Lecture 12-b
Dynamic Tables

View in slide-show mode
Why Dynamic Tables?

- Assume we need a data structure that needs to reside in contiguous memory (e.g. linear array, etc.).

- But, we don’t know how many objects will be stored in the table ahead of time.

- We may allocate space for a table, but later find out that it is not enough.
 - Then, the table must be reallocated with a larger size.
 - All the objects stored in the original table must be copied over into the new table.
Why Dynamic Tables?

- Similarly, if many objects are deleted from the table:
 - It may be worthwhile to reallocate the table with a smaller size.

- This problem is called: dynamically expanding and contracting a table
Why Dynamic Tables?

Using amortized analysis we will show that,

The amortized cost of insertion and deletion is \(O(1) \).

Even though the actual cost of an operation is large when it triggers an expansion or a contraction.

We will also show how to guarantee that

The unused space in a dynamic table never exceeds a constant fraction of the total space.
Operations

TABLE-INSERT:

Inserts into the table an item that occupies a single slot.

TABLE-DELETE:

Removes an item from the table & frees its slot.
Load Factor

Load Factor of a Dynamic Table T

$$\alpha(T) = \frac{\text{Number of items stored in the table}}{\text{size}(\text{number of slots}) \text{ of the table}}$$

For an empty table

$$\alpha(T) = \frac{0}{0} = 1$$

by definition
Insertion-Only Dynamic Tables

Table-Expansion:

• Assumption:
 – Table is allocated as an array of slots
• A table fills up when
 – all slots have been used
 – equivalently, when its load factor becomes 1
• Table-Expansion occurs when
 – An item is to be inserted into a full table
Insertion-Only Dynamic Tables

• A Common Heuristic
 – Allocate a new table that has twice as many slots as the old one.

• Hence, we have:

\[\frac{1}{2} \leq \alpha(T) \leq 1 \]
Table Insert

TABLE-INSERT (T, x)
 if size[T] = 0 then
 allocate table[T] with 1 slot
 size[T] ← 1
 if num[T] = size[T] then
 allocate new-table with 2.size[T] slots
 copy all items in table[T] into new-table
 free table[T]
 table[T] ← new-table[T]
 size[T] ← 2.size[T]
 insert x into table[T]
 num[T] ← num[T] + 1
end

table[T] : pointer to block of table storage
num[T] : number of items in the table
size[T] : total number of slots in the table
Initially, table is empty, so num[T] = size[T] = 0

Initially, table is empty, so num[T] = size[T] = 0
Example: Dynamic Table Insertion

```
T
  d₁

INSERT(d₁)
INSERT(d₂)
```
Example: Dynamic Table Insertion

\[
\begin{array}{c|c|c}
& T & \\ \\
\hline
T & \text{INSERT}(d_1) & \\
\hline
T & \text{INSERT}(d_2) & \\
\hline
T & \text{INSERT}(d_3) & \\
\end{array}
\]
Example: Dynamic Table Insertion

<table>
<thead>
<tr>
<th>d₁</th>
<th>T</th>
<th>INSERT(d₁)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d₂</td>
<td></td>
<td>INSERT(d₂)</td>
</tr>
<tr>
<td>d₃</td>
<td></td>
<td>INSERT(d₃)</td>
</tr>
</tbody>
</table>
Example: Dynamic Table Insertion

\begin{align*}
T & \\
\begin{array}{c}
\text{d}_1 \\
\text{d}_2 \\
\text{d}_3 \\
\text{d}_4 \\
\end{array} & \begin{array}{c}
\text{INSERT(d}_1) \\
\text{INSERT(d}_2) \\
\text{INSERT(d}_3) \\
\text{INSERT(d}_4) \\
\text{INSERT(d}_5) \\
\end{array}
\end{align*}
Example: Dynamic Table Insertion

\[
\text{INSERT}(d_1) \\
\text{INSERT}(d_2) \\
\text{INSERT}(d_3) \\
\text{INSERT}(d_4) \\
\text{INSERT}(d_5)
\]
Example: Dynamic Table Insertion

\[T \]
\[
\begin{array}{c}
d_1 \\
d_2 \\
d_3 \\
d_4 \\
d_5 \\
d_6 \\
d_7 \\
\end{array}
\]

\[\text{INSERT}(d_1) \]
\[\text{INSERT}(d_2) \]
\[\text{INSERT}(d_3) \]
\[\text{INSERT}(d_4) \]
\[\text{INSERT}(d_5) \]
\[\text{INSERT}(d_6) \]
\[\text{INSERT}(d_7) \]
Table Expansion: Runtime Analysis

