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AttentionBoost: Learning What to Attend for Gland
Segmentation in Histopathological Images by

Boosting Fully Convolutional Networks
(Supplementary Material)

Gozde Nur Gunesli, Cenk Sokmensuer, and Cigdem Gunduz-Demir

Abstract—This technical report contains the supplementary
material for an error-driven multi-stage model that we developed
for gland instance segmentation in histopathological images [1].

Index Terms—Deep learning, attention learning, adaptive
boosting, gland instance segmentation, instance segmentation

I. INTRODUCTION

WE recently developed a new error-driven multi-attention
learning model, which we call AttentionBoost, for

instance segmentation. This model proposes to design a multi-
stage network and adaptively learn what image parts (pixels)
each stage network needs to attend and the level of this
attention directly on image data. For this purpose, it intro-
duces a new loss adjustment mechanism that uses adaptive
boosting for a dense prediction task [1]. This technical report
provides supplementary material for additional definitions and
experiments used in the evaluation of the proposed model.

II. EVALUATION METRICS

In order to quantitatively evaluate the results of the proposed
model and the comparison methods, three criteria are used.
These are the object-level F-score, the object-level Dice index,
and the object-level Hausdorff distance metrics, which were
also used in the GlaS Challenge Contest [2]. The definitions
of these metrics are given below.

1) F-score: A segmented gland object is considered as true
positive (TP) if it intersects with at least 50 percent of a ground
truth object, and as false positive (FP) otherwise. A ground
truth object is considered as false negative (FN) if at least its
50 percent does not intersect with any segmented gland object.
The object-level F-score is defined as:

F-score =
2 · precision · recall
precision + recall

(1)

precision = |TP |/(|TP |+ |FP |)
recall = |TP |/(|TP |+ |FN |)
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2) Dice index: Let S = {si} be a set of segmented gland
objects in all images of a given dataset and G = {gj} be a set
of ground truth objects in these images. To calculate the object-
level Dice index on these two sets, the objects in S and G are
first matched: Each si ∈ S is matched with a ground truth
object γ(si) ∈ G that maximally overlaps si. Similarly, each
gj ∈ G is matched with a segmented gland object σ(gj) ∈ S
that maximally overlaps gj . Then, by accumulating the Dice
indices calculated for all matching object pairs, the object-level
Dice index is defined as follows:

Dice(S,G) =
1

2


∑

si∈S
ω(si) ·DI(si, γ(si))

+∑
gj∈G

ω(gj) ·DI(gj , σ(gj))

 (2)

where ω(si) = |si| /
∑

sm∈S
sm and ω(gj) = |gj | /

∑
gm∈G

gm.

Here DI(x, y) = 2 · |x ∩ y|/(|x|+ |y|) is the Dice index of a
pair of objects x and y, one from the segmented gland objects
and the other from the ground truth objects. If there is no
matching ground truth object of a segmented gland object (or
vice versa), the contribution of this object to the Dice index
is zero.

3) Hausdorff distance: Likewise, the objects in S and G are
matched to calculate the object-level Hausdorff distance. Each
si ∈ S is matched with γ(si) ∈ G that maximally overlaps
si. If there is no overlap, γ(si) is the ground truth object
that has the minimum Hausdorff distance from si. Similarly,
each gj ∈ G is matched with σ(gj) ∈ S that maximally
overlaps gj . If there is no overlap, σ(gj) is the segmented
gland object that has the minimum Hausdorff distance from gj .
Then, by accumulating the Hausdorff distances calculated for
all matching object pairs, the object-level Hausdorff distance
is defined as follows:

Hausdorff (S,G) =
1

2


∑

si∈S
ω(si) ·HD(si, γ(si))

+∑
gj∈G

ω(gj) ·HD(gj , σ(gj))

 (3)

HD(x, y) = max{ sup
px∈x

inf
py∈y
||px− py||, sup

py∈y
inf
px∈x

||px− py||}

is the Hausdorff distance between a pair of objects x and y,
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Fig. 1. F-scores, Dice indices, and Hausdorff distances as a function of the
epoch number. These metrics are calculated for the training images.

one from the segmented gland objects and the other from the
ground truth objects. Note that sup

px∈x
inf
py∈y
||px − py|| gives the

maximum of the minimum distances calculated from every
pixel px of object x to any pixel py of object y.

