
Interactive Crowd Simulation on Mobile Devices in
an Augmented Reality Environment

Aytek Aman
Bilkent University

aytek.aman@cs.bilkent.edu.tr

Ateş Akaydın
Bilkent University

akaydin@cs.bilkent.edu.tr

Uğur Güdükbay
Bilkent University

gudukbay@cs.bilkent.edu.tr

Abstract
We propose a technique to do interactive
crowd simulation on mobile devices within
an Augmented Reality (AR) framework. We
localize the camera in a prepared environment
that includes a set of natural markers. We use
least squares optimization to obtain extrin-
sic camera parameters. During tracking, the
users can create paths for the agents to follow
through touch inputs. User-specified paths are
converted to Bézier curves. We use navigation
mesh-based planning and the user-specified
paths interchangeably for global path planning.

Keywords: augmented reality, virtual real-
ity, crowd simulation, virtual worlds, path
planning

1 Introduction

Simulation of crowds in real-time has been a
major field of study for researchers. So far,
crowd simulation is mostly performed in virtual
environments. With the increased capabilities
of the modern computing hardware, it is now
possible to simulate crowds in AR environments
where virtual objects are seamlessly combined
with the real world.

This study proposes an AR framework where
it is possible to simulate crowds in real world
with the help of the mobile devices. To the best

of our knowledge, there are no studies in the lit-
erature using AR for interactive crowd simula-
tion on mobile devices. The proposed system is
original in this respect.

2 Related Work

In recent years, vision-based tracking meth-
ods became increasingly popular. Vision-based
tracking methods generally depend on feature
extraction / tracking. Both edges and points can
be used for tracking. Drummond et al. [1] use
model edges for tracking. The work of Wuest et
al. [2] is another good example of vision-based
methods.

Crowd simulation methods may differ with
respect to the density and size of the virtual
crowd to be simulated. Pelechano et al. [3] made
a comprehensive survey on virtual crowd simu-
lation techniques.

3 Proposed Technique

3.1 Camera Localization

To locate the camera, we use a model-based
tracker. We first build the coarse model of
the simulation space. We then preprocess this
model to extract the salient edges. The salient
edges of the model must be recognizable in the
video feed. We mark an edge as salient if the

angle between the normal vectors of the neigh-
boring triangles is above a certain threshold.
The tracking algorithm is based on the work of

Figure 1: Camera localization during tracking.

Drummond et al. [1]. When a video feed is up-
dated, the camera parameters are calculated and
assigned to the virtual camera. Firstly, model
edges are clipped to the view frustum. Clipped
edges are then projected onto the camera image.
Edges are sampled at regular intervals. Then,
the visibility of the sample points are deter-
mined using ray casting. For each visible sample
point (shown red in Figure 1), a discontinuity is
searched along the direction of the edge normal.
Once such a point is found, its distance (shown
green in Figure 1) to the corresponding sample
point is calculated. The tracker finds a transfor-
mation matrix that minimizes total distances be-
tween the sample points and their counterparts
in the image using a least squares solver.

To increase the accuracy, we use
RANSAC [4] to eliminate outliers. Outlier
elimination is performed per edge assuming
that sample points should be matched with
points that lie on the same line in the image.
Outliers are excluded from the correspondence
calculations.

3.2 Interactive Path Planning

While the camera is localized, the user can draw
paths using touch based interaction. Succes-
sive interaction points obtained with ray-casting
start and continue paths by adding new nodes
(Figure 2). We fit a piecewise cubic Bézier
curve by using the user-specified control points
(�pi). Sub-nodes (�sj) are then sampled from

Figure 2: Path creation and manipulation.

the curve equation in between pairs of control
nodes. We define curved lane on the path with
varying lane widths (lwi) at control node po-
sitions. We linearly interpolate sub-node lane
widths (swj) with respect to the two neighbor-
ing control nodes. The user can modify the
curved lane by changing control node positions
(�pi), binormal vectors (�bni) and lane width (lwi)
associated with the control nodes.

3.3 Crowd Simulation

Virtual agents are instantiated at positions,
which we call agent sources. Similar to agent
sources, we also introduce agent sinks to the
system. Sinks represent the global goals of the
agents and agents achieving their goals are au-
tomatically removed from the system. For local
planning, we use the Reciprocal Velocity Obsta-
cles (RVO) method proposed by Berg et al. [5].
For global path planning, we make a decision
between the path provided by the NavMesh [6]
and the path(s) specified by the user. When the
user finishes positioning of the agent sinks and
sources, we initialize a routing table (Rsrc,snk)
to select the best path (P) among the set of user-
specified paths (S).

Rsrc,snk = argmin
P∈S

δ(P,�nsrc, �nsnk) (1)

In Equation 1, δ(P,�nsrc, �nsnk) represents the
estimated path length from the agent source
position (�nsrc) towards the agent sink position
(�nsnk) while traveling on path P . This distance

is estimated using Equation 2.

