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Abstract

As social networks are constantly changing and evolving, methods to an-
alyze dynamic social networks are becoming more important in understand-
ing social trends. However, due to the restrictions imposed by the social
network service providers, the resources available to fetch the entire con-
tents of a social network are typically very limited. As a result, analysis
of dynamic social network data requires maintaining an approximate copy
of the social network for each time period, locally. In this , we study the
problem of dynamic network and text fetching with limited probing capac-
ities, for identifying and maintaining influential users as the social network
evolves. We propose an algorithm to probe the relationships (required for
global influence computation) as well as posts (required for topic-based in-
fluence computation) of a limited number of users during each probing pe-
riod, based on the influence trends and activities of the users. We infer the
current network based on the newly probed user data and the last known
version of the network maintained locally. Additionally, we propose to use



link prediction methods to further increase the accuracy of our network in-
ference. We employ PageRank as the metric for influence computation. We
illustrate how the proposed solution maintains accurate PageRank scores for
computing global influence, and topic-sensitive weighted PageRank scores
for topic-based influence. The latter relies on a topic-based network con-
structed via weights determined by semantic analysis of posts and their shar-
ing statistics. We evaluate the effectiveness of our algorithms by comparing
them with the true influence scores of the full and up-to-date version of the
network, using data from the micro-blogging service Twitter. Results show
that our techniques significantly outperform baseline methods (80% higher
accuracy for network fetching and 77% for text fetching) and are superior to
state-of-the-art techniques from the literature (21% higher accuracy).

1 Introduction

Analysis of social networks have attracted significant research attention in recent
years due to the popularity of online social networks among users and the vast
amount of social network data publicly available for analysis. Applications of
social network analyses are abound, such as influential user detection, commu-
nity detection, information diffusion, network modeling, user recommendation,
to name a few.

Influential user detection is a key social analysis used for opinion mining,
targeted advertising, churn prediction, and word-of-mouth marketing. Social net-
works are dynamic and constantly evolving via user interactions. Accordingly, the
influence of users within the network are also dynamic. Beyond the current influ-
ence of users, tracking the influence trends provides greater insights for deeper
analysis. By combining the patterns of the past with the current information,
comprehensive analysis on customers, marketing plans, and business models can
be performed more accurately. For example, forecasting future user influences
can be used to detect ‘rising stars’, who can be employed in upcoming on-line
advertisement campaigns.

In this report, we address the problem of identifying and tracking influential
users in dynamic social networks under real-world data acquisition resource lim-
its. The current approaches for influence analysis mostly assume that the graph
structure is static, or even when it is dynamic, the data is completely known and
stored in a local database. However, in many cases, analysts are third-party clients
and do not own the data. They cannot keep the data completely fresh as changes
happen, since it is typically gathered from a service provider with limitations on
resources or even on the amount of data provided. Third-party data acquisition
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tools access the data via rate-limited APIs, which constraint the fetching capac-
ity of clients. These externally enforced limits prevent the collection of entire
up-to-date data within a predetermined period. To this end, we present an effec-
tive solution to rate-limited fetching of evolving network relations and user posts.
Our system maintains a local, partially fresh copy of the data and calculates in-
fluence scores based on inferred network and text data. The proposed solution
probes limited number of active users whose influence scores are changing signif-
icantly within the network. By combining previous and the newly probed network
data, we are able to infer the current network accurately. The local network copy
is maintained while consuming resources within allowed limits, and at the same
time, influence values of the users are computed as accurately as possible.

While computing and maintaining influence scores, we consider both global
and topic-based influence. Active and influential users mostly affect the general
opinion with respect to their topics of authority. For instance, a company market-
ing sports goods will be interested in locating users who have high influence in
sports, rather than the global community. While this leads us to consider topic-
based analyses in our problem setting, general influence scores of users are still
of interest as well. For instance, a politician would prefer a broader audience and
identify a list of globally influential users to promote her cause. In our system,
we utilize both global and topic-based networks and compute global as well as
topic-based influences.

To demonstrate the effectiveness of our solutions, we use Twitter [|39]]. Twitter
is a good fit for research on dynamic user influence detection due to its large user
base and highly dynamic user activity. One can collect two-way friendship rela-
tions as well as one-way follow, re-tweet, and favorite relations via the publicly
available Twitter APIs. These APIs have well-defined resource limits [40], which
motivates the need for our probing algorithms. We calculate PageRank [32] on the
Twitter network as the influence score for the users. To generate topic-based in-
fluence scores, we adapt the weighted PageRank [47]], and adjust the initial scores
and transition probabilities based on topic relevance scores of the users. The topic
relevance scores are computed based on user posts, using text mining techniques,
as well as the re-tweet and favorite counts of the tweets.

To further improve the accuracy of our network inference, we perform link
prediction using trends on user relationships. The proposed solution shows in-
creased accuracy on Twitter data when compared with other methods from the
literature. Estimated network structure is shown to be very close to the actual up-
to-date network, with respect to influential users. The proposed solutions address
not only the limitations of data fetching via public APIs, but also local processing



when the resources are limited to fetch the entire data. We summarize our major
contributions as follows:

e We estimate global and topic-based influence of users within a dynamic
social network. For topic-based influence estimation, we construct topic-
based networks via semantic analyses of tweets and the use of re-tweet and
favorite statistics for the topic of interest.

e We propose efficient algorithms for collecting dynamic network and text
data, under limited resource availability. We leverage both latest known
user influence values, as well as the past user influence trends in our prob-
ing strategy. We further improve our probing techniques by applying link
prediction methods.

e We evaluate our proposed algorithms and compare results to several alterna-
tives from the literature. The experimental results for relationship fetching
show that the proposed algorithms perform 80% better than the baseline
methods, and 21% better than the state-of-the-art method from the litera-
ture in terms of mean squared error. For tweet fetching methods used for
topic-based influence detection, our algorithms perform 77% better than the
alternative baselines in terms of the Jaccard similarity measure.

The rest of this report is organized as follows. Section[2]describes the resource
constraint problem for data collection. Section[3|gives the overall system architec-
ture and presents influence estimation techniques. Section 4{ explains algorithms
and strategies proposed for the network and text fetching problems. Section [3]
discusses results obtained from experiments run on real data. Section [0 discusses
related work. Section [/|concludes the report.

2 Problem Definition

Our goal is to determine top-m influential users in the network, under a con-
strained probing setting. Among various methods to calculate a user’s influence
in the network, we have chosen PageRank based methods, since PageRank is well
understood and used widely in the literature for various network structures. While
computing influence, PageRank naturally considers the number of followers a user
has, but more importantly it takes into account the topological place of the user
within the network. Therefore, we assume that a user’s influence in the network
corresponds to its PageRank score. As a result, the top-m influential user determi-
nation problem turns into identifying the top-m users with the highest PageRank
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scores. One can also utilize other approaches that can outperform PageRank for
estimating social influence within our framework. These approaches need to pro-
duce a single score that will be calculated periodically for every user.