III. MULTI-STAGE NETWORK TRAINING

We analyze the qualitative and quantitative results obtained
during network training. For this purpose, for an exemplary
network, the segmentation (probability) maps are generated for
each training image at the end of each epoch and glands are
located on these segmentation maps. Afterwards, the object-
level F-score, Dice index and Hausdorff distance are calcu-
lated. Fig. 1 shows these performance metrics as a function
of the epoch number. Moreover, for two selected training
images (one containing normal glands and one containing
cancerous glands), qualitative results are obtained at different
epochs during training. These qualitative results are illustrated
in Figs. 2 and 3.

IV. PARAMETER ANALYSIS

AttentionBoost uses two external parameters in its gland
instance segmentation step: confidence parameter α and area
threshold Athr. For the gland instance segmentation task,
we analyze the effects of these parameters on the model’s
performance. To this end, for each parameter, we fix the value
of the other parameter and measure the test set performance
as a function of the parameter of interest.

This step inputs the average probability map Ŷavg(I) =
{ŷavg(p)}p∈I for image I and locates gland objects (instances)
on this map. For that, it first identifies certain gland and
background pixels on which seed regions are defined. The
confidence parameter α determines which pixels are consid-
ered as certain, see Eqn. 4 of the main paper [1]. When
it is selected too large, only pixels p for which ŷavg(p) is
very close to 1 and very close to 0 are selected for the
gland and background seed regions, respectively. Such average
posteriors can only be obtained when the networks at all
stages give the same output with high confidence. However,
this is not an expected output of our multi-stage network,

especially for hard-to-learn pixels, since it is designed with
the purpose of correcting mistakes of one stage by another.
Thus, larger α values result in selecting a smaller number of
certain gland pixels, which decreases the number of gland seed
regions to be grown. This, in turn, greatly lowers the model’s
performance. On the other hand, when it is selected too small,
almost all pixels are considered as certain. This also lowers
the performance, by leading to more undersegmented gland
objects, since pixels whose ŷavg(p) is around 0.5 are typically
found on gland boundaries and these pixels are considered
as certain when smaller α values are used. This analysis is
depicted in Fig. 4(a).

The area threshold Athr is used to eliminate small gland and
background seed regions to be grown. Too small Athr values
cannot eliminate noisy gland seed regions, leading to false pos-
itives. On the other hand, too large Athr values eliminate seed
regions corresponding to small gland instances, leading to false
negatives. Both lower the F-score. Note that this parameter
only slightly affects the Dice index and the Hausdorff distance
since they are weighted averages of these measures calculated
for individual gland objects where the weights are determined
by their areas. Since this elimination typically affects small
glands, it does not change these measures too much. This
analysis is depicted in Fig. 4(b).

This step has also an internal parameter, fsize, which is
the size of the majority filter applied on the grown gland
regions to smooth their boundaries. Although its selected
value affects the appearance of gland boundaries, it only very
slightly affects the performance measures since the number of
boundary pixels is low. Thus, for the sake of simplicity, the
smallest filter size fsize = 3 is used in the experiments.

V. NUMBER OF PARAMETERS

In our experiments, we use the same network architecture
as the base models of the comparison methods. This network
architecture is given in Fig. 3 of the main paper [1]. However,
for fair comparisons, we keep the number of their parameters
(network weights) on par with ours by selecting an appropriate
number of feature maps in their first convolutional layers.
For each comparison method, Table I provides this number
of feature maps as well as the number of its total network
parameters. It also provides these numbers for the ablation
studies, referring the corresponding table numbers in the main
paper [1]. Note that the total number of network parameters
also affect the computational time required for training a
network. For each comparison method and ablation study, the
average computational time required for the network training
is also given in Table I.