- The actual running time of TABLE-INSERT is linear in the time to insert individual items.

- Assume that allocating and freeing storage is dominated by the cost of transferring items.

- Assign a cost of 1 to each elementary insertion.

- Analyze a sequence of n TABLE-INSERT operations on an initially empty table.
Cost of Table Expansion

□ What is the cost c_i of the i^{th} operation if there is room in the current table?

$$c_i = 1 \quad \text{(only one elementary insert operation)}$$

□ What is the cost c_i of the i^{th} operation if the current table is full?

$$c_i = i$$

i-1 for the items that must be copied from the old table to the new table.

1 for the elementary insertion of the new item.
Cost of Table Expansion

- What is the worst-case runtime of n INSERT operations?

 The worst case cost of 1 INSERT operation is $O(n)$

 Therefore, the total running time is $O(n^2)$

- **This bound is not tight!**

 Expansion does not occur so often in the course of n INSERT operations
Amortized Analysis of INSERT: Aggregate Method

- Table is initially empty.
- Compute the total cost of n INSERT operations.
- When does the i^{th} operation require an expansion?
 only when $i-1$ is a power of 2

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	...		
c_i	1	2	3	1	5	1	1	1	9	1	1	1	1	1	1	1	17	1	1	1	...		
elem. ins	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	...		
Expansion cost	1	2	4	8																16			
Amortized Analysis of INSERT: Aggregate Method

Reminder: c_i is the actual cost of the i^{th} INSERT operation

$$c_i = \begin{cases}
 i & \text{if } i - 1 \text{ is an exact power of 2} \\
 1 & \text{otherwise}
\end{cases}$$

Therefore the total cost of n TABLE-INSERT operations is:

$$\sum_{i=1}^{n} c_i \leq n + \sum_{j=0}^{\lfloor \log n \rfloor} 2^j < n + 2n = 3n$$

The amortized cost of a single operation is $\frac{3n}{n} = 3 = O(1)$
The Accounting Method

Assign the following amortized costs

- Table-Expansion : $0
- Insertion of a new item : $3

Insertion of a new item:

$1 (as an actual cost) for inserting itself into the table
+ $1 (as a credit) for moving itself in the next expansion
+ $1 (as a credit) for moving another item (in the next expansion) that has already moved in the last expansion
Accounting Method Example

Note: Amortized cost of \text{INSERT}(d_2): $3

$1 spent for the actual cost of inserting \(d_2 \)
$1 credit for moving \(d_2 \) in the next expansion
$1 credit for moving \(d_1 \) in the next expansion
Accounting Method Example

$1 \quad d_1 \\
$1 \quad d_2 \\

$1 \\

T

INSERT(d_2) \quad 3
INSERT(d_3)

Note: When expansion is needed for the next INSERT operation, we have $1 stored credit for each item to move it to the new memory location.
Accounting Method Example

Table

<table>
<thead>
<tr>
<th>T</th>
<th>$1</th>
<th>d₁</th>
<th>INSERT(d₂) $3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$1</td>
<td>d₂</td>
<td>INSERT(d₃) $3</td>
</tr>
<tr>
<td></td>
<td>$1</td>
<td>d₃</td>
<td></td>
</tr>
</tbody>
</table>

Note: Amortized cost of INSERT(d₃): $3

- $1 spent for the actual cost of inserting d₃
- $1 credit for moving d₃ in the next expansion
- $1 credit for moving d₁ in the next expansion
Accounting Method Example