PageRank score calculation requires having access to all the relationships
present between the users of the network. This means that we need to have the
complete network data to compute exact PageRank scores. Moreover, if the net-
work is dynamic, the calculation needs up-to-date network data for each time step
in order to perform accurate influence analysis.

Our system continuously collects social network data (relations, tweets, re-
tweets, etc.) via the publicly available Twitter API. Twitter enforces certain limi-
tations on data acquisition using the Twitter APIs. There are different limitations
for different types of data acquisition requests:

e Relations: 15 calls per 15 minutes, where each call is for retrieving a user’s
relations. Moreover, if the user has more than 5K followers, we need an
extra call for each additional 5K followers. This means that we can update
relations with a maximum rate of 1 user per minute (R,.; = 1 user/min).

o Tweets: 180 calls per 15 minutes, where each call is for retrieving a user’s
tweets. Moreover, if the user has more than 3.2K tweets, we need an extra
call for each additional 3.2 K tweets. This means that we can update tweets
with a maximum rate of 12 users per minute (Ry;,; = 12 user/min).

Assuming that we update the network with a period of P days, we need the
following condition to hold, in order to be able to capture the entire network of
relations:

Number of Users < R,..; - P - 1440 (D)

For getting the recent tweets of the users, we need:
Number of Users < Ry, - P - 1440 )

One can easily calculate that for a network as small as 250K users, we need
174 days to update the complete network in the best caseﬂ This analysis shows
that the rate limits hinder the timeliness of the data collection process, which in
turn affects the timeliness of the calculation process to find and track influen-
tial users in the network. Furthermore, Twitter is a highly dynamic network that
evolves at a fast rate, which means that refreshing the network infrequently will

lif all users have < 5K followers, requiring a single call per user.



result in significant degradation in the accuracy of the influence scores. Current
resource limits prohibit the system to collect the network data in a reasonable pe-
riod of time. Therefore, the evolving network’s relationships and the tweet sets
are not fully observable at every analysis time step.

To overcome this limitation, we propose to determine a small subset of users
during each data collection period, whose information is to be updated. This data
collection process, which does not violate the rate limits of the API, is sufficient to
maintain an approximate network with a reasonable data collection period, while
at the same time providing good accuracy for the estimated influence scores.

We apply the concept of probing for efficient fetching of the dynamic network
and the user tweets. We denote a network at time ¢ as G; = {V;, E;}, where V;
is the set of users and F; C V; x V; is the set of edges representing the follower
relationship within the network. In other words, (u,v) € E; means that the user
u € V, is following the user v € V;. Our model uses an evolving set of networks in
time, represented as {G; | 0 < ¢ < T'}. However, we assume that we have fullyf]
observed the network only at time ¢ = 0. G where ¢t > 0, can only be observed
partially by probing. At each time period, we use an algorithm to determine a
subset of £ users and probe them via API calls. We then update the existing local
network with the new information obtained from the probed users. In effect, we
maintain a partially observed network G;, which can potentially differ from the
actual network G,. Larger k values bring the partial network G, closer to the
actual network G;. However, using large % values is not feasible due to rate limits
outlined earlier. Our probing strategy should select a relatively small number of
users to probe, so that the data collection process can be completed within the
period P (as determined by Eq.[I)). Furthermore, these probed users should bring
the most value in terms of performing accurate influence detection.

Dynamic Network Fetching Problem Definition: We assume that complete net-
work information is available only at time 0, i.e., GG is known. The problem is
defined as determining a subset of users of size k£ at time ¢, denoted by U; C V;
s.t. |Uy| = k, by analyzing the local graph G, ;. The system will update the
relationships of the users included in this subset to construct the local network
at time ¢, that is Gi}. Specifically, this new network G is constructed by replac-
ing the relationships of the users in G}_; with the newly fetched relationships
from the probing of the users in U;. We aim to choose U; such that the influence

’The initial probing of the network can be accelerated via the use of multiple cooperating
fetchers. However, this is clearly not a sustainable and feasible approach for continued probing
of the network, as it requires large number of accounts, which are subject to bot detection and
suspension.



scores of the estimated network G, will be as close as possible to the true scores
of the real network G;. The final objective is to estimate the PageRank scores
PR, (t),Yv € G, as accurately as possible, using partial knowledge about G;_1,
thatis G}_;.

In order to track topic-specific influence scores of the users, we analyze their
latest tweets. One needs to collect predetermined amount of tweets for all of
the users to be able to compute exact influence scores. However, due to the rate
limitations (see Eq. [2)), we cannot fetch all the tweets within the desired period.
Instead of retrieving tweets of every user, we determine a subset of users so that
by collecting tweets of this subset, the topic scores of the users will be as close
to the true scores as possible. We denote the tweet set at time ¢ as 7;. We again
assume that we have observed this set fully only at time 0, that is 7j is known.
The other snapshots can only be observed partially by probing. IL.e., we locally
maintain partial tweet sets 7/, where ¢ > 0.

Dynamic Tweet Fetching Problem Definition: Given the tweets 7T of all users
in the network at time 0, the problem is defined as determining a subset of users
of size k at time ¢, denoted by U; C V; s.t. |U;| = k, by analyzing the tweet
set 7/, and local graph G_,. By collecting tweets of the users included in U,
we construct an approximate tweet set 7; and update the topic-based network
accordingly. The final objective is to estimate the topic-based influence scores of
the users in the network as accurately as possible. Thus, the goal is to pick the
subset U, so as to maximize the accuracy of the influence scores computed on the
estimated topic-based network.

3 Overall System Architecture

In this section we briefly describe our system architecture, which depicted in Fig-

ure 1l
3.1 Social Network Data Collection

We use the Twitter network and tweets to analyze user influence. A Twitter net-
work is a directed, unweighted graph where the nodes represent users and the
edges denote follower relationships in Twitter. When a user « follows a user v, it is
obvious that v would have a influence on u. Moreover, the user « also would have
an effect on v’s influence, since the number of people v reaches would potentially
increase. This interaction has an effect on both users’ influence scores. In order
to construct our network, we first determine a small set of users called the core
seeds. For illustration, we started with some popular Turkish Twitter accounts
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Figure 1: Overall system architecture.

including newspapers, TV channels, politicians, sport teams, and celebrities. Sec-
ond, we collect one-hop relations of the core seeds and add the unique users to
a set called the main seeds. We iterate once more to collect one-hop relations of
the main seeds with a filter to avoid unrelated and inactive users. This filter has
three conditions: @) a user must have at least five followers, b) a user must have
at least one tweet within the last three months, and c¢) the tweet language of a user
must be Turkish. As a result of this process, we have determined our seed users
set, which includes approximately 2.8 million unique users. In the final step of
the data collection phase, we acquire the relations of the seed users to determine
G, that is the social network graph at time 0. Furthermore, we collect tweets of
the seed users in order to construct 7p, that the tweet set at time O.

