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ABSTRACT

TOP-K LINK RECOMMENDATION FOR
DEVELOPMENT OF P2P SOCIAL NETWORKS

Yusuf Aytaş

M.S. in Computer Engineering

Supervisor: Prof. Dr. Özgür Ulusoy

Co-Supervisor: Assoc. Prof. Dr. Hakan Ferhatosmanoğlu

January, 2014

The common approach for implementing social networks has been using central-

ized infrastructures, which inherently include problems of privacy, censorship,

scalability, and fault-tolerance. Although decentralized systems offer a natural

solution, significant research is needed to build an end-to-end peer-to-peer social

network where data is stored among trusted users. The centralized algorithms

need to be revisited for a P2P setting, where the nodes have connectivity to only

neighbors, have no information of global topology, and may go offline and churn

resulting in changes of the graph structure. The social graph algorithms should

be designed as robust to node failures and network changes. We model P2P social

networks as uncertain graphs where each node can go offline, and we introduce

link recommendation algorithms that support the development of decentralized

social networks. We propose methods to recommend top-k links to improve the

underlying topology and efficiency of the overlay network, while preserving the

locality of the social structure. Our approach aims to optimize the probabilistic

reachability, improve the robustness of the local network and avoid loss from fail-

ures of the peers. We model the problem through discrete optimization and assign

a score to each node to capture both the topological connectivity and the social

centrality of the corresponding node. We evaluate the proposed methods with

respect to performance and quality measures developed for P2P social networks.

Keywords: P2P Social Network, Link Recommendation.
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ÖZET

P2P SOSYAL AĞLARI GELİŞTİRMEK İÇİN EN İYİ K
BAĞLANTI ÖNERİSİ

Yusuf Aytaş

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Özgür Ulusoy

Ortak Tez Yöneticisi: Doc. Dr. Hakan Ferhatosmanoğlu

Ocak, 2014

Sosyal ağları hayata geçirmek için kullanılan merkezi altyapılar beraberinde giz-

lilik, sansür, ölçeklenebilirlik ve hataya dayanıklılık sorunlarını getirmektedir.

Dağıtılmış sistemler sosyal ağlar için doğal bir çözüm sunsa da, bir uçtan uca

sosyal bir ağ oluşturmak için ciddi bir araştırma gereklidir. Merkezi algorit-

malar P2P altyapısı kullanıldığında yeniden ele alınmalıdır çünkü P2P altyapıda

kişiler sadece komşularını bilmekte, tüm çizgeye ait bilgiden yoksun ve za-

man zaman çevrimdışı olabilmektedirler. Sosyal ağ algoritmaları kullanıcıların

çevrimdışı kaldığı ve ağın değiştiği durumlara karşı sağlam bir şekilde tasar-

lanmış olmalıdır. Biz sosyal ağı, kişilerin zaman zaman çevrim dışı olabildiği,

belirsiz çizgeler olarak tanımlıyoruz ve bu ağların gelişmesini sağlamak için

bağlantı öneri algoritmalarını sunuyoruz. Varolan sosyal ağı geliştirmek için

en iyi k tane bağlantı önerisi yaparken sosyal ağın ve yerel yapıların korun-

ması için çalışıyoruz. Hedefimiz olasılığa bağlı ulaşılabilirliği eniyileyerek yerel ağ

sağlamlığını artırmak ve kayıplardan doğan hataları en aza indirmektir. Bu prob-

lemi her kişiye topolojik bağlılık ve sosyal ağdaki durumuna göre puanlama olarak

modelliyoruz. Sunduğumuz yöntemleri geliştirdiğimiz performans ve nitelik

ölçüleri ile değerlendiriyoruz.

Anahtar sözcükler : P2P Sosyal Ağ, Bağlantı önerisi.
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Chapter 1

Introduction

Online social networks have drawn attention in the last decade with growing num-

ber of people using social platforms such as Facebook, Twitter, and LinkedIn.

Social network providers offer a variety of services, which result in rich content

and linkage data. The common approach of having a single owner administering

the data is counter-productive with respect to both systems and practical per-

spectives. From a social perspective, users do not have the power to safeguard

themselves from misuse of their data [1]. The owners of social networks can apply

censorships and other exercises of central authority [2]. In decentralized social

networks, the peers can maintain data collaboratively and each user can define

their own level of privacy. Such a decentralized system is a natural alternative to

the current “fat server/thin clients” model for social networks.

1.1 Problem Statement

Although a decentralized system has its clear advantages, it introduces signifi-

cant challenges in terms of algorithms, topology, storage, updates, and locality

[1]. In a P2P network, nodes do not have access to global addressing or routing

information. The data flow only through neighbors. The resources available to

peers are limited and the nodes may go offline or churn (i.e., join and leave). The
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availability of data depends on the availability of the corresponding peers. Hence,

the placement of data should consider the relevant and authorized peers as well

as their availability. Traditional social network algorithms need to be revisited

for P2P infrastructures because they assume a global deterministic graph, i.e.,

existence of the links and nodes as a priori deterministic.

Considering these challenges, we design a decentralized social network where the

connectivity of the peers matches their social network relationship. As the nodes

can go offline and churn time to time, we model the network as an uncertain graph

where every node has a probability of being available. We introduce the P2P link

recommendation problem to support development of a robust decentralized social

network. Our focus is to maximize the reachability, i.e., ability to reach a node

from others, while preserving the local topology. We model this problem using a

discrete optimization framework and determine top-k links to recommend. Note

that this problem differs from the traditional link prediction problem in social

networks [3]. Here, the recommendation needs to improve both the P2P and

social network aspects, and to be computed locally in a distributed fashion. The

proposed solution utilizes a probabilistic model for graph reachability computing

the availability of the paths between nodes. We introduce an approximate dual

optimization that captures the complementary goals of improving the social struc-

ture, underlying P2P connections and reachability. A distributed Monte Carlo

simulation based approach is used to estimate the reachability of nodes. We also

investigate scalable reachability estimations for large-scale networks. Extensive

experiments on real and synthetic data illustrate the accuracy and efficiency of

the proposed approaches.

1.2 Contributions

In this thesis, we address the P2P link recommendation problem in P2P social

networks. This problem addresses how the links should be recommended to the

peers in a P2P setting where each peer has only local information about the

network. We try to suggest new links to the peers that improve both connections

and underlying infrastructure. We formally define reachability for P2P social
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networks and present approximate methods for computing reachability in a P2P

setting.

Contributions of this thesis can be summarized as follows.

• We study P2P social networks and address the problem of P2P link recom-

mendation.

• We introduce exact and approximate P2P link recommendation algorithms.

• We present exact and approximate methods to calculate reachability.

• We experiment both accuracy and effectiveness of P2P link recommendation

algorithms.

• We experiment effectiveness of reachability score.

1.3 Outline

The organization of this thesis is as follows. In Chapter 2, we provide background

and related work. In Chapter 3, we discuss how a P2P social network can be

implemented, present our graph model, and define reachability based on this

model. In Chapter 4, we introduce the problem of link recommendation, our

optimization framework to model this problem, and the proposed solutions for

top-k link recommendation. In Chapter 5, we present our distributed algorithm

for reachability estimation. In Chapter 6, we evaluate experimental results. In

Chapter 7, we discuss some important issues about P2P social networks and

conclude.
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Chapter 2

Related Work

2.1 Social Networks and Link Prediction

Social networks have introduced a variety of research problems such as commu-

nity detection, influence analysis, ranking, node classification, and link prediction

[3]. Nowell and Kleinberg defined the link prediction problem as estimating new

interactions between the nodes of a social network [4]. Methods for link pre-

diction rely on content shared among the nodes and topology of the network.

Topological methods are based on paths between nodes and neighborhoods [5].

These approaches use shortest path, ensemble of paths or their variants to handle

the link prediction problem. Likewise, Bakstrom and Leskovec use the network

structure and node/edge attributes to predict new interactions by the help of

random walks [6].

Neighborhood approaches, such as Common Neighbors, are used in link predic-

tion. Adamic and Adar use weighted neighborhood information to find relation-

ship between individuals [7]. The intuition is that a node is more likely to interact

with another node if the overlap of their neighbors is high. It is a simple heuristic

that can often outperform complex heuristics [8].

