Lecture 6-b
Randomized Quicksort

View in slide-show mode
Randomized Quicksort

- In the avg-case analysis, we assumed that **all permutations** of the input array are **equally likely**.
 - But, this assumption **does not always hold**
 - e.g. What if **all** the input arrays are reverse sorted?
 - **Always worst-case behavior**

- Ideally, the avg-case runtime should be **independent of the input permutation**.
- **Randomness should be within the algorithm**, not based on the distribution of the inputs.
 - i.e. The avg case should hold for all possible inputs
Randomized Algorithms

- Alternative to assuming a uniform distribution:
 - Impose a uniform distribution
 - e.g. Choose a random pivot rather than the first element

- Typically useful when:
 - there are many ways that an algorithm can proceed
 - but, it’s difficult to determine a way that is always guaranteed to be good.
 - If there are many good alternatives; simply choose one randomly.
Randomized Algorithms

- Ideally:
 - Runtime should be **independent of the specific inputs**
 - No specific input should cause worst-case behavior
 - Worst-case should be determined only by output of a random number generator.
Randomized Quicksort

Using Hoare’s partitioning algorithm:

\[
\text{R-QUICKSORT}(A, p, r) \\
\text{if } p < r \text{ then} \\
q \leftarrow \text{R-PARTITION}(A, p, r) \\
\text{R-QUICKSORT}(A, p, q) \\
\text{R-QUICKSORT}(A, q+1, r)
\]

\[
\text{R-PARTITION}(A, p, r) \\
\quad s \leftarrow \text{RANDOM}(p, r) \\
\quad \text{exchange } A[p] \leftrightarrow A[s] \\
\quad \text{return H-PARTITION}(A, p, r)
\]

Alternatively, permuting the whole array would also work
\[\Rightarrow \text{but, would be more difficult to analyze}\]
Randomized Quicksort

Using Lomuto’s partitioning algorithm:

\[
\text{R-QUICKSORT}(A, p, r)
\]

if \(p < r \) then

\[
q \leftarrow \text{R-PARTITION}(A, p, r)
\]

\[
\text{R-QUICKSORT}(A, p, q-1)
\]

\[
\text{R-QUICKSORT}(A, q+1, r)
\]

\[
\text{R-PARTITION}(A, p, r)
\]

\[
s \leftarrow \text{RANDOM}(p, r)
\]

\[
\text{exchange } A[r] \leftrightarrow A[s]
\]

return \(\text{L-PARTITION}(A, p, r) \)

Alternatively, permuting the whole array would also work

\(\Rightarrow \text{but, would be more difficult to analyze} \)
Notations for Formal Analysis

- Assume all elements in \(A[p..r] \) are distinct
- Let \(n = r - p + 1 \)

Let \(\text{rank}(x) = \left| \{A[i]: p \leq i \leq r \text{ and } A[i] \leq x\} \right| \)

i.e. \(\text{rank}(x) \) is the number of array elements with value less than or equal to \(x \)

\[
\begin{array}{cccccc}
p & 5 & 9 & 7 & 6 & 8 & r \\
5 & 9 & 7 & 6 & 8 & 1 & 4
\end{array}
\]

\(\text{rank}(5) = 3 \)

i.e. it is the 3\(^{rd}\) smallest element in the array
Formal Analysis for Average Case

- The following analysis will be for Quicksort using Hoare’s partitioning algorithm.

- **Reminder**: The pivot is selected randomly and exchanged with $A[p]$ before calling H-PARTITION

- Let x be the random pivot chosen.

- What is the probability that $\text{rank}(x) = i$ for $i = 1, 2, \ldots, n$?

 $P(\text{rank}(x) = i) = \frac{1}{n}$
Various Outcomes of H-PARTITION

Assume that \(\text{rank}(x) = 1 \)

\(i.e. \) the random pivot chosen is the smallest element

What will be the size of the left partition (\(|L|\))?

Reminder: Only the elements less than or equal to \(x \) will be in the left partition.

\[\Rightarrow |L| = 1 \]

\[\begin{array}{c|ccccc}
\text{p} & 2 & 9 & 7 & 6 & 8 \\
\text{r} & 5 & 4
\end{array} \]

pivot = \(x = 2 \)
Various Outcomes of H-PARTITION

Assume that $\text{rank}(x) > 1$

i.e. the random pivot chosen is not the smallest element

What will be the size of the left partition ($|L|$)?

Reminder: Only the elements less than or equal to x will be in the left partition.

