
93

Situated nonmonotonic temporal reasoning
with BABY-SIT

Erkan Tın and Varol Akman∗

Department of Computer Engineering and
Information Science, Bilkent University, Bilkent,
Ankara 06533, Turkey
E-mail: {tin,akman}@cs.bilkent.edu.tr

After a review of situation theory and previous attempts
at ‘computational’ situation theory, we present a new pro-
gramming environment, BABY-SIT, which is based on sit-
uation theory. We then demonstrate how problems requir-
ing formal temporal reasoning can be solved in this frame-
work. Specifically, the Yale Shooting Problem, which is
commonly regarded as a canonical problem for nonmono-
tonic temporal reasoning, is implemented in BABY-SIT us-
ing Yoav Shoham’s causal theories.

1. Introduction

Serious thinking about the computational aspects of
situation theory has started only a decade ago [13].
There have been recent proposals in this direction (i.e.,
PROSIT and ASTL), with varying degrees of diver-
gence from the ontology of the theory. We believe
that a programming environment incorporating bona
fide situation-theoretic constructs will be useful in AI
and describe our very recent BABY-SIT implementa-
tion. A brief account of PROSIT and ASTL is also
offered in order to put BABY-SIT into perspective.

While BABY-SIT is a general-purpose programming
environment, in this paper we demonstrate its opera-
tion on a well-known example from the AI literature,
viz. the Yale Shooting Problem (YSP). Since our es-
sential aim is to display the available functionalities of
BABY-SIT for representational issues in AI, we simply
borrow a theoretical approach – causal theories due
to Yoav Shoham – to solve the YSP [17,18].

It should be noted that our goal in writing this pa-
per is not to offer a new approach to formal temporal

∗To whom correspondence should be addressed.

reasoning [19]. There are numerous works in AI to
that effect. Neither do we want our work to be un-
derstood as a temporal data (world model) manager.
Regarding this issue, cf. [20] for a system which is
in fairly wide use, and seems to be popular due to its
speed.

2. Basic situation theory

Situation theory is a unified mathematical theory of
information content. The original proposal was due to
Jon Barwise and John Perry [3]. The theory has ma-
tured over the last decade or so [10] and various ver-
sions of it have been applied to a number of problems
in logic, language, and cognition [6].

In this section, we introduce the basic notions of
situation theory. To this end, we follow the definitions
given by Devlin [7] almost verbatim. We also use his
notation.

The basic ontology of situation theory consists
of entities that a finite cognitive agent individuates
and/or discriminates as it makes its way in the world.
These entities are known as uniformities and include:

– Individuals: objects that the agent individuates
as single, essentially unitary items; denoted by a,
b, c, etc.

– Relations: uniformities that hold of, or link to-
gether specific numbers of, certain other unifor-
mities; denoted by P , Q, R, etc.

– Spatial locations: these are not necessarily like
the ‘points’ of mathematical spaces, for they can
have a spatial extension; denoted by l, l′, l0, etc.

– Temporal locations: as with spatial locations,
temporal locations may be either points in time
or regions of time; denoted by t, t′, t0, etc.

– Situations: structured parts (concrete or abstract)
of the world individuated by the agent; denoted
by s, s′, s0, etc.

– Types: higher order uniformities; denoted by S,
T , U , etc.

AI Communications 10 (1997) 93–109
ISSN 0921-7126 / $8.00 1997, IOS Press

94 E. Tın and V. Akman / Situated nonmonotonic temporal reasoning with BABY-SIT

A scheme of individuation, i.e., a way of carving
the world into uniformities, is an essential aspect of
situation theory. This is the agent-relative framework
that ‘picks out’ the ontology. In other words, the
basic constituents of the theory are determined by the
agent’s scheme of individuation.

In situation theory, information is always taken to
be information about some situation and is in the form
of discrete items. Infons are these discrete items of in-
formation and situations are first-class objects which
describe limited portions of the real world. Infons
are denoted as 〈〈R, a1, . . . , an, i〉〉, where R is an n-
place relation, a1, . . . , an are objects appropriate for
the respective argument places of R, and i is the po-
larity assigned to the sequence R, a1, . . . , an. A po-
larity value of 1 (respectively, 0) indicates that ob-
jects a1, . . . , an do (respectively, do not) stand in the
relation R.

If R is an n-place relation and a1, . . . , am, m 6 n,
are objects that are appropriate for the argument places
i1, . . . , im of R, and if the filling of these argument
places is sufficient to satisfy the minimality conditions
for R, then for i ∈ {0, 1}, 〈〈R, a1, . . . , am, i〉〉 is a
well-defined infon. Minimality conditions for R are
the collection of conditions that determine which par-
ticular groups of argument roles need to be filled in
order to produce an infon. If m < n, the infon is said
to be unsaturated; if m = n, it is saturated.

Given an infon σ and a situation s, we write s |= σ
to indicate that infon σ is ‘made factual’ by s – or
that σ is an item of information that is true of s. It
is also said that s supports σ. In case σ is not true
of s, this is denoted by s 6|= σ. Situations are inten-
sional objects. For this reason, abstract situations are
proposed to be their counterparts amenable to mathe-
matical manipulation. Given a real situation s, the set
{σ | s |= σ} is the corresponding abstract situation.

Situations in which a sequence is assigned both
polarities are incoherent. For instance, s is in-
coherent if s |= 〈〈has, alice, A♥, 0〉〉 and s |=
〈〈has, alice, A♥, 1〉〉. This is a situation in which Al-
ice holds the A♥ and she does not hold the A♥ in
a particular card game. There cannot be a real sit-
uation s validating this. Nevertheless, the sequence
〈〈has, alice, A♥〉〉 may be assigned both polarity val-
ues for spatio-temporally distinct situations (say, two
subsequent card games s and s′).

Situation theory provides a collection of basic types
that can be used for individuating or discriminating
uniformities in the real world. The higher types of
the theory are defined by (recursively) applying type-

abstraction procedures over the basic types [7]. There
are nine basic types:

1. TIM : the type of a temporal location.
2. LOC: the type of a spatial location.
3. IND: the type of an individual.
4. RELn: the type of an n-place relation.
5. SIT : the type of a situation.
6. INF : the type of an infon.
7. PAR: the type of a parameter.
8. POL: the type of a polarity.
9. TY P : the type of a type.

For each basic type T other than PAR, there is
an infinite collection T1, T2, . . . of basic parameters,
denoting arbitrary objects of type T . Occasionally, ȧ,
ṡ, ṫ, l̇, etc. are used to denote parameters for objects
of type IND, SIT , TIM , LOC, etc., respectively.
Given an object x and a type T , we write x : T to
indicate that x is of type T .

Abstraction can be captured by allowing parame-
ters in infons. Parameters are generalizations over
classes of non-parametric objects (e.g., individuals,
spatial locations). For example, 〈〈sees, ẋ, alice, 1〉〉
and 〈〈sees, ẋ, ẏ, 1〉〉 are parametric infons where ẋ
and ẏ stand for individuals. The former says that
someone sees Alice, whereas the latter says that some-
one sees someone else.

