Lecture 1

Introduction to Analysis of Algorithms

View in slide-show mode
Algorithm Definition

- **Algorithm**: A sequence of computational steps that transform the input to the desired output

- Procedure vs. algorithm
 - An algorithm **must halt within finite time** with the right output

- Example:
 - A sequence of \(n \) numbers
 - **Sorting Algorithm**
 - Sorted permutation of input sequence
Many Real World Applications

- **Bioinformatics**
 - Determine/compare DNA sequences

- **Internet**
 - Manage/manipulate/route data

- **Information retrieval**
 - Search and access information in large data

- **Security**
 - Encode & decode personal/financial/confidential data

- **Electronic design automation**
 - Minimize human effort in chip-design process
Course Objectives

- Learn basic algorithms & data structures
- Gain skills to design new algorithms
- Focus on efficient algorithms
- Design algorithms that
 - are fast
 - use as little memory as possible
 - are correct!
Outline of Lecture 1

- Study two sorting algorithms as examples
 - Insertion sort: *Incremental* algorithm
 - Merge sort: *Divide-and-conquer*

- Introduction to runtime analysis
 - Best vs. worst vs. average case
 - Asymptotic analysis
Sorting Problem

Input: Sequence of numbers

\[\langle a_1, a_2, \ldots, a_n \rangle \]

Output: A permutation

\[\Pi = \langle \Pi(1), \Pi(2), \ldots, \Pi(n) \rangle \]

such that

\[a_{\Pi(1)} \leq a_{\Pi(2)} \leq \ldots \leq a_{\Pi(n)} \]
Insertion Sort
Insertion Sort: Basic Idea

- Assume input array: A[1..n]
- Iterate j from 2 to n

Diagram: Insertion Sort Process

- Already sorted j
- Insert into sorted array
- Sorted subarray

iter j

after iter j
Pseudo-code notation

- Objective: Express algorithms to humans in a clear and concise way
- Liberal use of English
- Indentation for block structures
- Omission of error handling and other details → needed in real programs
Algorithm: Insertion Sort (from Section 2.2)

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. key $\leftarrow A[j]$;
3. $i \leftarrow j - 1$;
4. while $i > 0$ and $A[i] > key$
 do
5. $A[i+1] \leftarrow A[i]$;
6. $i \leftarrow i - 1$;
 endwhile
7. $A[i+1] \leftarrow key$;
endfor
Algorithm: Insertion Sort

Insertion-Sort \((A)\)

1. **for** \(j \leftarrow 2\) **to** \(n\) **do**
2. \(\text{key} \leftarrow A[j];\)
3. \(i \leftarrow j - 1;\)
4. **while** \(i > 0\) **and** \(A[i] > \text{key}\) **do**
 5. \(A[i+1] \leftarrow A[i];\)
 6. \(i \leftarrow i - 1;\)
5. **endwhile**
6. \(A[i+1] \leftarrow \text{key};\)
7. **endfor**

Loop invariant:

The subarray \(A[1..j-1]\) is always sorted

Iterate over array elts \(j\)

already sorted

\(j\)

\(key\)
Algorithm: Insertion Sort

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do

2. \hspace{1cm} key $\leftarrow A[j]$;

3. \hspace{1cm} $i \leftarrow j - 1$;

4. \hspace{1cm} while $i > 0$ and $A[i] > key$ do

5. \hspace{2cm} $A[i+1] \leftarrow A[i]$;

6. \hspace{1cm} $i \leftarrow i - 1$;

7. \hspace{1cm} endwhile

8. \hspace{1cm} $A[i+1] \leftarrow key$;

endfor

Shift right the entries in $A[1..j-1]$ that are $> key$
Algorithm: Insertion Sort

Insertion-Sort (A)

1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
 5. A[i+1] ← A[i];
 6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
endfor

End of iter j: A[1..j] is sorted
Insertion Sort - Example

Insertion-Sort (A)

1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
5. A[i+1] ← A[i];
6. i ← i - 1;
7. A[i+1] ← key;
endfor
Insertion Sort - Example: Iteration $j=2$

