Lecture 3
Solving Recurrences
Solving Recurrences

- Reminder: Runtime \((T(n))\) of \textit{MergeSort} was expressed as a recurrence

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n=1 \\
2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases}
\]

- Solving recurrences is like solving differential equations, integrals, etc.

 \textit{Need to learn a few tricks}
Recurrences

- **Recurrence**: An equation or inequality that describes a function in terms of its value on smaller inputs.

Example:

\[T(n) = \begin{cases}
1 & \text{if } n=1 \\
T(\lceil n / 2 \rceil) + 1 & \text{if } n > 1
\end{cases} \]
Recurrence - Example

\[T(n) = \begin{cases}
1 & \text{if } n=1 \\
T(\lceil n / 2 \rceil) + 1 & \text{if } n > 1
\end{cases} \]

- Simplification: Assume \(n = 2^k \)
- Claimed answer: \(T(n) = \log n + 1 \)
- Substitute claimed answer in the recurrence:

\[\log n + 1 = \begin{cases}
1 & \text{if } n = 1 \\
(\log(\lceil n / 2 \rceil) + 2) & \text{if } n > 1
\end{cases} \]

True when \(n = 2^k \)
Technicalities: Floor/Ceiling

- Technically, should be careful about the floor and ceiling functions (as in the book).

- e.g. For merge sort, the recurrence should in fact be:

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1 \\
T(\lceil n / 2 \rceil) + T(\lfloor n / 2 \rfloor) + \Theta(n) & \text{if } n > 1
\end{cases}
\]

- But, it’s usually ok to:
 - ignore floor/ceiling
 - solve for exact powers of 2 (or another number)
Technicalities: Boundary Conditions

- Usually assume: \(T(n) = \Theta(1) \) for sufficiently small \(n \)
 - Changes the exact solution, but usually the asymptotic solution is not affected (e.g. if polynomially bounded)

- For convenience, the boundary conditions generally implicitly stated in a recurrence

 \[
 T(n) = 2T(n/2) + \Theta(n)
 \]

 assuming that

 \(T(n) = \Theta(1) \) for sufficiently small \(n \)
Example: When Boundary Conditions Matter

- Exponential function: $T(n) = (T(n/2))^2$
- Assume $T(1) = c$ (where c is a positive constant).

 $T(2) = (T(1))^2 = c^2$
 $T(4) = (T(2))^2 = c^4$

 $T(n) = \Theta(c^n)$

- e.g. $T(1) = 2 \Rightarrow T(n) = \Theta(2^n)$

 $T(1) = 3 \Rightarrow T(n) = \Theta(3^n)$

- Difference in solution more dramatic when:

 $T(1) = 1 \Rightarrow T(n) = \Theta(1^n) = \Theta(1)$
Solving Recurrences

- We will focus on 3 techniques in this lecture:
 1. Substitution method
 2. Recursion tree approach
 3. Master method
Substitution Method

- The most general method:
 1. Guess
 2. Prove by induction
 3. Solve for constants
Substitution Method: Example

Solve $T(n) = 4T(n/2) + n$ (assume $T(1) = \Theta(1)$)

1. Guess $T(n) = O(n^3)$ (need to prove O and Ω separately)

2. Prove by induction that $T(n) \leq cn^3$ for large n (i.e. $n \geq n_0$)

 Inductive hypothesis: $T(k) \leq ck^3$ for any $k < n$

 Assuming ind. hyp. holds, prove $T(n) \leq cn^3$
Substitution Method: Example – cont’d

Original recurrence: \(T(n) = 4T(n/2) + n \)

From inductive hypothesis: \(T(n/2) \leq c(n/2)^3 \)

Substitute this into the original recurrence:

\[
T(n) \leq 4c (n/2)^3 + n \\
= (c/2) n^3 + n \\
= cn^3 - ((c/2)n^3 - n) \\
\leq cn^3
\]

when \(((c/2)n^3 - n) \geq 0 \)
Substitution Method: Example – cont’d

- So far, we have shown:
 \[T(n) \leq cn^3 \quad \text{when } ((c/2)n^3 - n) \geq 0 \]

- We can choose \(c \geq 2 \) and \(n_0 \geq 1 \)

- But, the proof is not complete yet.