δ(P,�nsrc, �nsnk) = d(�nsrc, �scsrc)
+αβ(P, csrc, csnk)
+d(�scsnk

, �nsnk)

csrc = f(P,�nsrc)
csnk = f(P,�nsnk)

(2)

In Equation 2, �nsrc and �nsnk are the positions
of an agent source and sink, d(�x, �y) is the Eu-
clidean distance between the two arbitrary coor-
dinates, β(P, c0, c1) is the distance between the
sub-nodes identified by indices c0 and c1 on path
P , α is the weight which decides the preferabil-
ity of the user defined paths and the NavMesh,
csrc and csnk are the indices of the sub-nodes
that are closest to �nsrc and �nsnk on path P , re-
spectively. Function f(P, �x) retrieves the index
of the sub-node on P that has the shortest dis-
tance to the given arbitrary point �x (Equation 3).

f(P, �x) = {c|∀k : d(�sc, �x) ≤ d(�sk, �x)} (3)

In Equation 4, the β function estimates the
length of the curve segment between sub-node
indices csrc and csnk.

β(P, csrc, csnk) =

i�=csnkX

i=csrc

d(�si, �si+1) (4)

During instantiation, each agent is assigned a
random agent sink as the global target. Instan-
tiated agents query the routing table (Rsrc,snk)
once to find the shortest user-specified path
from their instantiator source to the targeted
sink. The agent then compares the path length
(δ(P,�nsrc, �nsnk)) of the user-specified path with
the length of the path generated by the under-
lying NavMesh. The shorter path becomes the
agent’s path to follow. While agents are follow-
ing a single path, they are queued into a single
curve, which is an unnatural behavior. To rem-
edy this problem we distribute the agents over
lanes specified around the paths. Assuming an
agent is between the sub-node positions �si and
�si+1, we compute the local target of the agent as
described in Equation 5.

Figure 3: An agent following a lane.

�tni,i+1 = �si+1−�si

‖�si+1−�si‖

�da = �a − �si

�xa = (�da • �tni,i+1)�tni,i+1

�ya = �da − �xa

swa = (‖�xa‖
‖�si+1−�si‖)swi+1

+(1 − ‖�xa‖
‖�si+1−�si‖)swi

r = min(2‖�ya‖
swa

, 1)

(5)

In Equation 5, tni,i+1 is the segment’s tangent
vector, �da is agent position with respect to the
first sub-node, swa is the interpolated lane width
at the agent’s position a. The local target �ta is
computed using Equation 6 as seen in Figure 3.

�ta = �si+1 +
�da • �bni+1

|�da • �bni+1|
(
rswi+1

2
�bni+1) (6)

When the agent achieves �ta, it proceeds to the
next segment. When the agent reaches the
closest sub-node to the targeted sink node, it
leaves its current path and starts following the
NavMesh.

4 Results

We evaluated our approach on two different
hardware configurations. The first configuration
includes a workstation with Intel R© i7 processor
(2.80 Ghz), 16 GBs of RAM, and an NVIDIA R©

Quadro K3000M (2 GB) GPU. In the second
configuration, we use a Samsung Galaxy Note
10.1 (P600) model android based tablet device.

Table 1: The average time spent on tracking and rendering tasks and the average frame rates for dif-
ferent number of agents. Tracking time is computed using five markers with twelve salient
edges each. Tracking and rendering times are in milliseconds.

Rendering

Config. Tracking 20 Agents 40 Agents 60 Agents

comp.
time

frame
rate

comp.
time

frame
rate

comp.
time

frame rate

PC 3.2 0.2 600 0.32 360 0.40 260

Mobile 10.5 2.0 37 3.44 25 5.2 18

The average computation times spent on
tracking and rendering; and frame rates are
given in Table 1. Tracking algorithm is ran only
when the video feed is updated (at 25 Hz) for
a standard web-camera. Majority of the cost
arises from rendering alone. A snapshot of the
application is given in Figure 4.

Figure 4: A snapshot of the working application.

5 Conclusion

We proposed an approach to do virtual crowd
simulation on mobile devices in an AR environ-
ment. To the best of our knowledge, our work
is the first real-time approach which robustly in-
tegrates crowds into AR environments. We be-
lieve that our work is particularly useful for ap-
plications of architectural visualization. For ex-
ample prototype construction models are usually
built as table-top miniature models at first. Our
approach enables creating of different visual ex-
periences in such miniaturized models.

6 Acknowledgements

This work is supported by The Scientific
and Technological Research Council of Turkey
(TÜBİTAK) under Grant No. 112E110.

References

[1] Tom Drummond, Ieee Computer Society, and
Roberto Cipolla. Real-time visual tracking of
complex structures. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 24:932–
946, 2002.

[2] Harald Wuest, Florent Vial, and Didier Stricker.
Adaptive line tracking with multiple hypotheses
for augmented reality. In Proceedings of the 4th
IEEE/ACM International Symposium on Mixed
and Augmented Reality, ISMAR ’05, pages 62–
69, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[3] N. Pelechano, J.M. Allbeck, and N.I. Badler.
Virtual Crowds: Methods, Simulation, Control
and Synthesis, volume 8. Lectures on Computer
Graphics and Animation, Morgan and Claypool
Publishers, 2008.

[4] Martin A. Fischler and Robert C. Bolles. Ran-
dom sample consensus: A paradigm for model
fitting with applications to image analysis and
automated cartography. Communications of the
ACM, 24(6):381–395, June 1981.

[5] Jur P. Van Den Berg, Dinesh Manocha, and
Ming C. Lin. Reciprocal Velocity Obstacles
for real-time multi-agent navigation. In Interna-
tional Conference on Robotics and Automation,
pages 1928–1935, 2008.

[6] Greg Snook. Simplified 3D Movement and
Pathfinding Using Navigation Meshes. In Game
Programming Gems, pages 288–304. Charles
River Media, 2000.

