integers. This algorithm terminates when there
are no partitions that can be merged with each other. The second algorithm
takes a different approach. The unit distance graph of the reachable state space
is constructed. Then this graph is refined by removing edges until the vertex
set of each connected component can be expressed as a Cartesian product of
sets of consecutive integers.

4.1 Merge based partitioning

We start by defining set mergeability and then provide the condition for the
mergeability of two partitions in a Cartesian product partitioning of R.

Definition 2 Let X = ×D
d=1Xd and Y = ×D

d=1Yd be two partitions in a
Cartesian product partitioning of R. The partitions X and Y are said to be
mergeable if X∪Y = ×D

d=1(Xd∪Yd) and Xd∪Yd consists of consecutive integers
for d = 1, . . . , D.

Lemma 1 Let X = ×D
d=1Xd and Y = ×D

d=1Yd be two partitions in a Cartesian
product partitioning of R. The partitions X and Y are mergeable if and only if
there exists some i = 1, . . . , D such that max(Xi)+ 1 = min(Yi) or max(Yi)+
1 = min(Xi), and Xd = Yd for d = 1, . . . , i− 1, i+ 1, . . . , D.
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Proof (⇐) Let i = 1, . . . , D, max(Xi)+1 = min(Yi) or max(Yi)+1 = min(Xi),
and Xd = Yd for d = 1, . . . , i− 1, i+ 1, . . . , D. Then

X ∪ Y =
(

×D
d=1Xd

)

⋃

(

×D
d=1Yd

)

=
(

(×i−1
d=1Xd)×Xi × (×D

d=i+1Xd)
)

⋃

(

(×i−1
d=1Yd)× Yi × (×D

d=i+1Yd)
)

=
(

(×i−1
d=1(Xd ∪ Yd))×Xi × (×D

d=i+1(Xd ∪ Yd))
)

⋃

(

(×i−1
d=1(Xd ∪ Yd))× Yi × (×D

d=i+1(Xd ∪ Yd))
)

= (×i−1
d=1(Xd ∪ Yd))× (Xi ∪ Yi)× (×D

d=i+1(Xd ∪ Yd))

= ×D
d=1(Xd ∪ Yd)

holds. The set Xd∪Yd consists of consecutive elements for d = 1, . . . , D. Hence,
X and Y are mergeable partitions.

(⇒) Let X ⊆ R and Y ⊆ R be disjoint mergeable partitions. We first show
that there exists i = 1, . . . , D such that Xi∩Yi = ∅. Assume that Xd∩Yd 6= ∅ for
d = 1, . . . , D. Then there exists u ∈ S such that ud ∈ Xd∩Yd for d = 1, . . . , D.
However, this contradicts the assumption that X and Y are disjoint. Thus
Xi ∩ Yi = ∅ for some i = 1, . . . , D. Besides, either max(Xi) + 1 = min(Yi) or
max(Yi) + 1 = min(Xi) holds since Xi ∪ Yi consists of consecutive elements.

Now we show that Xd = Yd for d = 1, . . . , i − 1, i+ 1, . . . , D. For the sake
of contradiction, suppose there exists j = 1, . . . , i − 1, i + 1, . . . , D such that
Xj 6= Yj (i.e., (Xj \ Yj) ∪ (Yj \ Xj) 6= ∅). Without loss of generality, assume
that Xj \ Yj 6= ∅. Then there exists u ∈ ×D

d=1(Xd ∪ Yd), where ui ∈ Yi \ Xi

and uj ∈ Xj \ Yj . Therefore, u 6∈ X ∪ Y since ui 6∈ Xi and uj 6∈ Yj . Then
X ∪Y 6= ×D

d=1(Xd∪Yd) holds, but this contradicts the assumption that X and
Y are mergeable partitions. Therefore Xd = Yd for d = 1, . . . , i−1, i+1, . . . , D.

⊓⊔

Now, we demonstrate the concept of mergeability on an example.

Example 1 Let D = 3, Sd = {0, 1, 2} for d = 1, 2, 3, and let X = {0, 1} ×
{1} × {2} be a partition in a Cartesian product partitioning of some R ⊆
×3

d=1Sd. Then by Lemma 1, the partitions that can be merged with X are
{2}× {1}× {2}, {0, 1}× {0}× {2}, {0, 1}× {2}× {2}, {0, 1}× {1}× {1}, and
{0, 1} × {1} × {0, 1}.

Let X = ×D
d=1Xd be a partition in a Cartesian product partitioning of R.

The states (min(X1), . . . ,min(XD)) ∈ X and (max(X1), . . . ,max(XD)) ∈ X
are said to be the end states of the partition X . Due to Lemma 1, mergeability
of two partitions can be determined by their end states. Besides, the states in
a partition can be obtained from its end states. Therefore, it is sufficient to
keep only the end states of the partitions instead of maintaining the partitions
by using a disjoint-set data structure and a union-find algorithm [7] to merge
two partitions.
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Algorithm 1 Merge based algorithm to compute a Cartesian product parti-
tioning of given multi-dimensional reachable state space
Input: D-dimensional reachable state space: R
Output: Cartesian product partitioning of R: Q
1: function MergeBasedPartitioning(R,Q)
2: Q ← ∅
3: for all x ∈ R do

4: X ← {x}
5: while there exists some Y ∈ Q mergeable with X do

6: X ← X ∪ Y ; Q ← Q \ {Y}
7: end while

8: Q ← Q∪ {X}
9: end for

10: end function

In Algorithm 1, we provide the merge based Cartesian product partitioning
of R. It starts by constructing a singleton for each state in R. For each parti-
tion that is a singleton or is obtained by merging two partitions, a mergeable
partition is sought. If such a partition is located, the two partitions are merged.
There are |R| partitions; hence, the total time complexity of constructing a
new partition is O(D|R|). A new partition is obtained when a singleton is con-
structed or two partitions are merged. Initially there are |R| partitions, and
the partitions in the partitioning never get split, implying there can be at most
(|R| − 1) merge operations. Then the total cost of merging two partitions is
O(D|R|). Since each partition needs to check O(D) end states for mergeability
with another partition, a mergeable partition is sought O(D|R|) times.

The efficiency of the algorithm depends on the data structure used to keep
the end states of the partitions. When a balanced tree such as an AVL tree [1]
is used to keep the end states, the cost of searching for a partition becomes
O(lg(L)) time, where L is the maximum number of partitions during the exe-
cution of the algorithm. Therefore, the time complexity of the algorithm asso-
ciated with seeking a mergeable partition is O(D|R|lg(L)) when the end states
of the partitions are kept in a balanced tree. Another cost in the algorithm
is inserting end states to the tree when no mergeable partition is found and
removing the end states from the tree when two partitions are merged. The
time complexities of these operations are also O(|R|lg(L)). Therefore, the time
complexity of the algorithm is O(D|R|lg(L)). The space requirement for each
partition is O(D); hence, the space requirement of the algorithm is O(DL).
In the worst case, no partitions are merged and L = |R|; hence, the time
and space complexities of the algorithm are O(D|R|lg(|R|)) and O(D|R|),
respectively. If L is constant, the number of partitions is bounded by a con-
stant during the execution of the algorithm. In that case, the time and space
complexities of the algorithm become O(D|R|) and O(D), respectively.

