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Unsupervised Feature Extraction via Deep Learning
for Histopathological Classification of

Colon Tissue Images: Supplementary Material
Can Taylan Sari and Cigdem Gunduz-Demir*, Member, IEEE

Abstract—Histopathological examination is today’s gold stan-
dard for cancer diagnosis. However, this task is time consuming
and prone to errors as it requires a detailed visual inspection and
interpretation of a pathologist. Digital pathology aims at allevi-
ating these problems by providing computerized methods that
quantitatively analyze digitized histopathological tissue images.
The performance of these methods mainly rely on features that
they use, and thus, their success strictly depends on the ability
of these features successfully quantifying the histopathology do-
main. This technical report contains the supplementary material
for the new unsupervised feature extractor that we developed
for effective representation and classification of histopathological
tissue images [1].

Index Terms—Deep learning, feature learning, histopatholog-
ical image representation, digital pathology, automated cancer
diagnosis, saliency, colon cancer, hematoxylin-eosin staining.

I. INTRODUCTION

WE recently developed a new unsupervised feature ex-
tractor, which we called DeepFeature [1], for repre-

sentation and classification of histopathological images. This
extractor defines salient subregions around cytological tissue
components and characterizes them in an unsupervised way. In
this characterization, it learns the local features of the salient
subregions by a deep belief network consisting of consecutive
RBMs and quantizes them by clustering these local features by
the k-means algorithm. At the end, it represents and classifies
the image with the distribution of its quantized subregions.

In [1], we presented experimental results for two different
classification datasets. This technical report provides supple-
mentary experiments. It first presents the receiver operating
characteristic (ROC) curves for these classifications together
with their area under the curve (AUC) metrics. It then provides
the parameter analysis for the second dataset; the analysis for
the first dataset was already given in [1]. In the original paper,
we discussed how the proposed classification system can be
used in a digital pathology setup, in which typically lower
magnifications are used to scan a slide. Thus, the produced
images usually have a larger field of view and may be homoge-
neous or heterogeneous. To this end, we implemented a simple
colon adenocarcinoma detection algorithm and presented its
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TABLE I
FOR THE FIRST DATASET, THE AREA UNDER THE CURVE (AUC) METRICS

OF THE PROPOSED DeepFeature METHOD AND THE COMPARISON
ALGORITHMS. THESE METRICS ARE CALCULATED ON THE TEST SAMPLES

OF THIS DATASET.

Arith. Harm.
Norm. Low High mean mean

DeepFeature 0.9974 0.9895 0.9942 0.9937 0.9937
Handcrafted features

CooccurrenceMatrix 0.9618 0.9615 0.9418 0.9550 0.9549
GaborFilter 0.9728 0.9584 0.9452 0.9588 0.9587
LocalObjectPattern [2] 0.9901 0.9756 0.9841 0.9833 0.9832
TwoTier [3] 0.9996 0.9907 0.9872 0.9925 0.9925
Deep learning for supervised classification

AlexNet 0.9990 0.9848 0.9750 0.9863 0.9862
GoogLeNet 1.0000 0.9913 0.9859 0.9924 0.9923
Inception-v3 1.0000 0.9882 0.9827 0.9903 0.9902
Deep learning for feature extraction (salient points)

SalientStackedAE 0.9982 0.9885 0.9888 0.9918 0.9918
SalientConvolutionalAE 0.9984 0.9651 0.9293 0.9643 0.9635
Deep learning for feature extraction (random points)

RandomRBM 0.9950 0.9837 0.9935 0.9907 0.9907
RandomStackedAE [4] 0.9976 0.9836 0.9811 0.9874 0.9874
RandomConvolutionalAE 0.9927 0.9528 0.9224 0.9560 0.9551

visual results. The last section of this technical report provides
the visual results obtained for additional images.

II. ROC CURVES AND AUC ANALYSIS

This section presents the ROC curve and AUC analysis.
Although this analysis is well defined for binary classifications,
there is no consensus on how to obtain the ROC curves
for multi-class classification problems. In our experiments,
we follow the following procedure for both our proposed
method and the comparison algorithms used in [1]. In this
procedure, we generate a ROC curve for each class separately,
by considering only the posterior probabilities that the multi-
class SVM classifier outputs for this particular class (we do
not consider the posteriors of the other classes). We threshold
these posteriors with the threshold values across the [0, 1]
interval and obtain the true positive rate (TPR) and the false
positive rate (FPR) for each threshold. We then use these rates
to generate the ROC curve.