VI. EFFECTS OF USING SHARED WEIGHTS

In our experiments, we conduct two ablation studies to
understand the effects of using different weights at each stage
network of the AttentionBoost model. For that, we implement
variants of the proposed model, in which all stage networks
share weights. In the first variant, each stage network uses
the same base model with the original AttentionBoost model.
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(a) (b) (c) (d) (e) (f)

Fig. 2. Probability maps obtained for a training image containing normal glands at different epochs. (a) Posterior map Ŷ1(I) generated by the first stage. (b)
Posterior map Ŷ2(I) generated by the second stage. (c) Posterior map Ŷ3(I) generated by the third stage. (d) Posterior map Ŷ4(I) generated by the fourth
stage. (e) Average posterior map Ŷavg(I) obtained by aggregating the posterior maps of all stages. (f) Posterior map Y(I) produced by the ground truth
segmentation. These maps include pixel posteriors where 1 indicates that a pixel belongs to the gland class and 0 indicates that it belongs to the background.
Posteriors between 1 and 0.5 are shown with increasing tints of red and posteriors between 0 and 0.5 are shown with increasing tints of blue. Note that in
these images posteriors close to 0.5 seem whitish.
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(a) (b) (c) (d) (e) (f)

Fig. 3. Probability maps obtained for a training image containing cancerous glands at different epochs. (a) Posterior map Ŷ1(I) generated by the first stage.
(b) Posterior map Ŷ2(I) generated by the second stage. (c) Posterior map Ŷ3(I) generated by the third stage. (d) Posterior map Ŷ4(I) generated by the fourth
stage. (e) Average posterior map Ŷavg(I) obtained by aggregating the posterior maps of all stages. (f) Posterior map Y(I) produced by the ground truth
segmentation. These maps include pixel posteriors where 1 indicates that a pixel belongs to the gland class and 0 indicates that it belongs to the background.
Posteriors between 1 and 0.5 are shown with increasing tints of red and posteriors between 0 and 0.5 are shown with increasing tints of blue. Note that in
these images posteriors close to 0.5 seem whitish.
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TABLE I
NUMBER OF FEATURE MAPS USED IN THE FIRST CONVOLUTIONAL LAYERS, NUMBER OF TOTAL NETWORK PARAMETERS, AND COMPUTATIONAL TIME
FOR NETWORK TRAINING. GRAY ROWS INDICATE THE TABLE NUMBERS IN THE MAIN PAPER THAT REPORT THE RESULTS OF THE METHODS GIVEN IN

THE ROWS BELOW.

Number of feature
maps in the first Number of total Training time

convolutional layer network parameters (seconds)
Tables II and III
AttentionBoost 32 31,387,780 4844 ± 403
Boundary-loss-adjustment 64 31,378,945 2887 ± 155
Multi-task 54 31,264,870 3480 ± 122
Iterative 32 31,387,780 4412 ± 474
Table IV
AttentionBoost 32 31,387,780 4844 ± 403
AttentionBoost (shared weights) 32 7,846,945 3569 ± 157
AttentionBoost (shared weights × 2) 64 31,379,521 19936 ± 955
AttentionBoost (w/o normalization) 32 31,387,780 3910 ± 165
Table V
AttentionBoost (2-stages) 32 15,693,890 1971 ± 139
AttentionBoost (3-stages) 32 23,540,835 3595 ± 460
AttentionBoost (4-stages) 32 31,387,780 4844 ± 403
AttentionBoost (5-stages) 32 39,234,725 5277 ± 251
AttentionBoost (6-stages) 32 47,081,670 6199 ± 601
AttentionBoost (7-stages) 32 54,928,615 6662 ± 431
Table VI
SingleStage-two classes (U-Net) 64 31,378,945 2844 ± 176
SingleStage-two classes (G-Conv) 32 31,372,161 7502 ± 743
SingleStage-two classes (G-Res) 32 33,130,721 8051 ± 202
SingleStage-three classes (U-Net) 64 31,379,075 2909 ± 156
SingleStage-three classes (G-Conv) 32 31,372,227 7678 ± 530
SingleStage-three classes (G-Res) 32 33,130,787 7983 ± 218
AttentionBoost (U-Net) 32 31,387,780 4844 ± 403
AttentionBoost (G-Conv) 16 31,373,636 8814 ± 454
AttentionBoost (G-Res) 16 33,150,020 9942 ± 188
Table VII
AttentionBoost (same model: 4b32f ) 32, 32, 32, 32 31,387,780 4844 ± 403
AttentionBoost (different models: 32, 32, 64, 64 78,452,932 8820 ± 5924b32f, 4b32f, 4b64f, and 4b64f )
AttentionBoost (different models: 32, 64, 32, 64 60,755,140 7896 ± 5823b32f, 3b64f, 4b32f, and 4b64f )

