
Interactive Crowd Simulation for
Augmented Reality Environments

Ateş Akaydın
Bilkent University
akaydin@cs.bilkent.edu.tr

Aytek Aman
Bilkent University

aytek.aman@cs.bilkent.edu.tr

Uğur Güdükbay
Bilkent University

gudukbay@cs.bilkent.edu.tr

Abstract
We propose a system to perform interac-
tive crowd simulation within an Augmented
Reality (AR) environment. The camera is
localized within the simulation space using
vision-based tracking methods. We propose
a real-time automatic and occlusion-tolerant
registration technique for estimating camera
position and orientation using natural markers.

Keywords: augmented reality, virtual real-
ity, crowd simulation, virtual worlds

1 Introduction

Real-time virtual crowd simulation in dynam-
ically changing environments is a challenging
problem that has been studied since 1980s.
Studies on virtual crowd simulation have been
done primarily for Virtual Reality (VR) environ-
ments. AR differs from VR in that it merges a
real environment with the synthesized elements.

Compared to VR, AR has many advantages in
terms of presenting and reinforcing knowledge
within a digital environment. Users are not re-
stricted to work on stationary computers. Up to
date, hardware for AR systems are portable and
can be carried with ease. It enables users to com-
municate face to face and collaborate to realize
goals of a simulation scenario. In AR, synthetic
images are merged with real images. Thus, AR
reinforces learning through physical experience
in the users’ natural environment.

This study proposes a framework for inter-
active crowd simulation in AR environments.

The framework enables multiple clients using
physical AR devices to connect to a centralized
server that simulates the synthetic crowd. We
use a vision-based method for estimating cam-
era position and orientation using natural mark-
ers. Our tracking method is also robust in the
presence of occlusion and can work even with a
very small set of visible natural markers.

2 Related Work

A comprehensive survey on AR technologies is
carried out by Krevelen and Poelman [1]. In
this study, common AR methods and technolo-
gies, such as AR display devices, camera cal-
ibration techniques, marker tracking methods,
user interfaces and interfacing metaphors and
rendering techniques are discussed. Carmigni-
ani et al. [2] perform another survey on AR
technologies, systems and applications with the
challenges that they should address.

AR systems require a way of tracking to reg-
ister the synthetic objects that are rendered on
the display devices. Tracking can be performed
using vision-based methods by recognizing and
tracking a set of visual markers that reside
within the camera images. Rolland et al. [3]
provide a comprehensive survey on tracking and
camera calibration technologies.

We also consider simulation of computer con-
trolled synthetic crowds in AR environments.
Thalmann and Musse [4] carry out an exten-
sive survey on synthesizing and controlling vir-
tual crowds. Zhang et al. [5] propose an online
approach for inserting virtual agents into real

Figure 1: An example AR environment. Left: the real environment with simple geometric primitives.
Middle: the view the user sees through the AR display. Right: the collision mesh and
synthetic agents in virtual environment. The red and blue wireframe hemispheres represent
the locations where the agents are created and destroyed.

scenes captured by video. Egges et al. [6] pro-
pose a framework for real-time interaction with
virtual agents in an AR environment. Papagian-
nakis et al. [7] describe virtual agents with arti-
ficial life behaviors in an AR environment with
frescos-paintings. Barakonyi et al. [8] propose
MonkeyBridge, which is a multiplayer AR game
where users place real and virtual objects in an
environment. These objects influence the behav-
ior of virtual agents and they react accordingly.

3 Proposed System

3.1 Overview

Figure 1 shows an AR environment constructed
by the proposed framework where a synthetic
crowd is simulated by the server. The server up-
dates the the synthetic crowd for the connected
AR clients. AR clients then register and render
the agents on the AR display devices.

In the virtual space, clients are represented as
avatars. The system requires the knowledge of
positions, orientations and view frusta of these
avatars. The AR clients track and estimate the
positions of their avatars and transmit this infor-
mation to the server. The simulation server also
carries out path and behavior planning for the
synthetic agents within the virtual space.

