Optical Engineering

SPIEDigitalLibrary.org/oe

Adaptive grids: an image-based
approach to generate navigation meshes

Ates Akaydin
Ugur Giidiikbay

Optical Engineering 52(2), 027002 (February 2013)

Adaptive grids: an image-based approach to generate

navigation meshes

Ates Akaydin

Ugur Giidiikbay

Bilkent University

Department of Computer Engineering
06800 Bilkent, Ankara, Turkey
E-mail: gudukbay @cs.bilkent.edu.tr

Abstract. We propose adaptive grids, an image-based approach for con-
structing navigation meshes, which are used for path planning. A cellular
navigation mesh, called an adaptive grid, is constructed from a top-view
range image of a three-dimensional urban model. A navigation graph can
then be extracted from this adaptive grid for path planning. We compare
our approach with two popular navigation mesh—generation approaches
and obtain promising results in terms of path accuracy and memory

cost. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1
.OE.52.2.027002]

Subject terms: image processing; crowd simulation; adaptive grids; space sub-
division; path planning; navigation meshes.

Paper 121156 received Aug. 10, 2012; revised manuscript received Dec. 5, 2012;

accepted for publication Dec. 20, 2012; published online Feb. 1, 2013.

1 Introduction

Path planning is a common problem in a variety of fields
such as crowd simulation and robotics. Path planning is
used in navigation applications for artificial objects (such
as robots or virtual people). For the sake of generality, we
name all such objects “agents.” Algorithms developed for
path planning make use of some special data structures
such as road maps, Voronoi diagrams, and navigation meshes
(NavMeshes). NavMeshes are a popular way among these
methods to represent the navigable space of a domain with
obstacles. NavMeshes allow for the geometry of a scene to
be represented in a simplified mesh consisting of adja-
cent convex polygons. To achieve path planning, paths
are mapped between polygons by crossing passages, or the
edges of the neighboring polygons. A NavMesh can also be
represented by a graph (commonly known as a navigation
graph) where the polygons correspond to vertices, and
edges correspond to graph edges connecting neighboring
polygons.

This paper describes a technique called adaptive grids,
an image-based approach for generating NavMeshes. The
method focuses on a new way of creating a NavMesh for
path planning to address challenges centered on the trade-
offs between path accuracy, computational complexity, and
memory usage.

As with our approach, other NavMesh approaches also
decompose the navigable space into a set of convex poly-
gons. However, there are notable differences. First, exact
polygonal decomposition of the navigable space requires sig-
nificant computational processing for previous approaches.
On the other hand, the proposed approach has O(n?) com-
plexity, where n is the grid dimension (i.e., resolution of the
range image). Second, our iterative approach is easy to
understand and implement. It does not require any significant
geometric processing on the synthesized three-dimensional
(3-D) model. Third, fidelity of the NavMeshes generated
by our approach is controllable with a small set of parame-
ters. For static path planning, we also demonstrate that the

0091-3286/2013/$25.00 © 2013 SPIE

Optical Engineering

027002-1

paths our approach generates are more accurate than the
paths generated by existing methods.

The main idea behind this work is to introduce a new way
to construct a NavMesh that offers advantages over the
previous methods. Our contributions are as follows:

¢ The concept of adaptive grids is introduced; it gener-
ates a NavMesh from a range image by expanding
seeds, which are initial cells used to construct the
cell clusters.

¢ The proposed algorithm to generate adaptive grids is
easy to implement and can be parallelized.

* Quality of the generated NavMeshes (in terms of res-
olution and path accuracy) can be controlled with a
small set of parameters.

¢ Convex rectangular decomposition of the domain
provides search efficiency for agent locations.

e Adaptive grids can easily be extended to multiple
dimensions. It can be used for path planning in 3-D
domains.

* Static path planning is achieved in O(1) time per agent
with controllable error on agent paths and minimal
memory requirements.

We demonstrate the capabilities of our approach within a
crowd simulation framework. We consider a low-density
massive crowd with thousands of agents navigating within
a virtual city model. For this specific example, we generated
a low-resolution NavMesh suitable for path preprocessing in
terms of memory cost. This setting enables us to perform
least-complexity (linear time) path planning for the entire
crowd. In this setting, only a minor fraction of the computer
resources are dedicated to path planning. Therefore extensive
artificial intelligence (i.e., personality) computations can be
processed per agent. It is important to note that the focus
of this work is on NavMesh generation. Hence, the crowd
simulation application we provide depends on traditional
approaches taken in the field. However, our approach is
perfectly suitable for any path-planning method making
use of NavMeshes.

February 2013/Vol. 52(2)

http://dx.doi.org/10.1117/1.OE.52.2.027002
http://dx.doi.org/10.1117/1.OE.52.2.027002
http://dx.doi.org/10.1117/1.OE.52.2.027002
http://dx.doi.org/10.1117/1.OE.52.2.027002
http://dx.doi.org/10.1117/1.OE.52.2.027002
http://dx.doi.org/10.1117/1.OE.52.2.027002

Akaydin and Guldikbay: Adaptive grids: an image-based approach to generate navigation meshes

The paper is organized as follows. Section 2 briefly
reviews previously proposed approaches for path planning
and crowd simulation. Section 3 explains the proposed
approach of creating adaptive grids. Section 4 describes
the evaluation metrics and parameters used to generate differ-
ent types of adaptive grids and then discusses them in further
detail to find a suitable configuration for the adaptive grid—
generation algorithm. Section 5 provides statistical and
empirical results obtained by simulations with different con-
figurations and compares the results with the traditional
methods for creating triangular NavMeshes. Section 6 con-
cludes by discussing key results and future work.

2 Background and Related Work

Path-planning problems in virtual environments can be sep-
arated into two parts: local and global path planning. Local
path planning is used to avoid or respond to contacts/
collisions between agents and objects in close proximity.
Global path planning is used to direct agents toward distant
goals such as building entrances or specific spots on the
terrain.

For local path planning, various approaches derived from
the social force model of Helbing et al.' are proposed. The
social force model applies tangential, repulsion, and attraction
forces to simulate interactions between individuals and other
obstacles. There are numerous extensions of the model, such
as the Helbing-Molnar-Farkas-Vicsek social force model® and
the self-organized pedestrian crowd dynamics model.?