A situation s′ is said to be a part of another sit-
uation s – or s′ is a subsituation of s – just in case
∀σ[s′ |= σ → s |= σ]. The part-of relation (denoted
by s′ ⊆ s) is reflexive, anti-symmetric, and transitive,
and consequently provides a partial ordering of the
situations.

In situation theory, information flow [8] is made
possible by a network of abstract links between situ-
ation types. These links are called constraints. They
capture systematic regularities connecting situations
of one kind with situations of another. One way to
picture the functioning of constraints is to think of a
constraint S ⇒ T as providing a passage that leads
from the class of all situations of type S to the class
of all situations of type T . Given a situation s : S,
the constraint S ⇒ T provides the information that
there is a situation t : T . Hence, if an agent attuned to
this constraint encounters a situation s and recognizes
that s is of type S, then it has the information that
the world of which s is a part is such that there is a
situation t of type T .

The role of constraints in information flow is best
illustrated with an example. The statement Smoke
means fire expresses the law-like relation that links

E. Tın and V. Akman / Situated nonmonotonic temporal reasoning with BABY-SIT 95

situations where there is smoke to situations where
there is a fire. If Tsmoke is the type of situations
where there is smoke and Tfire is the type of situa-
tions where there is a fire, then by being attuned to the
constraint Tsmoke ⇒ Tfire, an agent can pick up the
information that there is a fire in a particular situation
by observing that there is smoke (in that particular
situation).

3. Situation-theoretic computational systems

Two pioneering systems, PROSIT and ASTL, that we
will review in this section incorporate only some of
the original features of situation theory; the remaining
features they omit for the sake of achieving particular
goals. In BABY-SIT, which we review in the next
section, we have tried to stick to the essentials of the
theory and adopted the ontology which was first put
forward by Barwise and Perry [3], and then refined
by Devlin [7].

3.1. PROSIT

PROSIT (PROgramming in SItuation Theory) was
developed by Nakashima et al. [15,16] and imple-
mented in Lisp. In PROSIT one can define situations
and assert knowledge into particular situations. It is
also possible to define relations between situations in
the form of constraints. There is an inference engine
similar to a Prolog interpreter.

One can assert facts that a situation will support.
For example, if situation s1 supports the fact that Bob
is a young person, this can be defined in the current
situation s as:

s: (!= s1 (young Bob))
PROSIT has no special polarity argument in in-

fons. Thus, (young Bob) represents a positive infon
whereas (no (young Bob)) stands for the negation
of that infon.

In PROSIT, there exists a tree hierarchy, with the
situation top (the global situation) at the root of the
tree. One can traverse the tree using special pred-
icates. It is possible to make queries from a situa-
tion about any other situation, the result depending on
where the query is made. If a situation s2 is defined
in the current situation, s1, then s1 is said to be the
owner of s2.

PROSIT has two relations defined between situa-
tions. These are the subtype relation and the subsitu-
ation relation. When the subtype relation, denoted by

(-> s1 s2), is asserted, it means that s1 supports
every infon valid in s2 and that s1 ‘respects’ (to be
defined shortly) every constraint that is respected by
s2, i.e., s2 becomes a subtype of s1. The subsitu-
ation relation, denoted as (s< s1 s2), is the same
as (-> s1 s2) except that only infons, but no con-
straints, are inherited.

There is no notion of situation type in PROSIT. For
this reason, one cannot represent abstractions over sit-
uations and specify relations between them without
having to create situations and assert facts to them.

Constraints can be specified using either of the three
relations ⇒, ⇐, and ⇔. Constraints specified using
⇒ (respectively, ⇐) are forward (respectively, back-
ward) chaining constraints; the ones using⇔ are both
backward and forward chaining constraints. Back-
ward chaining constraints are of the form (⇐ head
fact1 . . . factn). If all the facts are supported by the
situation, then head is supported by the same situa-
tion. Forward chaining constraints are of the form (⇒
fact tail1 . . . tailn). If fact is asserted to the situation,
then all the tail facts are asserted to the same situation.

For a constraint to be applicable to a situation, the
situation must be declared to ‘respect’ the constraint.
For example, to state that every man is a human being,
one writes (*X denotes a variable):
s: (resp s1 (<= (human *X) (man *X)))
This states that s1 respects the stated constraint

(namely, every man is a human being). Since asser-
tions are situated, a situation may or may not respect
a constraint depending on where the query is made.
If we assert:

s: (!= s1 (man Bob))
then PROSIT will affirmatively answer the query:

s? (!= s1 (human Bob))

3.2. ASTL

Black’s ASTL (A Situation Theoretic Language) is
another programming language based on situation the-
ory [4]. One can define in ASTL constraints and rules
of inference over the situations. An interpreter, im-
plemented in Lisp, processes ASTL definitions and an-
swers queries.

ASTL allows individuals, relations, situations, pa-
rameters, and variables. These constitute the basic
terms of the language. Complex terms are in the
form of i-terms (which are simply infons of the form
〈rel, arg1, . . . , argn, pol〉), situation types, and situa-
tions. Sentences in ASTL are constructed from terms

96 E. Tın and V. Akman / Situated nonmonotonic temporal reasoning with BABY-SIT

and can be constraints, grammar rules, or word en-
tries.

A situation type is given as [par | cond1 . . . condn],
where condi has the form par |= i-term. For example,
if situation S1 supports the fact that Bob is a young
person, this can be written as (S is a parameter):

S1: [S | S |= 〈young,bob,1〉]
The colon indicates that S1 supports the situation

type on its right. The supports relation in ASTL is
global rather than situated. Consequently, query an-
swering is carried out independently of the situation
in which the query is made.

Constraints are actually backward chaining con-
straints. Each constraint is of the form sit0 : type0 ⇐
sit1 : type1, . . . , sitn : typen, where siti is a sit-
uation and typei is a situation type. If each siti,
1 6 i 6 n, supports the corresponding situation type,
typei, then according to the above constraint sit0 sup-
ports type0. For example, the constraint that every
man is a human being can be written as follows (*S
and *X are variables):

*S: [S | S |= 〈human,*X,1〉] ⇐
*S: [S | S |= 〈man,*X,1〉]

An interesting property of ASTL is that constraints
are global. Thus, a new situation of the appropriate
type need not have a constraint explicitly added to
it. Assume that situation S1, supporting the fact that
Bob is a man, is asserted:

S1: [S | S |= 〈man,bob,1〉]
This together with the constraint above would give:

S1: [S | S |= 〈human,bob,1〉]

4. Fundamental notions of BABY-SIT

BABY-SIT has been developed in KEE (Knowledge
Engineering Environment) [12]. The BABY-SIT desk-
top runs on a SPARCstation. The primary motivation
underlying BABY-SIT is to facilitate the development
and testing of programs in domains ranging from lin-
guistics to AI within a unified framework built upon
situation-theoretic constructs [23,25].

BABY-SIT accommodates the basic features of situ-
ation theory and, compared to the existing approaches
[4,5,16], enhances these features [24,26]. Devlin’s
reformed approach to situation theory [7] has been
extensively used in designing the formal skeleton of
BABY-SIT.