Observe that the partition computed by Algorithm 1 depends on the order
in which the states of R are processed. Now, let us consider the following
three-dimensional example.
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Example 2 Let Sd = {0, 1, 2, 3} for d = 1, 2, 3,

R = {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (2, 0, 0),

(2, 0, 1), (2, 1, 0), (2, 1, 1), (3, 0, 1), (3, 1, 0)},

and assume that the states in R are processed in lexicographical order.

When the first 8 states are processed, the partitions are {(0, 0, 1), (0, 1, 1)},
{(1, 1, 1)}, {(0, 1, 0), (1, 1, 0)}, {(1, 0, 0), (1, 0, 1)}, and {(2, 0, 0)}. Then the sin-
gleton {(2, 0, 1)} is merged with the singleton {(2, 0, 0)}, and their union is
merged with {(1, 0, 0), (1, 0, 1)}. Finally, the remaining states are processed.

The number of partitions in the Cartesian product partitioning of R turns
out to be 5, and the partitions are given by {(0, 1, 0), (1, 1, 0), (2, 1, 0), (3, 1, 0)},
{(1, 1, 1), (2, 1, 1)}, {(0, 0, 1), (0, 1, 1)}, {(1, 0, 0), (1, 0, 1), (2, 0, 0), (2, 0, 1)}, and
{(3, 0, 1)}.

4.2 Refinement based partitioning

The refinement based partitioning algorithm constructs the unit distance graph
of the multi-dimensional reachable state space R. The vertex set of this graph
isR and there is an edge between two vertices x,y ∈ R if x−y ∈ ∪D

d=1{−ed, ed}.
In other words, two vertices are adjacent in the unit distance graph if there
is consecutiveness of the vertices along a particular dimension while the val-
ues of states variables in other dimensions remain constant. We next define
conflicting edges in a subgraph of the unit distance graph.

Definition 3 Let G = (R, E) be a subgraph of the unit distance graph of R
and let x,x+δi,x+δj ∈ R for some i, j = 1, . . . , D, i 6= j, δi ∈ {−ei, ei}, and
δj ∈ {−ej , ej}. Two edges (x,x+δi), (x,x+δj) ∈ E are said to be conflicting
if x+ δi + δj 6∈ R or {(x+ δi,x+ δi + δj), (x+ δj ,x+ δi + δj)} 6⊆ E .

The next lemma and corollary show that in a subgraph of the unit distance
graph of R with no conflicting edges, the vertices in each connected compo-
nent can be written as a Cartesian product of sets of consecutive integers.
Therefore, eliminating conflicting edges in the unit distance graph of R leads
to a Cartesian product partitioning of R.

Lemma 2 Let G = (R, E) be a subgraph of the unit distance graph of R with
no conflicting edges, M ∈ Z>0, x

(m) ∈ R for m = 0, . . . ,M , and

X (M) = ×D
d=1{

M

min
m=0

(x
(m)
d ), . . . ,

M
max
m=0

(x
(m)
d )}.

If (x(m−1),x(m)) ∈ E for m = 1, . . . ,M , then X (M) ⊆ R and (u,v) ∈ E for
u− v ∈ ∪D

d=1{−ed, ed} and u,v ∈ X (M).
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Proof The proof is by mathematical induction on m. The base case is trivial.
Assume that the statement holds when (x(m−1),x(m)) ∈ E for m = 1, . . . ,M−
1. Now, let (x(M−1),x(M)) ∈ E . If X (M) \X (M − 1) = ∅, the statement holds
by the inductive hypothesis. Otherwise,

X (M) \ X (M − 1) =

(

×i−1
d=1{

M−1
min
m=1

(x
(m)
d ), . . . ,

M−1
max
m=1

(x
(m)
d )}

)

× {x
(M−1)
i + δ}

×

(

×D
d=i+1{

M−1
min
m=1

(x
(m)
d ), . . . ,

M−1
max
m=1

(x
(m)
d )}

)

is not empty, where δ = x
(M)
i − x

(M−1)
i ∈ {−1, 1} for some i = 1, . . . , D. Let

Y = {y ∈ X (M) \ X (M − 1) | y 6∈ R or (y,y − δei) 6∈ E}

and assume that Y 6= ∅. Then there exists x,y ∈ X (M) \ X (M − 1) such that
x 6∈ Y, y ∈ Y, and x−y ∈ ∪D

d=1{−ed, ed}. In this case, (x−δei,y−δei) ∈ E by
the inductive hypothesis and (x,x−δei) ∈ E since x 6∈ Y. Then (x,x−δei) and
(x−δei,y−δei) are conflicting edges in G, but this contradicts the assumption
that G does not contain conflicting edges. Hence, Y = ∅, that is, u ∈ R and
(u,u− δei) ∈ E for u ∈ X (M) \ X (M − 1). Now, let x,y ∈ X (M) \ X (M − 1)
be two arbitrary vertices such that x − y ∈ ∪D

d=1{−ed, ed}. Since Y = ∅,
{x,y} ⊆ R and

{(x,x− δei), (y,y − δei), (x− δei,y − δei)} ⊆ E .

Then (x,y) ∈ E since there are no conflicting edges in G. Therefore, the
statement also holds for M . ⊓⊔

Corollary 1 Let G = (R, E) be a subgraph of the unit distance graph of R
with no conflicting edges and G′ = (R′, E ′) be a connected component in G.
Then R′ can be written as a Cartesian product of consecutive integers, that is,

R′ = ×D
d=1{ud, . . . , vd},

where u,v ∈ R and ud ≤ vd for d = 1, . . . , D.

The next definition introduces the concept of a separator, which is used in
refining the unit distance graph of R.

Definition 4 Let U ,V ⊆ R and G = (R, E) be a subgraph of the unit distance
graph of R. The set of edges Z ⊆ E is said to be a separator if

1. each edge in Z is incident to a vertex in U and a vertex in V ,
2. subgraphs of G induced by the sets U and V are each connected,
3. there does not exist two vertices x,y ∈ R such that (x,x + δed) ∈ Z,

(y,y + δed) ∈ E \ Z, {(x,y), (x+ δed,y + δed)} ⊆ E , and
4. there exists at least one edge in Z that conflicts with some edge in E ,

where U ⊆ {x ∈ R | xd = k} and V ⊆ {x ∈ R | xd = k + δ} for some k ∈ Sd,
δ ∈ {−1, 1}, and d = 1, . . . , D.
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The next lemma shows that removing the edges in a separator decreases
the number of conflicting edges in a subgraph of the unit distance graph of R.