For global path planning, almost all cases require some
sort of high-level representation of the simulation envi-
ronment to support interactive simulations. Common tech-
niques are portal graphs,* roadmaps,® potential fields,” and
NavMeshes.®

Since the NavMesh concept was first introduced by
Snook, various researchers have proposed different ways to
construct NavMeshes, which range from triangles to a mix
of convex polygons.® In these approaches, the roadmaps are
constructed from convex polygonal decompositions of the
navigable space. Kallmann et al.” construct a NavMesh using
the constrained Delaunay triangulation.'” Tozour'"' describes
a different approach using the 3-D triangle mesh of a scene to
create convex polygons representing the navigable area. The
polygons in the mesh can be triangles, quads, or arbitrary
convex polygons. O’Neill'? describes how to efficiently
find paths on a NavMesh. Sturtevant and Geisberger'* exten-
sively analyze the ways of abstraction for NavMesh
approaches to reduce storage requirements.

Comprehensive approaches to crowd simulation incorpo-
rate both local and global path planning methods. Sud et al.'*
propose adaptive elastic roadmaps (AERO), which can
dynamically change to accommodate for itinerant obstacles
and agents. Li and Gupta'> use coordination graphs (CGs) to
locally modify agent paths to avoid deadlocks in narrow
passages. They parallelize the processing of CGs to achieve
real-time performance. Guy et al.'® use the principle of least
effort (PLE) to assign weights to roadmap edges. This
approach involves minimization of biomechanical energy
along the paths.

A popular approach based on continuum dynamics, con-
tinuum crowds, is proposed by Treuille et al.'” Their method
evaluates a potential field over the simulation grid at each
frame to direct the agents. Maim et al.'® further extend

Optical Engineering

027002-2

continuum crowds by integrating a navigation graph com-
posed of circular search nodes for global path planning.
In this approach, potential fields of the continuum crowds
model are used for computing paths within nodes only.

3 Adaptive Grids

With the adaptive grids approach, a grid composed of adap-
tive cell clusters is constructed by extracting the navigable
space from the virtual environment. This adaptive grid is
used as a NavMesh on which different pathfinding algo-
rithms can be applied.

We have developed a crowd-simulation application to
demonstrate adaptive grids. The simulation takes place in
a 3-D virtual city. The approaches we have taken for crowd
simulation are based on static (preprocessed) path planning
and combine both local and global path-planning methods to
direct agents toward their goals. For the sake of generality,
these goals are always meant to be positions in the 3-D space
at terrain level. The social force model' is used as the base
dynamics model that integrates both the global and local
path-planning concepts. Local path planning considers the
short-term goals and maneuvers of individuals based on
immediate factors such as possible collisions. It also takes
into account the physical and social forces applied on an
individual agent due to its interaction with (1) neighboring
agents and (2) the surrounding environment. In the social
force model,'” an equation is proposed which defines the
local force applied on the agent due to its interaction with
the other agents in the system. Readers may refer to Ref. 1
for additional details.

Conversely, global path planning is used to direct individ-
uals to their long-term goals and calculate the desired direc-
tion vector of the agent. Using the social force model as a
basis, global path planning can be performed independently
from local path planning. In our case, global path planning
is performed using a navigation graph extracted from an
adaptive grid.

The proposed approach constructs an underlying grid,
which can be partitioned into a set of clusters. A navigation
graph is then formed from the set of clusters. All paths are
computed on this navigation graph as a preprocessing step
to make constant-time static path planning possible.

The solution to the crowd-simulation problem with static
path planning involves five steps (cf. Fig. 1). In step 1, we
generate a Boolean navigable grid from a city model. In
step 2, an adaptive grid is formed. In step 3, its respective
navigation graph is created. In step 4, the Dijkstra or Floyd
Warshall algorithm is applied on the navigation graph to find
and store the shortest paths. Step 5 generates the vector field
to direct agents toward their global goals in constant time.
Agents query the vector fields at their positions to determine
their global paths. Steps 1, 2, and 3 clarify the primary con-
tribution (adaptive grids) of this work. Steps 4 and 5 can be
customized with respect to the needs of other similar appli-
cations. These five steps are discussed in the following
sections.

3.1 Navigable Space Extraction

A range image is taken from an axis-aligned top-view of a
city representing the height map of an outdoor city environ-
ment. For virtual cities (and synthetic 3-D models), this
range image corresponds to the z-buffer image. The range

February 2013/Vol. 52(2)

Akaydin and Gudikbay: Adaptive grids: an image-based approach to generate navigation meshes

®

Navigable Space
Extraction

3D City Model
(.obj & .mtl format)

Boolean Navigable
Space

@

Adaptive Grid
Generation

Adaptive Grid

®

Navigation Graph
Construction

Extraction of
the Vector Fields

®

Computing
Shortest Paths

Vector Fields

Set of Potential Fields & Parent
Hashes for Each Cell and Each Goal

Navigation Graph

Fig. 1 Flow diagram of the proposed solution to crowd simulation.

image does not need to be taken from a synthesized 3-D
model as well. It can also be taken from real sources. For
instance, range images of real cities can be taken by using
laser imaging detection and ranging (LIDAR) technologies.
Our approach is strictly image-based compared to the
existing geometric NavMesh generation methods.

For a virtual city, small objects that may obstruct this
height map (e.g., trees, traffic lights, and benches) are ex-
cluded, leaving only buildings and the terrain. For a real
city where the 3-D model is not known beforehand, removal
of such small details from the range image may be carried out
using image-processing methods.

A variety of filters (such as Gaussian and median filters)
may be applied to the range image to reduce the effects of
noise. This first step is especially necessary for range images
belonging to real sources. In the second step, the range image
is filtered by Sobel filters in different directions to detect
edges. A fixed threshold is applied to each of these Sobel-
filtered images to obtain their corresponding Boolean images.
Using the logical and operator, these images are combined
into a single image. Gaps may occur on this combined image,
which may lead to incorrect topological information. We use
morphological operators such as closing to close these gaps.
In the last step, connected component analysis is applied on
this closed image. Navigable components are hand-picked,
and the desired navigable space is extracted by assigning a
logical one value to all pixels belonging to the navigable com-
ponents. The rest of the pixels are assigned a logical zero
value.