Reminder: The pivot will stay in the right region after H-PARTITION if $\text{rank}(x) > 1$

$\Rightarrow |L| = \text{rank}(x) - 1$

pivot = $x = 5$

2 4 7 6 8 5 9
Various Outcomes of H-PARTITION - Summary

\[
P(\text{rank}(x) = i) = \frac{1}{n} \quad \text{for} \; 1 \leq i \leq n
\]

- if \(\text{rank}(x) = 1 \) then \(|L| = 1\)
- if \(\text{rank}(x) > 1 \) then \(|L| = \text{rank}(x) - 1\)

\[
P(|L| = 1) = P(\text{rank}(x) = 1) + P(\text{rank}(x) = 2)
\]

- \(P(|L| = i) = P(\text{rank}(x) = i+1)\) for \(1 < i < n\)

\[
P(|L| = 1) = \frac{2}{n}
\]

\[
P(|L| = i) = \frac{1}{n} \quad \text{for} \; 1 < i < n
\]
Various Outcomes of H-PARTITION - Summary

<table>
<thead>
<tr>
<th>rank(x)</th>
<th>probability</th>
<th>T(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1/n$</td>
<td>$T(1) + T(n-1) + \Theta(n)$</td>
</tr>
<tr>
<td>2</td>
<td>$1/n$</td>
<td>$T(1) + T(n-1) + \Theta(n)$</td>
</tr>
<tr>
<td>3</td>
<td>$1/n$</td>
<td>$T(2) + T(n-2) + \Theta(n)$</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>i+1</td>
<td>$1/n$</td>
<td>$T(i) + T(n-i) + \Theta(n)$</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>n</td>
<td>$1/n$</td>
<td>$T(n-1) + T(1) + \Theta(n)$</td>
</tr>
</tbody>
</table>
Average - Case Analysis: Recurrence

\[
T(n) = \frac{1}{n} (T(1)+T(n-1)) + \frac{1}{n} (T(1)+T(n-1)) + \frac{1}{n} (T(2)+T(n-2)) + \ldots + \frac{1}{n} (T(i)+T(n-i)) + \frac{1}{n} (T(n-1)+T(1)) + \Theta(n)
\]

\[
\text{rank}(x) = 1, 2, 3, \ldots, i+1, \ldots, n
\]

\[x = \text{pivot}\]
Recurrence

\[T(n) = \frac{1}{n} \sum_{q=1}^{n-1} (T(q)+T(n-q)) + \frac{1}{n} (T(1)+T(n-1)) + \Theta(n) \]

Note: \[\frac{1}{n} (T(1)+T(n-1)) = \frac{1}{n} (\Theta(1) + O(n^2)) = O(n) \]

\[\implies T(n) = \frac{1}{n} \sum_{q=1}^{n-1} (T(q)+T(n-q)) + \Theta(n) \]

- for \(k = 1, 2, \ldots, n-1 \) each term \(T(k) \) appears twice
 once for \(q = k \) and once for \(q = n-k \)

- \[T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + \Theta(n) \]
Solving Recurrence: Substitution

Guess: \(T(n) = O(n \log n) \)

I.H. : \(T(k) \leq ak \log k \), for \(k < n \), for some constant \(a > 0 \)

\[
T(n) = 2 \sum_{k=1}^{n-1} T(k) + \Theta(n)
\]
\[
\leq 2 \sum_{k=1}^{n-1} (ak \log k) + \Theta(n)
\]
\[
= 2a \sum_{k=1}^{n-1} (k \log k) + \Theta(n)
\]

Need a tight bound for \(\sum k \log k \)
Tight bound for $\sum k\lg k$

• Bounding the terms

$$\sum_{k=1}^{n-1} k\lg k \leq \sum_{k=1}^{n-1} n\lg n = n(n-1) \lg n \leq n^2 \lg n$$

This bound is not strong enough because

• $T(n) \leq \frac{2a}{n} n^2 \lg n + \Theta(n)$

 $$= 2an\lg n + \Theta(n) \quad \Rightarrow \text{couldn’t prove } T(n) \leq an\lg n$$
Tight bound for \(\sum k \lg k \)

- **Splitting summations:** ignore ceilings for simplicity

\[
\sum_{k=1}^{n-1} k \lg k \leq \sum_{k=1}^{n/2-1} k \lg k + \sum_{k=n/2}^{n-1} k \lg k
\]

First summation: \(\lg k < \lg(n/2) = \lg n - 1 \)

Second summation: \(\lg k < \lg n \)
Splitting:

\[\sum_{k=1}^{n-1} k \lg k \leq \sum_{k=1}^{n/2-1} k \lg k + \sum_{k=n/2}^{n-1} k \lg k \]

\[
\sum_{k=1}^{n-1} k \lg k \leq (\lg n - 1) \sum_{k=1}^{n-1} k + \lg n \sum_{k=n/2}^{n-1} k
\]

\[
= \lg n \sum_{k=1}^{n-1} k - \sum_{k=1}^{n/2-1} k = \frac{1}{2} n(n-1) \lg n - \frac{1}{2} \frac{n}{2} \left(\frac{n}{2} - 1\right)
\]

\[
= \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 - \frac{1}{2} n(\lg n - 1/2)
\]

\[
\sum_{k=1}^{n-1} k \lg k \leq \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \quad \text{for } \lg n \geq 1/2 \implies n \geq \sqrt{2}
\]
Substituting: \[\sum_{k=1}^{n-1} k \lg k \leq \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \]

\[T(n) \leq \frac{2a}{n} \sum_{k=1}^{n-1} k \lg k + \Theta(n) \]
\[\leq \frac{2a}{n} \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + \Theta(n) \]
\[= an \lg n - \left(\frac{a}{4} n - \Theta(n) \right) \]

We can choose \(a \) large enough so that \(\frac{a}{4} n \geq \Theta(n) \)

\[\Rightarrow T(n) \leq an \lg n \Rightarrow T(n) = O(n \lg n) \] Q.E.D.