Lemma 3 Let G = (R, E) be a subgraph of the unit distance graph of R and
Z be a separator in G. Two edges in G′ = (R, E \ Z) conflict only if they also
conflict in G.

Proof Let (x,x + δi) and (x,x + δj) be two edges that do not conflict in G
for some i, j = 1, . . . , D, i 6= j, δi ∈ {−ei, ei}, and δj ∈ {−ej , ej}. Then
x+ δi + δj ∈ R and {(x+ δi,x+ δi + δj), (x+ δj ,x+ δi + δj)} ⊆ E . Due to
Definition 4, (x,x+ δi) ∈ Z if and only if (x+ δj ,x+ δi + δj) ∈ Z. Similarly,
(x,x+ δj) ∈ Z if and only if (x+ δi,x+ δi + δj) ∈ Z. Then,

{(x+ δi,x+ δi + δj), (x+ δj ,x+ δi + δj)} ⊆ E \ Z

if {(x,x + δi), (x,x + δj)} ⊆ E \ Z. Therefore, if the two edges in G do not
conflict, then they do not conflict in G′. ⊓⊔

Now, we are in a position to provide the refinement based algorithm for
Cartesian product partitioning of R (see Algorithm 2). At the outset, the
unit distance graph of R is constructed. Then the separators in this graph
are constructed and inserted to a priority queue [7], where the priority of
a separator is the total number of edges which conflict with an edge in the
separator. The graph is refined by removing the separator with maximum
priority until no conflicting edges remain. The edge set of the graph changes
when a separator is removed; hence, the separators need to be reconstructed.
By Lemma 3, an edge is conflicting in the refined graph only if it is also
conflicting before refinement. Hence, each separator in the refined graph is a
subset of a separator in the graph before refinement. Therefore, in order to
reconstruct the separators, it is necessary and sufficient to visit the vertices
incident to the edges in the separators intersecting the removed separator,
where two separators are said to be intersecting if they include edges incident
to the same vertex. If all conflicting edges are eliminated, then the vertices in
each connected component can be written as a union of Cartesian products of
sets of consecutive integers by Corollary 1.

In order to construct the unit distance graph, first all adjacent vertices
need to be determined. In order to facilitate this, each vertex keeps an ad-
jacency list of length 2D to identify the adjacent vertices. The vertices are
first inserted to an AVL tree [1]. Then for each vertex, vertices that might
be adjacent in the product state space are sought in the tree. There are 2D
such vertices; hence, 2D vertices are sought for each vertex. Therefore, the
space complexity of maintaining the graph becomes O(D|R|) and the time
complexity of constructing the unit distance graph becomes O(D|R|lg(|R|)).
After the graph is constructed, the AVL tree is destroyed.

After the adjacency list of each vertex is set, separators need to be con-
structed. Each separator includes at least one conflicting edge, that is, its pri-
ority is positive. Algorithm 2 visits each edge and checks whether it conflicts
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Algorithm 2 Refinement based algorithm to compute a Cartesian product
partitioning of given multi-dimensional reachable state space
Input: D-dimensional reachable state space: R
Output: Cartesian product partitioning of R: Q
1: function RefinementBasedPartitioning(R,Q)
2: Construct unit distance graph of R, G = (R, E)
3: Construct an empty priority queue PQ
4: for all x ∈ R do

5: for all d = 1, . . . , D do

6: if x+ ed ∈ R then

7: if (x,x+ ed) conflicts with some edge in E
8: AND (x,x+ ed) is not in a separator then

9: Construct separator Z including (x,x+ ed); Insert Z to PQ
10: end if

11: end if

12: end for

13: end for

14: while PQ is not empty do

15: Zmax ← separator Z in PQ whose priority is maximum
16: Remove Zmax from PQ
17: for all (x,y) ∈ Zmax do

18: L ← ∅
19: for all separators Z in PQ including an edge incident to x or y do

20: L ← L ∪ {Z}; Remove Z from PQ
21: end for

22: end for

23: E ← E \ Zmax

24: for all Z ∈ L do

25: while Z 6= ∅ do
26: Construct the separator Z′ including some edge (x,y) ∈ Z; Z ← Z \ Z′

27: if priority of Z′ is positive then

28: Insert Z′ to PQ
29: end if

30: end while

31: end for

32: end while

33: Q ← ∅
34: for all connected components G′ = (R′, E ′) of G = (R, E) do

35: Q ← Q ∪ {R′}
36: end for

37: end function

with some other edge. A separator is formed by the two vertex sets (U and V
in Definition 4) and the subgraphs induced by these two sets are connected.
Besides, the separator is maximal; hence, the separator including a particular
edge is unique and only one separator can include the edge (see Item 3 of
Definition 4). Therefore, the separator including an edge is constructed only
once in the unit distance graph. While constructing a separator Z including
the edge (x,y), a breadth-first search starting at x is used to visit the vertices
connected to x [7]. The time complexity of constructing the separator Z is
O(D|Z|). Since each edge is added to at most one separator, the number of
edges in the union of separators is O(|E|). Therefore, the total time complexity
of constructing all separators in the unit distance graph becomes O(D|E|). At
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each vertex, we use an array of size 2D to keep the separators including the
edge incident to that vertex. The space complexity of the algorithm remains
as O(D|R|), but it takes constant time to retrieve the separator including a
given edge.

When a separator is constructed, it is added to the priority queue. We use a
binary heap as the priority queue. Observe that the number of separators does
not exceed |E| since each separator includes at least one edge. Therefore, the
cost of inserting separators to the priority queue is O(|E|lg(|E|)). We consider
an array implementation of the priority queue and the maximum number of
separators is not known in advance; therefore, we allocate O(|E|) = O(D|R|)
space for the priority queue.

After the separators in the unit distance graph are inserted to the priority
queue, the graph is refined by removing the edges in the separator with max-
imum priority until no separators remain in the priority queue. The graph is
refined at most |E| times since at least one edge is removed from the graph at
each refinement step. At each refinement step, the separator with maximum
priority, Zmax, is chosen. When Zmax is removed, the intersecting separators
need to be reconstructed. Hence, at each refinement step, all edges of Zmax are
visited to obtain the intersecting separators. These separators are inserted to a
list L and removed from the heap. Then these separators are reconstructed for
the edge set E \ Zmax and inserted to the heap. Reconstruction of a separator
Z requires visiting all the vertices incident to the edges in it. The number
of edges in the union of separators intersecting with Zmax is O(D|E|); hence,
reconstruction of separators at each step has time complexity O(D|E|). There-
fore, the total time complexity of reconstructing separators becomes O(D|E|2)
since reconstruction is required in all refinement steps. Now, consider the costs
related to the heap operations. At each refinement step, the separators inter-
secting with Zmax are removed from the heap. The separator Zmax intersects
with O(D|Zmax|) separators. Therefore, during the execution of the algorithm,
the total number of removals from the heap is O(D|E|) since the total size of
the separators removed from the graph is O(|E|). The algorithm starts and
ends with an empty heap, so the number of insertions to the heap is also
O(D|E|). Hence, the total complexity of heap operations is O(D|E|lg(D|E|)).
When all costs are considered, the time and space complexities of Algorithm
2 are O(D|E|2) = O(D3|R|2) and O(D|R|), respectively.

