
Bilkent University 

 

Department Of Computer Engineering 
 

CS565 

 

Computational Geometry 

 

 Term Project 

 

Real-Time Path Planning for Multi-Agents  

In  

Dynamic Environments  

 

 
By 

 

Ateş Akaydın 

 

 

 

 

Supervisor: Assoc. Prof. Dr. Uğur Güdükbay 

 

Progress Report II 

 

May 20, 2008 
  



2 

 

 

 

Table of Contents 
1. Introduction ............................................................................................................................. 3 

2. Related Work .......................................................................................................................... 3 

3. Objectives ............................................................................................................................... 4 

4. Proposed Approach ................................................................................................................. 4 

5. Background & Notation .......................................................................................................... 5 

6. Path planning Using Multi-Agent Navigation Graphs (MaNG) ............................................. 7 

a. Multi-Agent planning using Hybrid Voronoi Structures ..................................................... 7 

b. Multi-Agent Simulation ....................................................................................................... 9 

7. Computation of GVDs Using Graphics Hardware ............................................................... 11 

a. Brute-Force Approach ....................................................................................................... 11 

b. Proposed Approach ............................................................................................................ 12 

i. Cones Algorithm ............................................................................................................. 12 

ii. Higher Order Sites and GVD ..................................................................................... 13 

iii. Boundaries & Neighbors ............................................................................................ 15 

iv. Sources of Error ......................................................................................................... 15 

8. Agent Generation and Restricting Workspace ...................................................................... 16 

9. Agent Interaction Routines and Local Decision Making ...................................................... 17 

10. Implementation Details ...................................................................................................... 18 

11. System Configuration ........................................................................................................ 18 

12. Results ................................................................................................................................ 18 

13. Conclusion ......................................................................................................................... 26 

14. References .......................................................................................................................... 27 

 

 

  



3 

 

1. Introduction 
 

Real-time path planning for multiple-agents in dynamic environments is a 

challenging issue that has many applications in the fields of computer graphics. 

In computer graphics, this problem is important for simulating crowds and crowd 

behavior in a realistic manner in dynamic virtual environments. Virtual crowd 

simulation has applications in emergency evacuation, architecture design, urban 

planning, personnel training, education and entertainment. In robotics, the same 

problem occurs in multiple-robot coordination and planning in dynamically changing 

physical environments.   

2. Related Work 
 

In terms of computer graphics terminology, there are several approaches to model 

the problem which can be classified as: Social Forces Models, Cellular-Automata 

Models and Rule-Based Models.  

Social Forces Models make use of attractive and repulsive forces to simulate 

interactions in between agents and obstacles. They are much like the potential field 

approaches used in robotics literature. An important, recent approach in this context 

was proposed by Treuille et al [2].  

In Rule-based methods, contact in between obstacles and agents are avoided by 

ordered application of rules such as wait rules. Hence, collisions need not to be 

handled. Therefore, Rule-based methods fail to simulate natural behavior like 

pushing. Some examples of Rule-based methods are given in [3] [4]. 

On the other hand, in Cellular-Automata models, world space is discretized as a 

regular grid. Agents can only move into free grid cells and therefore collision 

behavior can’t be simulated accurately. High-Level goals of the agents are also 

embedded in to these grid cells and each agent can use this information to accomplish 

goals. Cellular-Automata models are fast and easy to implement. Several approaches 

that make use of these models are given in [5] [6]. 

In addition there are some hybrid models which make use of several of these three 

types of models. An example of such an approach was proposed by Pelechano et al 

[1]. In their so called “HiDAC” model which adopts various aspects of the social 

forces model although it is heavily rule based. 

In order to navigate in complex environments, these models require some high-

level representation of the subject environment. Some popular representations include 

roadmaps, cell and portal graphs and potential fields. Information considering the 

properties of the environment and high-level goals can be pre-computed and 

integrated with the environment representation for real-time simulation purposes. 