Note: Amortized cost of \text{INSERT}(d_4): $3

$1 spent for the actual cost of inserting d_4

1 credit for moving d_4 in the next expansion

1 credit for moving d_2 in the next expansion
Accounting Method Example

$1 \quad d_1
$1 \quad d_2
$1 \quad d_3
$1 \quad d_4

INSERT(d_2) $3
INSERT(d_3) $3
INSERT(d_4) $3
INSERT(d_5)

Note: When expansion is needed for the next INSERT operation, we have $1 stored credit for each item to move it.
Accounting Method Example

Amortized cost of $\text{INSERT}(d_5)$: 3
- 1 spent for the actual cost of inserting d_5
- 1 credit for moving d_5 later
- 1 credit for moving d_1 later
Accounting Method Example

T

$1 d_1
$1 d_2
$1 d_3
$1 d_4
$1 d_5
$1 d_6

INSERT(d_2) $3
INSERT(d_3) $3
INSERT(d_4) $3
INSERT(d_5) $3
INSERT(d_6) $3

Amortized cost of INSERT(d_6): $3
$1 spent for the actual cost of inserting d_6
$1 credit for moving d_6 later
$1 credit for moving d_2 later
Accounting Method Example

Size of the table: M

Immediately after an expansion (just before the insertion) $\text{num}[T] = M/2$ and $\text{size}[T] = M$ where M is a power of 2.

Table contains no credits

<p>| | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{Table contains no credits} \]
Accounting Method Example

1st insertion

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1</td>
<td></td>
<td>$1</td>
</tr>
</tbody>
</table>

2nd insertion

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Z</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1</td>
<td>$1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1</td>
<td>$1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) $1 for insertion
(b) (c)
Accounting Method Example

$M/2$th Insertion

Thus, by the time the table contains M items and is full

– each item in the table has $\$1$ of credit to pay for its move during the next expansion
Amortized Analysis of INSERT: Potential Method

Practical guideline reminder:

Choose a potential function that increases a little after every cheap operation, and decreases a lot after an expensive operation.

- Define a potential function Φ
 that is 0 immediately after an expansion, and that builds to the table size by the time the table becomes full.

- This way the next expansion can be paid for by the potential.
Definition of Potential

- One possible potential function Φ can be defined as:
 \[\Phi(T) = 2 \times \text{num}[T] - \text{size}[T] \]
 where:
 - \text{num}[T]: the number of entries stored in table \(T \)
 - \text{size}[T]: the size allocated for table \(T \)

- What is the potential value immediately after an expansion?
 \[\Phi(T) = 0 \quad \text{because} \quad \text{size}[T] = 2 \times \text{num}[T] \]

- What is the potential value immediately before an expansion?
 \[\Phi(T) = \text{num}[T] \quad \text{because} \quad \text{size}[T] = \text{num}[T] \]

- The initial value of the potential is 0.
Definition of Potential

Potential function: \(\Phi(T) = 2 \times \text{num}[T] - \text{size}[T] \)

- Can the potential be ever negative?

 No, because the table is always at least half full.

 \(\text{i.e. } \text{num}[T] \geq \frac{\text{size}[T]}{2} \)

- Since \(\Phi(T) \) is always nonnegative:

 The sum of the amortized costs of \(n \) INSERT operations
 is an upper bound on the sum of the actual costs.
Analysis of i-th Table Insert

$n_i : \text{num}[T]$ after the i-th operation

$s_i : \text{size}[T]$ after the i-th operation

$\Phi_i : \text{Potential}$ after the i-th operation

Initially we have $n_i = s_i = \Phi_i = 0$

Note that, $n_i = n_{i-1} + 1$ always holds.
Amortized Cost of TABLE-INSERT

Potential function: \(\Phi(T) = 2 \times \text{num}[T] - \text{size}[T] \)

If the \(i^{th} \) TABLE-INSERT does not trigger an expansion:

\textbf{Intuitively:}

- \(\text{size}[T] \) remains the same
- \(\text{num}[T] \) increases by 1
- \(\Rightarrow \) potential change = 2
- amortized cost = real cost + potential change
 \[= 1 + 2 = 3 \]
Amortized Cost of TABLE-INSERT