Example 2 (cont’d) Algorithm 2 first constructs the unit distance graph of R
and then refines the graph by removing edges. Let G(k) = (R, E(k)) denote
the subgraph of the unit distance graph of R, where E(k) is the edge set after
k separators are removed. In the unit distance graph of R, G(0), there are 7
pairs of conflicting edges (see Figure 2).
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Fig. 2 Conflicting edges in the unit distance graph of R in Example 2

(a) G(0) = (R, E(0)) (b) G(1) = (R, E(1))

(c) G(2) = (R, E(2)) (d) G(3) = (R, E(3))

Fig. 3 Subgraphs of unit distance graph of R in Example 2 for Algorithm 2

The separators in the unit distance graph of R (see Figure 3(a)) are

Z(0,1) = {((0, 0, 1), (0, 1, 1)), ((1, 0, 0), (1, 1, 0)), ((1, 0, 1), (1, 1, 1)),

((2, 0, 0), (2, 1, 0)), ((2, 0, 1), (2, 1, 1))}

Z(0,2) = {((0, 1, 0), (0, 1, 1)), ((1, 0, 0), (1, 0, 1)), ((1, 1, 0), (1, 1, 1)),

((2, 0, 0), (2, 0, 1)), ((2, 1, 0), (2, 1, 1))}

Z(0,3) = {((0, 0, 1), (1, 0, 1)), ((0, 1, 0), (1, 1, 0)), ((0, 1, 1), (1, 1, 1))}

Z(0,4) = {((2, 0, 1), (3, 0, 1))}, Z(0,5) = {((2, 1, 0), (3, 1, 0))}.
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The priorities of the separators Z(0,1) and Z(0,2) are 4, and the priorities of the
other separators are 2. There are two separators with maximum priority and
one of them needs to be chosen. Let the edges in Z(0,1) be chosen for removal.
Then all other separators are reconstructed and 3 conflicting edges remain in
G(1) (see Figure 3(b)). The separators in this graph are

Z(1,1) = {((1, 0, 0), (1, 0, 1)), ((2, 0, 0), (2, 0, 1))},

Z(1,2) = {((0, 1, 0), (0, 1, 1)), ((1, 1, 0), (1, 1, 1)), ((2, 1, 0), (2, 1, 1))},

Z(1,3) = {((0, 0, 1), (1, 0, 1))}, Z(1,4) = Z(0,4), Z(1,5) = Z(0,5).

The priority of separator Z(1,1) is 2, and the priorities of the other separa-
tors are 1. Then the edges in Z(1,1) are removed from the edge set E(1). After
these edges are removed, Z(1,3) and Z(1,4) are reconstructed and one conflict-
ing edge remains in G(2) (see Figure 3(c)). The separators in this graph are
Z(2,1) = Z(1,2) and Z(2,2) = Z(1,5).

The priorities of both separators are 1, and either of them can be cho-
sen for refinement. If Z(2,2) is chosen, Z(2,1) is reconstructed and no con-
flicting edges remain in G(3) (see Figure 3(d)). By Corollary 1, the vertices
in each connected component of G(3) are the elements of the same parti-
tion of the Cartesian product partitioning. Therefore, the number of par-
titions in the Cartesian product partitioning of R is 4 and the partitions
are given by {(0, 0, 1), (1, 0, 1), (2, 0, 1), (3, 0, 1)}, {(1, 0, 0), (2, 0, 0)}, {(3, 1, 0)},
and {(0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 1, 1), (2, 1, 0), (2, 1, 1)}.

5 Experimental Results

We implemented the proposed partitioning algorithms in C; the code can be
obtained from [10]. All experiments are performed on a PC with an Intel
Core2 Duo 2.4 GHz processor and 4 Gigabytes (GB) of main memory. All
times are reported as seconds of CPU time. We monitor the memory allocation
of the algorithms with the pidstat command of the sysstat package under
Linux and all memory allocation results are reported as Megabytes (MB).
We consider two groups of test problems. The first group consists of multi-
dimensional reachable state spaces of Markovian models from the literature.
The second group consists of a class of randomly generated multi-dimensional
reachable state spaces with known minimum Cartesian product partitioning.
We use the second group to find out how good the partitioning algorithms
perform in terms of number of partitions with respect to the optimal solution.

5.1 Test problems from literature

We consider state spaces of call center models with different control policies
(N–model, V–model, W–model) [2], a parallel communication software model
(courier large, courier med) [5], a manufacturing systems model with Kanban
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control (kanban fail, kanban large) [4], and a queueing model with multiple
servers and queues (msmq large) [6]. The V–model has different variations
with 2, 3, and 4 types of customers that we consider. ‘V–model (2)’, ‘V–model
(3)’ and ‘V–model (4)’ in the results refer to the V–model with 2, 3, and 4
customer types [2].

Table 1 gives the properties of the first group of test problems. The first
four columns give the model name, the dimension of the state space, the size
of the product state space, and the size of the reachable state space. The fifth
column gives the minimum number of partitions in Cartesian product par-
titioning. This number is calculated analytically for each model. The states
of each connected component in the graph, that is obtained by removing the
separators from the unit distance graph of R, are in same partition in the
minimum Cartesian product partitioning of R (see Lemma 5). Hence, each
partition in the minimum Cartesian product partitioning of R is a union of
partitions obtained by removing the separators from the unit distance graph
of R. We compute all possible Cartesian product partitionings satisfying this
condition in order to obtain the number of partitions in the minimum Carte-
sian product partitioning. This is relatively trivial when there are small num-
ber of separators and intersecting separator pairs. However, the number of
Cartesian product partitionings to compute increase exponentially with the
number of separators and intersecting separator pairs. We also report two im-
portant characteristics of the models. The sixth and seventh columns give the
number of separators and the number of separator pairs that have at least
one edge incident to the same vertex in the unit distance graph, respectively.
The reachability of a multi-dimensional state depends on the interaction of
the subsystems. Hence, the number of separators and intersecting separator
pairs depends on the model and the reachability conditions. There are many
different reachability conditions, such as the sum of different subsystem state
values might be bounded or a subsystem cannot be in a state depending on
other subsystem states. In the N–model, the sum of different subsystem state
values is bounded implying more separators and intersecting separator pairs.
There is no such interaction in the other models we consider. V–model, W–
model, courier large, and courier med are simpler than the N–model, and have
relatively small numbers of separators. There are no separators in kanban fail,
kanban large, msmq large, and kanban large, that is, the unit distance graphs
of these models do not include any conflicting edges. Therefore, these models
can be considered as trivial.