After obtaining the ROC curve for each class separately, we
calculate the area under this curve. Tables I and II report the
class-specific AUC metrics obtained on the test samples of the
first and second datasets, respectively. Note that the last two
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TABLE II
FOR THE SECOND DATASET, THE AREA UNDER THE CURVE (AUC) METRICS OF THE PROPOSED DeepFeature METHOD AND THE COMPARISON

ALGORITHMS. THESE METRICS ARE CALCULATED ON THE TEST SAMPLES OF THIS DATASET.

Low Low Low Arith. Harm.
Norm. (grade1) (grade1-2) (grade2) High mean mean

DeepFeature 0.9991 0.9752 0.9284 0.9206 0.9727 0.9592 0.9582
Handcrafted features
CooccurrenceMatrix 0.9808 0.9083 0.8228 0.7971 0.9541 0.8926 0.8867
GaborFilter 0.9692 0.9100 0.8056 0.8234 0.9483 0.8913 0.8864
LocalObjectPattern [2] 0.9899 0.9622 0.9084 0.8946 0.9612 0.9433 0.9419
TwoTier [3] 0.9997 0.9651 0.8865 0.9001 0.9725 0.9448 0.9427
Deep learning for supervised classification
AlexNet 0.9974 0.9802 0.8939 0.9132 0.9766 0.9523 0.9505
GoogLeNet 1.0000 0.9893 0.9326 0.8764 0.9764 0.9549 0.9527
Inception-v3 0.9999 0.9773 0.9015 0.9234 0.9677 0.9540 0.9526
Deep learning for feature extraction (salient points)
SalientStackedAE 0.9998 0.9736 0.9259 0.9130 0.9590 0.9543 0.9532
SalientConvolutionalAE 0.9991 0.9337 0.8539 0.8397 0.9530 0.9159 0.9119
Deep learning for feature extraction (random points)
RandomRBM 0.9951 0.9588 0.8923 0.9167 0.9693 0.9465 0.9450
RandomStackedAE [4] 0.9993 0.9544 0.8750 0.8894 0.9560 0.9348 0.9325
RandomConvolutionalAE 0.9906 0.9185 0.8549 0.8244 0.9157 0.9008 0.8972

(a) (b)

(c) (d)

Fig. 1. For the second dataset, test set accuracies as a function of the model
parameters: (a) minimum circle radius rmin, (b) size of a salient subregion
ωsize, (c) cluster number K, and (d) SVM parameter C. The parameter
analysis for the first dataset were given in [1].

columns of these tables present the averages of these class-
specific AUC metrics. Here we provide the arithmetic mean
of the class-specific AUC metrics as well as their harmonic
mean since the arithmetic mean can sometimes be misleading
when values to be averaged differ greatly. These tables indicate
the effectiveness of our proposed DeepFeature method for the
representation and classification of histopathological images.
It yields better results than the other algorithms, which is also
consistent with our findings reported in [1]. The ROC curves
used in the calculation of these AUC values are presented in
Figs. 2 and 3 for the first dataset, and in Figs. 4 and 5 for the
second one.

III. PARAMETER ANALYSIS

The proposed DeepFeature method has four external param-
eters: minimum circle radius rmin, size of a salient subregion
ωsize, cluster number K, and SVM parameter C. The selection
of these parameters and their analyses for the first dataset
were given in [1]. This section gives the parameter analysis
for the second dataset. In this analysis, for each parameter,
the values of the other three parameters are fixed and the test
set accuracies are measured as a function of the parameter of
interest.

The minimum circle radius rmin determines the size of the
smallest circular object (tissue component) to be located. Its
larger values may cause an inadequate representation since
they cause not to define smaller objects, which may correspond
to important small tissue components such as nuclei, and
salient subregions around them. This lowers the accuracy. Its
smaller values define noisy objects and using their salient
subregions slightly decreases the accuracy. This analysis is
depicted in Fig. 1(a).

The size of a salient subregion ωsize determines the locality
of the deep features extracted from salient subregions. When
ωsize is too small, it is not sufficient to accurately characterize
the subregion, which significantly decreases the accuracy.
After a certain point, it does not affect the accuracy too much,
but of course, increases the complexity of the required deep
neural network. This analysis is depicted in Fig. 1(b).