4



2.2 P2P Infrastructures

P2P systems enable sharing data and resources between the peers. File sharing

applications such as Gnutella and BitTorrent are best-known realization of P2P

systems. A P2P framework can also be used to support social network applica-

tions. In a decentralized social network, peers collaboratively can serve the needs

and requirements of the social network. One can design P2P social networks

through super-peers that organize the rest of the network. By using super-peer

based architecture, one can overcome problems like recovery and routing, which

are more challenging in a fully decentralized system. Buchegger et al. discuss

the feasibility of a P2P infrastructure for social networks including distributed

storage of data, networking, security, and privacy [1]. In a P2P social network

environment, providing a reliable and secure platform is an important challenge.

This can be achieved by encryption of data and digestion of access authentica-

tion [9]. A potential solution is to use available metadata information, which has

some potential side effects [10]. These challenges can be partially addressed by a

friend-to-friend (F2F) network or a social overlay approach where the underlying

network is formed by social connections. In a F2F system, real life social trust is

exploited and data access confined to neighborhood [11].

In a P2P setting, traditional social network problems need to be revisited since

a node has neither full information nor control over the network. The fact that

each node has partial information about the network, which can evolve dynami-

cally, should be taken into account while implementing algorithms for P2P social

networks. In this thesis, we focus on link recommendation and develop a common

neighbor based approach to locally gather and merge link strengths from neigh-

bors. We consider this merging problem as a variant of top-k query processing

[12] and propose a class of distributed top-k link recommendation algorithms.
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2.3 Decentralized Methods

We formally define the problem of P2P link recommendation and propose so-

lutions to improve reachability in P2P uncertain graphs. To the best of our

knowledge, this is the first work on link recommendation on an uncertain graph

in a P2P setting. However, there is extensive work on the link prediction in a

global graph and recently some for local settings.

CNP (Common Neighbor Predictor) predicts future links in a P2P environment

by using a distributed algorithm [13]. Although this paper discusses performance

in general, they do not focus on P2P performance issues. First, NCNP (Neigh-

bors Common Neighbor Predictor) is proposed that considers neighbors common

neighbor when predicting a new link, when at least two neighbors of a node share

the same node in common as a neighbor. Later, the algorithm is refined to be

popularity aware which considers the weights of the possible links.

SoCS (Social Coordinate Systems) is proposed for link prediction in decentralized

social networks [14]. SoCS uses force based graph embedding that depends on

iterative forces that are attractions and repulsions. The algorithm calculates the

distance between the node and its neighbors neighbors and returns the distances

that are less than or equal to an acceptable range. SoCS does not consider a P2P

environment.

Our work includes an adaptation of top-k query processing for middleware that fil-

ters conditions to get relevant objects [15]. Since the optimality of this algorithm

is often achieved in the worst case, TA (Threshold Algorithm) is proposed which

is instance optimal [16]. Top-k processing is also discussed in [17] for unstruc-

tured P2P networks, focusing on challenges of dynamic structure. Additionally,

Theobald et al. present approximate top-k query processing with probabilistic

guarantees [18].

We utilize the concept of reachability query within our methods. Yu et al. present

a study on reachability queries for directed acyclic graphs [19]. They focus on

both space and time consumption to search for a path between two nodes. They

compare the algorithmic complexity of the algorithms using query time, index

construction time, and index size. But these solutions are not designed for uncer-

tain graphs and have to be reconsidered. To calculate the reachability of a node,
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several algorithms are proposed. Zhu et al. give a Monte Carlo based approach

to estimate probabilistic reachability queries [20]. Their approach uses a binary

tree to estimate the reachability over uncertain graphs in a threshold fashion. It

assumes that topological information is available and a binary tree can be gen-

erated over possible nodes. The method neither considers a P2P infrastructure

nor is applicable to a large-scale social network.

Figure 2.1: Graph with Probabilistic Availabilities

7



Chapter 3

P2P Social Networks

Implementation of online social networks has been traditionally based on a cen-

tralized approach where the server has control of data and waits for the clients to

manipulate data. A decentralized approach has clear advantages over this current

approach. The challenges on how to store and control the data in a decentralized

system are now being discussed in various research communities. For example, a

semi-structured architecture has been proposed where super-peers are used to or-

ganize the network [21], [22]. The overlay network can be organized according to

social connections that provide easy dissemination of updates and address some

of the security problems for data maintenance. For instance, Mega et al. focus

on building decentralized network on a social overlay by using gossip protocols

for efficiently dissemination of updates [23]. The common challenge in a decen-

tralized social network is to maintain both data and connection properties of the

peers. This problem does not arise if all the peers were always online, which is

the assumption of the current social network algorithms. There is a high proba-

bility of peers to churn in P2P networks; hence the availability is an important

property to include in any social network algorithm.

We model the P2P social network as an uncertain graph where the nodes become

online and offline from time to time. The network needs to grow by introduc-

ing new links within local neighborhood that improve the overall robustness,

i.e., probabilistic reachability, as we will formally define. We first provide the

8



definitions used throughout the thesis including the definition of probabilistic

reachability in the context of P2P social networks.

Definition (Graph): A graph G(V,E) is defined as a set of vertices V =

(V1, V2, ..., Vk) with labels N = (N1, N2, ..., Nk) and a set of edges E =

(E1, E2, ..., Ek) between vertices. In our context, labels of the vertices are in-

dependent random variables showing the availability of the corresponding nodes.

More formally,

Ni ∼ Bernoulli(0, 1), i=1,2, ... , k (3.1)

and P (Ni = 1) is the probability that the node i is available. If P (Ni = 0) for a

node i, then it is apparent that all the paths that pass through the node i will be

unavailable. This case is equivalent to removal of the node from the graph. For

convenience we assume that availabilities are non-zero, which is P (Ni = 1) > 0

for all nodes i.

Path. A path between two nodes s and t is defined as a sequence of edges

connecting s to t, or equivalently a sequence of nodes from s to t. For example

L = (s, V1, V4, t) is a path between s and t in the graph in Figure 2.1. All the

paths we consider are simple paths, lacking of any circles.

Availability of a Path. Having defined a path between two nodes; we need to

define its availability. We define random variables R(L)∼Bernouilli(0,1) for all

possible paths L and if R(L)=1 then the path is available.The availability of a

path L = (N1, N2, ..., Nz+1) is obtained using,

P (R(L) = 1) = P (N1 = 1 ∧N2 = 1 ∧ ... ∧Nz+1 = 1) (3.2)

= P (N1 = 1)P (N2 = 1)P (Nz+1 = 1) (3.3)

Consider the graph in Figure 2.1 L = (s, V1, V4, t) a path P(R(L)=1)=0.3*0.2*0.1*0.4.

Using commutability property of logical conjunctions, the random variable R(L)

is equivalent for all the permutations of the nodes in the path. As a special case,

let Ls→t = (s, L2, ..., Lz−1, t) be a path from s to t, then the availability of this path

is equal to the availability of the same path backwards Lt→s = (t, Lz−1, ..., L2, s),

from t to s.

In an uncertain graph, it is important for a node to reach another node to ex-

change information. The more nodes one can reach, the better it can propagate

social updates to others. The reachability of a node, which is the ability to get

9



through from one vertex to any other, is an important indicator for connectivity

of the node to the rest of the network. Consequently, reachability can be used as

a measure of connectivity. A formal definition for probabilistic reachability is as

follows.

Definition (Probabilistic Reachability): Let G(V,E) be a graph where s,t ∈
V, then reachability from s to t is defined as the probability of having at least

one available path from s to t, and is denoted by Re(s,t). More formally let

Ps→t = (L1, L2, ..., Lx) be all the possible paths from s to t, then

Re(s, t) = P (∃L ∈ Ps→t, R(L) = 1)) (3.4)

= P (R(L1) = 1 ∨R(L2) = 1 ∨ ... ∨R(Lx) = 1) (3.5)

If there is no path between two nodes, then the reachability is defined as 0. In

an undirected graph, the reachability from s to t equals to the reachability from

t to s.