In Table 2, we present the results of experiments for the models from liter-
ature when the states are processed in lexicographical order. If the states are
not given in this order, then it may be easily obtained by sorting. The second
and fifth columns give the number of partitions in the Cartesian product par-
titionings computed by merge and refinement based partitioning algorithms,
respectively. When the states are processed in lexicographical order, both algo-
rithms compute the optimal solution for the courier large, courier med, kan-
ban fail, kanban large, and msmq large models. The merge based algorithm
computes the optimal solution of only the N–model among the call center
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Table 1 Properties of models from literature

Model D |S| |R| MinPrt Sep SepInt

N–model 5 2,857,680 50,982 35 47 168
V–model (2) 3 2,695,784 103,709 2 3 3
V–model (3) 4 634,114 24,414 2 4 6
V–model (4) 5 260,000 10,025 2 5 10
W–model 5 1,377,810 20,142 4 5 10
courier large 4 56,265,300 1,632,600 9 8 4
courier med 4 8,593,200 419,400 7 6 3
kanban fail 4 19,131,876 2,302,911 8 0 0
kanban large 4 1,742,400 1,742,400 1 0 0
msmq large 7 1,280,000,000 1,311,744 28 0 0

models. The refinement based algorithm computes the optimal solution for all
call center models except the relatively complicated N–model. It is reasonable
to use merge based algorithm for relatively complicated problems. For all the
models, the merge based algorithm requires less time and memory than the
refinement based algorithm.

Table 2 Experimental results for models from literature when states are processed in lexi-
cographical order

Merge Refinement

Model Prt Time Memory Prt Time Memory

N–model 35 0.3 0.5 43 0.3 0.7
V–model (2) 3 0.2 0.5 2 0.4 15.5
V–model (3) 4 0.1 0.5 2 0.1 0.7
V–model (4) 5 0.0 0.5 2 0.0 0.7
W–model 5 0.1 0.5 4 0.1 0.7
courier large 9 6.0 0.5 9 10.2 301.0
courier med 7 1.5 0.5 7 2.4 77.9
kanban fail 8 8.2 0.5 8 14.4 424.3
kanban large 1 5.7 0.5 1 10.9 321.2
msmq large 28 9.0 0.5 28 14.0 336.4

In Table 3, we present the results of experiments for the models from lit-
erature when the states are processed in random order. For both algorithms,
we compute the Cartesian product partitioning by processing the states in 51
random orderings so as to provide mean values. The second and fifth columns
of Table 3 give the mean number of partitions together with the confidence
interval both rounded to the nearest integer for a confidence probability of
95% of the partitionings obtained by merge and refinement based algorithms,
respectively. In ‘Time’ and ‘Memory’ columns, the mean values and the con-
fidence intervals for a confidence probability of 95% of the experiments are
reported. In all columns, the first value in parentheses is the mean and the
other value is the confidence interval.
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The partitioning size and the memory requirement remain the same for
the refinement based algorithm, but the time requirement increases when the
states are processed in random order. In all of the models, the number of
separators is small, so the increase in time is not due to the refinement of
the graph and updating of separators, but due to the graph construction.
These results suggest that cache is more efficiently used while accessing the
states when the states are ordered lexicographically since each state becomes
a child of the last accessed state in the AVL tree. Hence, insertion to the
tree becomes much more efficient for the lexicographic ordering of the states.
The order of states is much more important for the merge based algorithm.
In this algorithm, two partitions are merged along dimension d if the subsets
of their subsystems are the same in all dimensions except d. When the states
are ordered lexicographically, a partition is merged with all possible partitions
along a dimension before it is merged with a partition in another dimension.
When the states are ordered randomly, partitions are merged along random
dimensions depending on the order of the states. Hence, all possible partitions
along a dimension are not considered. Therefore, the number of partitions for
random ordering of the states increases by a factor between 174 (N–model) and
483,000 (kanban large) on average with respect to the number of partitions for
the lexicographical ordering. The time and memory requirements also increase
substantially which agrees with the complexity analysis since the time and
memory complexities of the merge based algorithm depend on the number
of partitions (see Section 4.1). The time taken by the merge based algorithm
becomes close to the time taken by the refinement based algorithm. However,
the memory requirement of the merge based algorithm is still better than the
memory requirement of the refinement based algorithm.

Table 3 Experimental results for models from literature when states are processed in ran-
dom order

Merge Refinement

Model Prt Time Memory Prt Time Memory

N–model (6,098; 46) (0.4; 0.0) (1.8; 0.0) (43; 0) (0.4; 0.0) (0.7; 0.0)
V–model (2) (12,500; 78) (0.6; 0.0) (2.9; 0.0) (2; 0) (0.5; 0.0) (15.5; 0.0)
V–model (3) (5,792; 33) (0.1; 0.0) (1.3; 0.0) (2; 0) (0.1; 0.0) (0.7; 0.0)
V–model (4) (2,825; 20) (0.1; 0.0) (0.8; 0.0) (2; 0) (0.1; 0.0) (0.7; 0.0)
W–model (4,715; 35) (0.1; 0.0) (1.0; 0.0) (4; 0) (0.1; 0.0) (0.7; 0.0)
courier large (444,818; 254) (23.4; 0.1) (50.8; 0.0) (9; 0) (20.8; 0.0) (301.0; 0.0)
courier med (114,648; 124) (4.5; 0.0) (13.5; 0.0) (7; 0) (4.3; 0.0) (77.8; 0.0)
kanban fail (626,586; 284) (33.3; 0.1) (71.3; 0.0) (8; 0) (28.6; 0.0) (424.3; 0.0)
kanban large (483,245; 238) (25.1; 0.1) (54.6; 0.1) (1; 0) (21.9; 0.0) (321.2; 0.0)
msmq large (432,018; 154) (25.1; 0.0) (55.8; 0.1) (28; 0) (25.8; 0.0) (336.4; 0.0)
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5.2 A class of random test problems

Cartesian product partitioning of a two-dimensional reachable state space is
equivalent to the hyper-rectangular partitioning of the two-dimensional poly-
tope that is represented by the reachable state space. Hence, minimum Carte-
sian product partitioning of a two-dimensional reachable state space can be
obtained by using a modified version of the minimum rectangular partition-
ing algorithm in [12]. Consider the next lemma that specifies a condition for
increasing the dimension of the state space in Cartesian product partitioning
without changing the minimum number of partitions.