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. key $\leftarrow A[j]$;
3. $i \leftarrow j - 1$;
4. while $i > 0$ and $A[i] >$ key do
5. $A[i+1] \leftarrow A[i]$;
6. $i \leftarrow i - 1$;
 endwhile
7. $A[i+1] \leftarrow$ key;
endfor
Insertion Sort - Example: Iteration j=3

```
Insertion-Sort (A)
1. for j ← 2 to n do
2.   key ← A[j];
3.   i ← j - 1;
4.   while i > 0 and A[i] > key do
5.       A[i+1] ← A[i];
6.       i ← i - 1;
   endwhile
7.   A[i+1] ← key;
endfor
```

What are the entries at the end of iteration j=3?
Insertion Sort - Example: Iteration j=3

Insertion-Sort (A)

1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
endfor

initial

key=4

sorted

shift

< 4 > 4

insert key

sorted

key=4

initial
Insertion Sort - Example: Iteration j=4

Insertion-Sort (A)

1. **for** j ← 2 to n **do**
2. key ← A[j];
3. i ← j - 1;
4. **while** i > 0 and A[i] > key **do**
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
endfor

Key = 6

Initial Array

2 4 5 6 1 3

Sorted Arrays

2 4 5 6 1 3

2 4 5 6 1 3

2 4 5 6 1 3
Insertion Sort - Example: Iteration j=5

Insertion-Sort (A)

1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
endfor

What are the entries at the end of iteration j=5?
Insertion Sort - Example: Iteration j=5

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
5. A[i+1] ← A[i];
6. i ← i - 1;
endwhile
7. A[i+1] ← key;
endfor
Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. key $\leftarrow A[j]$;
3. $i \leftarrow j - 1$;
4. while $i > 0$ and $A[i] >$ key do
5. $A[i+1] \leftarrow A[i]$;
6. $i \leftarrow i - 1$;
endwhile
7. $A[i+1] \leftarrow$ key;
endfor
Insertion Sort Algorithm - Notes

- Items sorted \textit{in-place}
 - Elements rearranged within array
 - At most constant number of items stored outside the array at any time (e.g. the variable key)
 - Input array A contains sorted output sequence when the algorithm ends

- \textbf{Incremental} approach
Running Time

- Depends on:
 - Input size (e.g., 6 elements vs 6M elements)
 - Input itself (e.g., partially sorted)

- Usually want upper bound
Kinds of running time analysis

- **Worst Case** *(Usually)*
 \[T(n) = \max \text{ time on any input of size } n \]

- **Average Case** *(Sometimes)*
 \[T(n) = \text{ average time over all inputs of size } n \]
 Assumes statistical distribution of inputs

- **Best Case** *(Rarely)*
 \[T(n) = \min \text{ time on any input of size } n \]
 BAD: Cheat with slow algorithm that works fast on some inputs
 GOOD: Only for showing bad lower bound

*Can modify any algorithm (almost) to have a low best-case running time
 - Check whether input constitutes an output at the very beginning of the algorithm*
Running Time

- For **Insertion-Sort**, what is its **worst-case** time?
 - Depends on speed of primitive operations
 - Relative speed (on same machine)
 - Absolute speed (on different machines)

- **Asymptotic analysis**
 - Ignore machine-dependent constants
 - Look at growth of $T(n)$ as $n \to \infty$
Θ Notation

- Drop low order terms
- Ignore leading constants

e.g.

\[2n^2 + 5n + 3 = \Theta(n^2) \]

\[3n^3 + 90n^2 - 2n + 5 = \Theta(n^3) \]

- Formal explanations in the next lecture.
• As n gets large, a $\Theta(n^2)$ algorithm runs faster than a $\Theta(n^3)$ algorithm.
Insertion Sort – Runtime Analysis

<table>
<thead>
<tr>
<th>Cost</th>
<th>Insertion-Sort (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1)</td>
<td>1. \textbf{for} (j \leftarrow 2\ \text{to} \ n\ \text{do}\</td>
</tr>
<tr>
<td>(c_2)</td>
<td>2. \textbf{key} \leftarrow A[j];</td>
</tr>
<tr>
<td>(c_3)</td>
<td>3. (i \leftarrow j - 1;)</td>
</tr>
<tr>
<td>(c_4)</td>
<td>4. \textbf{while} (i > 0\ \text{and} \ A[i] > \text{key}\ \textbf{do}\</td>
</tr>
<tr>
<td>(c_5)</td>
<td>5. (A[i+1] \leftarrow A[i];)</td>
</tr>
<tr>
<td>(c_6)</td>
<td>6. (i \leftarrow i - 1;)</td>
</tr>
<tr>
<td>(c_7)</td>
<td>7. (A[i+1] \leftarrow \text{key};)</td>
</tr>
</tbody>
</table>

\(t_j\): The number of times while loop test is executed for \(j\).
How many times is each line executed?