3.2 Adaptive Grid Generation

The navigable-space image includes information regarding
the topology of the virtual urban environment. Using this

Optical Engineering

027002-3

information, it is possible to construct the adaptive grid
structure.

Our method partitions the navigable space image into a
number of convex regions, called cell clusters, including one
or multiple cells using an expansion based approach. We use
the term “seed” for a single cell, which is expanded into a cell
cluster.

Figure 2 gives the adaptive grid—formation and navigation
graph—construction algorithm. In line 2 of the algorithm,
the genlnitialSeeds function is used to select a set of initial
seeds from the navigable space image and add them to the
InitSeeds data structure. The initial seeds cover only one
pixel, and they form the first set of clusters to be expanded.
The initial seed selection determines the result of the algo-
rithm in terms of cell-cluster size and count; we propose and
evaluate different initial seed-selection methods.

In line 9 of the algorithm, the expand function is used to
expand a single given seed. A seed can only expand to navi-
gable and unoccupied cells. The expand function returns
false if the given seed cannot be expanded; this result usually
happens when it is surrounded by non-navigable cells or all
cells toward the expansion direction are already occupied by
cell clusters generated from other seeds. If a given seed can-
not be expanded, it is removed from the queue, as it does not
require any further processing. Otherwise, the seed is
inserted back into the queue. The behavior of the expansion
method can significantly affect the results in terms of cluster
size, shape, and count.

The four different characteristics of the seed expansion
method are (1) operating dimensions, (2) expansion order-
ing, (3) memory property, and (4) restrictiveness. The oper-
ating dimensions specify the dimension of expansion. For
example, a one-dimensional algorithm expands in a single

February 2013/Vol. 52(2)

Akaydin and Gudikbay: Adaptive grids: an image-based approach to generate navigation meshes

Algorithm: Adaptive Grid Formation and Navigation Graph Construction
Input: A regular boolean grid NavGrid that stores connectivity of the space.

Data: Queue object that stores seeds that are being evaluated. It can be
configured to be a stack, queue, min heap or max heap (with respect to the
seed size).
Data: InitSeeds is a set of initial seeds
Output: A directed seed graph SGraph=(V,E) where V is the set of vertices or
seeds on Adaptive Grid and E is the set of edges connecting the vertices
in V.

Output: A regular grid SGrid to store Cluster-Ids.

Result: Adapts the given regular connectivity grid NavGrid and stores adaptive

seed information on regular grid SGrid and the relevant navigation graph

in SGraph.

1 begin

2 InitSeeds — genlnitialSeeds(NavGrid); /* Choose initial seeds */
3 foreach Seed s € InitSeeds do

4 Queue.push(s); /* Push seeds to the queue */
5 SGrid.set(s.row, s.col, s.id);

6 SGraph.addVertex(s); /* Add seeds to the graph */
7 | while Queue # § do

8 s — Queue.pop();

9 if expand(s, SGrid, NavGrid) then /* Expand the seed */
10 L Queue.push(s);

11 else /* If cannot expand, generate new seeds */
12 L genSeedsFromSeed(s, SGrid, NavGrid, SGraph, Queue);

18 foreach s & SGraph.V do /* Construct navigation graph */
14 L connectSeed ToNeighbors(s, SGrid, SGraph);

Fig. 2 Adaptive grid formation and navigation graph construction algorithm.

direction (east, south, west, or north), whereas a multidimen-
sional algorithm may expand toward all directions at once or
toward intermediate directions. Expansion ordering specifies
direction priorities. For instance, a clockwise ordering may
cause the algorithm to expand the seed along east, south,
west, and north directions. An expansion method with the
memory property remembers the last direction it expanded
to and continues from the successive directions in a breadth-
first manner. A greedy method (i.e., memoryless) will
exhaustively expand toward the same direction before trying
other directions. Cell-cluster size can be restricted, and
hence, a seed expansion method can be forced to return
false whenever the subject seed achieves a certain size.
This property ensures that clusters are restricted by a maxi-
mum size. Although larger clusters lead to a lower cell count,
they also increase the error made in path costs on the nav-
igation graph. Restricting cluster size may keep that error
within an acceptable range. Figure 3 shows the behavior
of two different expansion methods for adaptive grid con-
struction. Results are collected after running the algorithm
for five iterations, starting from the seed with id = 5.

For each cluster that cannot be expanded further, new
seed generation is necessary to continue the adaptive grid
formation process. New seeds are generated on neighboring
unoccupied and navigable areas on the adaptive grid (SGrid).
The default algorithm (genSeedsFromSeed) takes a fully
expanded seed and operates clockwise, evaluating immediate

Optical Engineering

027002-4

neighbors of the expanded seed, excluding corners. Each
unoccupied navigable grid element, following a series of
occupied or unnavigable cells, is marked. New seeds are gen-
erated on the marked cells and added as vertices to the seed
graph. They are also inserted into the seed queue to continue
the adaptive grid formation process. The seed generation
process, which is a stage of the adaptive grid construction,
is illustrated in Fig. 4. An example of an adaptive grid of size
156 x 156 cells is given in Fig. 5(a).

3.3 Navigation Graph Construction

When all of the seeds within the queue are evaluated and all
expansions are completed, the graph construction step begins
(connectSeedToNeighbors in line 14 of algorithm in Fig. 2).
For each cell cluster, we identify immediate neighbors on the
adaptive grid (SGrid) and introduce an edge connecting
neighboring cluster pairs with an attached cost, which can
be calculated using (1) Manhattan (block), (2) Euclidean,
or (3) shortest navigable distance (SND) metrics.