Potential function: \(\Phi(T) = 2 \cdot \text{num}[T] - \text{size}[T] \)

If the \(i \)th TABLE-INSERT does not trigger an expansion:

Formally:

\[
\hat{c}_i = c_i + \phi_i - \phi_{i-1} = 1 + (2n_i - s_i) - (2n_{i-1} - s_{i-1}) \\
= 1 + (2(n_{i-1} + 1) - s_{i-1}) - (2n_{i-1} - s_{i-1}) \\
= 1 + 2h_{i-1} + 2 - s_{i-1} - 2h_{i-1} + s_{i-1} = 3
\]
Amortized Cost of TABLE-INSERT

Potential function: \(\Phi(T) = 2 \cdot \text{num}[T] - \text{size}[T] \)

If the \(i^{\text{th}} \) TABLE-INSERT triggers an expansion:

Intuitively:

- \(\text{size}[T] \) is doubled, i.e. increases by \(n_{i-1} \)
- \(\text{num}[T] \) increases by 1

\[\Rightarrow \text{potential change} = 2 - n_{i-1} \]

real cost: \(n_{i-1} + 1 \) *(copy \(n_{i-1} \) entries to new memory + insert the new element)*

amortized cost = real cost + potential change

\[= n_{i-1} + 1 + 2 - n_{i-1} = 3 \]
Amortized Cost of TABLE-INSERT

Potential function: \(\Phi(T) = 2 \times \text{num}[T] - \text{size}[T] \)

If the \(i^{th} \) TABLE-INSERT triggers an expansion:

Formally:

\[
\begin{align*}
 n_{i-1} &= s_{i-1}; & s_i &= 2s_{i-1}; & c_i &= n_i = n_{i-1} + 1 \\
 \hat{c}_i &= c_i + \phi_i - \phi_{i-1} = n_i + (2n_i - s_i) - (2n_{i-1} - s_{i-1}) \\
 &= (n_{i-1} + 1) + (2(n_{i-1} + 1) + 2s_{i-1}) - (2n_{i-1} - s_{i-1}) \\
 &= n_{i-1} + 1 + 2n_{i-1} + 2 - 2n_{i-1} - 2n_{i-1} + n_{i-1} = 3
\end{align*}
\]
A Sequence of TABLE-INSERT Operations

Size of the table is doubled when $i-1$ is a power of 2.

The potential function increases gradually after every INSERT that doesn’t require table expansion.

The potential function drops to 2 after every INSERT that requires table expansion.
Supporting Insertions and Deletions

- So far, we have assumed that we only INSERT elements into the table. Now, we want to support DELETE operations as well.

- **TABLE-DELETE**: Remove the specified item from the table. Contract the table if needed.

- In table contraction, we want to preserve two properties:
 - The load factor of the table is bounded below by a constant.
 - Amortized cost of an operation is bounded above by a constant.

- As before, we assume that the cost can be measured in terms of elementary insertions and deletions.
Expansion and Contraction

Load factor reminder: \(\alpha(T) = \frac{\text{Number of items stored in the table}}{\text{size (number of slots) of the table}} \)

- An intuitive strategy for expansion and contraction:
 - Double the table size when an item is to be inserted into a full table.
 - Halve the size when a deletion would cause \(\alpha(T) < \frac{1}{2} \)

- What is the problem with this strategy?
 - **Good**: It guarantees \(\frac{1}{2} \leq \alpha(T) \leq 1.0 \)
 - **Bad**: Amortized cost of an operation can be quite large.
Worst-Case Behavior for $\alpha(T) \geq \frac{1}{2}$