- **Reminder**: Proof by induction:
 1. Prove the base cases
 2. Inductive hypothesis for smaller sizes
 3. Prove the general case

 haven’t proved the base cases yet
Substitution Method: Example – cont’d

- We need to prove the base cases

Base: $T(n) = \Theta(1)$ for small n (e.g. for $n = n_0$)

- We should show that:

 \[\Theta(1) \leq cn^3 \text{ for } n = n_0 \]

 This holds if we pick c big enough

- So, the proof of $T(n) = O(n^3)$ is complete.

- But, is this a tight bound?
Example: A tighter upper bound?

- Original recurrence: $T(n) = 4T(n/2) + n$

- Try to prove that $T(n) = O(n^2)$, i.e. $T(n) \leq cn^2$ for all $n \geq n_0$

- **Ind. hyp**: Assume that $T(k) \leq ck^2$ for $k < n$

- **Prove the general case**: $T(n) \leq cn^2$
Example (cont’d)

- Original recurrence: \(T(n) = 4T(n/2) + n \)
- **Ind. hyp:** Assume that \(T(k) \leq ck^2 \) for \(k < n \)
- **Prove the general case:** \(T(n) \leq cn^2 \)

\[
T(n) = 4T(n/2) + n \\
\leq 4c(n/2)^2 + n \\
= cn^2 + n \\
= \Theta(n^2) \quad \text{Wrong! We must prove exactly}
\]
Example (cont’d)

- Original recurrence: $T(n) = 4T(n/2) + n$
- **Ind. hyp:** Assume that $T(k) \leq ck^2$ for $k < n$
- **Prove the general case:** $T(n) \leq cn^2$

- So far, we have:

 $$T(n) \leq cn^2 + n$$

 No matter which positive c value we choose, this does not show that $T(n) \leq cn^2$

 Proof failed?
Example (cont’d)

- **What was the problem?**
 - *The inductive hypothesis was not strong enough*

- **Idea:** Start with a stronger inductive hypothesis
 - *Subtract a low-order term*

- **Inductive hypothesis:** $T(k) \leq c_1 k^2 - c_2 k$ for $k < n$

- **Prove the general case:** $T(n) \leq c_1 n^2 - c_2 n$
Example (cont’d)

- Original recurrence: \(T(n) = 4T(n/2) + n \)
- \textbf{Ind. hyp:} Assume that \(T(k) \leq c_1 k^2 - c_2 k \) for \(k < n \)
- \textbf{Prove the general case:} \(T(n) \leq c_1 n^2 - c_2 n \)

\[
T(n) = 4T(n/2) + n \\
\leq 4 \left(c_1 \left(\frac{n}{2}\right)^2 - c_2 \left(\frac{n}{2}\right) \right) + n \\
= c_1 n^2 - 2c_2 n + n \\
= c_1 n^2 - c_2 n - (c_2 n - n) \\
\leq c_1 n^2 - c_2 n \\
\text{for } n(c_2 - 1) \geq 0 \\
\text{choose } c_2 \geq 1
Example (cont’d)

- We now need to prove
 \[T(n) \leq c_1 n^2 - c_2 n \]
 for the base cases.

\[T(n) = \Theta(1) \text{ for } 1 \leq n \leq n_0 \text{ (implicit assumption)} \]

“\(\Theta(1) \)” \(\leq c_1 n^2 - c_2 n \) for \(n \) small enough (e.g. \(n = n_0 \))

We can choose \(c_1 \) large enough to make this hold

- We have proved that \(T(n) = O(n^2) \)
For the recurrence \(T(n) = 4T(n/2) + n \), prove that \(T(n) = \Omega(n^2) \)

i.e. \(T(n) \geq cn^2 \) for any \(n \geq n_0 \)

Ind. hyp: \(T(k) \geq ck^2 \) for any \(k < n \)

Prove general case: \(T(n) \geq cn^2 \)

\[
T(n) = 4T(n/2) + n \\
\geq 4c (n/2)^2 + n \\
= cn^2 + n \\
\geq cn^2 \quad \text{since} \ n > 0
\]

Proof succeeded – no need to strengthen the ind. hyp as in the last example
Example 2 (cont’d)

- We now need to prove that
 \[T(n) \geq cn^2 \]
 for the base cases

 \[T(n) = \Theta(1) \text{ for } 1 \leq n \leq n_0 \] (implicit assumption)

 \[“\Theta(1)” \geq cn^2 \text{ for } n = n_0 \]

 \[n_0 \text{ is sufficiently small (i.e. constant)} \]

 We can choose \(c \) small enough for this to hold

- We have proved that \(T(n) = \Omega(n^2) \)
Substitution Method - Summary

1. **Guess the asymptotic complexity**

1. **Prove your guess using induction**
 1. Assume inductive hypothesis holds for $k < n$
 2. Try to prove the general case for n