We implemented the proposed methods using a distributed system with HBase
and HDFS serving as the database and file system backends. The system consists
of six main parts: a) local copy of the social network data on HDFS, b) data
fetcher, ¢) dynamic prober, d) score estimator, e¢) semantic analyzer, and f) visu-
alizer. Data fetcher component, as the name implies, fetches the data (network
relations and tweets) via rate-limited Twitter APIs, periodically. Dynamic prober
makes a dynamic probing analysis, decides which users are going to be fetched
and notifies data fetcher to bring the information, accordingly. Score estimator
calculates users’ influence and the related parameters of the proposed algorithms,
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Figure 2: Past influence scores of a user

which are essential parts of the probing method. Semantic analyzer performs key-
word extraction and calculates the related parameters for constructing topic-based
networks. Finally, visualizer provides a graphical user interface for result analysis.

3.2 Score Analysis

We calculate influence scores of users based on their relationships and the overall
impact of their tweets in the network. We analyze topic activities of the users
from their tweets and determine topic-based user influence scores. Overall, we
are using two types of scores, namely global influence and topic-based influence,
which can be interpreted together for a more detailed analyses.

Global Influence Score. This score is a measure of the user’s overall influ-
ence within the network. For this purpose we use the PageRank (P RR) algorithm.
PageRank value PR,(t) at time ¢ for a user v € G, directly corresponds to the
global influence score of it and will be used interchangeably throughout the report.

Figure [2|illustrates the evolving nature of the influence score by showing the
global and topic-based influence scores history of a user, which is selected by our
algorithm as one of the most important users that should be probed during the
first collection period. This is the official account of the president of the Repub-
lic of Turkey. Besides the account’s high impact, we observe that its influence
also varies significantly over time, which further justifies the need to probe this



account frequently. A reason of the variation in influence score is that the time
period shown in the figure matches with the elections for the Presidency (10 Au-
gust 2014). After becoming the new president, the account’s influence has further
increased. During this period, it is always selected as a top user to be probed by
our proposed approach. This is intuitive, as it is a popular account with changing
influence scores over time.

Topic-Based Influence Score. The system calculates topic-based influence scores
representing user activity and impact on a specific topic. We perform semantic
analysis on user tweets by taking re-tweets and favorite counts into consideration
as well. A re-tweet (RT) is a re-posting of someone else’s tweet, which helps
users quickly share a tweet that they are influenced by or like. A favorite (FAV)
is another feature that represents influence relation between users, wherein a user
can mark a tweet as a favorite. These two features help estimate the influence of
an individual tweet. Since Twitter is a micro-blogging platform, users are gen-
erally tweeting on specific topics. While many tweets are mostly conversational
and reflect self-information [29, |1], some are being used for information shar-
ing, which is important in harvesting knowledge. RTs and FAVs are effective in
separating relevant and irrelevant tweets. Accordingly, we use them in our topic
weight analysis to estimate influence of a tweet on a specific topic.

Topic-based network construction process consists of three main phases:
a) keyword extraction on tweets, b) correlation of keywords with topic dictio-
naries, and c¢) weight calculation.

In the first phase, keywords are extracted from tweets by using information
retrieval techniques, including word stemming and stop word elimination. The
output from this phase is a keyword analyzed tweet corpus for each individual user
and the related histogram which captures the frequencies of the related keywords
(K). These corpora are further analyzed in the second phase.

We have created a keyword dictionary (D);) for each topic (C;), in order to
score tweets against topics. As part of each dictionary, we have assigned normal-
ized weights to words, representing their topic relevance. In the second phase,
using the weights from the dictionaries and the users’ keyword histograms, we
obtain the normalized raw topic scores of users for each one of the topics.

In the third phase, we calculate a value called the RT-FAV total for each user,
which is the summation of the number of re-tweets and favorites received by a
user’s tweets. We then multiply the normalized raw topic score by the RT-FAV
total of the user, in order to find the number of RT-FAVs the user gets on a topic of
interest. The final normalized results are used as the in-edge weights of the users
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on each topic, when forming the topic-based network.

Once the topic-based network construction is complete, we execute the
weighted PageRank [47] (W P R) algorithm which also considers the importance
of the incoming and outgoing edges in the distribution of the rank scores. The
resulting weighted PageRank values of users, denoted by W PR, (¢) at time ¢ for
v € Gy, is assigned as their topic-based influence scores.

Due to the nature of the PageRank algorithm, some of the globally influential
users also turn out to be highly influential for most or all of the topics. These
users have a lot of followers and they are also followed by some of the influential
accounts of the specific topics, which cause them to score high for topic-based
analysis as well. Therefore, they can get high topic-based influence scores even if
they do not actively tweet about the topic itself. To eliminate this effect, we apply
one more level of filtering to remove these globally effective accounts from the
topic-sensitive influence lists. In particular, if the number of tweets a user posted
that are related with the topic at hand is less than a predefined percentage, e.g.,
%4@ of the total number of tweets posted by the user, then the user is discarded
for that topic. This filtering process significantly reduces the noise level in the
analysis.

As a result, for each topic, we construct a weighted network in which an edge
((u, v)) represents the amount of topic-specific influence a user (v) has on a fol-
lower user (u). Thus, the results of weighted PageRank algorithm gives us the
overall topic-influence scores on the network.

Figure [2] also shows the topic-based score history of the official account of
the president of the Republic of Turkey. According to our analysis, %80 of the
account’s topic activity is related to politics. Since it could not pass our applied
activity filter on other topic categories, the system only calculates its topic in-
fluence scores for politics. We can see from the figure that the change on the
topic-based scores are more dramatic compared to the global scores. This is in-
tuitive, as the topic-sensitive scores are depending on users’ tweets and sharing
statistics. A user might be very active on some weeks about a specific topic so
that her influence on the topic might increase dramatically. Likewise, when she
posts something important, it might achieve high sharing rates. On the other hand,
when she just posts regular things which are not shared, her influence on the topic
might decrease quickly.

3Note that a tweet can be related to zero or more topics.
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4 Dynamic Data Fetching

In this section, we introduce our algorithms for probing dynamic social networks.
In order to efficiently determine a subset of vertices to probe, we develop heuris-
tics for both dynamic network fetching and dynamic tweet fetching problems
given in Section

Since we have chosen the PageRank score as the indicator of influence in a
social network, we analyze its change as the network evolves. PageRank value of
a specific vertex v is given as follows:

PR(u) -«
P = 3
R(v) = « Z By (0] + — 3)
V(u,v)E€Ein (v)

where PR(v) denotes the PageRank value, F;,(v) denotes the in-edge set, and
E,.:(v) denotes the out-edge set for v.