One of the most recent and novel approaches to the problem was made by 

Avneesh Sud and his colleagues in their paper, namely “Real-time Path Planning in 

Dynamic Virtual Environments Using Multi-agent Navigation Graphs” [8]. In their 

approach authors make use of 1st and 2nd order Voronoi diagrams to determine a 

collision free path(towards the gloabal goal) for each agent within the environment. 
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In addition a Social Forces model similar to Helbing’s Model [7] was implemented in 

order to do local planning with respect to the nearby agents. 

3. Objectives 
 

Having taken “Real-time Path Planning in Dynamic Virtual Environments Using 

Multi-agent Navigation Graphs” [8]  and “Fast Computation of Generalized Voronoi 

Diagrams Using Graphics Hardware” [9] as ground works, I’ve studied on finding 

ways to do navigation planning for large number of agents in dynamic environments 

in real-time and implemented the proposed approach of [9] in order to generate 

Voronoi Diagrams for path planning at interactive rates. 

4. Proposed Approach 
 

The approaches proposed in two noteworthy papers “Real Time Path Planning in 

Dynamic Virtual Environments Using Multi-Agent Navigation Maps” by Avneesh Sud et 

al [8] and “Fast Computation of Generalized Voronoi Diagrams Using Graphics 

Hardware” by Kenneth E. Hoff et al [9] will be used during the implementation of this 

project. Basically a Multi-Agent Navigation Graph (MaNG) will be constructed at each 

simulation step from the 1st and 2nd order Voronoi Graphs computed by the graphics 

hardware [9]. MaNG is just a unification of these two Voronoi Graphs and it gives 

information about the pairwise proximity of agents and obstacles within the system with 

respect to each other. In the proposed system, agents and obstacles both form the sites of 

the Voronoi Diagrams. Convex-Polygonal obstacles will be used in order to provide a 

connected Voronoi Graph. Detailed information of constructing the MaNG is given in 

section 6. 

Each agent within the system is given a global goal. Local behavior and 

interactions with respect to other agents, objects and obstacles are possible as well. Path 

planning for the global goals are done on the MaNG by using an optimal graph search 

algorithm, like the *A -Search.  

Local behavior will be made possible through a social forces model like Helbing’s 

Model [7]. Basically, a potential field will be derived which defines attractive and 

repulsive forces locally within the Voronoi Sites so that the agents can properly behave 

against emergent entities such as other agents and obstacles. The parameters of the force 

equations uniquely define different emotional characteristics of the agents. In addition if 

possible and necessary, agents will try to interact with entities within a variable distance 

through the abstract interaction routines. A unique interaction routine will be assigned to 

each agent so that it can interact only with a particular set of entities of interest. Ways of 

interaction is variable and they are precisely defined by the interaction routines. As an 

example if an agent is assigned a fireman routine, it may try to extinguish fire wherever it 

spots it. On the other hand if civilian routines are assigned, agents will try to escape from 

fire. 

One important problem that occurs especially in large scale virtual environments 

(complete city models for instance) is the difficulty of simulating the agents within the 
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entire navigable area. Due to the scale of the environment, simulating and keeping track 

of the agents in such situations would require excessive amounts of computational power 

and storage. So the regions where the agents will be simulated should be restricted. In 

addition, to create a reasonable crowd simulation, agents can be generated (or picked 

from a pre-allocated pool of agents) at the borders of the restricted region of focus, 

having goals towards the borders across. Those agents which reach to their goals will be 

put back to the agent pool. This would provide a constant flow of agents within the 

virtual environment so that a live simulation can be created. MaNG Graph (and 1st,2nd 

order Voronoi Diagrams) will also be computed only for the agents and obstacles within 

the current region of focus. The region of focus should also be dynamic and it should 

change whenever the current position of the camera is changed. Agents which fall outside 

of this region will also be put back to the agent’s pool. 

Finally, extensive scenarios will be developed to simulate the behaviors large 

numbers of agents having different characteristics. For example, one particular scenario 

can be emergency evacuation. In this scenario, an explosion in the virtual city will occur 

and those agents, who are close to the event, will be panicked and they will try to 

evacuate the zone as fast as possible. At the same time, agents that are specialized in 

dealing with the event, such as fireman will enter the zone and try to extinguish the fire 

occurring due to the explosion. 