SND is the shortest navigable distance connecting two
cluster centers that does not intersect with unnavigable cells.
If the cluster centers are in sight of each other, then the SND
is equal to the Euclidean distance. Otherwise, the SND is the
sum of the separate Euclidean distances between the clus-
ter centers and the shared unnavigable neighbor corners.
Figure 6 shows the Manhattan, Euclidean, and SND metrics
for evaluating edge costs on the grid. Using one of these

February 2013/Vol. 52(2)

Akaydin and Gudikbay: Adaptive grids: an image-based approach to generate navigation meshes

4|4 44 4 4 44
4 i 414 4|4 ii
2 4|4 2 44 2 4 4 2 44
2 3|3 (3(3(3 233|333 2(|3(3]3(3 3 2133333
2/3|3(3([3]|3 2|13|3|3(3]3 2|13(3|3(3|3 2(3(3(3|3]|3
23|3(3]|3]|3 [F5HFS 2|3|3|3|3|3|5[|5]5 23 |3]|3]|3 |3 [FSHESHESHIES 2(3(3(3(3(3
2. 3/3|3|3]3 2(3|3(3(|3]3 2(3|3(3|3 3 2|13(3(|3(3]3
(a) Clockwise memoryless 1D expansion
2] 9€ &)< [E]4]
4|4 4|4 44 4|4
2 4(a 2 4|a 2 4|a 2 4|a
2(3|3(3|3]3 2(3(3(3(|3]|3 2(3|3(3|33 2|13(3|3[3]3
2(3(3(3]|3]3 2[13(3|3)|3]|3 2133|333 2(3|3(3|3]|3
2(3|3(|3|3]|3[5]5 2(3|3(3|3|3[5]5 2(3|3(3|3|3|5|5]5 2133333
2 3|3(3|3]|3 2|3|3|3|3|3|5]|5 2(3|3(3|3(3|5(5(5 2|13(3|3([3]|3
(b) Clockwise breadth-first (with memory) 2D expansion
Fig. 3 Seed expansions for five consecutive calls using different expansion methods.
- A -
173208 ES L
71208
K 173783, 174783 149 2480 2443 ‘
N {
11181 118 17,6941 1118
17 8341 1.118
y 1
i\ .l 5774167743
1119418 1118
1.118
2 & @
[}
BRI 330038
330038
R |
E,
304595 4505
~2
]|
Fig. 4 Seed generation starting from a fully expanded cluster with it
cluster id = 5. Seeds with IDs 6 to 12 represent newly generated 1118
seeds in clockwise direction. ‘;?
I
. 32516
methods, edge costs are calculated for each cluster pair by nge
the adaptive grid formation algorithm. and a navigation i
graph is formed. SN
1
\
3.4 Computing Shortest Paths
A
Navigable space extraction, adaptive grid formation, and L
navigation graph construction explained in the previous ‘-
steps are the primary focus of our approach. The constructed \
navigation graph is suitable for path planning using both s
dynamic (i.e., A* search) and static methods. To demonstrate ‘-
adaptive grids and to compare it with the existing NavMesh
generation techniques, we’ve proposed a crowd-simulation @ (b)

application using static path planning. Adaptive grids is par-
ticularly powerful for this form of path planning because it
can narrow down the search space. The memory cost of
storing the navigation graph is close to minimum, as the

Optical Engineering

027002-5

Fig. 5 (a) A simple grid instance. (b) The corresponding navigation
graph generated with the shortest navigable distance metric. The
same colored vertices on the navigation graph (b) correspond to
the clusters with the same color in the grid instance (a).

February 2013/Vol. 52(2)

Akaydin and Gudikbay: Adaptive grids: an image-based approach to generate navigation meshes

1
F F |
1
Al Fl 4
1 il
r 4l 4l
- ~ 4l
::\s
= S 4l di i
ol) <
14 2 SN
H ~
131 [T 2 |2]2

2 2 2 2 2 2

----- -» : Manhattan Distance

= = »:Euclidean Distance

———3 : Shortest Navigable Distance (SND)

|:| :Unnavigable Cells

Fig. 6 Different distance metrics for evaluating edge costs visualized
on navigation graph.

approach reduces the number of vertices significantly. The
following sections will explain the static (preprocessed)
path-planning approach.

For static, preprocessed path planning, it is necessary to
find and store paths from each cluster to every other cluster
on the grid. To this end, the Floyd—Warshall algorithm or the
Dijkstra algorithm can be applied on the navigation graph
for all clusters to compute all-pair shortest paths. Cluster-
IDs are given in consecutive order starting from 1 on the
grid; O denotes unnavigable cells. An array indexed by target
Cluster-IDs can store the immediate links lying on the short-
est path from the current cluster toward the target cluster.
At any time, a query for a particular target cluster from a root
cluster can be answered with O(1) time. An example of a
navigation graph corresponding to the adaptive grid given
in Fig. 5(a) is shown in Fig. 5(b). This example uses the
SND metric.

Queue type, distance metric, seed expansion method, and
initial seed generation method are configurable parameters
of the adaptive grids algorithm. These parameters are config-
ured on demand to bound path error and memory. In Secs. 4
and 5, the error made on path costs is defined and compar-
ative results obtained by using different parameters are pro-
vided. The targets picked by the agents may not necessarily
be clusters; they can also be points in the clusters. Because
all clusters are convex (rectangular), it is guaranteed that the
paths within clusters are free of static obstacles.

3.5 Extraction of the Vector Fields

Having computed and stored all shortest paths, a vector field
should be generated on all points within the grid to smoothly
direct the agents toward their global goals. Such a vector
field may be generated using many different methods. The
simplest one is to direct each agent toward the center of
the common edge that is shared by the agent’s current cluster
and the next cluster, which leads to the agent’s global target.
Such edges may be named “passages.” But this approach is
not preferable, as it will lead to aligning of agents who share
a common goal as they progress through their path, because
all such agents are aiming for a single point at each cluster.

A better approach would be to direct all agents that reside
within the passage’s coverage toward the passage. Passage

Optical Engineering

027002-6

Fig. 7 Example of vector field formation by considering passage cov-
erage. The numbers show the Cluster-IDs for the pixels; i.e., to which
cluster the cell belongs. The distances between clusters 1 and 2 can
be calculated using different distance metrics given in Fig. 6.

coverage defines the rectangular zone within the cluster
where moving toward the passage would be enough to exit
the cluster on the desired path. Agents that are out of the
passage’s coverage can pick the passage’s closest end point
as their primary target and move toward this point before
exiting the passage. Figure 7 shows an example of the
passage-coverage approach. Passage coverage prevents the
lining up of agents at common passage centers, as the whole
passage is now regarded as an exit.