Figure 3] shows an example network, which will be used to demonstrate the
effects of network changes on PageRank values.

OO,
N

Figure 3: A sample graph for analysis.

Assume that an edge (u, v) is added due to the evolving nature of the network.
Here, we analyze the effect of this addition on the PageRank values of the out
neighbors of u. We see that the PageRank value of v is as follows per Equation 3}

PR(7) PR(u) 1 -«
PR™(v) = « Z — + +
V(6,0) € Esm (1) | Eout())| | Eour(u)| + 1 n
= PR(v) + PR(u)

O{—
| Eout (w)] + 1

We can easily extend this analysis to multiple new edges since the total effect
will be a superposition of the effect of the new individual in-edges of vertex v.
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PR(u)
PR"™(v) = PR(v) + « _
©)=PRO*a 3 THawil
Y(u,v)EEREY (v)
PageRank values of out neighbors of u other
than v, such as w, are impacted as follows:

- PR(i)  PR(u) l1-a
PR(w) = > Boe(i)] " Bom(w)] | T n

V(i,w) € Ejn (w)\ (u,w)

PR(7) PR(u) 1 -«
PR™(w) = « Z — + +
viaeBtanu Fot D o] +1 "
PR(u)

PR™(w) = PR(w)

T Bt (@) (Bt (w) + 1)

These effects are the immediate responses on the vertices that are considered.
These residual PageRanks will ripple out to all the vertices in all the paths from
v and w in each iteration of the PageRank algorithm. But the effect will decease
as the residuals will be divided by the number of outgoing edges for each vertex
visited. We will analyze the effects of the first iteration of the algorithm to
simplify the problem and to get a general feel of the change in PageRank values.
Considering expected value of E,,; = F[|E,.(u)|] as the average out-degree for
vertices, the differential PageRanks are given as follows:

VPR() = a2 4)
Eout
VPR(w) = —aPR(Z) )
Eout

We can see from Equations E] and E] that we should select the vertices, say u,
with the following properties for accurate G, and PR) (t) estimations:

e vertices with high PageRank values (PR(u));
e vertices whose PageRank values change over time;
e vertices with high out-degrees (E,,;(u));

e vertices whose out-degrees change over time.
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PageRank, when computed until the values converge in steady state, considers
both incoming and outgoing edges. The parameters related to out-degree values
are intrinsically taken into account when PageRank is computed. Hence, in our
dynamic fetching approach, we focus only on PageRank values and their changes
to cover all the cases listed above.

Based on these observations, we will define a utility function that incorporates
the above findings. We will find the vertices that maximize this utility function,
which will be probed and used to estimate the influence scores of the evolving net-
work. We analyze two sub-problems of the general case specific for our applica-
tion: network fetching and tweet fetching. These sub-problems and the solutions
will be addressed in the subsequent sections.

4.1 Dynamic Network Fetching using Influence Past

We aim to probe a subset, U,, update the edges incident on vertices in U, to form
G}, and calculate PageRank values PR/ (t), Vv € G;. In order to determine this
subset, we use a time series of past PageRank values for a vertex v, named the
influence past of v. Formally, we have [P, = [..., PR! (t — 2), PR, (t — 1)].

In our strategy for determining U;, we consider the vertices whose PageRank
values change considerably over time. We first explored building time-series mod-
els over sequences of scores to forecast their future values. There are some well-
known methodologies in the literature for forecasting using this kind of time-
series data, such as ARIMA models. However, these models typically require
much longer sequences for accurate predictions. Therefore, in order to quantify
this change for a vertex v, we calculate the standard deviation of the time series
IP,, that is:

Change, = orp, = \/Var(PR.) (6)

Choosing the best vertices to probe can be performed by calculating a score
that is a linear combination of the PageRank value and the change in PageRank
values, as given in Equation [7, Here, 6 parameter balances the importance of the
two aspects. We assume that influence past that contains at least two data points
is available for every user, in order to calculate the score changes.

Score(v) = (1 —0)PR,(t — 1) + 6 Change, (7)

After the selection of the users with respect to the ranking of Score(v), we
probe their current relations and form G/.

Round-Robin & Change Probing. Change Probing could cause the system to
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focus on a particular portion of the network and may discard the changes devel-
oping in other parts. This is because the probing scores of some vertices will be
stale and as a result these vertices may consistently rank below the top-k, despite
changes in their real scores. This bias could end up accumulating errors in the
influence scores of these vertices and start to have an impact on the entire net-
work. Therefore, we propose to use Change Probing together with Round-Robin
Probing, in which users are probed in a random order with equal frequency. In this
way, we aim to probe every vertex at least once within a specific period P. Round-
Robin Change algorithm probes some portion of the network randomly and marks
all probed users. Thus, any probed users are not probed randomly again, until all
users are probed at least once within P. In this method, we control the balance
between change vs. random selection by using a parameter 5 € [0, 1. In partic-
ular, we choose /3 * k users to probe with Change Probing and (1 — ) * k users
with Round-Robin Probing.

Network Inference. Since we are able to fetch data only for a limited number
of users, there is a high probability that other users in the network have changed
their connections as well. To take these possible changes into account, we have
incorporated link prediction into our solution. Link prediction algorithms assign a
score to a potential new edge (u, v) based on the neighbors of its incident vertices,
denoted as I',, and I',. The basic idea behind these scores is that the two vertices
u and v are more likely to connect via an edge if ', and I', are similar, which
is intuitive. Considering social networks, two people are likely to be friends if
they have a lot of common friends. There are different scores used in the liter-
ature, including the common neighbors, Jaccard’s coefficient, Adamic/Adar, and
Resource Allocation Index (RA). We use RA as part of our approach, since it was
found successful on a variety of experimental studies on real-life networks [26].
One could also adopt more advanced prediction algorithms such as [2], in order
the increase effectiveness of this approach.