5. Background & Notation 
 

In this section, notations and equations regarding the theoretical background of the 

approach are given. Notations presented in this section are the most important of those 

given in [8]. Please refer to the paper for other aspects of the below formulations along 

with Lemmas depicting several important properties of Voronoi Regions, Diagrams and 

Graphs (and their proofs). 

A geometric primitive, an agent or an obstacle in d-dimensions is called a site. Sites 

can be points, edges, triangle or more complex polygons. In this work, only 2-dimensonal 

sites are considered as planning is done for 2-dimensional floor of the environment. Here 

a particular site i  is represented with the symbol ip . And the center of mass of the site is 

represented with )( ip . The interior and boundary of a set of points S is given as )(SInt  

and )(S respectively. 

Given as site ip , ),( ipqd denotes the Euclidian distance between a particular point 

dq  to the closest point in the site ip . 

Having defined the basic symbols we can begin with defining a k-th order Voronoi 

region as: 

 

)}(,),(),(|{)|( TPpTppqdpqdDqPTVor jiji

k   

 

Where P  is the set of all sites and T is as k-tuple subset of P where kT  . This 

basically defines all points in P that are closer to T  than any other remaining sites in P . 

Hence the k-th order Voronoi Diagram 
kVD  can be defined as follows: 
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Voronoi Diagram is hence the union of all points which are closer to a particular k-

tuple site T -than any other sites-, for all possible combinations of such k-tuples. 

We then define the k-th order governor set of a particular point q which is the set of 

closest k-tuple sites to q . This is shown as: 
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Finally the k-th order Voronoi Graph (
kVG ) can be generalized as follows: 
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Having defined the notation, we can now begin with the Multi-Agent Navigation 

Graph (MaNG). Local and global path planning on the MaNG graph is given in section 6 

along with the ways of constructing MaNG. Constructing the MaNG data structure 

requires computation of the 1st and 2nd order Voronoi Diagrams. Computations of 

General Voronoi Graphs (GVDs) are done in Graphics Hardware and are explained in 

detail in section 7. 

6. Path planning Using Multi-Agent Navigation Graphs (MaNG) 
 

This section explains the MaNG data structure, its properties and usage in path 

planning in detail.  

a. Multi-Agent planning using Hybrid Voronoi Structures 
 

Each moving agent within the system is considered as a dynamic obstacle for the 

remaining agents. The task is to compute a global navigation data structure (which is 

the multi-agent navigation graph (MaNG)) which provides clearance and proximity 

information for each agent. For each agent the path to its global goal should be 

maximally clear of other obstacles and agents. A data structure that unifies 1st and 2nd 

order Voronoi Graphs can hence provide a pairwise maximally clear path for each 

agent within the data structure. The actual paths to the goal points can be searched on 

this data structure. Multi-Agent Navigation Graph is such a graph that has this 

property. Basically it is the union of the first order Voronoi Graph )(1 PVG  and a 

subset of the second order Voronoi Graph )(2 PVG . The subset includes intersection 

of )(2 PVG  and the Voronoi Regions ( )|( PpVor i

k
) of the agents within the system. 

Voronoi Regions of the static obstacles are disregarded since no pair-wise proximity 

information is necessary to direct an agent around an obstacle (due to the fact that the 

obstacle is static). The paths on the first order Voronoi Graph would be enough for 

this case. 
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Formally the MaNG can be defined as follows: 

 

),()(
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Where aP  is the set of agent sites and PPa  . 

A color is assigned to each edge and vertex in )(PMG with respect to their 

membership in )(1 PVG  and )(2 PVG . Edges and vertices from first order Voronoi 

Graph )(1 PVG are colored red and edges from second order Voronoi Graph )(2 PVG  

along with the vertices in )()( 12 PVGPVG   are colored black. Finally each edge in 

)(PMG is assigned a cost of travelling on this particular edge (distance for instance). 