Akin to the basic types in situation theory, there are
nine basic types which are employed in BABY-SIT:
∼IND (individuals), ∼TIM (times), ∼LOC (places),

∼REL (relations), ∼POL (polarities), ∼INF (infons),
∼PAR (parameters), ∼SIT (situations), and ∼TYP
(types). These are special objects of BABY-SIT that
can be used in the same way as ordinary objects are.
Moreover, they can be used to associate a type with
a new object in the system.

Suppose bob is an individual and s1 is a situation.
Then, these objects can be declared as:

I> bob:∼IND
I> s1:∼SIT

In BABY-SIT, situations are viewed, as usual, at an
abstract level. This means that situations are sets of
parametric infons, but they may be non-well-founded
(circular) [2]. All situations are required to cohere.
Situations (and hence the infons they support) may
have spatio-temporal dimensions. A situation can
have information about another which is a part of the
former. BABY-SIT has a minimal situation w, called
the ‘background situation’, which is a part of every
other situation.

Relations are categorized into two: (i) infonic rela-
tions that can be used as major constituents of infons,
and (ii) non-infonic relations that can only fill the ar-
gument roles of infonic relations. Each infonic re-
lation has ‘appropriateness conditions’ that determine
the types of its arguments. The number of arguments
that an infonic relation can take defines the minimality
conditions for that relation. Consider the relation see-
ing. If we would like it to be an infonic relation with
at most two arguments, the former being of type in-
dividual and the latter being of type either a situation
or an individual, we write:
I> 〈sees | ∼IND, {∼SIT, ∼IND}〉 [1]
Here, the number in square brackets indicates the

minimum number of arguments that can be used with
sees. Hence, 〈〈sees, bob, 1〉〉, for example, is a
valid (unsaturated) infon in the system.

In order for the parameters to be anchored to ob-
jects of the appropriate type, parameters must be de-
clared to be from only one of the primitive domains.
It is also possible to put restrictions on a parameter.
Suppose we want to have a parameter E denoting any
individual that sees situation s1. This can be done
by asserting:
I> E = IND1 ˆ 〈〈sees, IND1, s1, 1〉〉
IND1 is a default system parameter of type ∼IND.

E is an object of type ∼PAR such that if it is anchored
to an object, say o1, then o1 must be of type ∼IND
and w |= 〈〈sees, o1, s1, 1〉〉.

Parametric types are also allowed in BABY-SIT.
They are of the form [P |s |= I], where P is a pa-

E. Tın and V. Akman / Situated nonmonotonic temporal reasoning with BABY-SIT 97

Table 1
A simple comparison of PROSIT, ASTL, and BABY-SIT

Computational feature PROSIT ASTL BABY-SIT
Unification

√ √ √

Type-theoretic − − √

Coherence − − √

Forward chaining
√ − √

Backward chaining
√ √ √

Bidirectional
√ − √

Conditional constraints − − √

Partiality
√ √ √

Parameters ? ?
√

Type abstraction ? ?
√

Parameter restriction − ?
√

Unsaturated infons ? − √

Legend:
√

: exists, − : doesn’t exist, ? : partially/conceptually exists.

rameter, s is a situation, and I is a set of infons. The
type of all situations that Bob sees can be defined as
follows:

I> ∼SITALL = [SIT3 | w |= 〈〈sees,
bob, SIT3, 1〉〉]

Hence, ∼SITALL can be used as a type specifier
for declaration of new objects in the environment. An
object of type ∼SITALL, say o2, is an object of ba-
sic type ∼SIT such that w |= 〈〈sees, bob,
o2, 1〉〉. (o2 is of basic type ∼SIT since the ab-
straction parameter SIT3 is a default system param-
eter of type ∼SIT.)

Variables in BABY-SIT are used in constraints and
query expressions, and have scope only within the
constraint or the query expression in which they ap-
pear. A variable can match any object appropriate for
the argument role it appears in. For example, vari-
ables ?S and ?X in ?S |= 〈〈sees, ?X, s1, 0〉〉
can only match objects of type ∼SIT and ∼IND, re-
spectively.

BABY-SIT allows the use contextual information
which plays a critical role in all forms of behavior and
communication [1]. Situations and constraints can be
grouped to form a so-called ‘perspectivity (constraint)
set’, which provides a computational context. More-
over, the partial nature of situations facilitates com-
putation with incomplete information. Constraints in
BABY-SIT come in three standard flavors: forward
chaining, backward chaining, and bidirectional.

Assertions may activate the forward chaining mech-
anism of BABY-SIT which lets one derive new infor-
mation via the forward chaining constraints (or bidi-
rectional chaining constraints) of a given perspectiv-
ity constraint set. A candidate forward chaining con-
straint is activated whenever its antecedent is satisfied.
All the consequences are asserted if they do not yield

a contradiction in the situation into which they are
asserted. New assertions may in turn activate other
candidate forward chaining constraints.

BABY-SIT provides a useful query mechanism. It
is possible to make situated or unsituated queries in
its query mode. Queries can be ‘proved’ by using the
backward chaining constraints (or bidirectional chain-
ing constraints) of a given perspectivity set. In addi-
tion to querying which situation supports what, it is
also possible to ask which (particular) situation does
not support an infon or a set of infons.

A comparison of BABY-SIT with PROSIT and ASTL
is given in Table 1.

5. YSP

Various nonmonotonic formal systems have been
proposed to facilitate common-sense reasoning. Situ-
ation calculus [14] has initially been used to reason
about the effects of actions. Hanks and McDermott
[11] describe what they call temporal projection in the
framework of situation calculus as follows. Given a
description of the current situation, descriptions of the
effects of possible actions, and a sequence of actions
to be performed, how do we predict the properties of
the world in the resulting situation?

Hanks and McDermott [11] applied some of the ex-
isting logics to scenarios to see whether the expected
results are indeed produced. YSP is one of these sce-
narios, a paradigm to show how the temporal projec-
tion problem arises in logical frameworks. At some
point in time, a person (Fred) is alive. A loaded gun,
after waiting for a while, is fired at Fred. What are the
results of this action? One expects that Fred would
die and the gun would be unloaded after the firing.

98 E. Tın and V. Akman / Situated nonmonotonic temporal reasoning with BABY-SIT

But Hanks and McDermott [11] demonstrate that un-
intended models are obtained; the gun gets unloaded
during the waiting stage and firing the gun does not
kill Fred.

After Hanks and McDermott showed how existing
logics fail to produce the expected results for YSP,
researchers proposing new formalisms applied their
methods to YSP and other similar scenarios to show
how they succeed in avoiding the unintended mod-
els. Hanks and McDermott argue that a solution to
the temporal projection problem should answer two
questions [11, p. 409]:

1. Given a logical theory that admits more than
one model, what are the preferred models of that
theory (i.e., what is the preference criterion)?

2. Given a theory and preference criterion, how do
we find the theorems that are true in all ‘most
preferred’ models?

Shoham’s causal theories1 and preference criterion
[17] provide a satisfactory answer to these questions.
Moreover, Shoham gives an algorithm that computes
the true sentences in the models preferred under his
preference criterion, thus making causal theories com-
putationally attractive.