T

INSERT

num[T] = 8
size[T] = 8

DELETE

num[T] = 8
size[T] = 8

DELETE

num[T] = 8
size[T] = 8

INSERT

num[T] = 9
size[T] = 16

INSERT

num[T] = 9
size[T] = 16

num[T] = 7
size[T] = 8

num[T] = 8
size[T] = 8

num[T] = 8
size[T] = 8

num[T] = 9
size[T] = 16
Worst-Case for $\alpha(T) \geq \frac{1}{2}$

Consider the following worst case scenario

– We perform n operations on an empty table where n is a power of 2
– First $n/2$ operations are all insertions, cost a total of $\Theta(n)$
 at the end: we have $\text{num}[T] = \text{size}[T] = n/2$
– Second $n/2$ operations repeat the sequence
 \text{I D D I I D D I I D}
 that is \text{I D D I I D D I I D D I ...}
Worst-Case for $\alpha(T) \geq \frac{1}{2}$

Example: $n=16$

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>oper:</td>
<td>I</td>
<td>I</td>
<td>...</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>D</td>
<td>D</td>
<td>I</td>
<td>I</td>
<td>D</td>
<td>D</td>
<td>I</td>
</tr>
<tr>
<td>n_i</td>
<td>1</td>
<td>2</td>
<td>...</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>s_i</td>
<td>1</td>
<td>2</td>
<td>...</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>C</td>
<td>E</td>
<td>E</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the second $n/2$ operations
- The first INSERT cause an expansion
- Two further DELETEs cause contraction
- Two further INSERTs cause expansion ... and so on

Hence there are $n/8$ expansions and $n/8$ contractions

The cost of each expansion and contraction is $\approx n/2$
Worst-Case for $\alpha(T) \geq \frac{1}{2}$

Thus the total cost of n operations is $\Theta(n^2)$ since

- First $n/2$ operations : $3n/2$
- Second $n/2$ operations : $(n/4)*(n/2)=n^2/8$

The amortized cost of an operation is $\Theta(n)$

The problem with this strategy is

- After an expansion, we do not perform enough deletions to pay for a contraction
- After a contraction, we do not perform enough insertions to pay for an expansion
Improving Amortized Time of Expansion and Contraction

We saw that if we enforce \(\frac{1}{2} \leq \alpha(T) \leq 1 \), the amortized time becomes \(O(n) \) in the worst case.

To improve the amortized cost:

Allow \(\alpha(T) \) to drop below \(\frac{1}{2} \).

Basic idea:

- **Expansion**: Double the table size when an item is inserted into a full table (same as before).

- **Contraction**: Halve the table size when a deletion causes:
 \[\alpha(T) < \frac{1}{4} \]
Improving Amortized Time of Expansion and Contraction

- In other words, we enforce: \(\frac{1}{4} \leq \alpha(T) \leq 1 \)

- Intuition:
 - Immediately after an expansion, we have \(\alpha(T) = \frac{1}{2} \)
 \(\Rightarrow \) At least half of the items in the table must be deleted before a contraction can occur (i.e. when \(\alpha(T) < \frac{1}{4} \))

 - Immediately after a contraction, we have \(\alpha(T) = \frac{1}{2} \)
 \(\Rightarrow \) The number of items in the table must be doubled before an expansion can occur (i.e. when \(\alpha(T)=1 \)).
Potential Method for INSERT & DELETE

- We want to define the potential function $\Phi(T)$ as follows:

 - Immediately after an expansion or contraction:
 $\Phi(T) = 0$

 - Immediately before an expansion or contraction:
 $\Phi(T) = \text{num}[T]$
 because we need to copy over $\text{num}[T]$ elements, and
 the cost of expansion or contraction should be paid by the
 decrease in potential.
Potential Method for INSERT & DELETE

- **Reminder**: Immediately after an expansion or contraction,
 \[\alpha(T) = \frac{1}{2} \]

- So, we want to define a potential function \(\Phi(T) \) such that:
 - \(\Phi(T) \) starts at 0 when \(\alpha(T) = \frac{1}{2} \)
 - \(\Phi(T) \) gradually increases to \(\text{num}[T] \), when \(\alpha(T) \) increases to 1, or
 - when \(\alpha(T) \) decreases to \(\frac{1}{4} \)

- This way, the next expansion or contraction can be paid by the decrease in potential.
\(\Phi(\alpha) \) w.r.t. \(\alpha(T) \)

\(M = \text{num}[T] \) when an expansion or contraction occurs
Definition of New Φ