It can be shown that  )()( 2 PNGPMG   where )(2 PNG  is known as the 2nd nearest 

neighbor graph(please see [8] for proof). In the below figures(1..5) examples of 

first(figure-1) and second(figure-2) order Voronoi Diagrams, 2nd order nearest 

neighbor diagram(figure-3), 2nd order nearest neighbor graph(figure-4) and the multi-

agent agent navigation graph- MaNG -(figure-5) are given. In each figure black 

points represent agents and white points represent obstacles.  

 

 
 

Figure-1  Figure-2  Figure-3 

 

  
Figure-4  Figure-5 
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b. Multi-Agent Simulation 
 

In this section, path planning with MaNG and local dynamics model is given. 

To begin with, a local dynamics model, largely inspired from the Helbing’s Social 

Force Model [7] is developed. In addition to the repulsive and attractive forces 

defined in the actual model an additional force rF is applied to each agent, and it 

basically directs the agent to the next vertex on the path towards its global goal 

(computed on the MaNG). In addition to rF , there are three primary forces namely 
socF (repulsive force applied from nearby agents), attF (attractive force which forms 

up groups), obsF (repulsive forces applied by the nearby obstacles). 

Given a particular agent ip , Voronoi Region )( ipVor  and some point p  in this 

region, force field at  this particular point p  can be evaluated with the below 

formulae: 

 

 

 

Where iA  and iB are constants denoting strength and range of repulsive 

interactions respectively. jC  is the constant used to determine the strength of 

attractive interactions. These constants play an important role on the individual 

behavior characteristics. i  is used to define an anisotropic character for the agent 

interaction. Since the obstacles may be dynamic, such a term is needed to bias the 

repulsive forces along the motion of the obstacles. 

Force field )( pF r

i  directs the agent along the shortest path computed by using the 

algorithm provided below: 
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 Basically )( pF r

i  directs the agent ip to the first vertex of the shortest path iS . 

During the execution of the above algorithm, additional edges (colored green) 

connecting the position of the agent ip  and some closest black vertex are drawn on 

MaNG as well as an initialization step. These edges form the direct link from the 

position of the agent ip  to the entrance point of MaNG(which are the black vertices). 

 A possible path on the MaNG is given in the below figure-6, where the blue line 

represents the path. Green lines show the initial edges added as described above. 

Notice that green edges are also supported for the goal point(to connect goal to the 

graph) along with the initial starting point. 

 

 
Figure-6 

Input: Agent pi, Goal position gi, Set of sites P, MaNG 

MG(P) 

Output: Path Si from current position to goal position 

k←LocatePoint(gi) 

if k = i then 

Si ←edge((pi),gi) 

return 

Compute Vi ← set of black vertices in Vor(pi|P) 

Compute Ei ← set of black edges in Vor(pi|P) 

if Vi 6= /0 and (pi) /∈ Vi then 

Augment MG(P) with green edges, 

e j = ((pi),v j)∀v j ∈ Vi 

Assign weight to e j ,w(e j)←d((pi),v j) 

else 

foreach edge e j ∈ Ei do 

Compute v j ← closest point on e j to (pi) 

Augment MG(P) with green edge e j = ((pi),v j) 

Assign weight to e j ,w(e j)←d((pi),v j) 

end 

Compute Vk ← set of red vertices in Vor(pk|P) 

Augment MG(P) with green edges e j = (gi,v j)∀v j ∈ Vk 

Assign weight to e j ,w(e j)←d(gi,v j) 

Add green labels to each edge e j ∈ Ei 

Si ← ShortestPath (pi,gi,MG(P)) 

Remove green labels from each edge e j ∈ Ei 

Remove all green edges from MG(P) 
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7. Computation of GVDs Using Graphics Hardware 
 

The approach proposed in [8] requires generation of the GVDs at interactive rates. 

The authors referred to [9] for a solution to this problem. 

 First and second order Voronoi Diagrams are computed in the graphics hardware. 