4 Evaluation of Grid Adaptation

We first discuss in detail a number of parameters that affect
the outcome of the adaptive grid formation algorithm. Then,
the performance metrics used to evaluate the results are
described.

4.1 Adaptive Grid Parameters

Four types of parameters are used in the formation of an
adaptive grid. These parameters are (1) distance metric,
(2) data structure, (3) initial seed-generation method, and
(4) seed-expansion method.

The distance metric determines the way of measuring the
distance between two cell clusters in an adaptive grid. It can
be chosen as Manhattan (block) distance, Euclidean distance,
or SND. SND takes into account the navigable/non-
navigable distance due to the buildings.

The data structure determines the order in which clusters
are processed during the adaptive grid formation. We con-
sider (1) queue, (2) stack, (3) min-heap, and (4) max-heap
as possible data structures. For min-heap and max-heap
data structures, cluster size is considered as a key.

We employ four different methods for initial seed gener-
ation: (1) single, (2) border, (3) random, and (4) sampled.
The single method uses a single navigable cell at the top
left corner of the grid as the initial seed. The border method
picks navigable cells at the borders of the regular grid as the
initial seeds. The random method randomly draws a number
of the navigable cells as the initial seeds. In the sampled
method, a set of initial navigable cells is chosen as seeds
by sampling the regular grid with a pixel period in two
dimensions.

The last parameter, the seed-expansion method, deter-
mines the behavior of the seed expander explained in detail

February 2013/Vol. 52(2)

Akaydin and Gudikbay: Adaptive grids: an image-based approach to generate navigation meshes

in Sec. 3. The seed expander may choose to expand in one or
two dimensions at a time. It can restrict cluster size and may
choose to expand using a depth-first strategy (i.e., memory-
less) or a breadth-first strategy.

4.2 Evaluation Metrics

The adaptive grids obtained using different parameter values
are evaluated using four different metrics, which are (1) clus-
ter count, (2) average cluster size, (3) average aspect ratio,
and (4) mean square error (MSE).

Cluster count is the total number of clusters in the con-
structed adaptive grid. Using more clusters reduces the accu-
mulated error on path costs at the cost of exponentially
increasing memory and preprocessing time. The average
cluster size corresponds to the average size of all clusters
in the constructed adaptive grid. Smaller average cluster
sizes usually indicate a higher number of clusters as well
as reduced error on path costs. Aspect ratio is the ratio of
the width of a seed to its height. The average aspect ratio
is calculated as the mean of the aspect ratios of all clusters.
For static path planning, this number should be as close to 1
as possible, since highly varying aspect ratios have a nega-
tive effect on the error introduced. The MSE is calculated
with respect to the difference in distances to the same
location on both the regular and adaptive grids.

m n

1
i=1 j=

(X(i.j) =R)P (D

1
In Eq. (1), m is the number of rows and r is the number of
columns of the original regular grid (range image) and also
the corresponding adaptive grid. R represents the shortest
distance of each pixel to the center of the original grid
(using the navigable area), whereas X represents the distan-
ces on the navigation graph constructed using the adaptive
grid. Figure 8 shows the pixel distances to the center of

the regular grid, and Fig. 9 presents the corresponding
distances in an adaptive grid.

5 Results

5.1 Forming Adaptive Grids

Figures 10 and 11 present statistics for 132 different adaptive
grids constructed with different combinations of parameters.
These statistics compare the results obtained using the differ-
ent evaluation metrics given in Sec. 4.2.

As can be observed from Figs. 10 and 11, although an
increase in the cluster count notably reduces MSE (i.e., S8
and S16), it significantly increases the overhead in memory
requirements and preprocessing time. For adaptive grids that
have few clusters (i.e., those with single [Sng] and border
[Bor] initialization) and for grid adaptations that have a
large number of clusters (like those with sampled 8 [S8] and
random 500 [R500] initialization), the MSE values obtained
are lower than those with medium amounts of clusters (such
as R100 and S128 initialization). Especially for clusters with
high and varying aspect ratios, the accumulated error on the
paths grows as the number of clusters on the paths increases.
However, an increase in cluster count generally causes a
decrease in cluster size and restricts the aspect ratio; after
some point, the accumulated error starts to decrease. Hence,
the most successful grid adaptations are achieved with R100
and S128 grid initialization schemes and by using a
common, round-robin queue.

5.2 Comparing Adaptive Grids with Other
Approaches

Traditional approaches to creating NavMeshes involve cre-
ating a triangular mesh based on the geometry of a scene. We
compare the adaptive grid approach with a Delaunay triangu-
lation of the scene, which is similar to Kallmann’s use of the
constrained Delaunay triangulation. We also compare adap-
tive grids with various triangular meshes constructed using
the recast toolset.”’

(b)

Fig. 8 Pixel distances on the regular navigation grid.

Optical Engineering

027002-7

February 2013/Vol. 52(2)

Akaydin and Gudikbay: Adaptive grids: an image-based approach to generate navigation meshes

(b)
Fig. 9 Pixel distances on the adaptive grid.
50 T T T ; : T T T o 350 ; : : ! : : : ; —
451 == Stack == Stack
=3 Min-Heap = Min-Heap
0 == Max-Heap == Max-Heap | |
i | %
S 35f ‘ 1 S
& 30 (?)-
-l : 1 2
& 251 I ;e
< [}
% B
S 20¢ [il o
[jo)]
z 15¢ 1 g
<
10+ 1
5 | 1
o aplELEEr o
Sng Bor R10 R50 R100 R500 S8 S16 S32 S64 S128 Sng Bor R10 RS50 R100 R500 S8 S16 S32 S64 S128
Seed Generation Method Seed Generation Method
(@ (b)

Fig. 10 (a) Cluster aspect ratios for adaptive grids with different parameters. Seed initialization methods are single (Sng); border (Bor); random 10
(R10), R50, R100, R500, sampled 8 (S8), S16, S32, S64, and S128, respectively. (b) Cluster sizes for adaptive grids with different parameters.