Lemma 4 Let K ∈ Z>0 and let {R(1), . . . ,R(K)} be the minimum Cartesian
product partitioning of ∪K

k=1R
(k) ⊆ Z

D
≥0. Then the minimum Cartesian product

partitioning of ∪K
k=1(R

(k) ×Q(k)) ⊆ Z
D+1
≥0 is {R(1) ×Q(1), . . . ,R(K) ×Q(K)}

if ∩K
k=1Q

(k) 6= ∅ and Q(k) ⊆ Z≥0 consists of consecutive integers for k =
1, . . . ,K.

Proof The sets R(k)×Q(k) and R(l)×Q(l) are disjoint since R(k) and R(l) are
disjoint sets for k 6= l and k, l = 1, . . . ,K. Each set R(k) ×Q(k) is a Cartesian
product of sets of consecutive integers for k = 1, . . . ,K. Therefore,

{R(1) ×Q(1), . . . ,R(K) ×Q(K)}

is a Cartesian product partitioning of ∪K
k=1(R

(k) ×Q(k)). Now, we show that
the size of the minimum Cartesian product partitioning must be K.

Assume that {P(1), . . . ,P(M)} is a Cartesian product partitioning of

∪K
k=1(R

(k) ×Q(k)), where M < K and P(m) = ×D+1
d=1 P

(m)
d for m = 1, . . . ,M .

Since ∩K
k=1Q

(k) 6= ∅, there exists some q ∈ ∩K
k=1Q

(k). Then ∪K
k=1(R

(k) × {q})
can be partitioned into M or less Cartesian products. In this case, ∪K

k=1R
(k)

can also be partitioned into M or less partitions. However, this contradicts
the assumption that {R(1), . . . ,R(K)} is the minimum Cartesian product par-
titioning of ∪K

k=1R
(k). ⊓⊔

Lemma 4 states that when the minimum Cartesian product partitioning
of a multi-dimensional state space is known, it is possible to add states and
increase the dimension without changing the size of the minimum Cartesian
product partitioning.

Using Lemma 4, Algorithm 3 presented next generates a random multi-
dimensional state space whose minimum Cartesian product partitioning is
known. The algorithm starts with a random two-dimensional state space over
{0, . . . ,M − 1} × {0, . . . ,M − 1} that is generated by assigning each state a
reachability probability p (lines 3-4). Then the minimum Cartesian product
partitioning of this random set is computed (lines 6-7). Next, (D − 2) dimen-
sions are added to the state space one at a time (lines 8-14). For each additional
dimension, a uniformly distributed random integer that determines the range
of consecutive integers is generated (line 9). Then the Cartesian product of
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each partition with the set of consecutive integers is computed and the corre-
sponding integer is updated to continue with the next dimension (lines 11-12).
Finally, dimensions of the states in R are rearranged so that the initial two
dimensions are not always the first two dimensions (line 18).

Algorithm 3 Algorithm that generates a random multi-dimensional state
space with known minimum Cartesian product partitioning
Input: Dimension of reachable state space: D

State space size of each subsystem: M
Probability of a state to be reachable in initial two-dimensional state space: p

Output: D-dimensional reachable state space: R
Size of minimum Cartesian product partitioning of R: K

1: function GenerateRandomTestProblem(D,M, p,R, K)
2: R′ ← ∅
3: for all (i, j) ∈ {0, . . . ,M − 1} × {0, . . . ,M − 1} do
4: R′ ←R′ ∪ {(i, j)} with probability p

5: end for

6: Compute minimum Cartesian product partitioning of R′, {R(1), . . . ,R(K)} by
7: using a modified version of minimum rectangular partitioning algorithm [12]
8: for all d = 3, . . . ,D do

9: m← Unif(0, M − 1)
10: for all k = 1, . . . ,K do

11: a← Unif(0, m); b← Unif(m, M − 1)
12: R(k) ←R(k) × {a, . . . , b}
13: end for

14: end for

15: for all k = 1, . . . , K do

16: R ← R∪R(k)

17: end for

18: Rearrange the dimensions of the states in R with a new random ordering
19: end function

Table 4 reports the properties of the randomly generated state spaces.
The first three columns provide the parameters used in generating the test
problems. The first two columns give the inputs of Algorithm 3, p and D,
respectively. The third column gives the size of the product state space, KD,
when each subsystem state space size is K. The remaining columns have the
same meaning as in Table 4, where mean values of 51 random test problems
are reported for each set of parameters. Observe that the properties of the
reachable state space depend on the initial two-dimensional state space. As p
and K increase, the number of separators and the number of intersecting pairs
increase. As these numbers increase, the problems become more complicated
and it tends to be more difficult to find separators leading to a better solu-
tion. Observe that the size of the partitioning, K, depends on R′ (line 6 of
Algorithm 3). When p is small, there are less reachable states to be merged.
When p is large, there are less conflicting edges in the unit distance graph of
R′. Therefore, the size of the partitioning does not increase as p increases.

In Table 5, we present the results of experiments with the randomly gen-
erated state spaces of Table 4. The first three columns have the same meaning
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Table 4 Properties of random test problems

p D |S| |R| MinPrt Sep SepInt

0.25 3 103 (134; 14) (17; 1) (10; 3) (11; 4)
203 (1,059; 62) (66; 3) (46; 8) (60; 14)
303 (3,525; 123) (148; 4) (110; 12) (149; 27)

4 104 (719; 109) (17; 2) (15; 5) (27; 13)
204 (10,719; 809) (66; 3) (64; 12) (129; 33)
304 (54,075; 2,069) (148; 4) (156; 19) (327; 60)

5 105 (4,247; 682) (16; 1) (18; 5) (38; 15)
205 (117,901; 10,960) (67; 3) (85; 16) (212; 56)
305 (856,358; 49,238) (148; 5) (204; 23) (589; 128)

0.50 3 103 (272; 20) (23; 1) (44; 5) (88; 22)
203 (2,090; 100) (87; 2) (204; 16) (566; 97)
303 (7,016; 212) (195; 3) (484; 25) (1,517; 188)

4 104 (1,484; 169) (23; 1) (61; 8) (197; 49)
204 (22,146; 1,379) (88; 3) (284; 18) (1,325; 207)
304 (108,987; 3,902) (196; 4) (677; 35) (4,046; 540)

5 105 (8,629; 1,341) (23; 1) (75; 8) (351; 74)
205 (232,892; 15,774) (88; 3) (352; 25) (2,572; 482)
305 (1,626,489; 82,115) (196; 4) (870; 47) (7,664; 921)

0.75 3 103 (392; 32) (21; 1) (65; 4) (227; 34)
203 (3,249; 144) (72; 3) (261; 9) (1,720; 90)
303 (10,587; 208) (161; 3) (590; 17) (5,418; 270)

4 104 (2,285; 264) (21; 1) (83; 6) (518; 56)
204 (33,827; 2,004) (75; 3) (339; 15) (4,201; 286)
304 (162,781; 7,263) (162; 4) (765; 21) (13,607; 628)

5 105 (12,101; 1,693) (20; 1) (99; 7) (863; 93)
205 (354,698; 26,549) (75; 2) (412; 17) (7,590; 480)
305 (2,560,044; 163,475) (160; 3) (915; 28) (24,969; 1,364)

as in Table 4 and the remaining columns have the same meaning as in Table
3. When p is 0.25 and 0.50, the sizes of the partitionings obtained by the re-
finement based algorithm are close to their minimum values. However, when
p is 0.75, the number of partitions become larger as the size of the product
state space increases when number of separators and intersecting separator
pairs increase. As for the refinement based algorithm, the number of parti-
tions obtained by the merge based algorithm is closer to the optimal value for
smaller p. For all test problems, the merge based algorithm is better than the
refinement based algorithm in terms of time and memory requirements.