This section briefly discusses the computation process and implementation details. The 

process is given with its entirety in [9]. 

a. Brute-Force Approach 
 

The brute-force way to compute a discrete Voronoi Diagram would be to 

point sample the space containing the Voronoi sites. To do so we first generate a 

grid of sample points for a particular site. For each sample point in the grid, we 

find the distance to the closest point of the subject site and store in the grid. We 

do this for each available site.  

Basically the algorithm iterates through the sites then for each site discrete 

approximation to the distance function is made and a current closest site and 

distance grid is updated with respect to the distance functions of the sites. The end 

result will resemble the Voronoi Diagram of the sites. This approach can be 

implemented with standard Z-buffered raster graphics hardware as well.  

Examples of sampled distance functions for two point sites are given in figure-7. 

In figure-8 the two distance functions are composited through the distance 

comparison operation. The second figure of figure-8 depicts the end result where 

each point is classified with a color ID, with respect to the site which it is closest 

to. 

 

 
Figure-7 

 
Figure-8 
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b. Proposed Approach 
 

i. Cones Algorithm 
 

One interesting observation regarding Ordinary Voronoi Diagrams came 

directly from Lejeune Dirichlet(1850) and Georgi Voronoi(1908). Both authors 

observed that a right circular cone is aligned with each of the point sites of the 

Voronoi Diagram at their apex, the minimum envelope of the intersections of 

these cones would correspond the Voronoi Diagram when projected to the plane. 

This observation is visualized in figures-9. 

 

 
Figure-9: Dirichlet & Voronoi Observation 

 

Hence the problem of generating an ordinary Voronoi diagram can be reduced 

to rasterizing right circular cones for each point site in the GPU. During the 

rasterization process Z-Buffer elimination is used to eliminate the invisible 

portions of the cones occluded by other cones. Each of the cones for different 

sites can be assigned a unique color id. As an end result the Z-Buffer when read 

back would store the distances towards the closest site at each pixel maximized at 

the Voronoi boundaries. Similarly the Color Buffer of the GPU would correspond 

to the actual Voronoi Diagram where each pixel is classified to the closest site 

with the help of the uniquely assigned colors. Figure-10 and figure-11 represent 

the end result (for both Z-Buffer and the Color-Buffer) for the example given in 

figure-9. 

 
Figure-10: Color-Buffer(left) and Z-Buffer(right) 

 

Authors ([9]) refer to the Cone function used for the point sites and functions 

used for higher order sites as distance functions. If we use the Brute-Force 

algorithm the Cones distance function for the point sites of the Ordinary Voronoi 

Diagram (OVD) should be evaluated at each sample point (or pixel) within the 
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scene. A better approach would be to reduce the number of samples and 

approximate the cone with a finite (and fewer) number of points while introducing 

some boundable error. Although per-pixel evaluation of the distance function is 

still done, this evaluation has now been passed to the GPU. Hence this approach 

greatly reduces the time to generate an OVD. Finer samplings of the Cone mesh 

would result in a better approximation and hence effectively reduce the error. 

Though, it is a trade-off because finer samplings will also cause an increase in the 

response time. The error bound is visualized in the Figure-11. 

 
Figure-11: Bounding error for the cone mesh 

 

The maximal error will be made at the perimeter of the base circle of the cone. 

Since we’ve used a finite approximation, the base of the cone meshes will 

correspond to triangles. As we go farther away from the center of the cone this 

error is increased. And it is maximized at the perimeter. In this case the error ε 

corresponds to the distance in between the radius of the cone’s base circle and the 

length of the bisector of a particular triangle originated at the center of the cone 

and within the triangulation of the cone approximation. The polar angle of the 

cones can be bound with the equation given in Figure-11. In example, a 

1024x1024 pixel grid would require cone approximations with no more than 85 

triangles to make an error which is less than the width of a single pixel. 

For an MxM grid the radius of the cones should be taken as M 2 so that each 

cone influences the entire grid and hence no samples on the grid are left open. 