Reachability of a Node. The reachability of a node is the probability of

existence of at least one path to each of the nodes in the graph, thus

Re(s) = P
(
∀t ∈ V − {s}, (∃L ∈ Ps→t, R(L) = 1)

)
(3.6)

P =

(
∀t ∈ V − {s}, (

∨
L∈Ps→t

R(L) = 1)

)
(3.7)

P =

( ∧
t∈V−{s}

∨
L∈Ps→t

R(L) = 1

)
(3.8)

While the definitions of reachability for a node and from one node to another

are clear, their computations are not trivial. The computation of the “connect-

edness” of two nodes or one node to the rest is #P-hard which is as hard as

NP-hard [24]. These connectedness measures overlap with our reachability defi-

nitions which makes our reachability computation also #P-hard. Thus the exact

computations are infeasible on large-scale networks. This motivates us to develop

efficient approximation algorithms for reachability estimations. We explain these

approximations in detail in Chapter 5.

If the reachability value from s to t is greater than some given threshold, then t

is called reachable from s. We formally define this notion of being reachable as

10



follows.

Definition (Reachable): Given a graph G(V,E), and a threshold value ε, node

t ∈ G(V,E) is called reachable from s ∈ G(V,E), if Re(s, t) > ε.

We use Q(s,t,ε) to denote if t is reachable from s or not. If t is reachable from

s using a threshold ε, then Q(s,t,ε)=1, otherwise Q(s,t,ε)=0. We use Q(s,ε) to

denote the number of nodes that s can reach. For every node in the graph, Q(s,ε)

can be evaluated using

Q(s, ε) =
∑

t∈G,t 6=s

Q(s, t, ε) (3.9)

As the peers maintain the data and metadata, the connectivity of the peers is

essential for robustness of the network. While forming and extending the network,

we aim to increase the reachability to improve the robustness of the local network

and avoid loss from failures of the peers. The number of reachable peers needs

to be high enough to avoid overloads. Following these observations, we introduce

the link recommendation problem in the next chapter.
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Chapter 4

P2P Link Recommendation

To develop a robust P2P network, it is essential to set up the right set of con-

nections among the peers. Each new connection would influence the topology of

the network and change the storage, search, and routing in the network. New

connections need to improve both social and P2P aspects of the system, such

as reachability, community structures, bandwidth, and balance of the network.

We define “link recommendation” as suggesting a new link to a peer that im-

proves the P2P aspects while preserving its local social structure. Constraining

the recommendations to local structures is a key difference from a traditional

P2P system as the connections between peers also have a social annotation for

us. Accordingly, we aim to generate links that promote P2P aspects such as

reachability; however, without damaging social structures like communities by

limiting recommendations to be local.

Definition (Link Recommendation in a P2P Social Network). Given a

social network G(V,E), the top-k link recommendation problem in a P2P envi-

ronment for a node s ∈ V is to find a set of nodes U ⊆ V such that

i. s can only ask its neighbors to recommend a node,

ii. each neighbor returns nodes and the reachability values associated with them,

and
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iii. every u ∈ U is close to s in a predefined manner (e.g. number of hops)

We model the problem through a discrete optimization framework. Let’s assume

that ReG(s) is the reachability of s on graph G. Then our purpose is

maximize
t

ReG′(s)

subject to H(s, t) < δ
(4.1)

where H(s,t) is the locality between s and t, and G′ = G′(V,E ′) where E ′ =

E ∪ (s, t). H(s, t) can be the number of hops from s to t.

The maximization of (4.1) is cumbersome in a P2P environment as a result of the

#P-hardness. Adding an abstract link between two nodes to generate G′ affects

all the reachability between any pair of nodes. Even if we use a threshold or

approximation, the estimation is costly because of the dependence of estimations.

To solve this problem, we define the following maximization problem

maximize
t

Re(t)A(t)

Re(s, t)

subject to H(s, t) < δ

(4.2)

where A(t) is the availability of t. The approximation comes from our intuition

that the recommended node t must have the utility to reach the network and

with a low reachability to s. If t is reachable from s, then s can reach other nodes

through t with a high reachability. Thus recommending t may not increase the

reachability of s.

We also define the following maximization problem as an alternative to (4.2) using

our reachable definition instead of reachability

maximize
t

Q(t, ε)A(t)

Q(s, t, ε)

subject to H(s, t) < δ

(4.3)

where Q(s,t,ε) is 1 if s and t are reachable, otherwise a very small number to

avoid division by zero, Q(t,ε) is the number of reachable nodes from t.

We develop a top-k link recommendation algorithm on uncertain graphs to solve

the introduced problem. The näıve approach would be to examine all possible

nodes and obtain top-k neighbors that increase the reachability most. This would
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become infeasible as the network size grows or the degree of the corresponding

node is high. To minimize the communication cost, we propose a variety of

methods including adaptations of Fagins approach (FA and TA) for middleware

[16] optimized for our problem setting.

In the original top-k search problem, a set of objects each with m attributes

is assigned scores, each attribute i is sorted on scores and another list Li is

constructed. Each object is assigned an overall score using a fixed monotone

aggregation function (i.e., min, average, sum). Using the sorted lists, the purpose

is to determine the top-k objects having highest (or lowest) overall score.

In our P2P setting, every node corresponds to an object and can assign scores to

each of its neighbors, as opposed to a static set of objects and attributes. The

scores are essentially the estimated values of each node t in (4.1, 4.2, or 4.3). We

develop P2P solutions: SN−FA (Social Network analog for FA), SN−TA (Social

Network analog for TA), and their approximations SN − TAθ, SN − TAsorted,
and SN − TA+. FA and TA based algorithms use static and a priori available

set while the result set is filled iteratively in SN − FA and SN − TA. This

has the advantage for communication cost if the algorithms stop early since the

algorithms may not retrieve all the rows. In the original algorithms, all rows are

a priori necessary while SN −FA and SN −TA algorithms can run with having

empty rows. These empty rows can be iteratively filled up, or can be discarded

if the algorithm stops.

4.1 SN-FA

In SN − FA we use δ=2 and obtain the candidate nodes within 2-hop distance.

SN −FA first initializes an empty score table. The attributes correspond to the

neighbors since neighbors will assign scores, and values are the assigned scores

of the candidates by each neighbor. There are two phases: First, k candidate

nodes are obtained with partially filled scores; second, the unassigned scores for

the candidates are filled.

In the first phase, s iteratively asks its neighbors to deliver their top-ith recom-

mendations. Each neighbor u asks each of its neighbors t to return the estimation
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of Re(t)*A(t). u estimates (Re(t)*A(t))/Re(u,t) for each candidate and returns

the top-ith node with the estimated value. s updates the corresponding values

in the score table by (Re(t)A(t))/(Re(u,t)Re(s,u)). We approximate Re(s,t) by

Re(u,t)Re(s,u). If we obtain k candidates of which all the attributes are filled,

SN-FA finishes the first phase, otherwise starts another iteration by asking new

neighbors.

Since we may have candidates that have unassigned scores, SN-FA starts the

second phase to fill the empty entries. SN-FA asks the neighbors to collect the

corresponding scores for the candidates that are not assigned. If the neighbor

does not have a link to a candidate, then its corresponding score is assigned zero.

If the data set is all filled, then SN-FA terminates with top-k candidate nodes.

SN-FA correctly finds the top-results and is optimal in the worst case if the ag-

gregation function is strictly monotone [15].

The drawback of SN-FA is that obtaining all the scores for a candidate may result

in delivering all the possible candidates. We handle this problem in SN-TA.

4.2 SN-TA

TA was originally proposed to lessen the optimality strictness of FA; it stops at

least as early as FA and has instance optimality [15]. Consider the same set up

where s holds a score table and fills it with the values retrieved from its neighbors.

At each iteration, SN-TA calculates a threshold value using the scores of the last

encountered candidate. If there are k candidates that have higher rate than the

threshold value, the algorithm stops. SN-TA always holds the top-k result, and

discards the others. SN-TA reduces the communication cost. As the algorithm

stops early and may never require a second phase, the size of the data transmitted

is lower than that with SN-FA.
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Algorithm 1 SN-TA Algorithm

recommendations := {}
while true do

for each neighbor in neighbors do
recommendation := neighbor.requestRecommendation()
recommendations ∪ recommendation

end for
calculate threshold using last recommendations
remember top-k so far, discard the others
if all recommendations are greater than threshold then

break;
end if

end while

4.3 SN-TA+

In SN-TA and SN-FA, we use nodes with 2-hop distance as candidates. How-

ever our optimization framework allows k-hop distant candidates. SN-TA+ is a

generalization of SN-TA such that it recommends nodes within k-hop distance.

The k-hop distant algorithm uses SN-TA as a sub procedure. For a given node s,

SN-TA+ iteratively runs SN-TA on the candidate nodes and dynamically extends

the candidate set.