One such Φ is

$$\Phi(T) = \begin{cases}
2\text{num}[T] - \text{size}[T] & \text{if } \alpha(T) \geq \frac{1}{2} \\
\frac{\text{size}[T]}{2} - \text{num}[T] & \text{if } \alpha(T) < \frac{1}{2}
\end{cases}$$

or

$$\Phi(T) = \begin{cases}
\text{num}[T](2 - 1/\alpha) & \text{if } \alpha(T) \geq \frac{1}{2} \\
\text{num}[T](1/2\alpha - 1) & \text{if } \alpha(T) < \frac{1}{2}
\end{cases}$$
Description of New Φ

$\Phi(T) = \begin{cases}
2\text{num}[T] - \text{size}[T] & \text{if } \alpha(T) \geq \frac{1}{2} \\
\frac{\text{size}[T]}{2} - \text{num}[T] & \text{if } \alpha(T) < \frac{1}{2}
\end{cases}$

- $\Phi = 0$ when $\alpha = \frac{1}{2}$
- $\Phi = \text{num}[T]$ when $\alpha = \frac{1}{4}$
- $\Phi = \text{num}[T]$ when $\alpha = 1$
- $\Phi = 0$ when the table is empty

 $(\text{num}[T] = \text{size}[T] = 0, \alpha(T) = 0)$

- Φ is always nonnegative

$\alpha = \frac{\text{num}[T]}{\text{size}[T]}$
Amortized Analysis

We need to analyze the operations:

TABLE-INSERT and **TABLE-DELETE**

Notations:

- c_i: Actual cost of the i^{th} operation
- \hat{c}_i: Amortized cost of the i^{th} operation
- Φ_i: Potential $\Phi(T)$ after the i^{th} operation
- n_i: Number of elements $\text{num}[T]$ after the i^{th} operation
- s_i: Table size $\text{size}[T]$ after the i^{th} operation
- α_i: Load factor $\alpha(T)$ after the i^{th} operation
Amortized Analysis: Table Insert – Case 1

- There is no possibility of contraction in any case.
- In all cases: \(n_i = n_{i-1} + 1 \)

Case 1: \(\alpha_{i-1} \geq \frac{1}{2} \)

Analysis is identical to the one we did before for only TABLE-INSERT operation.

\[\Rightarrow \text{Amortized cost } \hat{c}_i = 3 \text{ whether the table expands or not.} \]
Amortized Analysis: Table Insert – Case 2

\[
\Phi(T) = \begin{cases}
2num[T] - size[T] & \text{if } \alpha(T) \geq \frac{1}{2} \\
size[T] - \frac{2}{2}num[T] & \text{if } \alpha(T) < \frac{1}{2}
\end{cases}
\]

Case 2: \(\alpha_{i-1} < \frac{1}{2}\) and \(\alpha_i < \frac{1}{2}\)

There is no possibility of expansion.

Intuitively:

Potential change: -1

Real cost: 1

Amortized cost = 1 – 1 = 0
Amortized Analysis: Table Insert – Case 2

Case 2: $\alpha_{i-1} < \frac{1}{2}$ and $\alpha_i < \frac{1}{2}$

There is no possibility of expansion.

Formally: $c_i = 1; \quad s_i = s_{i-1}; \quad n_i = n_{i-1} + 1$

\[
\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} = 1 + \left(\frac{s_i}{2} - n_i\right) - \left(\frac{s_{i-1}}{2} - n_{i-1}\right)
\]

\[
= 1 + \frac{s_i}{2} - n_i - \frac{s_i}{2} + (n_i - 1) = 0
\]
Amortized Analysis: Table Insert – Case 3

Case 3: $\alpha_{i-1} < \frac{1}{2}$ and $\alpha_i \geq \frac{1}{2}$ (which means $\alpha_i = \frac{1}{2}$ because size[T] is even)

There is no possibility of expansion.

