
CS201 RECITATION 1
Introduction to C++



Outline

Part 1 : Writing and debugging code with CodeBlocks

Part 2 : Porting, compiling and testing in Dijkstra

Part 3 : Using and understanding header files



Part 1: Writing and debugging code with

CodeBlocks
• Consider the following class:



Let’s modify the GradeBook class such that

• it keeps the midterm, final, homework, and quiz grades

of a particular student as its data members

• it calculates a letter grade of the student using the

computeFinalGrade member function that

• takes four input grades from the user

• computes the average grade acc. to the following weights

• midterm (30%), final (35%), homework (15%), quiz (20%)

• assigns a letter grade according to the table

90 ≤ Grade A

80 ≤ Grade ≤ 89 B

70 ≤ Grade ≤ 79 C

60 ≤ Grade ≤ 69 D

Grade < 60 F

Otherwise U (unkown)



Let’s do it using CodeBlocks

• CodeBlocks is an integrated development environment.

• http://www.codeblocks.org/downloads/26

• Make sure you download the IDE with its MinGW compiler.
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New C++ Project
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New Source File
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New Source File



GradeBook.cpp



GradeBook.cpp
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GradeBook.cpp

Build & Run



GradeBook.cpp
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GradeBook.cpp

Alternative:

Successfully Compiled!



GradeBook.cpp
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GradeBook.cpp (Debugging)

Breakpoint



GradeBook.cpp (Debugging)



GradeBook.cpp (Debugging)

Step into



GradeBook.cpp (Debugging)
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GradeBook.cpp (Debugging)

Next line



GradeBook.cpp (Debugging)



GradeBook.cpp (Debugging)

Step out



GradeBook.cpp (Debugging)



GradeBook.cpp (Debugging)

Debug/Continue



GradeBook.cpp (Debugging)

• Step Into :
• Runs the program until the next instruction is reached.

• Next Line :
• Runs the program until the next line of code is reached.

• Step Out :
• Runs the program until the current procedure is completed.

Step Out ≥ Next Line ≥ Step Into



At Break Point

Step Into

Next Line

Step Out



Part 2: Porting, compiling and testing in 

Dijkstra

• FileZilla (FTP client) + PuTTY (SSH Client)

• FileZilla

• https://filezilla-project.org/download.php?type=client

• PuTTY

• http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

• SSH Secure Shell

https://filezilla-project.org/download.php?type=client
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Part 2: FileZilla

dijkstra.ug.bcc.bilkent.edu.tr
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Part 2: PuTTY

• The base command for the Gnu C++ compiler is g++

• Single File Programs

• The easiest compilation uses the command format:

• g++ -o <outputName> <cppFile>

• Example:

• g++ -o myExe prog1.cpp

• Multiple File Programs

• g++ -o <outputName> <cppFile1> <cppFile2> ...

• Example:

• g++ -o myProgram thing.cpp main.cpp

• This command compiles and links the code files "thing.cpp" and "main.cpp"
together into the executable program called "myProgram”.

• g++ -o myProgram *.cpp

• This command compiles and links all the code files with ".cpp" extension.



Part 2: SSH Secure Shell



Part 2: SSH Secure Shell
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Part 2: SSH Secure Shell

New File Transfer Window



Part 2: SSH Secure Shell



Part 2: SSH Secure Shell



Part 2: Types of error 

• Compile Time errors

• Syntax errors

• Undeclared variables and functions, improper function calls etc.

• e.g. Forgetting to put semicolon(;) at the end of an instruction.

• Result : 

• Linker errors

• Undefined functions or multiply defined functions or symbols

• e.g. Not including correct header files → 

• Not using the correct namespace →

• Result :



• Run-time errors

• Fatal Errors

• Typically cause the program to crash during execution 

• e.g. Trying to access a non-existent memory location.

• Non-Fatal(Logical) Errors

• Does not crash the program but produce erroneous results

• Typically hardest to detect

• Result : Incorrect program behaviour

Result :



Part 3: Using header files

Why do we need header files?

1. Speeds up compilation time

• Upon the change of a single line of code;

Without headers : All of the code needs to be recompiled

With headers : Only changing parts need to be recompiled

2. Keeps the code organized

• Necessary for big projects

• Allows multiple people to work on the same project

For more info : Headers and Includes: Why and How

http://www.cplusplus.com/forum/articles/10627/


Part 3: Using header files

• Back to GradeBook.cpp

• Let’s try and separate this file into multiple files separating

the interface of the class from its implementation as well

as separating the user program that uses this code.
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Part 3: Using header files

Interface (Header, .h) File



Part 3: Using header files

Implementation (.cpp) File



Part 3: Using header files

Main (.cpp) File
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