Let the obtained candidate set at iteration i be CSi where ∀u ∈ CSi, H(s, t) =

i and CSi ⊆ CSi+1 for i = 1, 2, 3, ..., k − 1. Prior to the first iteration, the

candidate set is empty and is filled by running SN-TA on s. In the second

iteration, we run SN-TA on CS1 and obtain CS2. In the third iteration, we

run SN-TA on CS2 − CS1 and CS3. The algorithm proceeds similarly until we

obtain CSk−1. We return top-k candidates from CSk−1 according to the assigned

scores.

We implement another variation of the SN-TA+ algorithm. Instead of running

(k-1) iterations, the algorithm evaluates stopping criteria at each node that it

encounters. Given a threshold value p for the score of any candidate node t, SN-

TA+ stops if Re(t)*A(t)<p. If the score of the candidate is too small, regardless

of the value of Re(s,t), t will have a negligible improvement on the reachability

of s. Algorithm 2 illustrates the algorithm.
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Algorithm 2 SN-TA+

recommendations := {}
call SN-TA()
for each neighbor in neighbors do

recommendation := neighbor.SN-TA+()
end for
merge all recommendations
get top-k recommendations

4.4 SN − TAθ

One can exploit an upper bound on the threshold to stop earlier with a suboptimal

result in SN-TA. Given an upper bound θ and current estimation of the threshold

τ in SN-TA, θ-approximation is obtained by comparing the last node in the top-k

list with the τ
θ

instead of comparing it directly with τ . Although θ-approximation

is suboptimal, experiments show that it is considerably faster with a comparable

accuracy to SN-TA. We may also obtain a θ-approximation for SN-TA+ by using

SN − TAθ in SN-TA+ instead of SN-TA.

4.5 SN − TAsorted

SN−TAsorted, is another approximation for SN-TA based on predicting the total

score of a candidate item. The algorithm prunes the candidates that cannot

be possibly in top-k. In SN − TAsorted, s iteratively obtains top-ith candidates

from its neighbors with scores, and estimates the minimum average score in the

current candidate list. Upon receiving a recommendation, SN−TAsorted updates

the corresponding score of the candidate. If the worst score of this candidate is

higher than the minimum score, then it is added to the candidate set, and the

candidate with minimum score is removed. Otherwise, the candidate is discarded.

At the end of the iteration, if the threshold value is less than the minimum score,
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then the algorithm terminates and returns the top-k set. Otherwise, it continues

to collect the candidates.

Algorithm 3 SN − TAsorted Algorithm

top-k := {}
candidates := {}
while true do

for each neighbor in neighbors do
recommendation := neighbor.requestRecommendation()
candidates ∪ recommendation
calculate recommendation.bestScore
calculate recommendation.worstScore
if recommendation.worstScore>min-k then

remove the worst recommendation in top-k
top-k ∪ recommendation
add worst recommendation to candidates

end if
if recommendation.bestScore<min-k then

candidates - recommendation
end if
threshold := candidates’ bestScore
if threshold<min-k then

break;
end if

end for
end while
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Chapter 5

Distributed Computation Of

Reachability

The reachability and locality values between two nodes need to be estimated in

a distributed fashion considering the P2P network constraints. In this chapter,

we present our estimation algorithms by starting with a Karp-Luby based Monte

Carlo sampling. We then present our scalable reachability approach that ex-

ploits local maximum reachability paths between nodes. Finally, we explain our

approximations to reachability formulas.

5.1 Computing Reachability by Karp-Luby

Sampling

A Monte Carlo sampling approach where the global graph is available was pro-

posed to calculate reachability [20]. This approach considers a setup where an

edge is associated with a probability value indicating the confidence of its exis-

tence. In our framework, we define reachability based on node availability in a

P2P setting. We formalize the problem and explain our Karp-Luby based P2P

computation. We first explain the computations as if we have a global view, and
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then focus on the P2P structure.

Definition (k-neighborhood): Given a graph G(V,E) and a node s ∈ V , the

k-neighborhood of s is defined as the nodes that have a path length smaller or

equal to k. More formally, let h(u,v) be the number of hops on shortest path

between u and v, where u, v ∈ V , and Nk(u) be the k-neighborhood of the node

u, then

u ∈ Nk(u)⇔ h(u, v) ≤ k (5.1)

If k=1, then k-neighborhood is simply the neighborhood, and for notational con-

venience we use N1(u) = N(u). We calculate the reachability of a node using

all the nodes in its k-neighborhood and call this the exact calculation. We first

build a BFS tree BFSG(s, k) on graph G(V,E) rooted at node s using all the

nodes in its k-neighborhood. This tree will give us the number of possible paths

Figure 5.1: The BFS tree rooted on s of the graph in Figure 2.1 and the pruned-
BFS tree

between s and any of the nodes in its k-neighborhood. The exact reachability of

the node s and from s to another can easily be calculated in this BFS tree. We

use the subtree that includes t on its leaves to estimate reachability from s to t.

We denote this subtree by BFSG(s, t, k). For convenience, we refer to the former

tree as BFS tree and the latter as pruned-BFS tree (Figure 5.1).

We give a possible world definition for an uncertain graph G(V,E) to estimate

the reachability in a Monte Carlo sample. Then, the results for a BFS tree

BFSG(s, k) are adapted from [25].

Definition (Possible World): Given a graph G(V,E), a possible world is de-

fined as w = {Nu|u ∈ V }.
This definition gives us a realization of the graph, where a node is available or

not. If the node u is available, then Nu = 1 , otherwise Nu = 0 . The space of
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all the possible worlds on a graph G(V,E) is denoted by W. The probability of a

possible world can easily be obtained using

PG(w) =
∏
u∈V

(
P (Nu = 1)Nu + P (Nu = 0)(1−Nu)

)
(5.2)

Next, we define the variable Rw(s, t) in a given possible world w. If a node s can

reach another node t in w then Rw(s, t) = 1, otherwise Rw(s, t) = 0. Also we use

Rw(s) as the number of nodes that s can reach in a given possible world.

Algorithm 4 Stopping Rule Algorithm

S := 0, λ := e-2, N := 0
γ := 4λln

(
2
δ

)
ε2

γ1 := 1 + (1 + ε)γ;
Re0(s) := 0
while S < γ1 do

pick a random sample
estimate ReN(s)
S := S + ReN(s)
N := N+1

end while
return γ1/N

An uncertain graph G(V,E) with a possible world w gives us a deterministic

graph and is denoted by Gw(Vw, Ew). The set of all possible deterministic graphs

of G is denoted by GW (V,E). An equivalent form of our reachability between

two nodes using a possible world can easily be obtained as follows

Re(s, t) =
∑
w∈W

PG(w)Rw(s, t) (5.3)

The possible world and reachability definitions for our k-neighborhood approach

can be obtained using the BFS and pruned-BFS trees instead of the graph itself

in the original definitions.

The reachability from s to t can be estimated using Rw(s, t) instead of Rw(s) in

the procedure we give in Algorithm 4.

We now give an example to illustrate our Karp Luby sampling. Consider the

pruned-BFS tree in Figure 5.1. We have four distinct nodes, {s, v2, v3, t}. At
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each iteration, we assign either 1 or 0 to each of the nodes randomly. Lets as-

sume that at some iteration we have the sample possible world w=(1,0,1,1). Then

the probability of our possible world will become ps(1 − p2)p3pt. Next we look

if there is any path between s and t. In this sample there is a path over the

node v3, thus Rw(s, t) = 1. The reachability between s and t for this sample will

become ps(1− p2)p3ptRw(s, t). Then we iteratively generate another sample and

normalize the sum.

KL Sampling in P2P Networks. In case where a node can not obtain the

local topology, we have to use sampling in a distributed fashion. The idea is to

implement a distributed BFS tree based approach. We obtain a possible world

using a Gossip protocol, and estimate the probability of this possible world (5.2).

We iteratively generate possible worlds and estimate reachability by (5.3) until

the estimation is within a given bound. We initiate a sampling process to differ-

entiate each sampling.

Random Sampling. We start the P2P sampling process in s by asking its neigh-

bors to generate a sample from Bernoulli distribution representing the availability

of the node. Then, the available neighbors ask their neighbors and the process

continues until we hit all the nodes in k-neighborhood of s.