7300 8300 s x10 111
6000 T T T T T T T T o T T T T T == Quoue
== Stack mm Stack
5000 - = Min-Heap | =3 Min-Heap
= Max-Heap S 6 = Max-Heap |
= —
% 4000 - R %
(¢] &
E 3000 - b g_
% [0}
= L i C
3] 2000 g
=
1000 - 8
0
Sng Bor R10 R50 R100 R500 S8 S16 S32 S64 S128 Sng Bor R10 R50 R100 R500 S8 S16 S32 S64 S128
Seed Generation Method Seed Generation Method
(a) (b)

Fig. 11 (a) Cluster counts for adaptive grids with different parameters. (b) Mean square error (MSE) for shortest navigable distance metric.

Optical Engineering 027002-8 February 2013/Vol. 52(2)

Akaydin and Gudikbay: Adaptive grids: an image-based approach to generate navigation meshes

25001

2000 |

Triangle Count

R176 R208 R400 R656

Triangle Generation Method

(@)

R1024

1500 1
1000
500
0l -_

4

x 10000

3

Mean Square Error
N

R176 R208 R400 R656 R1024
Triangle Generation Method

(b)

Fig. 12 (a) Triangle counts for different triangular NavMeshes. Triangle generation methods are recast using different number of tiles and the

Delaunay triangulation. (b) MSE for triangle meshes.

Using the triangular meshes, the navigation graph con-
struction algorithm is applied to compute the MSE. The
results for various meshes are shown in Fig. 12. The
Delaunay triangulation, which consists of 192 triangles,
results in an MSE of 14,365 and has the smallest average
triangle aspect ratio. The recast mesh with the smallest
number of triangles (1160 triangles) has an MSE of
14,732. Of the meshes produced by recast, the mesh with
the greatest number of triangles results in the smallest
MSE. When the number of triangles increases, the MSE
drops dramatically. The mesh with 2154 triangles has an
MSE of 2259.

In most cases, the adaptive grid approach outperforms the
triangle meshes. For instance, the S16 queue generation
method results in 2190 clusters and an MSE of 208.
When comparing the S16 queue with the triangle mesh hav-
ing approximately the same number of triangles as clusters,
the adaptive grid outperforms the triangle mesh 10-fold. The
most similar adaptive grid example to Delaunay triangulation
(in terms of number of clusters) uses single initial seed and
stack data structure and has 479 clusters and an MSE of
6,958. The adaptive grid method produces much less error
than triangular meshes that have approximately the same
number of triangles as clusters.

Pine Street

Seneca Street

(b)

5.3 Application of Adaptive Grids on LIDAR Images

Adaptive grids can also be applied on range images captured
from real-world sources using technologies such as LIDAR.
Figure 13(a) shows an example LIDAR image taken from
Seattle, Washington.

Processing a LIDAR range image to generate a binary
navigation grid that represents the navigable space is slightly
different than processing depth images of virtual cities. First
of all, LIDAR imaging is especially sensitive to refractive
surfaces, such as glass. Range values may not be acquired
from such surfaces, and hence, they are represented as
black pixels in the image. As a preprocessing step, we use
median filtering and morphological closing operations on the
LIDAR image to remove these black pixels. Second, the
distribution of range values over the image is not uniform.
We use adaptive thresholding with a fixed window to sepa-
rate roads from buildings. To clear away any small zones that
are misclassified as buildings, we use morphological open-
ing. The rest of the preprocessing follows the steps discussed
in Sec. 3.1. Figure 13(b) depicts the navigable space obtained
after these operations.

Finally, we apply the proposed algorithm on the binary
navigation grid to obtain a rectangular partitioning of the
navigable space. This partitioning has 757 clusters and is

Fig. 13 Application of our approach on LIDAR images. (a) LIDAR image of the city of Seattle. Street and avenue names are overlaid to locate the
blocks in the city that are captured in this image. (b) The navigable space obtained from the LIDAR image. (c) The generated adaptive partitioning.

Different cell clusters are rendered in unique colors.

Optical Engineering

027002-9

February 2013/Vol. 52(2)

Akaydin and Gudikbay: Adaptive grids: an image-based approach to generate navigation meshes

generated from a single initial seed using a one-dimensional,
depth-first expander. We also construct the associated navi-
gation graph. Figure 13(c) shows the generated partitioning.
It is suitable for many applications of path planning, includ-
ing traffic and pedestrian simulations.

5.4 Crowd-Simulation Application

Simulation results are obtained for an adaptive grid that has
784 clusters. This adaptive grid is generated from uniformly
sampled initial seeds with a period of 32 pixels in both direc-
tions, and a depth-first, one-dimensional expander is used.
The total memory consumed by the adaptive grid is 7.06
megabytes. This memory cost is derived for all possible
784 x 784 pairs. The memory cost can be significantly
reduced by computing only the relevant paths. The average
error on paths for this adaptive grid is 89 pixels for a grid of
512 x 512 pixel dimensions. These results include 2400,
4800, 9600, and 19,200 agents. Agents are periodically

created on prespecified entry points within a virtual city
and are assigned global tasks to reach a random entry/exit
point. These entry/exit points are assigned to the building
entrances and street exits. Still frames from an animation
with 2000 agents are shown in Fig. 14.

Five character models (three male and two female) with
varying numbers of polygonal complexity (between 2000
and 4000) are randomly assigned to agents upon instantia-
tion. All agents have a wide set of skeletal animations
(including idle, walking, running, talking, etc.) for realizing
more interactive scenarios. During animation switches, all
animations are linearly blended to support smooth transi-
tions. Agents are removed from the simulation once they
achieve their goals. As the successful agents are removed,
the system maintains the maximum count of agents in the
scene by injecting new agents. The removed agents are
not destroyed but inserted into a pool (queue) so that they
can be used for new injections. This agent-pooling approach

Fig. 14 Still frames from a crowd simulation in a virtual environment (Video 1, WMV, 14.3 MB) [DOI: http://dx.doi.org/10.1117/1.0E.52.2.027002].