 Note: **MUST** prove the **EXACT** inequality
 CANNOT ignore lower order terms

 If the proof fails, strengthen the ind. hyp. and try again

3. Prove the base cases (usually straightforward)
Recursion Tree Method

- A recursion tree models the runtime costs of a recursive execution of an algorithm.
- The recursion tree method is good for generating guesses for the substitution method.
- The recursion-tree method can be unreliable.
 - Not suitable for formal proofs
- The recursion-tree method promotes intuition, however.
Solve Recurrence: \(T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n) \)
Solve Recurrence: \(T(n) = 2T \left(\frac{n}{2} \right) + \Theta(n) \)
Solve Recurrence: \(T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n) \)

\[2^{\log n} = n \]

Total: \(\Theta(n \log n) \)
Example of Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:
Example of Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:
Example of Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

```
      n^2
     / \  \\
T(n/4) T(n/2)
```
Example of Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

```
  n^2
   / \
(n/4)^2  (n/2)^2
 /     /     \
T(n/16) T(n/8) T(n/8) T(n/4)
```

Example of Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

$$\Theta(1)$$

$$n^2$$

$$\frac{n}{4}^2$$ $$\frac{n}{2}^2$$

$$\frac{n}{16}^2$$ $$\frac{n}{8}^2$$ $$\frac{n}{8}^2$$ $$\frac{n}{4}^2$$
Example of Recursion Tree

Solve \(T(n) = T(n/4) + T(n/2) + n^2 \):

\[n^2 \]

\[(n/4)^2 \]

\[(n/16)^2 \]
Example of Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

$\Theta(1)$

$\frac{5}{16} n^2$

n^2

$(n/4)^2$

$(n/2)^2$

$(n/8)^2$

$(n/8)^2$

$(n/16)^2$

$(n/16)^2$
Example of Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

- n^2
- $(n/4)^2$
- $(n/8)^2$
- $(n/16)^2$
- $\Theta(1)$

- n^2
- $(n/2)^2$
- $(n/8)^2$
- $(n/4)^2$
- $5/16 \cdot n^2$

- n^2
- $(n/8)^2$
- $(n/4)^2$
- $25/256 \cdot n^2$
Example of Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

$$n^2 \quad \frac{n^2}{4} \quad \frac{n^2}{2}$$

$$\frac{n^2}{16} \quad \frac{n^2}{8} \quad \frac{n^2}{8} \quad \frac{n^2}{4}$$

$\Theta(1)$

Total $= n^2 \left(1 + \frac{5}{16} + \left(\frac{5}{16}\right)^2 + \left(\frac{5}{16}\right)^2 + \ldots\right)$

$= \Theta(n^2)$, geometric series
The Master Method

- A powerful black-box method to solve recurrences.

- The master method applies to recurrences of the form

\[T(n) = aT(n/b) + f(n) \]

where \(a \geq 1 \), \(b > 1 \), and \(f \) is asymptotically positive.
The Master Method: 3 Cases

- Recurrence: $T(n) = aT(n/b) + f(n)$

- Compare $f(n)$ with $n \log_b a$

- Intuitively:

 Case 1: $f(n)$ grows *polynomially slower* than $n \log_b a$

 Case 2: $f(n)$ grows *at the same rate* as $n \log_b a$

 Case 3: $f(n)$ grows *polynomially faster* than $n \log_b a$
The Master Method: Case 1

- Recurrence: \(T(n) = aT(n/b) + f(n) \)

Case 1: \(\frac{n^{\log_b a}}{f(n)} = \Omega(n^\varepsilon) \) for some constant \(\varepsilon > 0 \)

i.e., \(f(n) \) grows polynomially slower than \(n^{\log_b a} \) (by an \(n^\varepsilon \) factor).

Solution: \(T(n) = \Theta(n^{\log_b a}) \)
The Master Method: Case 2 (simple version)

- **Recurrence:** $T(n) = aT(n/b) + f(n)$

Case 2:

\[\frac{f(n)}{n^{\log_b a}} = \Theta(1) \]

- i.e., $f(n)$ and $n^{\log_b a}$ grow at similar rates.

