
Interacting with Boids in an
Incompressible Fluid Environment

Aytek Aman
Department of Computer Engineering

Bilkent University
aytek.aman@cs.bilkent.edu.tr

Ateş Akaydın
Department of Computer Engineering

Bilkent University
akaydin@cs.bilkent.edu.tr

Uğur Güdükbay
Department of Computer Engineering

Bilkent University
gudukbay@cs.bilkent.edu.tr

Abstract—With increasing power of the computing hardware,
computer simulations are being realized in real-time. It is now
possible to create real-life phenomena using computers. In this
study, we present a crowd and fluid interaction environment,
where fish in the environment depict flocking behaviour, affected
by the flow of an incompressible fluid that can be manipulated
by a Kinect controller. This system can be used in virtual reality
applications and video games to provide immersive underwater
scenarios. We developed our application on a commercially
available game engine that provides real-time experience for the
users.

I. INTRODUCTION

Simulation of flocks is not a trivial task. Both psychological
and physical factors affect the nature of the flocking behavior
which makes creating realistic flock animation task difficult.
In this paper, We incorporate velocity fields into the Boids
Model first proposed by Craig W. Reynolds [1]. This allows
us to experiment the behaviour of crowds under the influence
of external physical forces like wind and water current. The
approach we’ve taken also runs at real-time for thousands of
boids. We also provide an interactive method to manipulate
the fluid’s velocity field using a Microsoft Kinect device [2].

II. RELATED WORK

Craig W. Reynolds developed a computer model describing
the coordinated motion of animals such as flocks of birds, or
schools of fish. He named this model as the Boids Model [1].
Every individual animal in this model is called a boid. In
Boids Model, there are three main force components which
affect the motion of a boid. These are the separation, align-
ment and cohesion forces. Separation describes the force that
keeps a boid away from its crowding neighbors so that they
don’t collide. The alignment force orients the boid towards
the average direction of the neighboring boids. Finally, the
cohesion force steers the boid towards the average position of
the neighboring boids. For each boid in the system, these three
driving forces are calculated separately and then a final velocity
is calculated. That way completely deterministic yet naturally
looking crowd simulation is created. Reynolds’s approach has a
number of extensions which incorporate other dynamic effects.
For instance, Delgado-Mata et al. [3] studied the effects of
fear on flock behaviour using an extended Reynolds model.
Hemerlijk and Hildenbrandt [4] studied flocks of birds. They
proposed a physically accurate model by incorporating the
affects of fixed wing aerodynamics into the basic Reynolds
model.

Other than crowd simulation, this work also focusses on
computational fluid simulation. Almost all of the fluid simu-
lation methods are based on a nonlinear differential equation
called the Navier-Stokes equation. Analytical solution of this
equation is available only for several, greatly simplified and
constrainted (i.e. incompressible fluids) cases. Numerical ap-
proximations are hence more common in the field of Computer
Graphics. Also a number of simplifications are done on the
Navier-Stokes model to approximate the fluid behaviour in
real-time. Jos Stam proposed a stable animation model for
fluid-like objects [5]. Ronald Fedkiw et al. proposed a method
for visual simulation of smoke [6]. Later, Jos Stam extended
his previous model to cover real-time applications such as
video games [7]. A comprehensive book on common fluid
simulation techniques for Computer Graphics was written by
Robert Bridson [8].

III. PROPOSED APPROACH

Our framework consists of three different components. The
first component provides the interface between the user and
the system. The second component is a fast and stable fluid
solver based on the approach developed by Stam [5]. The
third component is the flock simulator and it is responsible
for driving the autonomous agents (fish in particular) around.
In order to create flocking behaviour in a fluid environment we
combine these three components together as seen in Figure 1.

To represent fluid velocity in the environment, we keep a
three dimensional grid, where each grid cell has an associated
fluid velocity. We call this grid as the cell-wise velocity
field and denote it with the function �v(�i, t). �i is a vector
which specifies the grid index in three dimensions and t is
the simulation time. For each cell, the associated velocity
represents the overall movement of the fluid at the center. The
cell-wise velocity field is common to all three components and
can be influenced by adding (or injecting) additional velocities.
To compute �v(�i, t), we used a three dimensional version of the
Stam’s approach described in his paper [5]. The extension of
the Stam’s approach to three dimensions is trivial.

The flow chart given in Figure 1 demonstrates main de-
pendencies among the three components. For each frame, user
input is gathered from Kinect controller [2], and then appropri-
ate movement information is feeded to the fluid simulator. With
the user input, fluid simulator updates its state. Then, agents
in the simulation environment are simulated with respect to
flocking rules and fluid motion. The following sections explain
these three components in detail.



Fig. 1. The flow chart demonstrating the system components.