The proposed approach requires a low-
resolution collision mesh of the real environ-
ment. Synthetic agents in the virtual space con-
sider this collision mesh to plan collision-free
paths. Without this collision mesh, the agents
can collide with static entities in the real envi-
ronment. In this case, the rendered agents on the
AR display devices will look as if they are over-

laid on real obstacles. We use a hand-modeled
collision mesh that accurately represents the im-
portant object within the real environment. The
same mesh is used for multiple tasks involving
camera registration, synthetic object culling and
for obstacle avoidance during path planning.

3.2 Real-Time Localization

Real-time localization is the process of accu-
rately estimating position, orientation and veloc-
ity of an avatar in a virtual space using sensors
with different modalities. The modalities may
include Inertial Measurement Units (IMUs), po-
sitioning technologies (i.e., GPS), and vision
based tracking. Figure 2 shows the localization
process. Currently, we use only vision-based
tracking methods for registration.

The localization and registration problems are
actually the same problem. We could devise
a transformation function M that would trans-
form the from the World Space (w) into the Vir-
tual Space (v) given the extrinsic and intrinsic
properties of the AR camera. The intrinsic pa-
rameters are determined only once during cam-
era calibration. We seek to estimate the extrinsic
camera parameters by fusing measurements ob-
tained from the tracking methodologies. A so-
lution to the localization problem estimates the
correct parameters as accurate as possible.

We use a vision-based real-time localization
approach that involves two steps. The first step
is the calibration step, which is common in many
vision based tracking approaches. The second
step is camera localization in which we dynam-
ically localize the camera by determining its ex-
trinsic parameters.

Figure 2: The overview of the localization pro-
cess. Non-Player Controlled (NPC)
entities are the synthetic entities. The
world (w), image (i), virtual (v) coor-
dinate spaces are shown.

3.2.1 Camera Calibration

A point (pw) in three-dimensional (3D) world
space can be projected to a point (pi) on image
plane using Equation 1. We use homogeneous
coordinates for pw to simplify transformations
involving translations:

zc pi = I [R T] pw where pi = [u v 1]T

and pw = [xw yw zw 1]T (1)

In Equation 1, I represents the intrinsic camera
parameters. Matrices R and T define rigid-body
transformations of rotation and translation, re-
spectively. R and T together form the extrinsic
camera parameters.

We only consider the four linear intrinsic pa-
rameters that form the I matrix. These are
the focal length (fx, fy) and the principal point
(sx, sy) of the camera. We ignore the nonlinear
intrinsic parameters (such as lens distortion) be-
cause their effect is negligible.

For camera calibration, we use the tech-
nique proposed by Zhang [9]. Zhang uses a
checkerboard pattern and identifies point fea-
tures from camera images. The detected features
are matched with the known 3D coordinates
on the pattern. The approach uses Levenberg-
Marquardt Algorithm to estimate both intrinsic
parameters of the camera by solving a nonlin-
ear minimization problem. The method requires
at least two dissimilar images of the calibration
pattern to work.

One particular problem with calibration is
the correctness of the initial feature positions.
Temporal noise inherent in the camera images
can greatly affect the performance of point fea-
ture extraction. An exponential moving aver-
age (EMA) is used to filter out most of the
noise. This noise-removal method works effec-
tively for stationary cameras, and hence, it is
well suited for calibration.

In addition to camera noise, we also identified
specular illumination as an important source for
incorrect feature detection from camera images.
We use adaptive thresholding to reduce the ef-
fects of specular illumination.

3.2.2 Camera Localization

Localization is the process of finding extrinsic
camera parameters. We use a vision-based reg-
istration method using natural markers. These
markers are coarse meshes that represent the
static entities in the simulation environment.
Our registration method uses edge based track-
ing to estimate camera parameters. We first ex-
tract the ‘important’ edges from the collision
mesh. We extract line segments from the cam-
era at each frame using Hough transform and
discard edges shorter than a threshold. We
then define a camera transformation space with
six unknowns (for translation and rotation) and
search for a correct parameter configuration. At
the correct configuration, we expect the im-
age edges to match with the projected ‘impor-
tant’ edges from the collision mesh. We search
the camera transformation space and calculate a
match score for each configuration. A configu-
ration with the best score is selected that corre-
sponds to the registered camera parameters.

To extract important edges from a mesh, we
traverse the mesh and find edges that have two
neighboring faces. If the angle between the nor-
mals of the neighboring faces is greater than a
threshold, we mark the edge as important. To
extract the edges from an image, we use the
Canny edge detector. Probabilistic Hough trans-
formation then locates the line segments in the
image. We discard short edges for registration.