The cluster number K determines the number of labels used
to quantize the salient subregions (components). Its smaller
values may result in defining the same label for components of
different types. This may lead to an ineffective representation,
decreasing the accuracy. Its larger values only slightly affect
the performance. This analysis is depicted in Fig. 1(c).

The SVM parameter C controls the trade-off between the
training error and the margin width of the model. Unfortu-
nately, there is no foolproof method for its selection and its
value must be determined empirically. As shown in Fig. 1(d),
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Fig. 2. ROC curves for the test samples of the first dataset. These curves are obtained for the proposed DeepFeature method and the comparison algorithms
that use handcrafted features: (a) DeepFeature, (b) CooccurrenceMatrix, (c) GaborFilter, (d) LocalObjectPattern [2], and (e) TwoTier [3] methods.

our application necessitates the use of C in the range between
250 and 1000.

IV. VISUAL RESULTS OF THE DETECTION ALGORITHM

In [1], we discussed how the proposed image representation
and classification system can be used in a digital pathology
setup. To that end, we outlined a simple algorithm for an
example application, in which the aim is to detect low-grade
and high-grade colon adenocarcinomatous regions on large
images as well as those containing normal colon glands.
The visual results of this colon adenocarcinoma detection
algorithm were given in [1]. This section provides the visual
results for additional images. The results given in Fig. 6
indicate that this algorithm is good at detecting the regions
of interest on many large heterogeneous images.

This section also discusses probable misclassifications of
the detection algorithm, on illustrative examples. First, it
may incorrectly output the cancer grade because of an error
in the SVM classifier. The examples for such type of a
misclassification are illustrated in Figs. 7(a) and 7(b). In these
examples, low-grade cancerous regions are incorrectly classi-
fied as high-grade. Here it is worth to noting that the detection
in the latter example is much more difficult since it contains
heterogeneous tumor (with multiple grades). The second type
of error may occur due to the existence of unannotated non-
epithelial regions. These regions are left as unannotated in our
datasets, on which the classification system was trained, since
colon adenocarcinoma mainly affects epithelial cells and non-
epithelial regions are not that informative for the diagnosis
of this cancer type. When these regions are small, incorrect

classifications can be compensated by correct classifications
of nearby regions and the reject action. On the other hand,
when they are large, such compensation may or may not be
possible and the system may give incorrect results since there
is no separate class for these non-epithelial regions. Such an
example is given in Fig. 7(c). Defining an extra class(es) will
definitely improve the accuracy on these regions. This is left
as future research work of our study.
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Fig. 3. ROC curves for the test samples of the first dataset. These curves are obtained for the proposed DeepFeature method and the deep learning based
comparison algorithms: (a) DeepFeature, (b) AlexNet, (c) GoogLeNet, (d) Inception-v3, (e) SalientStackedAE, (f) SalientConvolutionalAE, (g) RandomRBM,
(h) RandomStackedAE [4], and (i) RandomConvolutionalAE methods.
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Fig. 4. ROC curves for the test samples of the second dataset. These curves are obtained for the proposed DeepFeature method and the comparison algorithms
that use handcrafted features: (a) DeepFeature, (b) CooccurrenceMatrix, (c) GaborFilter, (d) LocalObjectPattern [2], and (e) TwoTier [3] methods.
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Fig. 5. ROC curves for the test samples of the secomd dataset. These curves are obtained for the proposed DeepFeature method and the deep learning based
comparison algorithms: (a) DeepFeature, (b) AlexNet, (c) GoogLeNet, (d) Inception-v3, (e) SalientStackedAE, (f) SalientConvolutionalAE, (g) RandomRBM,
(h) RandomStackedAE [4], and (i) RandomConvolutionalAE methods.
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Fig. 6. Examples of large heterogeneous images together with their visual results obtained by the colon adenocarcinoma detection algorithm. The boundaries
of the annotated/estimated normal, low-grade cancerous, and high-grade cancerous regions are shown with red, blue, and green, respectively.
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Fig. 7. Examples of large heterogeneous images that contain regions whose types are incorrectly estimated by our detection algorithm. The boundaries of
the annotated/estimated normal, low-grade cancerous, and high-grade cancerous regions are shown with red, blue, and green, respectively.