Intuitively: $n_i = s_i/2$; $n_{i-1} = s_i/2 - 1$

- Old potential: 1
- New potential: 0
- Real cost: 1
- Amortized cost = $1 - 1 = 0$
Amortized Analysis: Table Insert – Case 3

Case 3: $\alpha_{i-1} < \frac{1}{2}$ and $\alpha_i \geq \frac{1}{2}$ (which means $\alpha_i = \frac{1}{2}$ because $\text{size}[T]$ is even)

There is no possibility of expansion.

Formally:

$$
\begin{align*}
\Phi(T) &= \begin{cases}
2\text{num}[T] - \text{size}[T] & \text{if } \alpha(T) \geq \frac{1}{2} \\
\frac{\text{size}[T]}{2} - \text{num}[T] & \text{if } \alpha(T) < \frac{1}{2}
\end{cases} \\
\hat{c}_i &= c_i + \Phi_i - \Phi_{i-1} = 1 + (2n_i - s_i) - (s_{i-1} / 2 - n_{i-1}) \\
&= 1 + (2(s_i / 2) - s_i) - (s_i / 2 - (s_i / 2 - 1)) \\
&= 0
\end{align*}
$$
Amortized Analysis: Table Insert - Summary

Case 1: $\alpha_{i-1} \geq \frac{1}{2}$

Amortized cost of TABLE-INSERT = 3

Case 2: $\alpha_{i-1} < \frac{1}{2}$ and $\alpha_i < \frac{1}{2}$

Amortized cost of TABLE-INSERT = 0

Case 3: $\alpha_{i-1} < \frac{1}{2}$ and $\alpha_i \geq \frac{1}{2}$

Amortized cost of TABLE-INSERT = 0

So, the amortized cost of TABLE-INSERT is at most 3
Table Delete

\[n_i = n_{i-1} - 1 \Rightarrow n_{i-1} = n_i + 1 \]

Table expansion cannot occur.

- \(\alpha_{i-1} \leq \frac{1}{2} \) and \(\frac{1}{4} \leq \alpha_i < \frac{1}{2} \) (It does not trigger a contraction)

\[s_i = s_{i-1} \quad \text{and} \quad c_i = 1 \quad \text{and} \quad \alpha_i < \frac{1}{2} \]

\[\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} = 1 + \left(\frac{s_i}{2 - n_i} \right) - \left(\frac{s_{i-1}}{2 - n_{i-1}} \right) \]

\[= 1 + \frac{s_i}{2 - n_i} - \frac{s_i}{2} + (n_i + 1) = 2 \]
Table Delete

- $\alpha_{i-1} = \frac{1}{4}$ (It does trigger a contraction)

 $s_i = s_{i-1}/2$; $n_i = s_{i-1}/2$; and $c_i = n_i + 1$

 \[\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} = (n_i + 1) + (s_i / 2 - n_i) - (s_{i-1} / 2 - n_{i-1}) \]

 $= n_i + 1 + s_i / 2 - n_i - s_i + s_i / 2 = 1$

- $\alpha_{i-1} > \frac{1}{2}$ ($\alpha_i \geq \frac{1}{2}$)

 Contraction cannot occur ($c_i = 1$; $s_i = s_{i-1}$)

 \[\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} = 1 + (2n_i - s_i) - (2n_{i-1} - s_{i-1}) \]

 $= 1 + 2n_i - s_i - 2(n_i + 1) + s_i = -1$
Table Delete

- $\alpha_{i-1} = \frac{1}{2}$ \quad ($\alpha_i < \frac{1}{2}$)

Contraction cannot occur

$$c_i = 1 \ ; \ s_i = s_{i-1} \ ; \ n_i = s_{i-1}/2; \text{ and } \Phi_{i-1} = 0$$

$$\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} = 1 + (s_i / 2 - n_i) - 0$$

$$= 1 + s_i / 2 - n_i \quad \text{but} \quad n_{i+1} = s_i / 2$$

$$= 1 + (n_i + 1) - n_i = 2$$
Table Delete

Thus, the amortized cost of a TABLE-DELETE operation is at most 2

Since the amortized cost of each operation is bounded above by a constant

The actual time for any sequence of n operations on a Dynamic Table is $O(n)$