
Recursion
CS 201

Introduction
● Recursion is an extremely powerful problem-solving technique

○ It breaks a problem into smaller identical problems and uses the same
function to solve these smaller problems

○ It is an alternative to iterative solutions, which use loops

● Facts about recursive solutions
○ A recursive function calls itself
○ Each recursive call solves an identical but a smaller problem
○ Base case must be defined (it enables to stop the recursive calls)
○ Eventually, one of the smaller problems must be the base case

2

void displayBackward(char* str) {

 if (str[0] == '\0')
 return;

 displayBackward(str + 1);
 cout << str[0];
}

Simple example: Write a global function that displays a given C-style string backward

Recursive solution:
● Each recursive call diminishes the string length by 1
● Base case: displaying the empty string backward

Recursion and efficiency: Fibonacci function

Recurrence relation:
F(n) = F(n - 1) + F(n - 2)

Base cases:
F(1) = 1
F(2) = 1 int iterativeFib(int n) {

 int previous = 1;
 int current = 1;
 int next = 1; // result when n is 1 or 2

 // compute next Fibonacci values when n >= 3
 for (int i = 3; i <= n; i++) {
 next = current + previous;
 previous = current;
 current = next;
 }
 return next;
}

int recursiveFib(int n) {
 if (n <= 2)
 return 1;

 return recursiveFib(n - 1) + recursiveFib(n - 2);
}

Recursion and efficiency
● Some recursive solutions are so inefficient that they should not be used

● Factors contributing to this inefficiency
○ Inherent inefficiency of some recursive algorithms (such as the recursiveFib function)
○ Overhead associated with function calls

● Do not use a recursive solution if it is inefficient and there is a clear and
efficient iterative solution

5

More examples: Write a recursive function for the binary search algorithm

A high-level pseudocode for binary search

if (anArray is of size 1)
 determine if anArray’s item is equal to the searched value
else {
 find the midpoint of anArray
 determine which half of anArray contains the searched value
 if (the value is in the first half of anArray)
 binarySearch(first half of anArray, value)
 else
 binarySearch(second half of anArray, value)
}

Implementation issues
● How to pass “half of anArray” to the function?
● How to determine the base case(s)?
● How to return the result?

More examples: Write a recursive function for the binary search algorithm

int binarySearch(int* arr, int low, int high, int key) {
 if (low > high)
 return -1;

 int mid = (low + high) / 2;

 if (arr[mid] == key)
 return mid;

 if (arr[mid] > key)
 return binarySearch(arr, low, mid - 1, key);

 return binarySearch(arr, mid + 1, high, key);
}

More examples: Write a recursive function that finds the connected
components of a given black-and-white image

Application 1: Suppose that we want to locate cell nuclei in a gray-level image
whose pixel intensities are in between 0 and 255. To find the nucleus locations,
one may first obtain a black-and-white image, whose intensities are either 0 or
1, using some image processing techniques (e.g., thresholding). Then, s/he
may identify each connected component of the 1-pixels as a cell nucleus.

More examples: Write a recursive function that finds the connected
components of a given black-and-white image

Application 2: Similarly, in the image below, we want to identify individual
buildings. Connected component analysis can be used after obtaining a
black-and-white image of buildings.

More examples: Write a recursive function that finds the connected
components of a given black-and-white image

int** findConnectedComponents(int** arr, int row, int column) {

 int** labels, i, j, currLabel;

 labels = new int* [row];
 for (i = 0; i < row; i++) {
 labels[i] = new int [column];
 for (j = 0; j < column; j++)
 labels[i][j] = 0;
 }

 currLabel = 1;
 for (i = 0; i < row; i++)
 for (j = 0; j < column; j++)
 if (arr[i][j] && !labels[i][j])
 fourConnectivity(arr, labels, row, column, i, j, currLabel++);

 return labels;
}

More examples: Write a recursive function that finds the connected
components of a given black-and-white image

void fourConnectivity(int** arr, int** labels, int row, int column,
 int i, int j, int currLabel) {

 if (arr[i][j] == 0)
 return;
 if (labels[i][j] > 0)
 return;

 labels[i][j] = currLabel;

 if (i - 1 >= 0)
 fourConnectivity(arr, labels, row, column, i - 1, j, currLabel);
 if (i + 1 < row)
 fourConnectivity(arr, labels, row, column, i + 1, j, currLabel);
 if (j - 1 >= 0)
 fourConnectivity(arr, labels, row, column, i, j - 1, currLabel);
 if (j + 1 < column)
 fourConnectivity(arr, labels, row, column, i, j + 1, currLabel);
}