Calculation of PG(w). Simultaneous to the sampling process, a node also collects

the availability of its neighbors. If a node u is exactly k-hop distant from s, it

returns pu if it is available, 1−pu otherwise. All the intermediary nodes v returns

the multiplication of returned values from its neighbors and pv if available, 1−pv
otherwise. If a node is asked more than once, then the node returns 1 to all

subsequent requests other than the first.

Estimation of Rw(s, t). If there is an available path from s to t in a sample w,

then Rw(s, t) = 1, otherwise Rw(s, t) = 0. We evaluate this simultaneous to the

sampling process. If we hit, t then there is an available path from s to t thus

Rw(s, t) = 1, otherwise Rw(s, t) = 0.

Estimation of Rw(s). The number of nodes that s can reach is estimated similar

to the estimation of Rw(s, t). We count the number of distinct nodes that the

process hits.

Estimation of Rei+1(s). At the end of the process, s updates its reachability
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Algorithm 5 Karp Luby Reachability Algorithm

S := 0, λ := e-2
γ := 4λln

(
2
δ

)
ε2

γ2 := 2(1 + ε)(1 +
√
ε)
(
1 + ln3

2
/ln2

δ

)
γ

R̂e := StoppingRuleRe(min{1
2
,
√
ε}, δ

3
)

let N0 be the number of steps in StoppingRule
N := γ2ε/R̂e, n = min(N,N0)
if N < N0 then

sample N −N0 more
end if
estimate sample variance S2 using Re0, Re1, ..., Ren

pz := max(S2/n, εR̂e)

N := γ2pz/R̂e
2
, S := 0

for i=1, ... , N do
S = S + Re(i)

end for
return S/N

using (5.3).

We adapt the approach in [25] to build our Karp-Luby based sampling. Algo-

rithm 4 gives the algorithm for Stopping Rule in a P2P setting. The algorithm

takes two parameters and iteratively generates a sample using our Random Sam-

pling steps. It returns an approximate reachability value and a set of samples to

be used in our main Karp-Luby algorithm.

The procedures for Karp-Luby based reachability estimation are given in Algo-

rithm 5. We first run Stopping Rule algorithm. We then estimate sample variance

and generate more samples if needed. Finally we use all the samples we generated

to approximate the reachability.

The above approach does not require any knowledge on the local topology of

the network, or the values that each peer can hold other than its neighbors. But

Monte Carlo sampling is costly for large networks. We provide efficient algorithms

that can easily scale to large networks.
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5.2 Estimation of Reachability using Maximum

Reachable Path

Chen et al. propose an algorithm based on local topology of the network for the

#P-hard influence estimation problem [26]. The approach uses shortest paths

and assumes that the influence propagates through these paths. Our approach

is similar by exploiting shortest paths for reachability estimation. We define

Maximum Reachable Path (MRP) as follows.

Definition (MRP): Given a graph G(V,E), lets assume that Ps→t be all the

possible paths from s to t. Then the MRP from s to t is the path where the

reachability is maximum. More formally,

MRP (s, t) = argmax
L

P
(
R(L) = 1|L ∈ Ps→t

)
(5.4)

Ties are broken so that suboptimality property is satisfied, i.e., any subpath from

u to v in MRP(s,t) is also in MRP(u,v).

MRP(s,t) can be estimated using shortest path algorithms. The availabilities of

s is ineffective in the estimation of MRP(s,t) because they are always included.

So lets adjust the edges so that the weights of the edges are equal to the negative

of the log transformation of availability of the predecessor of the edge, i.e., if

(s, u) ∈ E then w(s, u) = −log(P (Nu = 1)). The shortest path from s to t will

be the maximum reachability path having the maximum reachability value.

MRPs are the building blocks of our estimations. Instead of considering all the

possible paths between two nodes, we use MRPs to estimate the reachability

between two nodes. The reachability estimated on MRP structures is a lower

bound on exact reachability. To estimate the reachability of a node s to the rest

of the graph, we need all the MRP(s,t) for all t ∈ V . We propose to use Maximum

Reachable Out Arborescence (MROA). We combine all the MRPs of a node s

to obtain the MROA of s. This structure gives all the necessary information to

approximate the reachability from s to any other node. We use a threshold ε to

eliminate the paths that have a very small reachability.
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Definition (MROA): Given a graph G(V,E), and ε, the MROA of a node s is

MROA(s, ε) =
⋃

t∈V,P
(
R(MRP (s,t))=1

)
>ε

MRP (s, t) (5.5)

Intuitively MROA represents the local region of nodes that a node can reach.

Note that as we break ties based on suboptimality, a node can only appear once

in an MROA and there are no cycles.

In our model, we assume that a node s can reach any other node only through

its MROA(s, ε). Thus the reachability from s to t is

Re(s, t) =

P
(
R(MRP (s, t)) = 1

)
if MRP (s, t) > ε

0 otherwise
(5.6)

And the reachability of s is

Re(s, ε) =
∑

L∈MROA(s,ε)

P (R(L = 1)) (5.7)

Also MROA(s, ε) is sufficient to estimate Q(s, t, ε) and Q(s, t) exactly. If

u ∈ MROA(s, ε), then u is reachable from s, i.e., Q(s, t, ε) = 1, and otherwise

Q(s, t, ε) = 0. Furthermore the number of nodes in MROA(s, ε) except s is the

number of nodes that s can reach, i.e. Q(s, ε) = |{u|u ∈MROA(s, ε), u 6= s}|.

5.3 Estimation of Reachability using Approxi-

mate Reachability Definition

Since exact computation of reachability is infeasible on large-scale networks, we

give approximate definitions for reachability.

Approximate Reachability: We relax the dependency in the computation of

reachability. We define Re′(s, t) assuming that, all the paths between s and t are

independent and then normalize this using the number of all the paths between

s and t.

Re′(s, t) =
1

Ps→t

∑
L∈Ps→t

P (R(L) = 1) (5.8)
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It can be shown that 0 ≤ Re′(s, t) ≤ 1. We define Re′(s) of a node s as the

average reachability of s over all the other nodes in the graph.

Re′(s) =
1

|V − {s}|
∑

t∈(V−{s})

Re′(s, t) (5.9)

It can also be shown that 0 ≤ Re′(s) ≤ 1. Following those approximations,

we offer a heuristic to calculate reachability. Instead of using Re(s) directly, we

simply multiply the availability values of all the nodes in a path and normalize

the sum of these. For the BFS tree in Figure 5.1, the result would be

Re′(s) = 1/4p2(p1pt + p2(p4 + pt) + p3pt) (5.10)

Also for the pruned-BFS tree in Figure 5.1, the result would be

Re′(s, t) = 1/2ps(p2 + p3)pt (5.11)

The estimation is similar to our MC approaches. At each iteration we propagate

an estimation-query to all the neighbors of s. If the query reaches a node that is

k-hop distant from s or cant́ propagate the query (because of cycles) it returns its

availability value. Otherwise, the node returns the multiplication of the results

returned from its neighbors and its availability value. s estimates its reachability

similarly.

The number of paths can be obtained using the same query. At each iteration, if a

node is k-hop distant from s or cant́ propagate the query, it returns 1. Otherwise,

it returns the sum of the values returned by its neighbors. s estimates the number

of paths similarly. Algorithm 6 illustrates the algorithm.

Algorithm 6 Approximate Reachability Algorithm

result := 1
if k 6= 0 then

for each neighbor in neighbors do
result := result * neighbor.appRe(k-1)

end for
result := result * availability

end if
return result;

Distributed approximation algorithm may run simultaneously in all peers.
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Chapter 6

Experimental Results

To evaluate the proposed algorithms, we designed a P2P social network setting

using several real P2P data sets and random graph generators including power-

law graphs, small-worlds and clustered graphs. As a baseline comparison, we

design local recommendation (LR) algorithm. LR uses all the possible candidate

sets that are within 2-hop or k-hop distance in case of SN-TA+ and chooses k

candidates from the set using uniform sampling.

We first evaluate our results on communication cost and show that SN − TAθ
and SN − TAsorted are preferable. We then compare our approaches on different

types of accuracy measures to show the accuracy of the proposed approximations.

And finally we evaluate the effectiveness of our approaches on various reachability

scores. In all the experiments, the ground truth result set is obtained by SN−FA
and SN − TA.