Solution: $T(n) = \Theta(n^{\log_b a} \log n)$
The Master Method: Case 3

Case 3: \[\frac{f(n)}{n^\log_b a} = \Omega(n^\varepsilon) \]
for some constant \(\varepsilon > 0 \)

i.e., \(f(n) \) grows polynomially faster than \(n^\log_b a \) (by an \(n^\varepsilon \) factor).

and the following regularity condition holds:
\[a f(n/b) \leq c f(n) \]
for some constant \(c < 1 \)

Solution: \(T(n) = \Theta(f(n)) \)
Example: \(T(n) = 4T(n/2) + n \)

- \(a = 4 \)
- \(b = 2 \)
- \(f(n) = n \)
- \(n^{\log_b a} = n^2 \)

\(f(n) \) grows \textit{polynomially} slower than \(n^{\log_b a} \)

\[
\frac{n^{\log_b a}}{f(n)} = \frac{n^2}{n} = n = \Omega(n^\varepsilon)
\]

for \(\varepsilon = 1 \)

\(T(n) = \Theta(n^{\log_b a}) \)

\(T(n) = \Theta(n^2) \)
Example: $T(n) = 4T(n/2) + n^2$

\[
a = 4 \\
b = 2 \\
f(n) = n^2
\]

$f(n)$ grows at similar rate as $n^{\log_b a}$

\[
n^{\log_b a} = n^2
\]

CASE 2

\[
T(n) = \Theta(n^{\log_b a} \log n) = \Theta(n^2 \log n)
\]
Example: $T(n) = 4T(n/2) + n^3$

$a = 4$

$b = 2$

$f(n) = n^3$

$n^{\log_b a} = n^2$

$f(n)$ grows \textit{polynomially} faster than $n^{\log_b a}$

\[
\frac{f(n)}{n^{\log_b a}} = \frac{n^3}{n^2} = n = \Omega(n^\varepsilon)
\]

for $\varepsilon = 1$

seems like CASE 3, but need to check the regularity condition

Regularity condition: $a f(n/b) \leq c f(n)$ for some constant $c < 1$

$4 \left(\frac{n}{2}\right)^3 \leq cn^3$ for $c = 1/2$

CASE 3

$T(n) = \Theta(f(n))$

$T(n) = \Theta(n^3)$
Example: $T(n) = 4T(n/2) + n^2/\lg n$

\[
a = 4 \\
b = 2 \\
f(n) = n^2/\lg n
\]

\[
\frac{n^{\log_b a}}{f(n)} = \frac{n^2}{n^2} = \frac{1}{\lg n} \neq \Omega(n^\varepsilon)
\]

for any $\varepsilon > 0$

\[
\text{is not CASE 1}
\]

\[
\text{Master method does not apply!}
\]
The Master Method: Case 2 (general version)

- **Recurrence:** $T(n) = aT(n/b) + f(n)$

Case 2: \[
\frac{f(n)}{n^{\log_b a}} = \Theta(\lg^k n) \quad \text{for some constant } k \geq 0
\]

Solution: $T(n) = \Theta \left(n^{\log_b a} \lg^{k+1} n \right)$
General Method (Akra-Bazzi)

\[T(n) = \sum_{i=1}^{k} a_i T(n/b_i) + f(n) \]

Let \(p \) be the unique solution to

\[\sum_{i=1}^{k} \left(\frac{a_i}{b^p_i} \right) = 1 \]

Then, the answers are the same as for the master method, but with \(n^p \) instead of \(n^{\log_b a} \)

(Akra and Bazzi also prove an even more general result.)
Idea of Master Theorem

Recursion tree:

\[T(n) = \begin{cases}
T(1) & \text{if } a = 1 \\
af(n) & \text{if } a > 1 \text{ and } f(n) = \Omega(n^\log_b a) \\
af(n) + \sum_{i=0}^{h-1} af(n/b^i) & \text{if } a > 1 \text{ and } f(n) = O(n^c) \text{ such that } c < \log_b a \end{cases} \]

\[h = \log_b n \]

\#leaves = \[a^h = a^{\log_b n} = n^{\log_b a} \]

\[T(n) = n^{\log_b a} \]
Idea of Master Theorem

Recursion tree:

CASE 1: The weight increases geometrically from the root to the leaves. The leaves hold a constant fraction of the total weight.

\[n^{\log_b a} T(1) \]

\[\Theta \left(n^{\log_b a} \right) \]
Idea of Master Theorem

Recursion tree:

CASE 2: \((k = 0) \) The weight is approximately the same on each of the \(\log_b n \) levels.