5.1. YSP and causal theories

Causal theories contain axioms to reason about the
effects of actions. Proceeding in time, knowledge
about the future is obtained from what is known and
what is not known about the past. We will demon-
strate how causal theories can be modeled in BABY-
SIT. Suppose that Mary loads a gun at time 0 and fires
it at Fred at time 2. We would like to reason about the
effect of firing the gun. We provide below a possible
axiomatization (using a total of 8 axioms) in causal
theories.2

(1) 2(0, loads,mary, gun)

(2) 2(0, alive, fred)

(3) 2(2, f ires,mary, gun)

(4) 2(t, loads,mary, gun)
⊃ 2(t+ 1, loaded, gun)

1Cf. Appendix A for a technical introduction to causal theories.
2Axiom schemes (4)–(8) are considered to be implicitly univer-

sally quantified over t.

(5) 2(t, alive, fred)∧3(t,¬fires,mary,
gun)∧ 3(t, exists, air) ⊃ 2(t+ 1,
alive, fred)

(6) 2(t, loaded, gun)
∧3(t,¬emptied manually, gun)
∧3(t,¬fires,mary, gun)
⊃ 2(t+ 1, loaded, gun)

(7) 2(t, alive, fred)∧2(t, loaded, gun)
∧2(t, fires,mary, gun)
∧3(t,¬marshmallow bullets in, gun)
∧3(t, has firing pin, gun)
⊃ 2(t+ 1,¬alive, fred)

(8) 2(t, loaded, gun)∧2(t, fires,mary, gun)
∧3(t, has firing pin, gun)
∧3(t,¬marshmallow bullets in, gun)
∧3(t, exists, air)
⊃ 2(t+ 1, hears,mary, noise)

Axioms (1)–(3) are the boundary conditions. (4) is
an axiom scheme saying that loading a gun makes it
loaded. (5) and (6) are axiom schemes needed for
persistence. For instance, (5) says that Fred remains
alive unless certain conditions obtain; (6) says that the
gun remains loaded unless it is manually emptied or
is fired by Mary. Axioms (6)–(8) are known as causal
schemes. (8), for example, states that Mary’s firing a
loaded gun causes her to hear a noise unless certain
conditions obtain, viz. the gun has no firing pin, has
marshmallow bullets, or there is no air.

The axiom schemes (4)–(8) above must be repli-
cated by instantiating the variable t to time points
0, 1, and 2. This actually results in a finite causal
theory. The axioms of this causal theory should
then be ordered with respect to the latest time points
of the atomic base sentences on the left hand side
of causal rules. The cmi model of this causal the-
ory is computed by stepping over each axiom in
ordered form and checking whether the left-hand
side is satisfied. The atomic base sentence on the
right-hand side of a causal rule is asserted to the
knowledge base as soon as its left-hand side is sat-
isfied. Therefore, this causal theory produces the
expected atomic base sentences: >(1, loaded, gun),
>(1, alive, fred), >(2, loaded, gun), >(2, alive,
fred), >(3,¬alive, fred), >(3, hears,mary,
noise).3

3Here and in Appendix A, > stands for TRUE.

E. Tın and V. Akman / Situated nonmonotonic temporal reasoning with BABY-SIT 99

Note that the division between 2- and 3-conditions
in causal rules is somewhat unclear. Consider causal
rule (8). One can start with the hypothesis that fir-
ing a gun causes Mary’s hearing a loud noise. To
quote Shoham [18, p. 166]: “[He] might then modify
that, and condition the prediction on the gun’s being
loaded. Then, in time, [he] might learn about the other
necessary conditions, such as there being air, the gun
having a firing pin, and so on and so forth. Depend-
ing on the likelihood of each of these conditions and
on the gravity of making wrong default assumptions,
they will become either 2-conditions or 3-conditions.
After a short while the theory will become sufficiently
stable so that, unless that [sic] someone were fed seri-
ously biased data, any new modifications will require
adding only 3-conditions”. Hence, we can say that
the distinction between these two classes of conditions
is somewhat dependent on the particular context of
reasoning and that the 3-conditions of a causal rule
are those typically true in that particular context.4

5.2. Axiomatization of YSP in BABY-SIT

5.2.1. Representing the objects
We should first define the objects that will be used

in the axiomatization of the problem. BABY-SIT Di-
alogue Mode provides working sessions for various
modes of operation: Assertion Mode, Constraint Edit
Mode, Query Mode, and (Object) Deletion Mode.
However, only in Assertion Mode it is possible to di-
rectly introduce new objects to the system (Fig. 1).
Assertion Mode allows the user to assert propositions
which will define objects in the system, establish hi-
erarchies between situations, or add infons to the ex-
isting situations.

We start with the introduction of relations such as
alive, loads, fires, etc. that will hold among
objects. For example, fires is defined as follows:

I> 〈fires | ∼IND, ∼IND〉 [2]
Its arguments must be filled by objects of type
∼IND since the minimality conditions of the relation
is given as 2.5 Then, we define individuals such as
fred, mary, etc. Figure 2 shows the declaration of
these objects in Assertion Mode.

4The reader may refer to [22] and [21] for a discussion on various
aspects of causal reasoning in Shoham’s model.

5We have used only basic types in our declarations in order not
to diverge from the essence of YSP. Clearly, it is also possible to
define complex types built out from the basic types.

We consider each snapshot in time as a situation.
For instance, Mary’s loading the gun and Fred’s being
alive at time 0 form a state. Any inferred information
about future will be collected in a new state. For this
reason, we create a situation s0 as the initial state
and assert the facts that Mary loads the gun and that
Fred is alive in s0. As soon as s0 is declared as a
situation, it appears in BABY-SIT Situation Browser
(SBR) (Fig. 2). SBR displays situation tree structures
graphically. Each situation is shown as a node labeled
by the name of that situation. A situation is always
displayed at a lower level than its subsituation and a
line is drawn from the situation to its subsituation to
indicate the tree hierarchy. Each line ends on the su-
persituation with a filled box. Hence, each situation
at the lower parts of SBR is a supersituation with re-
spect to the ones it is connected to in this way. Each
time a new situation is created via assertions either
in Assertion Mode or during chaining, it is displayed
on SBR. Any change in the current situation tree hi-
erarchy is also reflected to SBR. SBR provides an in-
teractive environment so that the user can manipulate
the situation tree structure, view infons, add/delete in-
fons, anchor parameters of infons, and issue queries
in specific situations. By clicking on a situation node
on SBR, the user can perform various menu-driven
operations (Fig. 3).