6.1 Datasets

The experiments include three real datasets and several synthetic datasets. The

real data sets are: Gnutella[27], Wikivote[28] and Friendster[29]. Gnutella data

is one of the snapshots of Gnutella network in 2002. In this snapshot, there

are 6301 nodes and 20,777 edges with an average clustering coefficient of 0.0150.
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Wikipedia vote network data set includes a small part of the Wikipedia contrib-

utors voting each other to become an administrator. Wikipedia voting data is

extracted from this election data and vote history having 7115 nodes and 103,689

edges with average clustering coefficient of 0.2089. We use the directed structure

of these networks. Furthermore, we use Friendster data set, which is an online

gaming network for big data experiments. Friendster was a social networking site

where users can form friendship edge each other. Friendster data set consists of

65,608,366 nodes and 1,806,067,135 edges while it has a clustering coefficient of

0.1623. Friendster data set has 4,173,724,142 triangles where fraction of closed

triangles is 0.005859.

We also generated synthetic networks using the small world model of Watts and

Strogatz [30], the clustering model of Holme and Kim [31], power-law model, and

uniform model. We assigned availabilities to the nodes using power-law and uni-

form distributions from the interval (0,1]. For power-law, we experimented using

several values for cut-off and exponent parameters. We varied the density, num-

ber of nodes, and number of edges, to generate a variety of results. We generally

give average results according to density, number of nodes and number of edges.

Note that, all of these graphs are undirected.

6.2 Performance Measures

We first evaluate the efficiency of SN − FA, SN − TA, SN − TAθ and

SN − TAsorted algorithms using the communication cost (the number of mes-

sages) as the performance measure. We examine the relationship between the

number of edges and communication cost on the Gnutella dataset. We removed

edges randomly from the Gnutella dataset to have different edge sizes. We ex-

ecuted our algorithms on those graphs and retrieved top-10 results. In Figure

6.1, we present the performance results. SN − TAθ and SN − TAsorted have

much lower communication cost compared to SN − TA and SN − FA. We also

executed algorithms on Wikivote dataset and results were almost the same with

the Gnutella dataset.

We also executed our algorithms on all the synthetic datasets to retrieve top-10
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Figure 6.1: Communication Cost vs. Edges for Gnutella Dataset

results and examined the communication cost as a function of the edge size. We

provide the average results over all generated networks. As illustrated in Figure

6.2, there is a linear relationship between the communication cost and the edge

size in all of the algorithms. There is a large gap between SN − TA and its

approximations SN − TAθ and SN − TAsorted. SN − FA and SN − TA have

almost the same communication cost. These results also support our findings

on real datasets. SN − TAθ and SN − TAsorted are more scalable than their

counterparts.

In the next experiment, we use Friendster dataset to evaluate the performance

of our algorithms on big data. In this experiment, we present the cost results

on different vertices with varying number of edges, ranging from 23 to 1092.

We have chosen the vertices with 23 edges as the starting point, and performed

experiments with increasing number of edges. The average number of edges in

Friendster is 28. Since our algorithms are local and do not need global network

information, we have obtained similar results to the previous findings. As the

number of edges increases, the communication cost for SN − TA and SN − FA
grows exponentially. On the other hand, SN − TAθ and SN − TAsorted seem to

be stable regardless of the edges size. We visualize the result in Figure 6.3 where

we have the similar patterns to the previous results. Consequently, big data does

not cause problems since we do not need global network information.
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Figure 6.2: Communication Cost vs. Edges for Synthetic Dataset

Figure 6.3: Communication Cost vs. Edges for Friendster Dataset
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6.3 Accuracy Measures

While SN − TAθ and SN − TAsorted are more communication friendly, we now

examine their accuracy with varying densities. We evaluate our results on syn-

thetic graphs. We execute the algorithms to retrieve the top-10 results. We then

evaluate those results according to instance-based, rank-based and finally weight-

based approaches. Instance-based accuracy is the number of true-positives (TP)

in the true result set. The rank based accuracy is the ratio between sum of the

ranks of the retrieved result set and sum of the ranks of the correct result set.

Ranks are assigned according to their ranks in correct result set, i.e. first having

the highest rank and last having the lowest. The weight-based accuracy is the

ratio between the sum of scores for result set and sum of the scores for correct

result set.

Figure 6.4: Algorithms in Instance Based Accuracy

We first used instance-based accuracy. Figure 6.4 illustrates that there is a sig-

nificant difference between the approximations SN − TAθ, SN − TAsorted and
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SN − FA (or SN − TA). SN − TAθ is clearly better than SN − TAsorted. Al-

though there are slight changes in accuracy, there is no significant difference in

the results according to the density.

Figure 6.5: Algorithms in Rank Based Accuracy

Figure 6.5 presents the results on the rank-based accuracy, which have a simi-

lar pattern to the instance-based accuracy. The number of edges has a negligi-

ble effect on the rank-based accuracy. Although the gap between SN − TAθ,

SN − TAsorted diminishes, the rank of the algorithms stands still. We present

our results on weight-based evaluation in Figure 6.6. SN − TAθ gets very close

to the optimal result. Any result set that is returned misses only one or two

correct results. This shows a difference from both instance-based and rank-based

approaches.

6.4 Reachability Score Effectiveness

We present the results of two different reachability experiments: first evaluating

boolean reachability value, and next using the probability estimation of reacha-

bility. On evaluating a reachability query, we use 0.1 as our threshold value in

32



Figure 6.6: Algorithms in Weight Based Accuracy

our experiments. We first run our experiments on WikiVote dataset using ran-

domly chosen 1000 nodes. We employ our MROA based algorithm to estimate

the reachability values. The average number of reachable nodes and the cluster-

ing coefficient with each recommendation are presented in Figures 6.7 and 6.8,

respectively we use clustering coefficient to show how the social structure of the

sample changes.

Figure 6.7: Average reachable nodes vs. number of recommendations for WikiV-
ote Dataset

Figure 6.7 shows that SN − TA is clearly better than local recommendation
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(LR) in terms of the average number of reachable nodes. As we recommend more

nodes, the difference between SN − TA and LR decreases. SN − TA reaches a

saturation point where the graph is reachable as much as possible.

Figure 6.8: Clustering coefficient vs. number of recommendations for WikiVote
Dataset

As SN − TA recommends the best possible nodes, after a while the nodes will

reach all the possible nodes that they can reach, and recommending another node

will not make a significant difference. SN − TA converges in a few iterations.

Figure 6.8 shows the results on how the algorithms affect the clustering coeffi-

cients for WikiVote. As the nodes are recommended, SN −TA has always better

clustering coefficient than the original, preserving the social structure of the un-

derlying network. It recommends local and more central nodes, thus improving

the local structure of the P2P social network. However, LR reduces the clustering

coefficient below the original after recommending 19 nodes. Recommending only

one node (i.e., k=1) significantly increases the clustering coefficient. But as we

proceed, the clustering coefficient drops. The reason is that, the first recommen-

dation is taken from a very close circle of a node. Thus the number of cliques

the nodes shares increases vastly. But in a large network, recommending the first

node greatly extends the social circle of a node causing the drop in clustering

coefficient as we recommend more nodes.

Figure 6.9 shows our findings on the average number of reachable nodes using
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Figure 6.9: Average reachable nodes/Clustering Coefficients vs. number of rec-
ommendations for 200, 400 and 600 nodes
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synthetic datasets. We present the results according to the density, which are

similar to those obtained with the WikiVote dataset. SN − TA outperforms the

LR approach in all of the cases. There is a sharp increase in the average reach-

ability for the first recommendations of SN − TA. Then we reach a saturation

point where recommending any node will not make a significant difference.

Figure 6.9 presents the results on clustering coefficient using synthetic datasets.

As we recommend nodes, SN − TA always improves the clustering coefficient.

In contrast, LR decreases the clustering coefficient of the underlying graph. Al-

though there is an improvement in the reachability results in LR, the social net-

work structure strongly degrades.

Figure 6.10: Average reachable nodes vs. increasing number of edges

Figure 6.10 illustrates the changes in the number of reachable nodes as we in-

crease the number of edges when the number of nodes stays the same for only

one recommendation. As the graph gets denser the SN − TA algorithm and LR

converge to a point. The graph becomes so connected that recommending an-

other node does not cause any increase in the average reachability of the graph.