A. User Interface

User interaction in our framework involves localizing the
user’s hand position within the simulation environment. For
simplicity we represent the hand as a semi-transparent spheri-
cal object centered at the hand’s detected position. This object
is also called the Velocity Generator. The position of the
Velocity Generator is determined using the functions provided
by the Microsoft Kinect API [2]. Velocity Generator tracks its
own velocity across successive frames. At the beginning of
each frame, random points are sampled inside the boundary
of the Velocity Generator. Then, these points are used to
inject velocity into the cell-wise velocity field. To do so, the
grid cells which contain these sampled points are determined.
And then velocities are added to these corresponding grid
cells. After velocities are injected to the fluid, simulation time
is advanced by a pre-determined time step. Then, the fluid
simulator (Section III-B) updates the velocity field for the new
time step.

B. Fluid Simulator

To compute the fluid velocity at an arbitrary position, we
keep a continuous velocity field that is separate from the cell-
wise velocity field. We denote the continuous velocity field
with the vector function �vf (�x, t). The t is again the simulation
time and �x is an arbitrary position vector within the field.
To compute �vf (�x, t) at some �x we first determine the cell
which contains �x. Then, the index vectors (�i) of the eight local
neighbors of this cell are computed separately. For each of the
eight neighbors, we retrieve the velocities from the cell-wise
velocity field. Finally, we use trilinear interpolation to compute
fluid velocity at �x. Having computed the cell-wise velocity
field, the control is passed to the Flock Simulator to simulate
flock behavior.

C. Flock Simulator

Flock simulator uses flocking rules proposed by
Reynolds [1]. In addition to basic alignment, cohesion
and seperation forces, we also have boundary forces that
make the fish stay in the simulation environment. In order
to achieve real time performance, we keep a secondary grid
structure (different from the cell-wise velocity field) to cache
the positions of the boids in the simulation space. This
new grid structure reduces neighborhood search calculations
considerably. Additionally, threading is used for the movement
of boids. Each boid is assigned to a particular thread for
processing.

At the beginning, the flock simulator computes the ac-
celerations of the boids with respect to the Reynold’s rules.
We’ve used a simplified model to compute boid acceleration
which is given in Equation 1. For simplicity we assumed that
the boids’ mass can be omitted. Hence, we dropped the mass
out of the equation for motion. In Equation 1, vectors �fa(m),
�fc(m) and �fs(m) correspond to the alignment, cohesion and
separation forces, respectively. These forces are computed
separately for each boid (with index m) using the common
formulation proposed by Reynolds [1]. The coefficients ω a,
ωc and ωs control the magnitudes of the three components,
respectively. We tune these coefficients empirically to obtain
a natural looking simulation.

�a(m, t) = ωa
�fa(m) + ωc

�fc(m) + ωs
�fs(m) + �fo(m) (1)

The only additional force we’ve introduced is the obstacle
force ( �fo(m)) which keeps the boids away from the aquarium
boundaries and the terrain. The obstacle response force is
computed as in Equation 2.

�fo(m) =
sgn(δx(m))�ex

|δx(m)| + h
+

sgn(δy(m))�ey

|δy(m)| + h
+

sgn(δz(m))�ez

|δz(m)| + h
(2)

In Equation 2, �ex, �ey, �ez represent the basis vectors pointing
at right(x), up(y) and forward(z) directions, respectively. sgn
represents the sign function. A response force is activated
only when a boid moves close to any of the six boundaries
along the three directions. δx(m), δy(m) and δz(m) are scalars
which store the difference between the boid’s position and the
closest boundary for the respective direction. For any of the
six boundaries along the three directions, if the boid’s distance
to the boundary is greater than a threshold, then the respective
direction component is dropped from the equation. Finally
h parameter is used to set an upper bound for the obstacle
avoidance force. The magnitude of the obstacle avoidance
force along any direction is never bigger than 1/h.

For simulation environments where we use a terrain at
the bottom of the aquarium, we slightly modify the obstacle
response force along the up direction. We represent the terrain
as a height map. In this case the upward difference δy(m)
represents the difference between the position of the boid and
the height map(at boid’s position) along up direction.

We then compute an intermediate boid velocity at the cur-
rent simulation time by summing up the boid’s current velocity



and acceleration (Equation 3). If the boid’s speed exceeds the
maximum permissible speed, we clamp the velocity such that
its magnitude becomes the maximum speed.

�v′(m, t) = �v(m, t) + �a(m, t) (3)

Each boid is affected by the fluid around it. For simplicity,
we directly displace the boid with some portion of the fluid
velocity vector at its position. The fluid velocity at the boid’s
position is determined from the continuous velocity field
(�vf (�x, t)). In our test runs, we observed that, just displacing
the boids with respect to the fluid velocity around it creates
rather synthetic movement. To overcome this problem, we add
some other portion of the fluid velocity to the boid itself.
Therefore, boid movement under fluid force can be formulated
as in Equation 4.