6 Conclusion

In this paper, we define Cartesian product partitioning of a D-dimensional
reachable state space R and show that the problem of finding the partitioning
with the minimum number of partitions is NP-complete when the dimension
D is larger than 2. In order to obtain a Cartesian product partitioning, two
algorithms are presented. The first algorithm starts with a partitioning, where
each partition is a singleton. In this algorithm, each partition is merged with
the first possible partition until it is not possible to merge any two partitions.



Cartesian product partitioning of multi-dimensional reachable state spaces 23

Table 5 Experimental results for random test problems

Merge Refinement

p D |S| Prt Time Memory Prt Time Memory

0.25 3 103 (17; 2) (0.0; 0.0) (0.5; 0.0) (17; 1) (0.0; 0.0) (0.5; 0.0)
203 (70; 4) (0.0; 0.0) (0.5; 0.0) (67; 3) (0.0; 0.0) (0.7; 0.0)
303 (154; 5) (0.0; 0.0) (0.5; 0.0) (148; 4) (0.0; 0.0) (0.9; 0.1)

4 104 (17; 2) (0.0; 0.0) (0.5; 0.0) (17; 2) (0.0; 0.0) (0.6; 0.1)
204 (69; 5) (0.0; 0.0) (0.5; 0.0) (66; 3) (0.0; 0.0) (0.7; 0.0)
304 (156; 8) (0.2; 0.0) (0.5; 0.0) (148; 4) (0.3; 0.0) (0.7; 0.0)

5 105 (18; 2) (0.0; 0.0) (0.5; 0.0) (16; 1) (0.0; 0.0) (0.8; 0.1)
205 (73; 6) (0.6; 0.1) (0.5; 0.0) (67; 3) (0.8; 0.1) (24.2; 2.2)
305 (155; 11) (5.0; 0.3) (0.5; 0.0) (148; 5) (6.5; 0.4) (171.9; 9.8)

0.50 3 103 (26; 2) (0.0; 0.0) (0.5; 0.0) (23; 1) (0.0; 0.0) (0.5; 0.0)
203 (101; 7) (0.0; 0.0) (0.5; 0.0) (87; 2) (0.0; 0.0) (0.7; 0.0)
303 (224; 15) (0.0; 0.0) (0.5; 0.0) (197; 4) (0.0; 0.0) (0.7; 0.1)

4 104 (28; 4) (0.0; 0.0) (0.5; 0.0) (23; 1) (0.0; 0.0) (0.7; 0.0)
204 (106; 14) (0.1; 0.0) (0.5; 0.0) (89; 3) (0.1; 0.0) (0.7; 0.0)
304 (241; 25) (0.5; 0.0) (0.5; 0.0) (197; 4) (0.7; 0.0) (20.7; 0.7)

5 105 (27; 4) (0.0; 0.0) (0.5; 0.0) (23; 1) (0.0; 0.0) (0.7; 0.0)
205 (117; 20) (1.3; 0.1) (0.5; 0.0) (89; 3) (2.0; 0.2) (47.2; 3.2)
305 (254; 47) (9.9; 0.6) (0.5; 0.0) (198; 4) (15.5; 1.0) (326.0; 16.4)

0.75 3 103 (29; 4) (0.0; 0.0) (0.5; 0.0) (23; 3) (0.0; 0.0) (0.5; 0.0)
203 (106; 13) (0.0; 0.0) (0.5; 0.0) (122; 36) (0.0; 0.0) (0.8; 0.1)
303 (228; 31) (0.0; 0.0) (0.5; 0.0) (619; 183) (0.1; 0.0) (0.7; 0.0)

4 104 (35; 7) (0.0; 0.0) (0.5; 0.0) (21; 2) (0.0; 0.0) (0.8; 0.1)
204 (129; 26) (0.2; 0.0) (0.5; 0.0) (94; 28) (0.3; 0.0) (0.7; 0.0)
304 (240; 65) (0.8; 0.1) (0.5; 0.0) (421; 240) (2.7; 0.3) (30.6; 1.3)

5 105 (37; 9) (0.1; 0.0) (0.5; 0.0) (21; 2) (0.1; 0.0) (0.7; 0.0)
205 (113; 41) (2.0; 0.2) (0.5; 0.0) (82; 18) (7.7; 1.0) (71.7; 5.3)
305 (307; 104) (16.0; 1.2) (0.5; 0.0) (287; 112) (108.5; 16.4) (514.1; 32.8)

This algorithm has O(D|R|lg(|R|)) time and O(D|R|) space complexities. The
second algorithm starts with a partitioning that includes only one partition.
Then the unit distance graph of the reachable state space is constructed. This
is followed by the refinement of the graph by removing edges, until the vertex
set of each connected component becomes a partition in the Cartesian prod-
uct partitioning of the reachable state space. The time and space complexities
of this algorithm is O(D3|R|2) and O(D|R|), respectively. We consider two
groups of test problems, which are from the literature and are randomly gen-
erated. The merge based algorithm fails to compute the optimal partitioning
in almost all problems. Furthermore, the size of the partitioning increases sub-
stantially when the states in the reachable state space are processed in random
order instead of lexicographical order. The time and memory requirements of
the merge based algorithm are larger when the states are processed in ran-
dom order. However, even when the states are processed in random order, the
merge based algorithm is still faster and requires less space than the refinement
based algorithm. In many problems, the refinement based algorithm computes
a partitioning that is either optimal or close to the optimal solution. Although
it may be more time and memory consuming, the refinement based algorithm
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almost always computes partitionings with a smaller number of partitions than
the merge based algorithm.

A Appendix

Lemma 5 Let G = (R, E) be the unit distance graph of R, Z be the union of separators
in G, N ∈ Z>0 be the size of the minimum Cartesian product partitioning of R, K ∈ Z>0

be the number of connected components in G′ = (R, E \ Z), and G(k) = (R(k), E(k)) be a
connected component in G′ for k = 1, . . . , K. Then {P(1), . . . ,P(N)} is the minimum Carte-
sian product partitioning of R, where P(n) = ∪k∈K(n)R

(k) for some K(n) ⊆ {1, . . . , K}
and n = 1, . . . , N .