For any given number of nodes, SN − TA and LR converge as the density in-

creases. As most of the social graphs in real life have a high number of nodes

and a high density, we also show how increasing the number of nodes affects the

convergence time of SN−TA and LR in terms of the number of recommendations
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Figure 6.11: Number of iterations and increasing number of nodes

(Figure 6.11). As the number of nodes increases, the convergence of SN − TA
and LR gets much slower.
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6.5 SN-TA vs SN-TA+

As we described before, SN − TA+ is a generalization of SN − TA in which

we recommend nodes within k-hop distance. We compared the performance of

SN−TA and SN−TA+ algorithms on different graphs we generated by increas-

ing edge sizes. In Figure 6.12, we illustrate the results in terms of the weight-based

accuracy we described above. In all cases, SN − TA+ produces better results

compared to SN-TA. This is expected since SN-TA+ algorithm reaches more

nodes than SN − TA. On the other hand, SN − TA+ involves more communi-

cation cost. Furthermore, as k gets bigger, the clustering coefficient gets smaller.

So there is a trade-off between the value k and the clustering coefficient.

Figure 6.12: SN-TA vs. SN-TA+

6.6 Load Preserving Reachability Score vs.

Reachability Score

Load Preserving Maximization Problem. The nodes can naturally have a

skewed distribution in terms of links (neighbors) vs. capacity. This situation

results in an imbalanced network where some nodes require more resources than
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the others. The network would be significantly affected when those heavy loaded

nodes are offline. If the recommendation focuses only on the reachability, it can

cause overload of the nodes with high reachability scores. One needs to design a

score that increases reachability while preserving the load of the network. In a

balanced network, the nodes should have similar utilizations in terms number of

links they have vs. their link capacity. Utilization u can be defined as link load l

over capacity c. Overall utilization of the network can be defined as follows.

uavg =

∑n
i=1 li∑n
i=1 ci

(6.1)

Furthermore, we also define balance quality to determine how much balanced our

P2P social network is.

bquality =

∑n
i=1 |uavg − ui|

uavg
(6.2)

A simple heuristic is to recommend nodes with high utilization to the nodes

with low utilization. By using this simple heuristic, we define load-preserving

maximization problem as follows.

maximize
t

Re(t)A(t)(uavg−u)ε+1−ε

Re(s, t)

subject to H(s, t) < δ

(6.3)

In above formula, uavg is average utilization of the social network and ε is the

constant that we use to adjust importance of reachability vs. load-preservation.

We compare reachability scores recommendation vs. load preserving reachability

scores recommendation on their performance for reachability. We again generated

a small-world graph using power-law distribution for availabilities. As we can see

from the Figure 6.13, load preserving reachability score is slightly worse than the

reachability score although it is better than random recommendation. There-

fore, we can infer that load preserving reachability score will be good enough to

recommend nodes while we provide a balance factor.
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Figure 6.13: Reachability Score vs. Load Preserving Reachability Score
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Chapter 7

Discussion

For an end-to-end P2P social network, there are several issues to overcome varying

from encryption to maintaining user data. One can develop a P2P social network

using different types of architectures. Näıve approach would be sharing the data

randomly among the peers, which would not be appropriate in terms of service

availability and data maintenance. Likewise, it would be difficult to recover

from a failure or even to find out which nodes failed or went offline. Instead,

a hierarchical architecture allowing the existence of super-peers would serve in

handling such problems as described in the following.

7.1 Design Alternatives

A DNS like hierarchical architecture can be implemented for a super-peer based

approach. Each super-peer can have a higher-level super-peer to which it is

connected. At the highest level, there will be one or more super-peers, which

would be available all the time. Any failing request would go through the top-

level super-peers and would be routed through the appropriate super-peer. As

the number of users increases, a need will arise for new super-peers which can

be achieved by using super-peer selection algorithms partially based on their

41



availability. On a failure scenario or load problems for super-peers, a new super-

peer can be selected from the peers and peers without a super-peer can be pointed

to this new super-peer.

A key problem in P2P social networks is how to identify online peers and their

properties. This problem can be handled by having lookup services at super-peers

that will return the connection properties and status of the peers. If a requested

lookup does not exist in a super-peer, it can route the request to a hierarchy of

super-peers. Once the data is received from the super-peer, it can be returned

to the peer itself. To have such lookup services, one needs identification for each

peer existing in the P2P social networt. This can be solved with GUIDs [21], the

globally unique ids that can be generated when a user creates an account. If a

login request from a super-peer is valid, the connection properties and status of

the peer can be updated. By doing so, friends can reach the latest connection

properties and the status. After the login process, users can request lookup for

their friends.

Data maintenance will be another problem for P2P social networks. Different

from a traditional P2P system, people share data with their friends, not with

everybody. One needs to distribute the data to the friends. Even if a peer were

offline, parts of its data would be reachable from its friends. One can store the

most recent data of a peer in its friends, and the old data in the peer itself because

people have tendency to check out what is new. A secure transfer of data between

peers is also needed using the encryption [32] methods such as using public key

infrastructure which not only supports encryption both also authentication.

We are currently building a P2P social network application following a hybrid

P2P infrastructure [33]. To provide peer addresses, we utilize super-peers that

have a DNS like protocol in which each super-peer delegates address inquiry

message to parent super-peer if peer address is not found in local repository. The

super-peer has permanent addresses for system start-up and keeps track of the

addresses.
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7.2 Scoring for Link Recommendation

In the thesis, we developed a new node scoring method that can be used for

robust development of P2P social networks. One can mark a node as important

if the removal of the node degrades the reachability of the network significantly.

This definition handles both the topological connectivity of the network, and the

social centrality of the node. If the removal of the node causes a high decrease

in the reachability of the network, then this node will have a high impact on the

connectivity of the network. Also reachability of a path degrades as the distance

between two nodes increases. If a node has a high centrality value, then a lot

of shortest paths pass through the node. Thus the removal of the node causes a

high decrease in the reachability of the network if the node has a high centrality.

One can also come up with node measures by combining the traditional node scor-

ing of social networks and P2P systems. One such alternative can be “trusted

centrality” that combines P2P trust and graph centrality measures. Trust is a

challenging factor in P2P systems since a node can appear and disappear in-

stantly. Trust and reputation models are based on the values that are assigned

between nodes such that node i assigns a trust value to node j, and vice versa.

There is a significant set of trust models, including Cuboid [34] Trust, EigenTrust

[35], BNBTM [36], GroupRep [37], etc. Another score can be available authority

that combines availability in P2P systems, and the authority score from the net-

work topology. The lifetime of a peer determines its availability. The simplest

way of implementing availability is waiting up for a given time and marking the

node as online or offline.

7.3 Conclusion

We presented a new problem and solutions of top-k link recommendation in P2P

social networks. We followed exact and approximate versions of reachability based

models on uncertain graphs. We developed a new node scoring using both the
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reachability definition and locality of the nodes. Based on these, we proposed dis-

tributed top-k link recommendation algorithms. We used a Monte Carlo based

sampling approach for exact reachability estimations and a computationally ap-

propriate algorithm. Experimental results include the analysis of performance of

the algorithms and the reachability score for link recommendation. The proposed

node score improves the reachability more than a local random recommendation

approach. It also increases the clustering coefficient of the graph, while the ran-

dom recommendation degrades clustering coefficient. Our approximations are

almost accurate as their exact counterparts and have much less computational

cost.
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Appendix A

Reachability Theorems

Theorem 1. Given a connected graph G(V,E) where u, v ∈ V , then the reach-

ability Re(u,v) is a semi-metric on V.

Proof. To show that Re(u,v) is a semi-metric on V, we will show that the above

properties are satisfied.

i. Using the first axiom of probability theory, any event will have a non-negative

probability. Thus the reachability definition will ensure that Re(u, v) ≥ 0 for

all nodes u,v.

ii. If Re(u,v)=0, then using reachability definition we can equivalently say that

all the paths between u and v are unavailable. As we showed, for a path to

be unavailable, at least one node should have a zero availability score, which

is a contradiction with our non-zero property of availability.

iii. Let Lu→v be a path from u to v, and Lv→u be the backwards counterpart

from v to u then

Re(u, v) = P

( ∨
Lu→v∈Pu→v

R(Lu→v) = 1

)

= P

( ∨
Lv→u∈Pv→u

R(Lv→u) = 1

) (A.1)
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as |Pu→v| = |Pv→u|, and all the paths in Pu→v have their backward paths in

Pv→u, with R(Lu→v) = 1⇔ R(Lv→u) = 1).