This assumption is true for higher-order sites as well which are explained in detail 

in the upcoming sections. 

 

ii. Higher Order Sites and GVD 
 

Generalized Voronoi Diagrams with high-order sites such as lines, curves and 

polygons can as well be generated with the same approach. For higher-order sites, 

different distance functions (meshed) are used. 
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Figure-12: Distance Functions for point and line sites 

 

For instance for higher-order sites such as a line segment we can use a Tent 

like structure which is composed of two plane segments, intersecting at the 

subject line segment. Both of these planes must make an angle of 45 degrees with 

the projection plane as the depth of the planes at some point would be same as the 

2-d Euclidian distance from the line (on the projected plane). The tent distance 

function is exact and it does not introduce error. Cone meshes are again used for 

the end points of the line segment. An example tent mesh is given in figure-12.  

The approach can easily be generalized for even higher order sites such as 

polygons. As each polygon is composed of vertices and edges we can simply use 

cone meshes for the vertices and tent meshes for the line segments. For the case of 

curves, we can tessellate the curves into a polyline and for each edge and vertex 

composing this polyline we can use the cone and tent distance mesh functions. 

Tesselation procedure as well, introduces some boundable error. Examples of 

higher order sites are given in figure-13 

 

 
 

 
 

 
Figure-13: Distance functions for higher order sites 
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Line Segment (Top), Polygon (Middle), Curve (Bottom) 

 

iii. Boundaries & Neighbors 
 

The algorithm however generates only the Voronoi Diagram. We may need to 

explicitly identify the borders of the GVD to be used in other applications such as 

the generation of an approximate Voronoi Graph. Two algorithms for this purpose 

are identified in [9]. An informal version of the latter algorithm which is more 

efficient is as follows: 

 

1. The boundaries of the acquired GVD are scanned until a proper 

seed point is found at where a difference in the color (site-ids) 

occurs. 

2. Starting from this seed point we walk along the boundaries of the 

GVD by recursively iterating through the neighboring pixels where 

color differences occur.  

 

Coarser approximations to the GVD would accelerate this process by reducing 

the pixels to be checked. However this would also introduce resolution error. 

Though since the boundaries are maximal due to the nature of the GVD. This 

resolution error can be omitted to some extend if it is certain that a site is not 

skipped in entirely due to error. 

Neighbors of the sites can be found with the same algorithm where we keep 

an adjacency list of sites and fill it as we walk through the boundaries with respect 

to the algorithm given above. Each time we find a color difference, if it is not yet 

updated we decode the color to obtain the unique site-id and update the 

corresponding neighboring list of the site id in the adjacency list data structure. 

iv. Sources of Error 
 

Sources of error can be categorized into two: 

 

1. Distance Error 

a. Meshing Error 

b. Tesselation Error 

c. Hardware Precision 

2. Combinatorial Error 

a. Distance Error 

b. Pixel Resolution 

c. Z-Buffer Precision 

 Distance Error 
 

Distance error is the error of miscalculating the distance of particular 

pixel to its closest site id. This error is affected by the three sub-types of 

error: meshing error, tessellation error, hardware precision error. Meshing 
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error is (as clarified in “7.b.i. Cones Algorithm” section) is the error 

occurred due the finite approximation of the distance functions. It can be 

bounded as stated before. Tesselation error (as mentioned in “7.b.ii. 

Higher Order Sites and GVD” section) is the error occurred due to 

tessellating a higher-order site such as a curve into a set of lower-order 

sites (lines and points). This error can again be bounded by increasing the 

amount of samples taken during the tessellation process. Hardware 

precision error is the floating point error common to all algorithms. 

 Combinatorial Error 
 

Combinatorial error is the error of misclassifying a pixel with respect 

to its actual closest site. A pixel can be assigned wrong colors (or site-ids) 

due to three types of error. The first one is the Distance error as mentioned 

above. The second one is the major source of error which is the resolution 

error. The resolution error relates to the resolution of the pixel grid and 

can be reduced either by taking more samples (increasing the resolution of 

the grid) or adaptively zooming into the sections of the grid where an error 

is expected. Resolution error may cause Voronoi regions to be missed 

entirely. The final source of combinatorial error is the hardware precision 

of the Z-Buffer. It is already a standard for the GPU and is bounded. 