5.2.2. Implementing the axiom schemes
The next step in the axiomatization of YSP includes

writing equivalent BABY-SIT constraints for axiom
schemes (4)–(8). Defining objects and asserting in-
fons into situations form a description. This descrip-
tion evolves as new assertions are made. On the other
hand, it is possible in BABY-SIT to make inference
over a given description by the help of constraints
and hence carry the current description to new stages.
There are mainly three types of constraints in BABY-
SIT: forward chaining, backward chaining, and bidi-
rectional chaining constraints. Forward chaining con-
straints enable one to infer new information from the
existing information, alter the environment, and act
accordingly. (For this reason, these constraints may
be called ‘action’ constraints.) We will implement the
axiom schemes of YSP in the form of forward chain-
ing constraints. Hence, we elaborate on this constraint
type in the sequel and define some terms that are em-
ployed by BABY-SIT constraints.

A schematic infon is an infon that contains at least
one variable as either its major constituent or one of
its minor constituents. A schematic compound infon

100 E. Tın and V. Akman / Situated nonmonotonic temporal reasoning with BABY-SIT

Fig. 1. Available operations in Dialogue Mode.

Fig. 2. Object declarations for Yale Shooting Problem.

Fig. 3. Situation Browser allows menu-driven operations on situations.

E. Tın and V. Akman / Situated nonmonotonic temporal reasoning with BABY-SIT 101

is a collection of infons, in which there exists at least
one schematic infon.

A schematic infonic proposition is an expression of
the form s {|=, 6|=} Γ, where s is either a situation
or a variable, and Γ is either a compound infon or a
schematic compound infon. The ones having the form
s |= Γ are called positive schematic infonic proposi-
tions; those having the form s 6|= Γ are called negative
schematic infonic propositions.

A schematic infonic condition is of the form s : Γ,
where s is either a situation or a variable, and Γ is
either a compound infon or a schematic compound
infon.

A forward chaining constraint has two constituent
parts: the body and the background conditions. The
body of a constraint has the form:

antecedent1, . . . , antecedentn ⇒ consequent1, . . . ,
consequentm,

where each antecedenti, 1 6 i 6 n, is a (positive
or negative) schematic infonic proposition and each
consequentj, 1 6 j 6 m, is a positive schematic
infonic proposition. The background conditions of a
constraint has the form:

condition1, . . . , conditionk,

where each conditionl, 1 6 l 6 k, is a schematic
infonic condition. (The background conditions may
be empty.)

Whenever the propositions in the antecedent and
the background conditions of a forward chaining con-
straint succeed, all of the propositions in its conse-
quent are asserted.

Each constraint has a unique identifier associated
with it and it must belong to a group. Inferences can
be drawn with respect to a given group of constraints.
These groups are called perspectivity (constraint) sets.
For example, the following is a forward chaining con-
straint named FALLING-BLOCK under the perspectiv-
ity set NATURAL-LAW-PERSPECTIVE, and states that
blocks drop if not supported:

NATURAL-LAW-PERSPECTIVE:
FALLING-BLOCK:
?S1 |= 〈〈block, ?B, 1〉〉,
?S1 6|= 〈〈supports, ?C, ?B, 1〉〉
=> ?S2 |= 〈〈drops, ?B, 1〉〉

BACKGROUND-CONDITIONS:
w: 〈〈exists, gravity, 1〉〉

Here, ?S1, ?S2, ?B, and ?C are variables. ?S1
and ?S2 can only be assigned objects of type ∼SIT

while ?B and ?C can have values of some type appro-
priate for the argument roles of block and drops,
and supports, respectively.6 Since the supporting
situation variables in the antecedent and consequent
parts of the constraint are different, a new situation, in
which the block drops, is created when the constraint
is activated. In this way, a state change for the block
of concern is obtained.

FALLING-BLOCK is associated with a background
condition. A background condition is, in fact, an as-
sumption which is required to hold for a constraint
to be eligible for activation. This constraint can be-
come a candidate for activation only if it is the case
that w 6|= 〈〈exists, gravity, 0〉〉, i.e., if there
is no information as to the absence of gravity in the
background situation.

Each conditional constraint in BABY-SIT can be re-
duced to an unconditional one by providing a seman-
tically equivalent negative schematic infonic proposi-
tion for each condition in the background conditions
of the constraint. For example, an equivalent uncon-
ditional constraint for FALLING-BLOCK is:

NATURAL-LAW-PERSPECTIVE:
FALLING-BLOCK:
?S1 |= 〈〈block, ?B, 1〉〉,
?S1 6|= 〈〈supports, ?C, ?B, 1〉〉,

w 6|= 〈〈exists, gravity, 0〉〉
=> ?S2 |= 〈〈drops, ?B, 1〉〉.

Before examining the representation of YSP axiom
schemes (1)–(8) in BABY-SIT, we provide some rules
governing the functionality of the forward chaining
mechanism:

– The forward chaining mechanism is initiated ei-
ther when the user tells the system to do so or
by asserting a new proposition into the system.

– Forward chaining can be performed with respect
to a given perspectivity set, i.e., by using the for-
ward chaining constraints in a specific perspectiv-
ity set. Otherwise, the default system constraints
are used.

– To find the candidates for activation, forward
chaining constraints are examined according to
the ‘constraint ordering’. The criterion for con-
straint ordering used by the forward chaining
mechanism is ‘constraint type’. ‘Non-action’
constraints are considered first, and then ‘action’
constraints.

6Note that ?S1 |= 〈〈block, ?C, 1〉〉 need not appear in the
antecedent of the constraint, for the block may well be supported
by any other object, e.g., the table.

102 E. Tın and V. Akman / Situated nonmonotonic temporal reasoning with BABY-SIT

– Negative schematic infonic propositions in the
antecedent part of a forward chaining constraint
are always evaluated last, with respect to the pos-
itive schematic infonic propositions in that part.

– The consequents of an activated forward chaining
constraint are asserted into the system only if they
are valid propositions (i.e., if the arguments of
infons are of appropriate type and the assertion of
the propositions does not produce an incoherent
situation).

For axiom schemes (4)–(8) in YSP, we can write
equivalent forward chaining constraints in BABY-SIT.
2-conditions of these axiom schemes can be rep-
resented by positive schematic infonic propositions
while their 3-conditions are assumptions and hence
can be represented by background conditions in con-
straints.

Consider axiom scheme (8). By a direct transfor-
mation, we obtain the corresponding BABY-SIT for-
ward chaining constraint:

?S1 |= {〈〈loaded, ?G, 1〉〉,
〈〈fires, ?M, ?G, 1〉〉} =>

?S2 |= 〈〈hears, ?M, noise, 1〉〉,
?S1 |= 〈〈precedes, ?S1, ?S2, 1〉〉
-
w: 〈〈exists, air, 1〉〉

?S1: {〈〈has-firing-pin, ?G, 1〉〉,
〈〈marshmallow-bullets-in,
?G, 0〉〉}

The “-” sign separates the body and the background
conditions of the constraint. The constraint simply
states the following: “if g is loaded in a situation s1,
and is fired by m in that situation, m hears a noise in a
situation s2 that temporally succeeds s1, given that the
assumptions (existence of air, g’s having a firing pin,
but not being loaded with marshmallow bullets) hold”.
Since these assumptions are required to hold in s1,
we use the same supporting situation variable in the
body and the background conditions of the constraint.
However, we have required existence of air in the
background situation w. Note that any infon supported
by w is also supported by other situations since it is,
by default, a part of every other situation. Since we
use a situation variable (?S2) that only appears in the
consequent part of the forward chaining constraint,
activating this constraint would create a new situation
and assert the instantiated form of 〈〈hears, ?M,
noise, 1〉〉 into that situation.