This concludes our proof on the semi-metric of reachability on V.

In social networks it is quite frequently the case that there are bridges between

different communities that connects them. We show that if the communication

between two nodes can only be achieved over another middle node, then the

reachability solely depends on the reachability between the end nodes and the

middle node, and the availability of the middle node.

Theorem 2. Given a connected graph G(V,E) where u, v, y ∈ V , and the

reachability Re(u,y) on VxV, if all the paths from u to y pass through the node

v then

Re(u, y) =
R(u, v)R(v, y)

P (Nv = 1)
(A.2)

Proof. Let Pu→y be all the paths from u to y. All the paths L = (u, ..., v, ..., y) ∈
Pu→y can be identified as a path Lu→v = (u, L1, ..., v) from u to v and a path

Lv→y = (v, Lw+1, ..., y) from v to y. Then

R(L) = 1⇔ Nu = 1 ∧ ... ∧Nv = 1 ∧NLw+1 ∧ ... ∧Ny

⇔ Nu = 1 ∧ ... ∧Nv = 1) ∧Nv ∧NLw+1) ∧ ... ∧Ny)

⇔ R(Lu→v) = 1R(Lv→y) = 1

(A.3)

Actually as Pu→y is the set of all the paths from u to y, then Pu→y contains all

the paths in the Cartesian product of the paths from u to v and from v to y

combined in order. For any path Lu→v, every path from v to y can be used to

reach to y. Put another way, for u to reach y, it has to first reach v and then
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from v to y. Thus

Re(u, y) = P

( ∨
Lu→y∈Pu→y

R(Lu→y) = 1

)

= P

(( ∨
Lu→v∈Pu→v

R(Lu→v) = 1
)
∧
( ∨
Lv→y∈Pv→y

R(Lv→y) = 1
))

= P

(( ∨
Lu→v∈Pu→v

R(Lu→v) = 1
)
∧
( ∨
Lv→y∈Pv→y

R(Lv→y) = 1
)∣∣∣∣∣Nv

)
P (Nv = 1)

(A.4)

Given v, the reachability from u to v and from v to y are independent, thus we

have

Re(u, y) =
R(u, v)R(v, y)

P (Nv = 1)P (Nv = 1)
P (Nv = 1)

Re(u, y) =
R(u, v)R(v, y)

P (Nv = 1)

(A.5)

This theorem indicates that, without loosening the community structures in a

social network, the reachability between two communities can be increased by

increasing the reachability between the nodes and the bridges.

Lemma 1. Given a connected graph G(V,E) and subgraphs G(V1, E1), G(V2, E2)

, ..., G(VN , EN) of the graph G(V,E) where Vi ∩ Vi+1 = vi , and Vi ∩ Vj = ø for

i 6= j, then for u = v0 ∈ V1, y = vN ∈ VN ,

Re(u, y) =

∏N−1
i=0 Re(vi, vi+1)∏N−1
i=0 P (Nvi+1

)
(A.6)

Proof (Proof by Induction): The reachability between u and y over vi,

Re(u, y) =
R(u, vi)R(vi, y)

P (Nvi = 1)
(A.7)

the reachability between u and vi over vi−j, 0 < j < i,

Re(u, vi) =
R(u, vi−j)R(vi−j, y)

P (Nvi−j
= 1)

(A.8)

and the reachability between vi and y over vi+k, 0 < k < N − i,

Re(vi, y) =
R(vi, vi+k)R(vi+k, y)

P (Nvi+k
= 1)

(A.9)
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Thus the reachability between u and y over vi−j, vi, vi+k,

Re(u, y) =
Re(u, vi=j)Re(vi−j, vi)Re(vi, vi+k)Re(vi+k, y)

P (Nvi−j
= 1)P (Nvi = 1)P (Nvi+k

= 1)
(A.10)

As a result, we conclude that

Re(u, y) =

∏N−1
i=0 Re(vi, vi+1)∏N−1
i=0 P (Nvi+1

)
(A.11)

Hence, in a social network environment, if the communities are connected through

a chain, the reachability of two nodes from different communities are dependent

on the reachabilities between the bridges of communities and these two nodes.
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Appendix B

SOWHOO : A P2P Social

Network Application

SOWHOO is a peer to peer(P2P) social networking application. SOWHOO is

built upon P2P infrastructure where each computer in the network can act as a

client or server for the other computers in the network. As a social networking

application, each computer in the network can exchange messages between neigh-

bors.

Initial Design.

SOWHOO is a hybrid P2P infrastructure, where there are simple peers and super-

peers. Each peer in the system has a super-peer to provide other peer addresses

such as neighbor peers. In order to provide peer addresses, super-peers are de-

signed to have a DNS like protocol in which each super-peer delegates address

inquiry message to parent super-peer if peer-address is not found in local reposi-

tory. As a result, there is at least one super-peer, which has permanent address

for system start-up. This super-peer keeps track of super-addresses and if there

is no other super-peer, it would also keep track of simple-peers.

We consider a partitioning algorithm for distribution of peers to super-peers.

Each super-peer would have a self-balancing mechanism to hold similar number

of addresses to have more uniform network. This would prevent the system from

depending so much in particular super-peers, which may result in overload for
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that particular super-peer.

Portability.

SOWHOO is a multi-platform application, which can run on different devices.

In order to support portability, we have chosen Java as programming language.

However, all devices must have JRE to run SOWHOO. Although main applica-

tion will be same for all of the devices that SOWHOO will run on, user interfaces

might change due to the different display features of the target platform. In Fig-

ure B1, devices that SOWHOO can run are shown.

Figure B.1: Platforms that SOWHOO can run

Data Storage.

SOWHOO keeps user information and messages in the local devices and sends

those messages to the friends devices. If user logins to the application from an-

other device, SOWHOO would retrieve user messages from its friends and store

those messages on the new device. In an extreme case, where no friend is online,

it would not retrieve the data. However, we assume that one or more friends will

be online since mobile device usage is extremely popular.

Furthermore, friends can see messages of their friends by requesting directly to

them if they are online; otherwise, they will request messages from the common

friends. Once messages are retrieved, they will be stored in the device. Our
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current implementation does not support storing of messages partially which is

better in terms of efficiency since keeping all of the friends messages would be

redundant.

We also provide caching of the messages for the friends because people want to

see the new messages instead of old messages. If a friend requests messages, it

will be first retrieved from the cache. If it does not exist in the cache, SOWHOO

will retrieve the messages from the persistent storage.

Architecture.

SOWHOO has mainly four layers. The first layer is the user interface, which

interacts with the user. The second layer is the application logic layer, which

gets the user requests and returns the corresponding responses. The third layer

is the dispatcher, which sends and receives updates for the user. The last layer

is network layer, which provides load balancing for super-peers, peer suggestions

and score calculation. In Figure B.2, architecture of SOWHOO can be seen.

Figure B.2: Architecture of SOWHOO

Packaging.

SOWHOO has basically three packages, which are “common”, “peer” and “super-

peer”(Figure B.3). As its name implies “common” is used by both peer package

and super-peer package. This package provides message types, messages and se-

rialization. Using this “common” package, peer package gains the ability to send

and retrieve messages between peers. These messages are in general text mes-

sages for the sake of simplicity. Moreover, each peer has a “super-peer” package;

however, it is not used until a peer becomes a super-peer. After becoming a

super-peer, this package handles requests coming from the peers.
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Figure B.3: Packaging of SOWHOO

Messaging Structure.

SOWHOO can support any type of messages by default. Nevertheless, we did not

implement complex types of messages. We instead implemented text messaging

which is shared between the peers. In Figure B.4, one can see initial messaging

structure of SOWHOO. Each message has a header which keeps track of the in-

formation about message delivery details and a body which usually contains the

data associated with the message. Moreover, message body can contain related

attachments like photos, links, files, etc.

Figure B.4: Messaging Structure of SOWHOO

Screen Shots.

We developed an android user interface for SOWHOO. In Figure B.5, login screen

of the SOWHOO is presented. In Figure B.6, message screen of SOWHOO is pre-

sented. Lastly, main screen of SOWHOO is provided in Figure B.7.
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Figure B.5: Login Screen of SOWHOO
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Figure B.6: Messages Screen of SOWHOO
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Figure B.7: Main Screen of SOWHOO
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