Proof All conflicting edges are in a seperator in G, so G′ does not include conflicting edges.

By Lemma 2 and Corollary 1,R(k) = ×D
d=1R

(k)
d

, whereR
(k)
d

= {u
(k)
d

, . . . , v
(k)
d
}, u

(k)
d
≤ v

(k)
d

,

and u(k),v(k) ∈ R for d = 1, . . . ,D and k = 1, . . . , K. Besides, (x,y) ∈ E(k) for x,y ∈ R(k)

and x− y ∈ ∪D
d=1{−ed, ed}.

Let x′,y′ ∈ X such that x′ ∈ R(k′), y′ ∈ R(l′), δj = x′−y′ = {−ej , ej},R
(k′)
i ∩R

(l′)
i 6=

∅, and R
(k′)
i 6= R

(l′)
i (i.e., (R

(k′)
i \R

(l′)
i )∪ (R

(l′)
i \R

(k′)
i ) 6= ∅), where X ⊆ R is a Cartesian

product of sets of consecutive integers for some i 6= j and i, j = 1, . . . , D. Without loss of

generality, assume that R
(k′)
i \ R

(l′)
i 6= ∅. Then there exist x ∈ R(k′) and y ∈ R(l′) such

that x+δi ∈ R(k′) and y+δi 6∈ R(l′) for some δi ∈ {−ei, ei}. If y+δi 6∈ R, (x,x+δi) and

(x,y) are conflicting edges in G. If y+ δi ∈ R, (y,y+ δi) 6∈ E(l
′) since y+ δi 6∈ R(l). Then

for both cases, it follows that (x,x + δi) ∈ Z. However, this contradicts the assumption
that x and x + δi are in the same connected component since (x,x + δi) ∈ E(k). Hence,

R
(k′)
i ⊆ R

(l′)
i . Then R

(l′)
i ⊆ R

(k′)
i also holds implying that R

(k′)
i = R

(l′)
i . This statement

holds for all x ∈ X and y ∈ X . Therefore R
(k)
d

= R
(l)
d

if R
(k)
d
∩ R

(l)
d
6= ∅, R

(k)
d
∩ X 6= ∅,

and R
(l)
d
∩ X 6= ∅ for d = 1, . . . ,D.

Now, let {Q(1), . . . ,Q(N)} be the minimum Cartesian partitioning of R and

P(n) = ×D
d=1{ min

k∈K(n)
(u

(k)
d

), . . . , max
k∈K(n)

(v
(k)
d

)},

where K(n) = {k = 1 . . . , K | u(k) ∈ Q(n)} for n = 1, . . . , N . First, we show that P(n) ⊆ R.
Fix n′ = 1, . . . , N and let

Y = ×D
d=1{ min

k∈K(n′)
(u

(k)
d

), . . . , max
k∈K(n′)

(u
(k)
d

)}.

Then Y ⊆ Q(n′) because ×D
d=1{mink∈K(n′)(u

(k)
d

)} ∈ Q(n′), ×D
d=1{maxk∈K(n′)(u

(k)
d

)} ∈

Q(n′), and X is a Cartesian product of sets of consecutive integers. If Y = P(n′), then

P(n′) ⊆ R holds. Now, consider the other case, Y 6= P(n′). Let x,y ∈ P(n′) such that

yd =

{

xd if xd ≤ maxk∈K(n′)(u
(k)
d

)

maxk∈K(n′)(u
(k)
d

) otherwise

for d = 1, . . . , D. Observe that y ∈ Y , so there exists l′ ∈ K(n′) such that y ∈ R(l′). Assume

that x 6∈ R(l′), that is v
(l′)
i < xi for some i = 1, . . . ,D. Then v

(l′)
i ≥ maxk∈K(n′)(u

(k)
i ),

since yi = maxk∈K(n′)(u
(k)
i

). Furthermore, there exists m′ ∈ K(n′) such that v
(m′)
i

=

maxk∈K(n′)(v
(k)
i ). Since v

(l′)
i 6= v

(m′)
i , R(l′) ∩R(m′) 6= ∅ implying that u

(m′)
i > v

(l′)
i . Then

u
(m′)
i > maxk∈K(n′)(u

(k)
i ), but this contradicts the assumption that m′ ∈ K(n′). Therefore,

v
(l′)
i ≥ xi and x ∈ R(l′). It follows that P(n′) ⊆ R.
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Next, we show that P(n′) = ∪k∈K(n′)R
(k). Let x ∈ P(n′) and assume that x 6∈

∪k∈K(n′)R
(k). Then there exists l′ = 1, . . . , K such that x ∈ R(l′) and l′ 6∈ K(n′) implying

that u
(l′)
i < mink∈K(n′)(u

(k)
d

) for some i = 1, . . . , D. Furthermore, there exists m′ ∈ K(n′)

such that u
(m′)
i = mink∈K(n′)(u

(k)
i ). Thus,R(l′) 6= R(m′) holds implying that v

(l′)
i < u

(m′)
i .

Then xi < mink∈K(n′)(u
(k)
i ) holds, but this contradicts the assumption that x ∈ P(n′).

Therefore P(n′) ⊆ ∪k∈K(n′)R
(k). Now let x ∈ ∪k∈K(n′)R

(k). Then xd ∈ {u
(k′)
d

, . . . , v
(k′)
d
}

for some k′ ∈ K(n′) and d = 1, . . . ,D. Then xd ∈ {mink∈K(n)(u
(k)
d

), . . . ,maxk∈K(n)(v
(k)
d

)},

so x ∈ P(n′). Then it follows that ∪k∈K(n′)R
(k) ⊆ P(n′). Therefore, P(n′) = ∪k∈K(n′)R

(k).

Now, we are in a position to show that {P(1), . . . ,P(N)} is a minimum Cartesian product
partitioning of R. Since P(n) is a Cartesian product of sets of consecutive integers and N

is the size of the minimum Cartesian product partitioning of R, it is sufficient to show that

∪Nn=1P
(n) = R and P(n) ∩ P(n′) = ∅ for n 6= n′ and n, n′ = 1, . . . , N . Fix n, n′ = 1, . . . , N

such that n 6= n′. Then K(n) ∩ K(n′) = ∅ since Q(n) ∩ Q(n′) = ∅. Hence, ∪k∈K(n)R
(k) ∩

∪k∈K(n′)R
(k) = ∅. Therefore, P(n) ∩ P(n′) = ∅. Furthermore,

∪Nn=1K(n) = ∪Nn=1{k = 1, . . . , K|u(k) ∈ Q(n)} = {k = 1, . . . , K|u(k) ∈ ∪Nn=1Q
(n)}

= {1, . . . , K},

so ∪Nn=1 ∪k∈K(n) R
(k); hence, ∪Nn=1P

(n) = R. Therefore, {P(1), . . . ,P(N)} is a minimum
Cartesian product partitioning of R. ⊓⊔
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