Now consider axiom scheme (5). The correspond-
ing BABY-SIT forward chaining constraint can be writ-
ten as:

?S1 |= 〈〈alive, ?F, 1〉〉 =>
?S2 |= 〈〈alive, ?F, 1〉〉,
?S1 |= 〈〈precedes, ?S1, ?S2, 1〉〉
-
w: 〈〈exists, air, 1〉〉

?S1: {〈〈fires, ?M, gun, 0〉〉,
〈〈precedes, ?S3, ?S1, 0〉〉}

This constraint says “if f is alive in a situation s1,
it will be alive in a situation s2 that temporally suc-
ceeds s1, given that there exists air and that another
object m does not fire the gun.” One point worth
mentioning here is the inclusion of an assumption that
there should be no situation that precedes the current
reasoning situation s1. This assumption is needed to
avoid reasoning over the same situation repeatedly.

As for the axiom scheme (4), it could have been
represented in a similar manner. However, we have
implemented it as a forward chaining constraint with
no state transition, i.e., loading the gun does not cause
a change of state:

?S1 |= 〈〈loads, ?M, ?G, 1〉〉 =>
?S2 |= 〈〈loaded, ?G, 1〉〉

Axiomatization of YSP in the form of BABY-SIT
constraints is shown in Fig. 4, where constraints
(R5)–(R1) in descending order correspond to axiom
schemes (4)–(8) in ascending order.

It may be that there appear to be two different situa-
tions that immediately succeed a situation. These two
situations, however, must represent a unique snapshot
in time. For this reason, they must be unified (made
into a single situation). We achieve this by introduc-
ing new constraints, R6 and R7, which make one of
these situations a part of the other. When an infon
of the form 〈〈make-part-of, s1, s2, 1〉〉 is asserted, s1

becomes a subsituation of s2. The relation part-of
is automatically asserted into s2. s2 cannot be the
background situation since it is always a subsituation
of other situations in the system. Therefore, if there
are two situations s2 and s3 that succeed situation s1,
constraint R7 unifies s2 and s3 (by making s3 a part
of s2). Similarly, if there are two situations s1 and
s2 (where one is a part of another) and if these sit-
uations have successors s3 and s4, respectively, then
constraint R6 unifies s3 and s4 (Fig. 4).

5.2.3. Inferencing over situations
Assertion Mode Setup of BABY-SIT serves as a con-

trol unit for the evaluation of the expressions asserted
in Assertion Mode. There are four possible actions
that can be controlled by the user via Assertion Mode
Setup (Fig. 5):

E. Tın and V. Akman / Situated nonmonotonic temporal reasoning with BABY-SIT 103

Fig. 4. The constraints for Yale Shooting Problem.

Fig. 5. A view from Assertion Mode Setup.

1. Anchoring the parameters. If this option is en-
abled, each parameter in the asserted expres-
sion is replaced by a corresponding individual
according to the anchoring defined in the an-
choring situation. The anchoring situation can
be specified by the user on the corresponding
slot of the Assertion Mode Setup template (i.e.,
anchoring situation before assertion in Fig. 5).
(The anchoring situation defaults to w.)

2. Making inferences with the existing information.
The proposition asserted can be used to make
inferences over the existing information by em-
ploying a set of forward chaining constraints.
An existing perspectivity set name should be
typed by the user on the corresponding slot of
the Assertion Mode Setup template (i.e., per-
spectivity constraint set in Fig. 5). Otherwise,
the system perspectivity set is used. In either

104 E. Tın and V. Akman / Situated nonmonotonic temporal reasoning with BABY-SIT

Fig. 6. YSP: After Mary’s loading the gun.

case, the forward chaining constraints of the cur-
rent perspectivity set are employed in drawing
inferences.

3. Using a different perspectivity set. The an-
tecedents of forward chaining constraints in the
current perspectivity set are normally proved
with respect to the backward chaining con-
straints in this set. Additionally, the backward
chaining constraints in another perspectivity set
can be used for this task.

4. Verifying antecedents. The antecedents of a can-
didate forward chaining constraint may be veri-
fied prior to its activation.

In our example, we only need the simple inference
mechanism of the system, and hence use the second
option above. We first set the current forward chain-
ing perspectivity set to GUNFIRE. Then asserting the
fact that Mary loads the gun causes constraint R5 to be
activated and the gun gets loaded in s0 (Fig. 6). For-
ward chaining over the existing information creates,
by activating constraint R3, a new situation R3-1
where the gun remains loaded and then creates, by
activating R4, another situation R4-2, where Fred is
alive (Fig. 7). Constraint R6 unifies these situations
in the next activation of forward chaining (Fig. 8).
Activation of forward chaining once more creates sit-

uations R3-3 and R4-4 by reasoning over R3-1 and
R4-2, respectively (Fig. 9).

Subsequent activations of forward chaining unify
new states and then create new states by forming new
situations in a similar manner. Assume that we it-
erate forward chaining twice and assert the fact that
Mary fires the gun. Then two new situations R2-7
and R1-8 are created (by R2 and R1), where Fred
ceases to be alive and Mary hears a noise, respectively
(Fig. 10).

However, if we had asserted w |= 〈〈exists,
air, 0〉〉 prior to Mary’s firing the gun, a new sit-
uation, R2-9, would be created, where Fred would
be dead but Mary would not be able to hear a noise
(Fig. 11).

5.2.4. Time-dependency in causal computations
Shoham’s algorithm computes the atomic base sen-

tences known in all cmi models of a finite causal
theory. Thus, his approach has a problem when the
causal theories contain axiom schemes: computation
is time-dependent because the size of the correspond-
ing finite causal theory depends on the ‘time span’ of
the theory. However, it is possible in BABY-SIT to
represent both finite causal theories and causal theo-
ries having axiom schemes. In YSP, except boundary
conditions, BABY-SIT contained axiom schemes.

E. Tın and V. Akman / Situated nonmonotonic temporal reasoning with BABY-SIT 105

Fig. 7. YSP: After the first iteration of forward chaining.

Fig. 8. YSP: After the second iteration of forward chaining.

Note that in either case one must draw inferences
by beginning from some initial time t0 and moving
forward to times t0 + 1, t0 + 2, and so on. But one
may wish to ‘jump into conclusions’ about the conse-
quences of an action. For example, one may want to
directly observe the effect of Mary’s loading and/or
firing a gun. This can also be done in BABY-SIT with
a slight modification of the model presented above.
We now describe this modification.

In temporal projection scenarios, there exist two
types of axiom schemes. The first type takes care of
the persistence of facts, permitting inferences about
what remains unchanged. For example, if you load a
gun, it will stay loaded unless you fire or empty it.

Such schemes are called persistence axiom schemes.
In YSP, (5) and (6) are persistence axiom schemes.