�p(m, t + 1) = �p(m, t) + �v′(m, t) + (1 − α)�vf (�p(m, t), t)

�v(m, t + 1) = �v′(m, t) + α�vf (�p(m, t), t)
(4)

In Equation 4, α is an experimental value. Increasing α
creates the illusion of stronger fluid behaviour where boids
are dragged along the velocity field of the fluid. Displacement
doesn’t affect the direction of the boids, thus, dragging effect
is more pronounced as it should be. We use spherical linear
interpolation to slowly update the directions of the boids such
that they are aligned with their velocity vectors.

At any instance the user can interact with the system
by relocating the velocity generator. When such an interrupt
occurs the system schedules a user interface update for the
next time step. At the beginning of the next time step, the
control is delivered to the user interface component and the
new velocities are added to the cell-wise velocity field as
described in Section III-A

IV. RESULTS

Using the methods described above, we developed a
multi-threaded sample application using the Unity 3D Frame-
work [9]. Users can interact with the system via either mouse
or Kinect Controller [2]. Both controllers are used to localize
the velocity generator.

Several snapshots from the application are given in Fig-
ure 2. Each of the snapshots are taken at run-time and they
depict different flocking behaviour.

The performance of the system is bound to two parameters.
The number of boids in the scene and the number of grid cells
of the fluid solver. We tested our application on a workstation
with the following hardware configuration: 8 cores, 2.8 GHz,
16 GB of RAM and Quadro K3000 GPU. The graphs given in
Figure 3 demonstrate the system performance with respect to
the fluid cell resolution and the number of boids in the system.

V. CONCLUSION

In this study we demonstrate a framework where boids and
the fluid interact with each other. Fluid velocity can be manip-
ulated by the user with the help of a Kinect controller [2]. In

this work, we’ve primarily focussed on visually appealing flock
simulation. The physical correctness of the simulation was a
secondary concern. Our application runs at interactive frame
rates. The approach we’ve taken is simple to implement and it
is suitable to be used in modern video games or other computer
graphics applications to provide immersive user experience.

VI. ACKNOWLEDGEMENTS

This work is supported by The Scientific and Technological
Research Council of Turkey (TÜBITAK) under Grant No.
112E110.

REFERENCES

[1] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” ACM SIGGRAPH Computer Graphics, vol. 21, no. 4, pp. 25–
34, 1987.

[2] Microsoft, Inc., “Xbox 360 + Kinect, XBOX,” http://www.xbox.com/
en-US/kinect, 2014.

[3] C. Delgado-Mata, J. I. Martinez, S. Bee, R. Ruiz-Rodarte, and R. Aylett,
“On the use of virtual animals with artificial fear in virtual environments,”
New Generation Computing, vol. 25, no. 2, pp. 145–169, 2007.

[4] C. K. Hemelrijk and H. Hildenbrandt, “Some causes of the variable shape
of flocks of birds,” PloS One, vol. 6, no. 8, article no. e22479, 13 pages,
2011.

[5] J. Stam, “Stable fluids,” in Proceedings of the 26th Annual Conference
on Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’99.
ACM Press/Addison-Wesley Publishing Co., 1999, pp. 121–128.

[6] R. Fedkiw, J. Stam, and H. W. Jensen, “Visual simulation of smoke,”
in Proceedings of the 28th Annual Conference on Computer Graphics
and Interactive Techniques, ser. SIGGRAPH ’01. New York, NY, USA:
ACM, 2001, pp. 15–22.

[7] J. Stam, “Real-time fluid dynamics for games,” in Proceedings of the
Game Developer Conference, vol. 18, 2003, p. 25.

[8] R. Bridson, Fluid Simulation for Computer Graphics. A K Peters Ltd.,
2008.

[9] Unity Technologies, “Unity 3d,” http://unity3d.com, 2014.



(a) (b)

(c)

Fig. 2. Snapshots taken at run-time from the application. (a) Snapshot demonstrating the effect of weakening cohesion (ωc) and alignment (ωa) coefficients.
The flocking behaviour is hardly visible. (b) Snapshot demonstrating flocking behaviour. Separation coefficient (ωs) is set to a small value. Alignment and
cohesion coefficients are set to greater values. (c) Scenario demonstrating the fluid’s influence on the flock. The user had created a vortex by doing circular
motion around the center of the aquarium. The vortex motion also directs the boids.

(a) (b)

Fig. 3. Performance of the application with respect to different parameters. (a) System performance in terms of frames per second (FPS) with respect to the
resolution of the fluid velocity field. (b) System performance with respect to the number of boids in the system