Optical Engineering

027002-10

February 2013/Vol. 52(2)

http://dx.doi.org/10.1117/1.OE.52.2.027002
http://dx.doi.org/10.1117/1.OE.52.2.027002
http://dx.doi.org/10.1117/1.OE.52.2.027002
http://dx.doi.org/10.1117/1.OE.52.2.027002
http://dx.doi.org/10.1117/1.OE.52.2.027002
http://dx.doi.org/10.1117/1.OE.52.2.027002
http://dx.doi.org/10.1117/1.OE.52.2.027002
http://dx.doi.org/10.1117/1.OE.52.2.027002

Akaydin and Gudikbay: Adaptive grids: an image-based approach to generate navigation meshes

120 2
A =11 2400 Agent Scenario 19200 Agent Scenario 19200 Agent Scenario
A s 4500 Agent Scenario 18 9500 Agent Scenario 3 9800 Agent Scenario
7 100 \! 9600 Agent Scenario e 400 Agent Scenario e 4800 Agent Scenario
e D 19200 Agent Scenario 16 == 142400 Agent Scenario =4 2400 Agent Scenario
25
2w 14 £
o Q@ 3
8 N 12 2 5,
& @ S
o ® 3 cgn 15
o 8 08 >
<]
g 06 a
5
L 2 o4
v
02 _‘_,,‘—;-'-"‘"‘
U L 0 :] n n n n 1 J
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Time (s) Time (s) Time (s)
(@ (b) ©

Fig. 15 Visualization statistics for different simulation scenarios.

significantly reduces the computational overhead of the new
agent instantiation process. In this way, all agents within the
system are instantiated only once.

The virtual city block is composed of 33 buildings and a
number of other environmental objects, such as city lights,
traffic signs, trees, and benches. These objects are recognized
as obstacles by the agents and hence taken into account
during local path planning for collision avoidance. The com-
plete geometric model of the virtual city includes 18,342
polygons.

The tests are performed on a machine with an Intel Core
17 920 (8 MB cache, 2.67 GHz clock) processor, 6 GB RAM,
2 x ATI Radeon HD4890 graphics processing unit. Simula-
tion statistics are evaluated for the four different scenarios,
2400-agent, 4800-agent, 9600-agent, and 19,200-agent.
Imposter models and low-resolution textures are used for
testing massive crowds. These scenarios are defined with
respect to the maximum crowd size they permit. The statis-
tics for each scenario include (1) the amount of polygons
rendered, (2) average frames per second (fps), and (3) crowd
size with respect to simulation time. All statistics are
collected within a time period of 200 s. In all scenarios,
maximum crowd size is achieved after 80 s. The results
are given in Fig. 15.

Table 1 Average frame rates for different scenarios.

Agents (n) 2400 4800 9600 19,200
Frame rate (fps) 65.86 54.01 25.50 12.26
100
> Avg. Time per Sample
— Fitted Line
— 80
M)
E
o 60
£
|_
Q
® 40
°
Q.
2
20
0 1060 2600 3600 4600 5060

Crowd Size

Fig. 16 Computational cost of agent updates.

Optical Engineering

027002-11

The average frame rates for these scenarios are provided
in Table 1, where it can be seen that the system operates at
real-time rates for up to 9600 agents. It should be noted that,
in the presented results, optimizations such as crowd-based
occlusion culling are not applied.

For each frame, the accumulated computational cost for
all agent updates is calculated with respect to varying crowd
sizes. These values are expected to follow linear scaling as
the simulated crowd size increases. Figure 16 gives the com-
putational cost of agent updates, and a line is fitted to the
graph.

6 Conclusions

We propose adaptive grids, a new image-based approach to
construct a gridlike NavMesh, and an algorithm to construct
the corresponding navigation graph, which facilitates con-
stant-time global path planning for simulated virtual crowds.
Adaptive grids addresses the shortcomings of previously
proposed NavMesh construction algorithms. Adaptive grids
can be configured to generate NavMeshes for both static
and dynamic path planning, and it can be adapted to any
application where path planning is of primary concern.

Considering the results when comparing adaptive grids
with other triangular NavMeshes, adaptive grids offers better
performance for static path planning. Adaptive grids also
provides the following benefits over the traditional triangular
meshes. When searching for an agent’s cell location, adap-
tive grids quickly finds the cell by querying the grid, whereas
bounding boxes and inclusion tests are needed for triangular
NavMeshes. Adaptive grids is much simpler to implement
compared to geometric NavMesh approaches. Adaptive
grids is an image-based approach; hence, parallel computa-
tion of an adaptive grid is rather trivial. Graphics processing
unit (GPU) implementations are possible, further improving
the preprocessing time. Existing NavMesh approaches, such
as the one proposed in Ref. 8, simplify the navigable geom-
etry of the 3-D model (i.e., the surfaces with up-normals)
until they achieve a minimal NavMesh. Processing time and
performance of such approaches strictly depend on the capa-
bilities of the artist who created the 3-D model (i.e., game
levels or city models). Our approach, on the other hand,
is image-based, where the axis-aligned range image of the
model is independent from the model’s topology. Thus,
adaptive grids is a computationally cheap and easy-to-use
approach when constructing a NavMesh.

Considering our simulation results, constant-time static
path planning using the adaptive grids approach is feasible

February 2013/Vol. 52(2)

Akaydin and Gldikbay: Adaptive grids: an image-based approach to generate navigation meshes

in terms of realism, performance, and scalability. Many
approaches in current literature restrict the behaviors of
agents by either performing path planning only for agent
groups (instead of individuals) or forcing the agents to follow
strict navigation paths. Using adaptive grids for static path
planning provides complete freedom to agents in selecting
destination points. Hence, adaptive grids is more appropriate
for crowd-simulation applications that spend most of the
execution time on extensive artificial intelligence routines
per agent.

In addition, the proposed system need not store all pairs of
shortest paths. In real-life scenarios, the preferred global
goals of the pedestrians are within a finite domain. They are
usually building entrances or specific locations, such as
cafés, parks, etc. This observation justifies precomputation
and storage of paths toward goals (in a finite domain) to sup-
port for O(1) time complexity. The majority of the existing
path-planning approaches in literature use graph search algo-
rithms such as A* to compute paths dynamically at run-time
with greater precision and cost. Hence, dynamic global plan-
ning support versus computational complexity is one trade-
off, which is open to debate, especially for massive crowds.

Although path planning on a two-dimensional terrain is
demonstrated, our algorithm can easily be modified to handle
3-D spaces as well. In this case, the adaptive grid will be
formed by 3-D axis-aligned rectangular prisms, and our algo-
rithm should be extended to take into account up and down
directions (in addition to east, south, west, and north) for the
seed expansion process.

