
CS201 RECITATION 1
Introduction to C++



Outline

Part 1 : Writing and debugging code with CodeBlocks

Part 2 : Porting, compiling and testing in Dijkstra

Part 3 : Using and understanding header files



Part 1: Writing and debugging code with

CodeBlocks
• Consider the following class:



Let’s modify the GradeBook class such that

• it keeps the midterm, final, homework, and quiz grades

of a particular student as its data members

• it calculates a letter grade of the student using the

computeFinalGrade member function that

• takes four input grades from the user

• computes the average grade acc. to the following weights

• midterm (30%), final (35%), homework (15%), quiz (20%)

• assigns a letter grade according to the table

90 ≤ Grade A

80 ≤ Grade ≤ 89 B

70 ≤ Grade ≤ 79 C

60 ≤ Grade ≤ 69 D

Grade < 60 F

Otherwise U (unkown)



Let’s do it using CodeBlocks

• CodeBlocks is an integrated development environment.

• http://www.codeblocks.org/downloads/26

• Make sure you download the IDE with its MinGW compiler.

http://www.codeblocks.org/downloads/26
http://www.codeblocks.org/downloads/26
http://www.codeblocks.org/downloads/26
http://www.codeblocks.org/downloads/26
http://www.codeblocks.org/downloads/26
http://www.codeblocks.org/downloads/26
http://www.codeblocks.org/downloads/26
http://www.codeblocks.org/downloads/26


New C++ Project



New C++ Project



New C++ Project



New C++ Project



New C++ Project



New C++ Project



New C++ Project



New Source File



New Source File



New Source File



New Source File



New Source File



GradeBook.cpp



GradeBook.cpp



GradeBook.cpp



GradeBook.cpp

Build & Run



GradeBook.cpp



GradeBook.cpp



GradeBook.cpp



GradeBook.cpp



GradeBook.cpp



GradeBook.cpp



GradeBook.cpp

Alternative:

Successfully Compiled!



GradeBook.cpp



GradeBook.cpp



GradeBook.cpp



GradeBook.cpp



GradeBook.cpp



GradeBook.cpp



GradeBook.cpp (Debugging)

Breakpoint



GradeBook.cpp (Debugging)



GradeBook.cpp (Debugging)

Step into



GradeBook.cpp (Debugging)



GradeBook.cpp (Debugging)



GradeBook.cpp (Debugging)

Next line



GradeBook.cpp (Debugging)



GradeBook.cpp (Debugging)

Step out



GradeBook.cpp (Debugging)



GradeBook.cpp (Debugging)

Debug/Continue



GradeBook.cpp (Debugging)

• Step Into :
• Runs the program until the next instruction is reached.

• Next Line :
• Runs the program until the next line of code is reached.

• Step Out :
• Runs the program until the current procedure is completed.

Step Out ≥ Next Line ≥ Step Into



At Break Point

Step Into

Next Line

Step Out



Part 2: Porting, compiling and testing in 

Dijkstra

• FileZilla (FTP client) + PuTTY (SSH Client)

• FileZilla

• https://filezilla-project.org/download.php?type=client

• PuTTY

• http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

• SSH Secure Shell

https://filezilla-project.org/download.php?type=client
https://filezilla-project.org/download.php?type=client
https://filezilla-project.org/download.php?type=client
https://filezilla-project.org/download.php?type=client
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html


Part 2: FileZilla

dijkstra.ug.bcc.bilkent.edu.tr



Part 2: FileZilla



Part 2: FileZilla



Part 2: PuTTY



Part 2: PuTTY



Part 2: PuTTY



Part 2: PuTTY



Part 2: PuTTY



Part 2: PuTTY



Part 2: PuTTY

• The base command for the Gnu C++ compiler is g++

• Single File Programs

• The easiest compilation uses the command format:

• g++ -o <outputName> <cppFile>

• Example:

• g++ -o myExe prog1.cpp

• Multiple File Programs

• g++ -o <outputName> <cppFile1> <cppFile2> ...

• Example:

• g++ -o myProgram thing.cpp main.cpp

• This command compiles and links the code files "thing.cpp" and "main.cpp"
together into the executable program called "myProgram”.

• g++ -o myProgram *.cpp

• This command compiles and links all the code files with ".cpp" extension.



Part 2: SSH Secure Shell



Part 2: SSH Secure Shell

dijkstra.ug.bcc.bilkent.edu.tr



Part 2: SSH Secure Shell



Part 2: SSH Secure Shell

New File Transfer Window



Part 2: SSH Secure Shell



Part 2: SSH Secure Shell



Part 2: Types of error 

• Compile Time errors

• Syntax errors

• Undeclared variables and functions, improper function calls etc.

• e.g. Forgetting to put semicolon(;) at the end of an instruction.

• Result : 

• Linker errors

• Undefined functions or multiply defined functions or symbols

• e.g. Not including correct header files → 

• Not using the correct namespace →

• Result :



• Run-time errors

• Fatal Errors

• Typically cause the program to crash during execution 

• e.g. Trying to access a non-existent memory location.

• Non-Fatal(Logical) Errors

• Does not crash the program but produce erroneous results

• Typically hardest to detect

• Result : Incorrect program behaviour

Result :



Part 3: Using header files

Why do we need header files?

1. Speeds up compilation time

• Upon the change of a single line of code;

Without headers : All of the code needs to be recompiled

With headers : Only changing parts need to be recompiled

2. Keeps the code organized

• Necessary for big projects

• Allows multiple people to work on the same project

For more info : Headers and Includes: Why and How

http://www.cplusplus.com/forum/articles/10627/


Part 3: Using header files

• Back to GradeBook.cpp

• Let’s try and separate this file into multiple files separating

the interface of the class from its implementation as well

as separating the user program that uses this code.



Part 3: Using header files



Part 3: Using header files



Part 3: Using header files

Interface (Header, .h) File



Part 3: Using header files

Implementation (.cpp) File



Part 3: Using header files

Main (.cpp) File



Part 3: Using header files



Part 3: Using header files