8. Agent Generation and Restricting Workspace 
 

In most scenarios, simulations of multi-agents are done in large-scale virtual 

environments (mostly virtual cities). Hence simulating the entire environment is 

extremely costly in terms of both storage and computational complexity. Therefore we 

need to restrict the area where we simulate the agents. This should be done in a 

reasonable way so we don’t compromise the quality of the simulation. A possible 

approach to this problem is to simulate only the region around the current position of the 

camera. However, the region should be taken bigger than the camera’s view-frustum so 

that we don’t lose track of the agents when the camera rotates. In addition, in this 

specified region, agents should be simulated (but not drawn) even if they are not visible 

(occluded by obstacles, buildings).  

If the range of the view-frustum can be taken sufficiently large, we could just 

simulate the rectangular region enclosing the view-frustum. Hopefully this would not 

cause agents to disappear before they get out of the observable range.  

One another issue would be the way the agents are generated. A particular approach 

to this problem would be to randomly generate the agents at the free edge points of the 

rectangular area of focus. The agents can also be assigned random goals at the edges. 

To improve efficiency in terms of computational time the free agents can be allocated 

in a pool structure (a stack for example). This would of course increase the memory 

requirements for large number of agents but it would not be a big issue. To generate 

agents we simply pop a free agent from the pool stack and initialize it at some random 

free edge point of the rectangular area of focus. During the initialization, a global goal at 

some random free edge point can be assigned for the particular agent. Similarly, any 
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agent that falls outside of this rectangular area at any time is pushed back to the pool 

stack. Figure-14 depicting agent generation is provided below: 

 

 

Figure-14 Agent Generation 

 

Computation of the MaNG and other local force fields must also be done with respect 

to the region of focus. Namely at each frame of the simulation, obstacles, agents residing 

within the region of focus would be used for generating the voronoi diagrams. Since the 

region itself indexes a larger grid structure this phase is trivial.  

9. Agent Interaction Routines and Local Decision Making 
 

Local Force fields for short-term path planning and global (long-term) path planning 

with MaNG however modifies the agent behavior only in terms of navigation. In order to 

achieve more realism, agents must somehow be able to interact with their environment. 

To do so, I propose the notion of interaction routines. Interaction routines are generic 

routines of some sort that are uniquely defined and assigned to the agents. These routines 

take an instance of a close by, interact able entity, which can be another agent, a dynamic 

or a static object or it can even be an abstract object. After the execution of these 

routines, either the agent or the entity it is interacting with can be affected internally (for 

instance characteristic constants of the agent can be changed – in panic situations -). Or in 

another scenario, a fireman agent interacting with a fire entity may cause it to terminate 

the entity (by extinguishing it for instance).  

Assuming that the interact able entity is considered as a site during Voronoi Diagram 

evaluation; it becomes efficient to find an entity to interact with. The MaNG data 

structure can be modified slightly to include the references to the actual entities in 

Voronoi Sites. Since the first order Voronoi diagram perfectly provides pair-wise 

proximity information we just need to check the neighboring sites to the subject agent’s 

site in order to find a proper entity to interact with.  
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In terms of implementation, function pointers are used to refer to the interaction 

routines of the agents. In addition each agent can have more than a single interaction 

routine (a link list of pointers) to interact with different types of objects. Briefly, it can be 

said that interaction routines acts as a basic A.I. mechanism for the agents. It should 

however, be noted that complex interaction routines be a serious bottleneck in the system 

with respect to the numbers of the agents using this particular routine. So interaction 

routines should be made as simple as possible 

10. Implementation Details 
 

Implementation of the approach proposed by K.Hoff et al. [9] is done at the current 

stage of the project.  