RA is founded on the resource allocation dynamics of complex networks and
gives more weight to common neighbors that have low degree. For an edge (u, v)
between any two vertices © and v, RA is defined as follows:

1
RAU,U = Z 2R
weriyr, degree(w) 8)

where [, is the neighbors of v

The RA score, RA,, for the edge (u,v), is proportional to the probability of
an edge being formed between the vertices v and v in the future. Based on this, we
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ALGORITHM 1: Algorithm for Dynamic Network Fetching
Input: G,_,, IP, PR'(t—1),0,5€[0,1], k
Output: G
// Fetch network
for all v € V; do

orp, = \/Var(PR))
Score(v) = (1 —60)PR,(t—1)+0-0rp,
end for
U+ 0
while |U;| < k-3 do
V 4 argmazyey,_, Score(v)
U+~ U U {U}, Vicn < Viq \ {’U}
end while
while |U;| < k do
v <— randomly choose from V;_;
Ui+ U U {U}, Vicn < Viq \ {U}
end while
Probe U, for relationships, Form G}
// Infer network B
Calculate RA,, ., V(u,v) € E =V, x
for £, times do
(u,v) < argmaz(y e, RAup
Et — Et U {(U,U)}
end for
Output G}

rank all the calculated RA scores. Since the edges in our network are not defined
probabilistically and are defined deterministically as existent or non-existent, we
need to determine how many of these scored edges should be selected. Therefore,
we define a growth rate, F,, which is the average change in the number of edges
(|E|) between snapshots of the network after excluding the changes due to U;.
After calculating RA scores for all possible new edges, we choose £, edges with
the highest scores. Using this method, we add new connections to the current
graph, to finally have the estimated graph G;. The pseudo code of the network
inference based probing algorithm we use to select £ vertices to probe is given in
Algorithm [I]
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ALGORITHM 2: Dynamic tweet fetching via G-WG
Input: T/ |, TIPJ, WPRY (t — 1), 0, B € [0,1), k
Output: th,
for all C; do

forall v € th_l do
oTIP, = Var(TPR;)
Scorel (v) = (1 — H)WPR%/(t -1)+6- -0
end for
Ul 0
while |U/| < k-3 do
v 4 argma:z:vevilScorej(v)
U7 < U] v} ViLy « VL A\ {o}
end while
while [U/| < k do
v 4— randomly choose from Vtﬂ 1
U7 < U] v} ViLy « VL \ {o}
end while ‘
Probe U for tweets, Form T}
Output th /
end for

TIP}

4.2 Dynamic Tweet Fetching using Topic-Based Influence Past

Our dynamic tweet fetching solution makes use of the weighted PageRank values
and comprises of two steps. First, we infer the evolving relationships of the net-
work using the methods explained earlier in the previous section. This way we
can track and estimate the changing relationships. Second, we select a subset of
users to fetch their tweet data. Specifically, we aim to probe a subset, U;, collect
their tweets, and update the edge weights for the users in Uy; all in order to form
WG{/ for a given topic C;. We then compute weighted PageRank values to find
W PRI (t),Yv € WG for a given topic C;. To select the subset of users in Uy, we
use a time series of the past weighted PageRank values, named the ropic-based in-
fluence past of v. Formally, we have TIP, = [...,WPRJ (t—2), WPRJ, (t—1)].
This is performed independently for all topics of interest, {C}} .

There are two different approaches we employ to track the topic-based influ-
ence scores:

e Use the global network parameters for network fetching and the topic-
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sensitive network parameters for tweet fetching. This is named as the G-
WG method, where global G is used for network fetching, and topic-
sensitive WGy is used for tweet fetching.

e Use the topic-sensitive network parameters for both network and tweet
fetching. This is named as the W G-W G method.

The first approach, G-W G, is useful for cases where globally influential users are
tracked, but with minimal additional resources, topic-based influential users are to
be determined as well. This might be the only viable option if the bandwidth is not
enough for selecting and updating the vertices separately for each topic, especially
if the number of topics is high. For the second approach, that is WG-W G, we
construct separate networks WG for each topic and evolve them separately. We
update each network at the end of a probing period, using the new tweets fetched
to track the most influential vertices for each topic C;. The high-level algorithm
for the G-W G method is given in Algorithm 2] The algorithm for WG-WG is
very similar, and is omitted for brevity.

5 Experiments and Results

In this section, we present the experimental setup and the results of our evaluation
of the proposed algorithms. We also present experiments analyzing the sensitivity
of the parameters used.

5.1 Data Sets

We collected data using the public Twitter API, as described in Section [3| These
API calls are restricted by rate limit windows. These windows represent 15 minute
intervals and the allowed number of calls within each window can vary with re-
spect to the call type. Our system makes two different calls, a) “GET follow-
ers/ids”, which returns a cursored collection of user IDs for every user following
the specified user, and b) “GET statuses/user_timeline”’, which returns a collection
of the most recent Tweets posted by the specified user.. For the first call type, we
are allowed to make 15 calls per window. Every call can return up to 5K followers.
For the users who have more than 5K followers, we have to make multiple calls,
accordingly. For the second type, we are allowed to make 1804 calls per window.
Each call can return 3.2K tweets of the queried user. Details of the calls are also
presented in Section [2| with the accompanying analysis.

We collected the network between the end of August 2014 and the beginning
of January 2015, with a period of 15-20 days. As a result, we have obtained
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11 snapshots of the Turkish users’ network with progressing timestamps. We
collected the relations of 2.8 million users, which amounts to a total of 310 million
edges on average. We took the first snapshot as the initial network to calculate
the probing scores (see Eq.[/) and the rest of the snapshots were used as ground
truth for the evaluation of the probing algorithms. For the topic-based influence
estimation, we also collected the tweets of our seed users in the same period. We
constructed a dataset formed of 11 snapshots containing 5.5 billion tweets in total.
We take the first snapshot as the initial tweet set as in the case of the relationship
network analysis. From this data, we built up the topic weighted networks and
calculated probing scores (see Eq.[7), accordingly.

In our probe simulation module, we fetch the connections of the users we have
selected for probing, from the real network G; at time ¢t. We then update these
connections (adding new ones and deleting old ones) on the previously observed
network G, , at time ¢ — 1, in order to obtain the estimated network G, at time .
Finally, we compare the influence estimation results from the observed network
G, with the ones from the real network G. Same procedure is also applied for the
tweet sets.

In order to include extensive number of experiments in our evaluation, we
focused on the top 250K influential users and restricted the network on which the
scores are computed to the network formed by these users.

Figure 4| shows the in-edge distribution of the original and the pruned net-
work. Both follow a power-law distribution. Impact of the pruning process on the
network structure seems to be minimal and has not created any anomalies in the
analysis. We also pruned the tweet list according to the same top 250K influential
users, which reduced the total size of the tweet sets to 200/ .

5.2 Evaluation of Dynamic Network Fetching

We have implemented several algorithms to compare the performance of the pro-
posed techniques. The details of the algorithms used are given as follows:

NoProbe and Random Probing. These are two baseline algorithms. NoProbe
algorithm assumes that the network does not change over time and uses the fully
observed network at time ¢ = 0 for all time points without performing any prob-
ing. It represents the worst case scenario for dynamic network fetching. The
second baseline algorithm is Random Probing algorithm which randomly chooses
k users to probe with uniform probability.