Acknowledgments

We are grateful to Miray Kag and Rana Nelson for proofread-
ing and suggestions. This research is supported by The
Scientific and Technological Research Council of Turkey
(TUBITAK) under Grant No. EEE-AG 112E110.

References

1. D. Helbing, I. Farkas, and T. Vicsek, “Simulating dynamical features of
escape panic,” Nature 407(6803), 487-490 (2000).

2. T. I. Lakoba, D. J. Kaup, and N. M. Finkelstein, “Modifications of the
Helbing-Molnar-Farkas-Vicsek social force model for pedestrian evolu-
tion,” Simulation 81(5), 339-352 (2005).

3. D. Helbing et al., “Self-organized pedestrian crowd dynamics: experi-
ments, simulations, and design solutions,” Transport. Sci. 39(1), 1-24
(2005).

4. A. Lerner, Y. Chrysanthou, and D. Cohen-Or, “Efficient cells-and-
portals partitioning,” Comp. Anim. Virt. Worlds 17(1), 21-40 (2006).

5. J. Pettre, J. P. Laumond, and D. Thalmann, “A navigation graph for real-
time crowd animation on multilayered and uneven terrain,” in First
International Workshop on Crowd Simulation, pp. 81-90, Pergamon
Press, Elmsford, New York (2005).

6. O. B. Bayazit, J. M. Lien, and N. M. Amato, “Roadmap-based flocking
for complex environments,” in Proc. IEEE 10th Pacific Conf. on
Comput. Graphics and Applications, pp. 104-113, IEEE Computer
Society, Washington, DC (2002).

7. S. Chenney, “Flow tiles,” in Proc. ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA), pp. 233-242,
Eurographics Association, Geneve, Switzerland (2004).

Optical Engineering

027002-12

8. G. Snook, “Simplified 3D movement and pathfinding using navigation
meshes,” in Game Programm. Gems, M. DeLoura, Ed., pp. 288-304,
Charles River Media, Newton, Massachusetts (2000).

9. M. Kallmann, “Navigation queries from triangular meshes,” in Proc.
3rd Int0 Conf. on Motion in Games (MIG), pp. 230-241, Springer-
Verlag, Heidelberg, Germany (2010).

10. M. Kallmann, H. Bieri, and D. Thalmann, “Fully dynamic constrained
Delaunay triangulations,” in Geometric Modeling for Scientific
Visualization, pp. 241-257, Springer-Verlag, Heidelberg, Germany
(2003).

11. P. Tozour, “Building a near-optimal navigation mesh,” in Al Game
Program. Wisdom, S. Rabin, Ed., pp. 298-304, Charles River
Media, Newton, Massachusetts (2002).

12. J.C. O'Neill, “Efficient navigation mesh implementation,” J. Game Dev.
1(1), 71-90 (2004).

13. N. R. Sturtevant and R. Geisberger, “A comparison of high-level
approaches for speeding up pathfinding,” in Proc. 6th Artificial Intell.
and Interactive Digital Entertainment Conf., AAAI Press, Stanford,
California (2010).

14. A. Sud et al., “Real-time navigation of independent agents using adap-
tive roadmaps,” in Pro. ACM Symposium on Virtual Reality Software
and Technology, pp. 99-106, ACM, New York (2007).

15. Y. Li and K. Gupta, “Motion planning of multiple agents in virtual envi-
ronments on parallel architectures,” in Proc. IEEE Int. Conf. on
Robotics and Automation, pp. 1009-1014, IEEE, Piscataway, New
Jersey (2007).

16. S. J. Guy et al., “PLEdestrians: a least-effort approach to crowd simu-
lation,” in Proc. ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pp. 119-128, Eurographics Association,
Geneve, Switzerland (2010).

17. A. Treuille, S. Cooper, and Z. Popovié, “Continuum crowds,” ACM
Transact. Graph. (Proc. SSIGGRAPH) 25(3), 1160-1168 (2006).

18. J. Maim, B. Yersin, and D. Thalmann, “Real-time crowds: architecture,
variety, and motion planning,” in ACM SIGGRAPH ASIA Courses,
Course No. 56, IEEE, New York (2008).

19. D. Helbing and P. Molnar, “Social force model for pedestrian dynam-
ics,” Phys. Rev. E 51(5), 4282-4286 (1995).

20. M. Mononen, “Recast: navigation-mesh construction toolset for
games,” http://code.google.com/p/recastnavigation/ (January 2013).

Ates Akaydin received his BS and MS
degrees in computer engineering from
Bilkent University, Ankara, Turkey, in 2007
and 2010, respectively. He is currently pursu-
ing his PhD study at the Department of
Computer Engineering, Bilkent University.
His research interests include various
aspects of computer graphics, including
human modeling and animation, crowd sim-
ulation, visualization of complex graphical
environments, virtual, and augmented reality.

Ugur Giidiikbay received a BSc degree in
computer engineering from Middle East
Technical University, Ankara, Turkey, in
1987. He received his MSc and PhD
degrees, both in computer engineering and
information science, from Bilkent University,
Ankara, Turkey, in 1989 and 1994, respec-
tively. Then, he conducted research as a
postdoctoral fellow at the University of
Pennsylvania, Human Modeling and Simula-
tion Laboratory. Currently, he is an associate
professor at Bilkent University, Department of Computer Engineering.
His research interests include various aspects of computer graphics,
including human modeling and animation, crowd simulation, visuali-
zation of complex graphical environments, virtual and augmented
reality. He is a senior member of both IEEE and ACM.

February 2013/Vol. 52(2)

http://dx.doi.org/10.1038/35035023
http://dx.doi.org/10.1177/0037549705052772
http://dx.doi.org/10.1287/trsc.2005.39.issue-1
http://dx.doi.org/10.1002/cav.70
http://dx.doi.org/10.1145/1141911
http://dx.doi.org/10.1145/1141911
http://dx.doi.org/10.1103/PhysRevE.51.4282
http://code.google.com/p/recastnavigation/
http://code.google.com/p/recastnavigation/
http://code.google.com/p/recastnavigation/