To calculate a match score between projected
edges and the image edges, we use a method
similar to the Lowe’s method [10]. We count
the matching edges and consider the match ac-

curacy. Two edges (A and B) are accepted as
matching if the distance between them (Equa-
tion 2) is small.

d(A,B) =
∑

p∈A

d(p,B)2. (2)

In Equation 2, p represents the point samples on
edge A. d(p,B) is the distance of p to the clos-
est point on line B. The match score is calcu-
lated as αn − (1 − α)S, where n is the number
of matches and S is the total match score of the
matching edges; note that a matching score of 0
means perfect match for a single edge. α is de-
termined experimentally where larger α values
yield better localization performance.

3.3 Interactive Crowd Simulation

We use a navigation mesh (NavMesh) based
global path planning approach to globally nav-
igate agents. The NavMesh is generated from
a rough collision mesh of the static obstacles
in real space. We also use this collision mesh
for camera localization. Agent paths on this
NavMesh are determined by the A∗ search algo-
rithm. We use the Reciprocal Velocity Obstacles
(RVO) [11] for local collision avoidance.

Occlusion culling of synthetic agents can be
performed against the collision mesh. We render
both the collision mesh and the synthetic agents
on one image frame. The synthetic agents are
culled on this image by z-buffer elimination.
The resulting image is alpha-channel blended to
the real image via a GPU shader program.

4 Conclusion

We propose an interactive simulation system for
virtual crowd simulation in AR environments.
The system provides a cost efficient and prac-
tical way of executing simulations in AR en-
vironments. The system will be beneficial for
applications of serious games: military training,
emergency planning, and education.

We are currently using only vision-based
methods for tracking and registration opera-
tions. As a future work, we are planning to
use inertial measurement sensors for improv-
ing registration quality. We are planning to use
an Extended Kalman Filter to further increase

both performance and accuracy of our approach.
Multi-modal tracking with an Extended Kalman
Filter may significantly reduce the search space
of our registration algorithm at each frame.

5 Acknowledgments

This work is supported by The Scientific
and Technological Research Council of Turkey
(TÜBİTAK) with Grant no. 112E110. The
second author is supported by TÜBİTAK under
BİDEB 2210 Grad. Sch. Programme.

References

[1] D.W.F. van Krevelen and R. Poelman. A Sur-
vey of Augmented Reality Technologies, Ap-
plications and Limitations. Int. J. on Virtual
Reality, 9:1–20, 2010.

[2] J. Carmigniani et al. Augmented Reality Tech-
nologies, Systems and Applications. Multime-
dia Tools App., 51:341–377, 2011.

[3] J.P. Rolland et al. A Survey of Tracking Tech-
nologies for Virtual Environments. In Fund. of
Wearable Computers and Augmented Reality,
pages 67–112, 2001.

[4] D. Thalmann and S. R. Musse. Crowd Simula-
tion. Springer, London, 2007.

[5] Y. Zhang et al. Online Inserting Virtual Char-
acters into Dynamic Video Scenes. Comp. Ani.
and Virt. Worlds, 22:499–510, 2011.

[6] A. Egges et al. Presence and Interaction in
Mixed Reality Environments. The Vis. Comp.,
23:317–333, 2007.

[7] G. Papagiannakis et al. Real-time Virtual Hu-
mans in AR Sites. In Proc. of IEE CVMP ’04,
pages 273–276, 2004.

[8] I. Barakonyi et al. MonkeyBridge: Au-
tonomous Agents in Augmented Reality
Games. In Proc. of ACM SIGCHI ACE ’05,
pages 172–175, 2005.

[9] Z. Zhang. A Flexible New Technique for
Camera Calibration. IEEE Trans. on PAMI,
22:1330–1334, 2000.

[10] G. Lowe. Three-Dimensional Object Recogni-
tion from Single Two-Dimensional Images. Ar-
tificial Intelligence, 31:355–395, 1987.

[11] J. van Den Berg et al. Reciprocal Velocity Ob-
stacles for real-time multi-agent navigation. In
Proc. of ICRA ’08, pages 1928–1935, 2008.