MaxG. As described in [S1], users are probed with a probability proportional to
the “performance gap”, which is defined as the predicted difference between the
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Figure 4: In-edge distributions of the original network (on the left) and the pruned
network (on the right).

results of the approximate solution and the real solution. Briefly, the method in-
crementally probes users which will bring the largest difference in the results. It
assumes that the influence of a specific user is related to the output of the degree
discount heuristic. Although their influence determination function is different
than ours, we use the MaxG algorithm for performance evaluation of our pro-
posed algorithms.

Priority Probing. As described in [3]], this algorithm chooses users to probe ac-
cording to a value proportional to their priorities. Priority of a node is defined as
the value of its PageRank score. For every iteration of the method, if a node is
not probed, the current PageRank value is added to its priority and if the node is
probed, its priority is reset to 0.

Change Probing. This is our first proposed method, which chooses k users to
probe with value proportional to their scores, as computed by Eq. [/l The network
is then constructed via Alg.[I]

Round-Robin & Change Probing. This is our second proposed method, which
chooses /3 k users to probe with Change Probing and (1 — 3) - k users with Round-
Robin Probing. When ¢ = 0 in Eq. [7| for the Change Probing part, the method
becomes similar to [3]]. The difference is that Priority Probing increases the probe
possibility of a node by its PageRank value in every step if it is not probed, so that
at some point the probe possibility becomes 1.

We evaluate performance by comparing the quality of the influential users
found by each approach with that of the ideal case. For this purpose, we use two
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different evaluation measures:

e Jaccard similarity between the correct and estimated top-k most influential
users lists.

e The mean squared error (MSE) of the PageRank scores.

5.3 Evaluation of Dynamic Tweet Fetching

We evaluate the performance of the proposed tweet fetching technique with two
baselines algorithms, namely NoProbe and Random Probing. The details of these
baselines are given below:

NoProbe. This algorithm assumes that the tweet set does not change over time
and use the fully observed tweet set at time ¢ = 0O for all time points without any
probing. This method represents the worst case scenario for the dynamic tweet
fetching problem.

Random Probing. This algorithm randomly chooses £ users to collect tweets
with uniform probability at each time step.

Round-Robin & Topic Change Proportional Probing. This is the algorithm we
proposed, which greedily chooses k users to collect tweets with value proportional
to their scores describe in Eq. [/} Differently from the network fetching method,
scores are calculated by using W PR/ for the topic C}, instead of PR,

5.4 Experimental Results and Discussion

This section compares and discusses the performance of the proposed network
and tweet probing methods with the state-of-the-art and baseline methods using
experiments executed on real datasets. We also provide an empirical interpretation
of the calculated topic-based influence scores.

5.4.1 Experimental Setup

As indicated by Eqgs. [[]and [2] given the resource limits permitted by the service
providers, one cannot probe a significant portion of the network. We have exe-
cuted our experiments with different probing capacities and used 0.001%, 0.01%,
0.1% and 1% of the network as the size of the probe set. For the analysis of the
effect of the § parameter used in Change Probing, we set: a) # = 0, meaning
PageRank proportional scores are used; b) ¢ = 0.5, meaning equally weighted
PageRank and influence past scores are used; ¢) # = 1, meaning only influence
past scores are used. For the Round-Robin Change algorithm we tested the ratio
parameter [ with three values, which control the fraction of vertices proved via
random selection: 0.4, 0.6, and 0.8.
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Figure 5: Performance of Change Probing.

5.4.2 Change Probing Performance w.r.t. ¢

Figure [5] depicts the performance of Change Probing algorithm for the Jaccard
similarity measure. As expected, Change Probing algorithm significantly outper-
forms NoProb algorithm. For the optimization of the # parameter, we test Change
Probing algorithm under three different  configurations:

e Using the MSE measure, # = 0.5 setting performs 8% better than 6 = 0
setting and 19% better than 6 = 1 setting. Overall, it performs 83% better
than NoProbing.

e Using the Jaccard distance measure, 6 = 0.5 setting is 3% better than § = 0
setting and 5% better than # = 1 setting. In the overall case, § = 0.5 outper-
forms NoProbe by 43%. We also note that as the probing capacity increases,
performance of the Change Probing algorithm becomes less dependent on
the setting of 6.

We also illustrate the change in error as the network evolves, in order to see
how the performance of different algorithms are affected as the seed network data
ages. Figures [6a]and [6b|show the performance of Change Probing as a function of
time for the mean squared error (MSE) and Jaccard similarity measures, respec-
tively. We observe that NoProb has an increasing error as time passes. Change
Probing gives a more robust and stable performance with respect to time. This
is mainly because as the number of past influence points increases, the algorithm
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Figure 6: Performance of Change Probing as a function of time.

can estimate the influence variability of the users more accurately, which compen-
sates the deteriorating effect of aging of the baseline network data. Since 6 = 0.5
outperforms the other cases, we use § = 0.5 configuration in the subsequent ex-
periments with other algorithms. We also note that y-axis contains relatively small
values because the PageRank values are normalized. We have assumed NoProb
algorithm as the reference point for normalization.

5.4.3 RR Change Probing Performance w.r.t. 3

Figure [/| shows the performance results for the Round-Robin Change (RRCh)
Probing algorithm under different round-robin ratios. We use the Change Probing
algorithm (with 6 = 0.5 setting) as the baseline reference point.

We observe that the RRCh algorithm performs poorly for small probing ca-
pacities, such as 0.001% and 0.01%. Randomness impacts the performance more
with smaller number of probed users, since we are not able to probe the influen-
tial users with great influential power, thus lowering the performance. For MSE,
B = 0.8 configuration performs 7% better than S = 0.6 and 12% better than
B = 0.4. For the Jaccard similarity measure, it is 2% better than S = 0.6 and
7% better than § = 0.4. Although, it performs worse than Change Probing in
the short term, it reaches the performance of Change Probing in the long term, as
show in in Figures [8al and Moreover, it guarantees the probing of every node
within a time frame, preventing the system to focus on only a limited section of
the network and missing other regional changes that might accumulate and start to
affect the network in the global sense. We would have seen this phenomenon more
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Figure 7: Performance of Round-Robin Change Probing.

explicitly if the number of snapshots were larger, which was the case in [51]. The
results are slightly better when the ratio is set to 3 = 0.8. Therefore, we choose to
use this algorithm (with § = 0.5 and S = 0.8 configurations) instead of Change
Probing for the comparison with others in the following sections.

5.4.4 Comparison with the State-of-the-Art

Figure [9] compares the performance of RR Change method (with # = 0.5 and
B = 0.8 settings) against the baselines and the state-of-the-art methods from the
literature. PR Change achieves better results for all performance measures used
for comparison in our report. It reduces MSE by 21% (see Figure 0a) when com-
pared to Priority Probing and 49% when compared to the MaxG method. Priority
Probing suffers especially for low probing capacities, since the priority of a user
is set to O after probing. A probed user can regain its priority very late in the
process, which prevents it to track quick changes in the scores of the highly in-
fluential users. Therefore, after probing an important user in terms of influence,
that user is not being probed for some time, even if the influence of the user is
changing very fast. RR Change always probes (3 portion of the users according to
their influence impact and change over time, so that the important users are in the
probe set at each step.