(a) (b)

Fig. 4. Test set F-scores, Dice indices, and Hausdorff distances as a function
of (a) the confidence parameter α and (b) the area threshold Athr .

For this first variant, the changes in the model and in network
training are summarized as follows.
• The number of parameters to be learned decreases from

31,387,780 to 7,846,945.
• The number of epochs at the stopping time (convergence

point) decreases from 79.4 to 32.2 on the average (over
five folds). The convergence plots for the first fold are
provided in Fig.5. Note that since the training procedure
uses an early stopping approach, these convergence plots
are obtained until the end of the 180th and 130th epochs,
respectively, although the convergence times are less than
these numbers of epochs.

• The computational time required by each epoch remains
almost the same (approximately 26-27 seconds) since the
training procedure unfolds the network to be learned.

• The same training and validation sets are used for this
ablation study.

Our experiments show that the first variant leads to lower
performance measures. In order to understand whether the
performance decrease is a result of weight sharing or due to the
decrease in the parameter number, we implement the second
variant, which doubles the number of feature maps in the base
model. For the second variant, the changes in the model and
in network training are summarized as follows.

• Doubling the number of feature maps gives a network
with 31,379,521 parameters.

• The number of epochs at the stopping time greatly
increases; it becomes 184.8 on the average. The conver-
gence plot for the first fold is also provided in Fig 5.

• The computational time required by each epoch becomes
approximately 70 seconds since the training procedure
unfolds the network.

• The same training and validation sets are also used for
this ablation study.
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(a) (b)

(c)

Fig. 5. Convergence plots for (a) the proposed AttentionBoost model and (b)-(c) two variants that use shared weights for all of their networks. The first
variant uses the same base model with the proposed AttentionBoost model whereas the second variant doubles the number of the feature maps in the base
model. These convergence plots are obtained for the first trained network (for the first fold). Since the training procedure uses an early stopping approach,
these convergence plots are obtained until the end of the 180th, 130th, and 287th epochs, respectively, although the convergence times (stopping points) are
80, 30, and 187 epochs for these three methods.

VII. USE OF DIFFERENT BASE MODELS

We conduct additional experiments to investigate the effects
of using different base models at different stages of our
multi-stage network. For that, we use three more U-Net like
networks whose architectures contain different numbers of
layers and feature maps. The architectures of these networks
(base models) are illustrated in Fig. 6. Similar to the one used
in [1], all these networks have convolutional layers with 3×3
filters, pooling/upsampling layers with 2×2 filters, and dropout
layers with a drop-out factor of 0.2. They use the sigmoid
activation function at their last layers and the ReLu activation

function elsewhere. Likewise, they are trained from scratch
with an early stopping approach. The learning rate and the
momentum value are adjusted using the AdaDelta optimizer.
The selected batch size is 1.
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(a)

(b)

(c)

Fig. 6. Architectures of the FCNs, referred as (a) 3b32f, (b) 3b64f, and (c) 4b64f. Each box represents a feature map with its dimensions and number of
channels being indicated in order on its right. Each arrow corresponds to an operation which is distinguishable by its color.