# times	Insertion-Sort (A)
\(n\) | 1. \(\text{for } j \gets 2 \text{ to } n \) do
\(n-1\) | 2. \(\text{key } \gets A[j]\);
\(n-1\) | 3. \(i \gets j - 1\);
\(k_4\) | 4. \(\text{while } i > 0 \text{ and } A[i] > \text{key} \) do
\(k_5\) | 5. \(A[i+1] \gets A[i]\);
\(k_6\) | 6. \(i \gets i - 1\);
\(n-1\) | 7. \(A[i+1] \gets \text{key}\);

\[k_4 = \sum_{j=2}^{n} t_j\]
\[k_5 = \sum_{j=2}^{n} (t_j - 1)\]
\[k_6 = \sum_{j=2}^{n} (t_j - 1)\]
Insertion Sort – Runtime Analysis

- Sum up costs:

\[T(n) = c_1n + c_2(n-1) + c_3(n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7(n-1) \]

- What is the best case runtime?

- What is the worst case runtime?
Question: If $A[1...j]$ is already sorted, $t_j = ?$

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. key $\leftarrow A[j]$;
3. $i \leftarrow j - 1$;
4. while $i > 0$ and $A[i] >$ key do
5. $A[i+1] \leftarrow A[i]$;
6. $i \leftarrow i - 1$;
 endwhile
7. $A[i+1] \leftarrow$ key;
 endfor

$t_j = 1$
Insertion Sort – Best Case Runtime

- **Original function:**

\[T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + \]

\[c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 (n-1) \]

- **Best-case:** Input array is already sorted

\[t_j = 1 \text{ for all } j \]

\[T(n) = (c_1 + c_2 + c_3 + c_4 + c_7)n - (c_2 + c_3 + c_4 + c_7) \]
Q: If $A[j]$ is smaller than every entry in $A[1..j-1]$, $t_j =$?

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. \hspace{0.5em} key $\leftarrow A[j]$;
3. \hspace{0.5em} $i \leftarrow j - 1$;
4. \hspace{0.5em} while $i > 0$ and $A[i] > key$ do
5. \hspace{1.5em} $A[i+1] \leftarrow A[i]$;
6. \hspace{1.5em} $i \leftarrow i - 1$;
7. \hspace{0.5em} endwhile
8. $A[i+1] \leftarrow key$;
9. endfor

$t_j = j$
Insertion Sort – Worst Case Runtime

- Worst case: The input array is reverse sorted
 \[t_j = j \text{ for all } j \]

- After derivation, worst case runtime:

\[
T(n) = \frac{1}{2} (c_4 + c_5 + c_6) n^2 + (c_1 + c_2 + c_3 + \frac{1}{2} (c_4 - c_5 - c_6) + c_7) n - (c_2 + c_3 + c_4 + c_7)
\]
Insertion Sort – Asymptotic Runtime Analysis

Insertion-Sort (A)

1. for \(j \leftarrow 2 \) to \(n \) do

2. key \(\leftarrow A[j]; \) \(\Theta(1) \)

3. \(i \leftarrow j - 1; \) \(\Theta(1) \)

4. **while** \(i > 0 \) **and** \(A[i] > \text{key} \) **do**

5. \(A[i+1] \leftarrow A[i]; \) \(\Theta(1) \)

6. \(i \leftarrow i - 1; \) \(\Theta(1) \)

endwhile

7. \(A[i+1] \leftarrow \text{key}; \) \(\Theta(1) \)

endfor
Asymptotic Runtime Analysis of Insertion-Sort

- **Worst-case** (input reverse sorted)
 - *Inner loop is* \(\Theta(j) \)

 \[
 T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta \left(\sum_{j=2}^{n} j \right) = \Theta(n^2)
 \]

- **Average case** (all permutations equally likely)
 - *Inner loop is* \(\Theta(j/2) \)

 \[
 T(n) = \sum_{j=2}^{n} \Theta(j/2) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^2)
 \]

 - Often, average case not much better than worst case

- **Is this a fast sorting algorithm?**
 - Yes, for small \(n \). No, for large \(n \).
Merge Sort
Merge Sort: Basic Idea