In Priority Probing, only a single user’s connection is updated at a time, af-
ter which PageRanks are re-calculated and the next iteration is started. However,
in real life applications fetching periods are longer, such as one week, thus deter-
mining a subset of users and updating their connections in the next fetching period
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Figure 8: Performance of Round-Robin Change Probing as a function of time.

is a more applicable approach. Furthermore, in Priority Probing, the priority of
the newly fetched user is reset and other users’ priorities are increased propor-
tional to their PageRank scores, so that every user will be eventually fetched.
When the fetching period is long and there are users who have large number of
quickly changing followers, resetting the priority of such users could significantly
decrease the accuracy of the results as such users won’t be fetched. In our al-
gorithm, we ensure the selection of these users. When we compare the methods
in terms of the freshness of the local data they maintain, longer fetching periods
cause our approach to use the same results during the fetching interval. On the
other hand, Priority Probing updates the network at the end of each individual
probe and recalculate the PageRank. Although, the local data is more up-to-date,
this technique increases the computational overhead for real life applications. In
our setup, influence score calculation overheads are significantly less.

Overall, our proposed method gives 80% higher performance than the baseline
algorithms for the MSE measure. As seen in Figure [9b] RR Change shows better
results for the top-k set similarities as well. It is 5% better than Priority Probing
and 11% better than MaxG method on average. RR Change performs 35% better
against baselines when Jaccard similarity is considered. Since it also considers
the change in the influence over time, it is also able to preserve its accuracy while
the performance of other methods degrade over time (see Figures [[0a and [I0b).
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Figure 9: Comparison of the probing strategies.

5.4.5 Evaluation of the Network Inference Method

To assess the prediction quality of the link prediction algorithm, we plotted the
histogram of the edges proposed by RA index that has really occurred in the real
network. This is shown in Figure [IT] The histogram indicates the accuracy of
the RA index used for network inference. The edges that were determined by
the prediction algorithm as more likely to happen were found to be existent in
the future network with a higher probability. However, when we analyzed the
incorrectly predicted edges, we have observed that the algorithm predicts links
between users who are unlikely to follow each other in real life. For example, the
algorithms predict an edge between two pop stars since they have many common
neighbors. However, they would not follow each other because they are main
competitors. Furthermore, some of these users are not willing to follow anybody
at all. This is the same issue studied in [22]]. Link prediction algorithms typically
do not consider these facts in social networks. In addition to indexes which they
use to calculate similarities between users, they should also consider the tendency
of the users to make new connections. Therefore, we apply a filtering process
such that we only consider users who follow more than a threshold number of
users in order to determine users who are likely to follow somebody. We add
the predicted edges only to these selected users. As a result, we improve the RR
Change method by 3% for MSE and 2% for the set similarities on average. Here,
adaptation of more advanced (like mentioned in [)) prediction algorithms could
potentially increase the accuracy of this technique.
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Figure 11: Accuracy of the link prediction algorithm.

5.4.6 Evaluation of the Topic Influence Estimation

We evaluated the influence of users with respect to four different topics: a) Poli-
tics, b) Sport, ¢) Health, and d) Cultural and Art Activities. This section provides
a qualitative discussion about the accounts which were found to be influential by
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the proposed methods. Table|l{shows the accuracy of topic relevance of the top-10
users found by the system for the specific topics.

Topics Topic Relevance
Politics 10 out of 10
Sport 8.5 out of 10
Health 4 out of 10
Culturql .al.’Ld Art 9 out of 10
Activities

Table 1: Estimated influential accounts.

For the evaluation of the results, we performed a small survey containing 10
people. We asked participants to evaluate the users with respect to their topic
relevance and their influence on the topic. In order to identify influence of a user,
we asked participants to mark one of the following categories: a) very influential
(1), b) influential (.5), ¢) not influential (0). We used the results of the survey to
provide an evaluation of the selected users for the Turkish Twitter network, on a
per-topic basis.

For the topic Politics, the results are very accurate for top-10. We have ob-
served that the dictionaries constructed for each topic has a big impact on the
results. For example, we observe that the dictionary constructed for Politics topic
contains many keywords that are related only with politics without any ambiguity.
These keywords have increased the performance of the semantic analysis, which
in turn increased the accuracy of the topic-based network influence analysis. Top-
10 list contains the president of Turkish Republic (RT_Erdogan), the chairman
of one of the opposition parties (kilicdarogluk), and the mayor of the capital city
(O6bmelikgokcek). It is fair to assume that these users, who give political messages
in their tweets and who have lots of followers, should be in the top-10 influential
list on Turkish Politics topic.

The influential accounts for the Sport topic were the biggest sport clubs of
Turkey (GalatasaraySK, Fenerbahce) and one of the highest rating sport channel
(ntvspor). Their tweets were mostly related about the sport competitions, news
from clubs, etc. They have a lot of followers who actively pay attention to what
they tweet. Thus, they achieve high RT and Fav statistics, which shows that they
have a big impact on their followers. It is very reasonable that they are top influ-
ential accounts on this topic.

As intuitively expected, the influential accounts for the Health topic are mostly
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doctor associations and governmental authorities. One of the accounts is Republic
of Turkey Ministry of Health (saglikbakanligi), which mainly tweets about hos-
pitals, doctors, and health regulations. Its follower numbers can be considered
as relatively high and is followed by other influential accounts. Since its tweets
have critical news potential, it has considerable number of RTs about the health
topic. The other two are doctor associations (YYD _tr, istabip). They are followed
by many doctors, which also have some potential impact on the Health topic. In
this topic, accurate relevance ratio is relatively low because the constructed dic-
tionary for this topic is not specific enough, causing errors in semantic analyses
that propagates to the latter phase of influence estimation.

The Cultural and Art Activities topic includes users which tweet about movies,
art, books, history, etc. The top-10 influential users are perfectly matched with
the keywords. CMYLMZ is very famous Turkish comedian, actor and producer.
He also has one of the highest follower numbers in the Turkish Twitter network.
AtlasTarihDergi is a history magazine tweeting mainly about historical events and
information which has considerable amount of followers and RTs. The third user
(Siirler_sokakta) shares street poems and mottos, and it’s posts receive many RTs
and Favs.

5.4.7 Evaluation of Dynamic Tweet Fetching

We have used the same default parameter settings from the network fetching ex-
periments to evaluate our proposed tweet fetching methods.