\[
T(n) = \begin{cases}
T(1) & \text{if } n = 1 \\
T(n/b) + f(n) & \text{otherwise}
\end{cases}
\]

\[
h = \log_b n
\]

\[
a \cdot T(n/b) + f(n) = a \cdot T(n/b) + f(n/b)
\]

\[
a^2 \cdot T(n/b^2) + f(n/b^2) = a^2 \cdot T(n/b^2) + f(n/b^2)
\]

\[
\Theta(n^{\log_b a} \log n)
\]
Recursion tree:

\[f(n) \]
\[f(n/b) \]
\[f(n/b^2) \]

CASE 3: The weight decreases geometrically from the root to the leaves. The root holds a constant fraction of the total weight.

\[T(1) = n^{\log_b a} \Theta(f(n)) \]
Proof of Master Theorem: Case 1 and Case 2

• Recall from the recursion tree (note $h = \lfloor \log_b n \rfloor =$ tree height)

$$T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{h-1} a^i f(n / b^i)$$

Leaf cost Non-leaf cost = $g(n)$
Proof of Case 1

\[\frac{n^{\log_b a}}{f(n)} = \Omega(n^\varepsilon) \quad \text{for some } \varepsilon > 0 \]

\[\frac{n^{\log_b a}}{f(n)} = \Omega(n^\varepsilon) \implies \frac{f(n)}{n^{\log_b a}} = O(n^{-\varepsilon}) \implies f(n) = O(n^{\log_b a - \varepsilon}) \]

\[g(n) = \sum_{i=0}^{h-1} a^i \bigO\left((n/b^i)^{\log_b a - \varepsilon}\right) = O\left(\sum_{i=0}^{h-1} a^i (n/b^i)^{\log_b a - \varepsilon}\right) \]

\[= O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{h-1} a^i b^{-i\varepsilon} / b^{i\log_b a} \right) \]
Case 1 (cont’)

\[\sum_{i=0}^{h-1} \frac{a^i b^{i \varepsilon}}{b^{i \log_b a}} = \sum_{i=0}^{h-1} a^i \frac{(b^\varepsilon)^i}{(b^{\log_b a})^i} = \sum a^i \frac{b^{\varepsilon i}}{a^i} = \sum_{i=0}^{h-1} (b^\varepsilon)^i \]

= An increasing geometric series since \(b > 1 \)

\[\frac{b^{\varepsilon h} - 1}{b^\varepsilon - 1} = \frac{(b^h)^\varepsilon - 1}{b^\varepsilon - 1} = \frac{(b^{\log_b n})^\varepsilon - 1}{b^\varepsilon - 1} = \frac{n^\varepsilon - 1}{b^\varepsilon - 1} = O(n^\varepsilon) \]
Case 1 (cont’)

\[-g(n) = O\left(n^{\log_b a - \varepsilon} O(n^{\varepsilon})\right) = O\left(\frac{n^{\log_b a}}{n^{\varepsilon}} O(n^{\varepsilon})\right)\]

\[= O(n^{\log_b a})\]

\[-T(n) = \Theta(n^{\log_b a}) + g(n) = \Theta(n^{\log_b a}) + O(n^{\log_b a})\]

\[= \Theta(n^{\log_b a})\]

Q.E.D.
Proof of Case 2 (limited to $k=0$)

\[
\frac{f(n)}{n^{\log_b a}} = \Theta(\log^n n) = \Theta(1) \Rightarrow f(n) = \Theta(n^{\log_b a}) \Rightarrow f(n/b^i) = \Theta\left(\left(\frac{n}{b^i}\right)^{\log_b a}\right)
\]

\[
\therefore g(n) = \sum_{i=0}^{h-1} a^i \Theta\left((n/b^i)^{\log_b a}\right)
\]

\[
= \Theta\left(\sum_{i=0}^{h-1} a^i \frac{n^{\log_b a}}{b^{i\log_b a}}\right) = \Theta\left(n^{\log_b a} \sum_{i=0}^{h-1} a^i \frac{1}{(b^{\log_b a})^i}\right) = \Theta\left(n^{\log_b a} \sum_{i=0}^{h-1} a^i \frac{1}{a^i}\right)
\]

\[
= \Theta\left(n^{\log_b a} \sum_{i=0}^{\log_n n-1} 1\right) = \Theta\left(n^{\log_b a} \log_b n\right) = \Theta\left(n^{\log_b a} \log n\right)
\]

\[
T(n) = n^{\log_b a} + \Theta(n^{\log_b a} \log n)
\]

\[
= \Theta\left(n^{\log_b a} \log n\right)
\]

Q.E.D.
Conclusion

• Next time: applying the master method.