Input array A

Divide

Conquer

Combine

sort this half

sort this half

merge two sorted halves
Merge-Sort (A, p, r)

if \(p = r \) then return;
else
 \(q \leftarrow \lfloor (p+r)/2 \rfloor \); \hspace{1cm} (Divide)

 Merge-Sort (A, p, q); \hspace{1cm} (Conquer)
 Merge-Sort (A, q+1, r); \hspace{1cm} (Conquer)
 Merge (A, p, q, r); \hspace{1cm} (Combine)
endif

• Call **Merge-Sort**(A,1,n) to sort A[1..n]
• Recursion bottoms out when subsequences have length 1
Merge Sort: Example

\begin{align*}
&\text{Merge-Sort} \ (A, \ p, \ r) \\
&\text{if } p = r \text{ then} \\
&\quad \text{return} \\
&\text{else} \\
&\quad q \leftarrow \lfloor (p+r)/2 \rfloor \\
&\quad \text{Merge-Sort} \ (A, \ p, \ q) \\
&\quad \text{Merge-Sort} \ (A, \ q+1, \ r) \\
&\text{endif}
\end{align*}
How to merge 2 sorted subarrays?

- HW: Study the pseudo-code in the textbook (Sec. 2.3.1)
- What is the complexity of this step? $\Theta(n)$
Merge Sort: Correctness

Merge-Sort \((A, p, r)\)

if \(p = r\) then
 return
else
 \(q \leftarrow \left\lfloor \frac{p+r}{2} \right\rfloor\)

 Merge-Sort \((A, p, q)\)
 Merge-Sort \((A, q+1, r)\)

 Merge\((A, p, q, r)\)
endif

Base case: \(p = r\)

\(\implies\) Trivially correct

Inductive hypothesis: MERGE-SORT is correct for any subarray that is a strict (smaller) **subset** of \(A[p, q]\).

General Case: MERGE-SORT is correct for \(A[p, q]\).

\(\implies\) From inductive hypothesis and correctness of **Merge**.
Merge Sort: Complexity

Merge-Sort (A, p, r) \[\Rightarrow T(n) \]

if \(p = r \) then
 return \[\Rightarrow \Theta(1) \]
else
 q \[\leftarrow \lfloor (p+r)/2 \rfloor \] \[\Rightarrow \Theta(1) \]
 Merge-Sort (A, p, q) \[\Rightarrow T(n/2) \]
 Merge-Sort (A, q+1, r) \[\Rightarrow T(n/2) \]
 Merge (A, p, q, r) \[\Rightarrow \Theta(n) \]
endif
Merge Sort – Recurrence

- Describe a function recursively in terms of itself
- To analyze the performance of recursive algorithms

- For merge sort:

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n=1 \\
2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases}
\]
How to solve for $T(n)$?

$$T(n) = \begin{cases} \Theta(1) & \text{if } n=1 \\ 2T(n/2) + \Theta(n) & \text{otherwise} \end{cases}$$

- Generally, we will assume $T(n) = \Theta(1)$ for sufficiently small n

- The recurrence above can be rewritten as:
 $$T(n) = 2T(n/2) + \Theta(n)$$

- How to solve this recurrence?
Solve Recurrence: $T(n) = 2T(n/2) + \Theta(n)$
Solve Recurrence: $T(n) = 2T(n/2) + \Theta(n)$
Solve Recurrence: \(T(n) = 2T(n/2) + \Theta(n) \)

\[
\begin{align*}
\Theta(n) & \quad \rightarrow \quad \Theta(n) \\
\Theta(n/2) & \quad \rightarrow \quad \Theta(n) \\
T(n/4) & \quad \rightarrow \quad T(n/4) \\
\Theta(1) & \quad \rightarrow \quad \Theta(1) \\
\Theta(n) & \quad \rightarrow \quad \Theta(n)
\end{align*}
\]

Total: \(\Theta(n \lg n) \)
Merge Sort Complexity

- Recurrence:
 \[T(n) = 2T(n/2) + \Theta(n) \]

- Solution to recurrence:
 \[T(n) = \Theta(n \log n) \]
Conclusions: Insertion Sort vs. Merge Sort

- $\Theta(n \log n)$ grows more slowly than $\Theta(n^2)$

- Therefore Merge-Sort beats Insertion-Sort in the worst case

- In practice, Merge-Sort beats Insertion-Sort for $n > 30$ or so.