Figure(12{shows the performance of the RR Change method for dynamic tweet
fetching. For the MSE measure, global network based GG-W G method performs
78% better, and topic network based W G-W G method performs 40% better than
the baselines, on average, respectively. In Figure [I2b] we see that as the probing
capacities increase, G-W G method achieves almost perfect similarity against the
results obtained using the original network, for the top-10 influential users. For
the top-1000 influential users experiment, it reaches close to 0.9 similarity. To-
gether with W G-W G method, they quickly reach close to their top performance
at around 1% capacity, except for the top-10 case. For the latter, W G-W G method
does not enjoy the quality increase that the G—W G method enjoys with increasing
capacities. When we look at the Jaccard similarity based results, G-W G achieves
77% better and W G-W G achieves 65% better results than the baselines. Overall,
the results show us that using the globally maintained network is more advanta-
geous.

Although G-W G method outperforms W G-W G method when we compare
the top-10 results for the two methods, they are similar in terms of the topic rel-
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Figure 12: Performance of Change Probing for dynamic tweet fetching.

evance of their top influential users. Table [2| shows the topic relevance ratios for
the two methods. Top-10 selected users are found to be related with the topics of
interest and are popular accounts in the topic area.

Topics Topic Relevance
Politics 10 out of 10 10 out of 10
Sport 8 out of 10 9 out of 10
Health 5 out of 10 4 out of 10
C”lZ‘Crt‘l’.i ;:’eiA” 9 out of 10 9 out of 10
G — WG method | WG — WG method

Table 2: Top-10 topic relevance ratios for G-W G and W G-W G for dynamic tweet
fetching.

6 Related Work

Increases in the popularity of social networks and the availability of public data
acquisition tools for them have put social networks on the spotlight of both aca-
demic and industrial research. Influential user estimation problem is studied by
many researchers following a wide variety of different methodologies. Within
this context, some studies introduce centrality measures in order to reflect influ-
ence of users. [44] introduces several definitions, such as degree centrality, be-
tweenness centrality, and closeness centrality. For viral marketing applications,
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[11] develops methods for computing network influence from collaborative filter-
ing databases by using heuristics in a general descriptive probabilistic model of
influence propagation. [18] addresses a similar problem by studying the linear
threshold and independent cascade models, and [19] presents a simple greedy al-
gorithm for maximizing the spread of influence using a general model of social
influence, termed the decreasing cascade model.

Recently, researchers have studied extracting textual information associated
with social networks. [27] studies topic modeling in social networks and proposes
a solution for text mining on the network structure. [37]] introduces the topic-based
social influence problem. Their proposed model takes the result of any prede-
fined topic modeling of a social network and constructs a network representing
topic-based influence propagation. Distributed learning algorithms are used for
this purpose, which leverage the Map-Reduce concept. Thus, their methodology
scales to large networks. [25] combines heterogeneous links and textual content
for each user in order to mine topic-based influence.

Another recent study [45] uses a PageRank-like measure to find influential ac-
counts on Twitter. They extend PageRank by using topic-specific probabilities in
the random surfer model. Although their method is similar to ours, their influ-
ence measure utilizes the number of posts made on a specific topic. However, this
is an indirect measure that cannot reliably capture influence. Therefore, we use
topic distributions of user posts along with their sharing statistics (re-tweets and
favorites in Twitter), which provides robust results, as it takes into account the
real impact of posts. [[16] conducts an empirical study of different topic modeling
strategies based on standard Latent Dirichlet Allocation (LDA) [4]. [24] proposes
joint probabilistic models of influence and topics. Their methodology performs a
topic sampling over textual contents and tracks the topic snapshots over time. [15]]
uses re-tweets in measuring popularity and proposes machine learning techniques
to predict popularity of Twitter posts. [36} 150, [7]] propose solutions for predicting
popularity of online content. [6] studies the topic-aware influence maximization
problem. Within this context, in this work we introduce a new method that com-
bines topic-based analyses of posts with their sharing popularity for the purpose
of topic-based influential user estimation.

Dynamic graph analysis has also attracted a lot of attention recently. In or-
der to maintain dynamic networks, [46, 8, 9, |33 [31] propose algorithms for
determining web crawling schedules. [21] studies the microscopic evolution of
social networks. [10] studies incremental PageRank on evolving graphs. Re-
searches have also investigated probing strategies for analyzing evolving social
networks. [3] proposes influence proportional probing strategies for the com-
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putation of PageRank on evolving networks and [S1] uses a probing strategy to
capture observed image of the network by maximizing a performance gap func-
tion. [41} 30] study sampling over social networks. However, these studies only
focus on current image of a network in their probing strategies. In contrast, we
propose a method which also considers evolution of the probing metrics, so that
the network could be probed more effectively.

In the context of network inference, [[12]] proposes representations for struc-
tural uncertainty and use directed graphical models and probabilistic relational
models for link structure learning. However, their methodologies are not scalable.
[13L 135, 20] use time evolving graph models for social network estimation. They
apply time-varying dynamic Bayesian networks for modeling evolving network
structures. [S]] shows that third-parties can reach a user’s information by search-
ing a few friends. [[14] develops a scalable algorithm to infer influence and diffu-
sion network based on an assumption that all users in the network influence their
neighbors with equal probability. [28]] removes this assumption and addresses the
more general problem by formulating a maximum likelihood problem and guar-
antee the optimality of the solution. [48]] proposes a linear model to predict how
diffusion unfolds over time and [17] proposes the notion of diffusion centrality.
[49] 134] studies a different problem related to network inference. Different from
these works, we use friendship weighting method in order to infer link structures,
similar to [38, 42, 23|]. However, we use friendship weights only to infer edges
between users. Moreover, one can also use more informative features such as
content-based influential effects. [43] studies diffusion of tweets throughout the
Twitter network. This kind of technique could also be used in order to estimate
impact of posts.

7 Conclusion

The rate restrictions enforced by social network service providers have a negative
impact on the third-party evolving network analysis tasks. Therefore, we proposed
probing algorithms to dynamically fetch network topology and text data from so-
cial networks under limited probing capacities. Our proposed solutions use the
past influence trends of the users, as well as their current influences, in order to
determine the best users to probe, with the aim of maximizing the influence esti-
mation accuracy. In particular, we observed that highly influential users and users
with strong influence trends affect the overall influence estimations the most. We
have leveraged these two metrics across our probing algorithms. Experimental re-
sults have shown that considering past trends in the probing strategy increases the
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overall accuracy of influence prediction. Furthermore, we improved our probing
strategies by inferring possible relations between users via link prediction algo-
rithms. We also developed techniques for estimating topic-based user influence
in dynamic social networks. For computing topic-based influence, we proposed
methods that consider both the place of the user in the network topology, as well
as the topic analysis performed on the user posts and the sharing statistics of these
posts. Our experimental results performed on Twitter network data has shown
improved accuracy compared to state-of-the-art methods from the literature.
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