Implementation is done with C++ as the programming language using the Minimalist 

GNU (MinGW 4.3.2.) with gcc compilers on Windows environment. OpenGL 1.4 and 

GLut libraries are used to operate on the GPU. In addition a simple graphical user 

interface is added with the help of the GLui library.  

Dev C++ 1.9.2 and Microsoft Visual C++ 5.0 Express Edition are both used as 

Integrated Development Environments (IDEs) throughout the project. 

11. System Configuration 
 

Implementation is done and results are obtained on a system having the following 

configuration: 

 

Processor: Intel Centrino Duo T2500(2.0 Ghz) – 2Mb L2 Cache - 

Ram: 2.0 Gb 

GPU: Nvidia GeForce Go 7400 

Harddisk: 100 Gb 

Operating System: Windows XP with Service Pack 2 

12. Results 
 

Results are generated with different error thresholds(ε) and with different grid 

resolutions. In general increasing error threshold and reducing grid resolution 

substantially affects the response time of the system. In any case due to the maximal 

nature of the GVD boundaries large errors may be acceptable with respect to our content 

in order to not to sacrifice the interactive response times. In addition coarse resolution for 

the grid although increases error may be more beneficial both for the response time and 

the time that is required to generate the boundaries and the Generalized Voronoi Graph 

from the obtained diagram. 

Several test results are provided in the below figures with different thresholds and 

resolutions. Response times for each test are also given. Tests are made for higher-order 

sites are also provided. 
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Figure-15: Ordinary Voronoi Diagram of 10000 randomized point sites 

Error Threshold: 1 

Resolution: 400x400 

Response Time: 9.61 Seconds 
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Figure-16: Ordinary Voronoi Diagram of 10000 randomized point sites 

Error Threshold: 1 

Resolution: 600x600 

Response Time: 20.218 Seconds 
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Figure-17: Ordinary Voronoi Diagram of 10000 randomized point sites 

Error Threshold: 200 

Resolution: 600x600 

Response Time: 3.515 Seconds 
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Figure-18: Ordinary Voronoi Diagram of 800 randomized point sites 

Error Threshold: 50 

Resolution: 200x200 

Response Time: 0.016 Seconds 

 

 
Figure-19: Ordinary Voronoi Diagram of 100 randomized point sites 

Error Threshold: 50 

Resolution: 200x200 

Response Time: 0.015 Seconds 
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Figure-19: Generalized Voronoi Diagram of 10 line sites 

Error Threshold: 1 

Resolution: 400x400 

Response Time: 0.047 Seconds 
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Figure-19: Generalized Voronoi Diagram of 8 polygon sites 

Error Threshold: 1 

Resolution: 400x400 

Response Time: 0.125 Seconds 
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Figure-20: Generalized Voronoi Diagram of 6 polygon sites, 7 line sites and 1000 randomized 

point sites 

Error Threshold: 1 

Resolution: 400x400 

Response Time: 1.063 Seconds 
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13. Conclusion 
 

As mentioned in [8], the system has an overall complexity of )log( 2 mnmO  to 

generate the MaNG data structure and to compute the paths and behaviors of the agents 

within, at each frame (where 
2m is the resolution of the mxm grid and n is the number of 

agents). When compared with other recent approaches such as the approach proposed by 

Treuille et al.”Continuum Crowds” [2], it is seen that the approach presented in this 

report is a bit more efficient although they have similar time complexities.  

First of all the approach of K.Hoff et al [9], solves the serious problem of proximity 

by effectively utilizing the graphics hardware. Such utilization is indeed a big 

improvement which lowers the work load of the CPU. In addition it is a known fact that 

recent GPUs outperform CPUs in terms of computational power.  

Second, each agent takes a unique intermediate goal path on the second order 

Voronoi graph at each step of the simulation. Therefore it is not possible for several 

agents to have the same intermediate goal at any time instance. Unlike the approach 

presented in “Continuum Crowds” paper [2], agents will never get stuck in the local 

minima. 

Finally, in this approach, agents are not grouped and hence each agent within the 

system can have a separate global goal without sacrificing the computational complexity.  
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