The second type represents what changes occur in
the environment. Such schemes are called causal ax-
iom schemes. More specifically, these allow one to
infer what kind of changes actions bring about. In
YSP, (4), (7), and (8) are causal axiom schemes.

In order to be able to jump into conclusions for
YSP, we divide BABY-SIT constraints into two with
respect to this categorization. Constraints R1, R2, and
R5 form a perspectivity set called CAUSAL, and con-
straints R3 and R4 are collected into a perspectivity
set called PERSIST. We also put R6 and R7 into a sep-
arate perspectivity set called UNIFY. Given an initial

106 E. Tın and V. Akman / Situated nonmonotonic temporal reasoning with BABY-SIT

Fig. 9. YSP: After the third iteration of forward chaining.

Fig. 10. YSP: After Mary’s firing the gun.

Fig. 11. YSP: After Mary’s firing the gun in vacuum condition.

E. Tın and V. Akman / Situated nonmonotonic temporal reasoning with BABY-SIT 107

situation, forward chaining over PERSIST would pro-
duce facts that remain unchanged in the next situation
in which one would reason about the effects of an ac-
tion via CAUSAL. Forward chaining over UNIFY must
be needed just after forward chaining over PERSIST
to unify the results of persistence (into a single state).
Therefore, the order of forward chaining perspectiv-
ity sets to determine the consequences of an action
should be as follows: PERSIST, UNIFY, CAUSAL.

We form the initial situation s0 by asserting the
fact that Fred is alive. We then set the forward chain-
ing perspectivity set to CAUSAL and assert the fact
that Mary loads the gun. R5 is immediately acti-
vated and the gun gets loaded in s0. Setting the cur-
rent perspectivity set to PERSIST and enabling for-
ward chaining causes R3 to be activated and creates
a new situation R3-1, where the gun remains loaded.
At the same time R4 is activated and another situa-
tion R4-2 is created, where Fred is alive. Then for-
ward chaining over UNIFY forms a unique state with
situations R3-1 and R4-2. Finally, setting the per-
spectivity set to CAUSAL and asserting the fact that
Mary fires the gun in R3-1 activate constraints R1
and R2. Hence, two new situations R1-4 and R2-3
are created where Mary hears a noise and Fred ceases
to be alive, respectively.7

6. Conclusion

We have shown how AI problems that necessitate
a nonmonotonic temporal approach can be handled
in the situation-theoretic computational framework of
BABY-SIT. Specifically, we have considered the Yale
Shooting Problem and have implemented the well-
known approach of Yoav Shoham. The conceptual
clarity gained by the adoption of situation theory as a
knowledge representation scheme makes its presence
strongly felt in our handling of YSP. Our immediate
goal is to apply situation theory to other representation
problems in AI.8

On a more general note, we believe that computa-
tional aspects of situation theory call for deeper in-
vestigation. Although the situation-theoretic systems
reviewed in this paper are in their infancy, they are
promising in terms of applicability in AI [25].

7These two new situations correspond to R1-8 and R2-7, re-
spectively, in Fig. 10.

8For a preliminary attempt in this vein, the reader is referred to
[9] which studies puzzles of knowledge/belief in PROSIT.

Acknowledgments

We owe special thanks to the Editor-in-Chief for
his encouragement and invaluable advice. Comments
of an anonymous referee of the journal have also been
extremely useful and led to a major revision of the
initial manuscript. As usual, all the remaining inade-
quacies are our own.

Appendix A: Shoham’s causal theories

This appendix is summarized from Shoham’s doc-
toral dissertation [18]. It may be skipped by readers
already knowledgeable about this work.

The standard monotonic logic on which Shoham’s
causal theories are based is called the logic of tempo-
ral knowledge (TK). The syntax and semantics of TK
are given below.

Let P be a set of primitive propositions, TV a set of
temporal variables, TC = Z (integers: the structure
of time), and U = TC ∪ TV .

Well-formed formulae (wff) are defined as follows:

1. If u1, u2 ∈ U and p ∈ P , then u1 = u2, u1 6 u2,
and >(u1, u2, p) are wff.

2. If ϕ is a wff, then so is ¬ϕ.
3. If ϕ1 and ϕ2 are wff, then so is ϕ1 ∧ ϕ2.
4. If ϕ is a wff, then so is 2ϕ. 2ϕ stands for “ϕ

is known”. We define 3 ≡ ¬2¬ϕ. 3ϕ stands
for “ϕ is not known to be false”.

5. If ϕ is a wff and v ∈ TV , then ∀vϕ is also a
wff.

Some abbreviations: 2>(t1, t2, p) is shortened as
2(t1, t2, p), 2¬>(t1, t2, p) as 2(t1, t2,¬p),
3>(t1, t2, p) as 3(t1, t2, p), and 3¬>(t1, t2, p)
as 3(t1, t2,¬p). Finally,>(t, p) abbreviates>(t, t, p).

A Kripke interpretation (κ) is a pair 〈W,M〉, where
W is a nonempty universe of possible worlds and M
is a meaning function such that M :P → 2W×Z×Z .

A variable assignment is a function va :TV → Z.
A valuation function (val) is such that val(u) =
va(u) if u ∈ TV , and val(u) = u if u ∈ TC.

A Kripke interpretation κ and a world ω ∈W sat-
isfy a formula ϕ under va (written κ, ω |= ϕ[va])
according to the following definition:

1. κ, ω |= u1 = u2[va] iff val(u1) = val(u2).
κ, ω |= u1 6 u2[va] iff val(u1) 6 val(u2).
κ, ω |= >(u1, u2, p)[va] iff 〈ω, val(u1),

val(u2)〉 ∈M(p).
2. κ, ω |= ¬ϕ[va] iff κ, ω 6|= ϕ[va].

108 E. Tın and V. Akman / Situated nonmonotonic temporal reasoning with BABY-SIT

3. κ, ω |= ϕ1∧ϕ2[va] iff κ, ω |= ϕ1[va] and κ, ω |=
ϕ2[va].

4. κ, ω |= 2ϕ[va] iff κ, ω′ |= ϕ[va] for all ω′ ∈W .
(Therefore, we are able to write κ |= 2ϕ[va]
without fear of ambiguity.)

5. κ, ω |= ∀vϕ[va] iff κ, ω |= ϕ[va′] for all va′

that agree with va everywhere except possibly
on v.

A Kripke interpretation κ and a world ω ∈ W
are a model for a formula ϕ (written κ, ω |= ϕ) if
κ, ω |= ϕ[va] for any variable assignment va. A wff
is satisfiable if it has a model, and valid if its negation
has no model. ϕ1 entails ϕ2 (written ϕ1 |= ϕ2) iff ϕ2

is satisfied by all models of ϕ1.
Base formulae are those wff containing no occur-

rence of the modal operators. The latest time point
(ltp) of a base formula is the (chronologically) latest
time point mentioned in it.
κ2 is chronologically more ignorant than κ1 (writ-

ten κ1 ⊂ci κ2) if there exists t0 such that

1. For any base sentence ϕ (whose ltp 6 t0), if
κ2 |= 2ϕ then also κ1 |= 2ϕ.

2. There exists a base sentence ϕ (whose ltp is t0)
such that κ1 |= 2ϕ but κ2 6|= 2ϕ.

κ is said to be a chronologically maximally igno-
rant (cmi) model of ϕ if κ |=⊂ci ϕ, i.e., if κ |= ϕ and
there is no other κ′ such that κ′ |= ϕ and κ ⊂ci κ′.
The logic of chronological ignorance, CI, is the non-
monotonic logic obtained by associating the prefer-
ence relation ⊂ci with TK.

Base sentences in CI are those sentences contain-
ing no occurrence of the modal operators, i.e., sen-
tences that refer directly to the real world and not to
a knowledge of it. Atomic base sentences are of the
form >(t1, t2, p) or >(t1, t2,¬p).

A causal theory Ψ is a theory in CI, in which all
sentences have the form Φ ∧Θ ⊃ 2ϕ, where (in the
following [¬] means that ¬ may or may not appear):

1. ϕ = >(t1, t2, [¬]p).
2. Φ =

∧n
i=1 2ϕi, where ϕi is an atomic base

sentence whose ltp ti < t1.
3. Θ =

∧m
j=1 3ϕj , where ϕj is an atomic base

sentence whose ltp tj < t1.
4. Φ or Θ may be empty. A sentence in which Φ

is empty is called a boundary condition. Other
sentences are called causal rules.

5. There is a time point t0 such that if Θ ⊃
2(t1, t2, [¬]p) is a boundary condition, then t0 <
t1.

6. There do not exist two sentences in Ψ such that
one contains 3(t1, t2, p) on its left-hand side and
the other contains 3(t1, t2,¬p) on its left-hand
side.

7. If Φ1 ∧ Θ1 ⊃ 2(t1, t2, p) and Φ2 ∧ Θ2 ⊃
2(t1, t2,¬p) are two sentences in Ψ, then Φ1 ∧
Θ1 ∧Φ2 ∧Θ2 is inconsistent.

An essential property of a causal theory is that it
has cmi models, and in all of these the same set of
atomic base sentences is known [18, pp. 112–113].

References

[1] V. Akman and M. Surav, Steps toward Formalizing Context,
AI Magazine 17(3) (1996), 55–72.

[2] J. Barwise and J. Etchemendy, The Liar: An Essay on Truth
and Circularity, Oxford University Press, New York, NY,
1987.

[3] J. Barwise and J. Perry, Situations and Attitudes, MIT Press,
Cambridge, MA, 1983.

[4] A.W. Black, An approach to computational situation seman-
tics, PhD thesis, Department of Artificial Intelligence, Uni-
versity of Edinburgh, Edinburgh, UK, 1993.

[5] J. Borota, M. Frank, J. Fry, A. Ito, H. Nakashima, S. Pe-
ters, M. Reilly and H. Schütze, The PROSIT Language, Ver-
sion 1.0. Manuscript, Center for the Study of Language and
Information, Stanford, CA, 1994.

[6] R. Cooper, Three Lectures on Situation Theoretic Grammar,
in: Natural Language Processing, number 476 in Lecture
Notes in Artificial Intelligence, M. Filgueiras, L. Damas,
N. Moreira and A.P. Thomás, eds, Springer-Verlag, Berlin,
Germany, 1991, pp. 102–140.

[7] K. Devlin, Logic and Information, Cambridge University
Press, Cambridge, UK, 1991.

[8] F. Dretske, Knowledge and the Flow of Information, MIT
Press, Cambridge, MA, 1981.

[9] M. Ersan and V. Akman, Situated modeling of epistemic
puzzles, Bulletin of the IGPL 3 (1995), 51–76.

[10] J.E. Fenstad, P.-K. Halvorsen, T. Langholm and J. van Ben-
them, Situations, Language, and Logic, Reidel, Dordrecht,
Holland, 1987.

[11] S. Hanks and D.V. McDermott, Nonmonotonic logic and
temporal projection, Artificial Intelligence, 33 (1987), 379–
412.

[12] KEETM , Knowledge Engineering Environment Software
Development System, Version 4.1. IntelliCorp, Inc., Moun-
tain View, CA, 1993.

[13] Y. Lespérance, Toward a computational interpretation of sit-
uation semantics, Computational Intelligence 2 (1986), 9–
27.

[14] J. McCarthy and P.J. Hayes, Some philosophical problems
from the standpoint of artificial intelligence, in: Machine In-
telligence, B. Meltzer and D. Michie, eds, Edinburgh Uni-
versity Press, Edinburgh, UK, 1969, pp. 463–502.

[15] H. Nakashima, S. Peters and H. Schütze, Communication and
inference through situations, in: Proceedings of the Third
Conference on Artificial Intelligence Applications, IEEE
Computer Society Press, Washington, DC, 1987, pp. 76–81.

E. Tın and V. Akman / Situated nonmonotonic temporal reasoning with BABY-SIT 109

[16] H. Nakashima, H. Suzuki, P.-K. Halvorsen and S. Peters,
Towards a computational interpretation of situation theory,
in: Proceedings of the International Conference on Fifth
Generation Computer Systems, Institute for New Generation
Computer Technology, Tokyo, Japan, 1988, pp. 489–498.

[17] Y. Shoham, Chronological ignorance: experiments in non-
monotonic temporal reasoning, Artificial Intelligence 36
(1988), 279–331.

[18] Y. Shoham, Reasoning About Change: Time and Causa-
tion from the Standpoint of Artificial Intelligence, MIT Press,
Cambridge, MA, 1988.

[19] Y. Shoham and D.V. McDermott, Problems in formal tem-
poral reasoning. Artificial Intelligence 36 (1988), 49–61.

[20] J.P. Stillman and R. Arthur, Tachyon: a model and envi-
ronment for temporal reasoning, in: National Conference on
Artificial Intelligence: Workshop on Implemented Temporal
Reasoning, San Jose, CA, 1992.

[21] R. Sun, Integrating Rules and Connectionism for Robust
Commonsense Reasoning, Wiley, New York, NY, 1994.

[22] E. Tın and V. Akman, Computing with causal theories. In-
ternational Journal of Pattern Recognition and Artificial In-
telligence 6(4) (1992), 699–730.

[23] E. Tın and V. Akman, BABY-SIT: a computational medium
based on situations, in: Proceedings of the 9th Amsterdam
Colloquium, P. Dekker and M. Stokhof, eds, Institute for
Logic, Language, and Computation, University of Amster-
dam, Amsterdam, Holland, 1993, pp. 665–681.

[24] E. Tın and V. Akman, Computational situation theory, ACM
Sigart Bulletin 5(4) (1994), 4–17.

[25] E. Tın and V. Akman, Information-oriented computation with
BABY-SIT, in: Language, Logic, and Computation: Vol-
ume 1, number 58 in CSLI Lecture Notes, J. Seligman and
D. Westerståhl, eds, Center for the Study of Language and
Information, Stanford, CA, 1996, pp. 19–34.

[26] E. Tın, V. Akman and M. Ersan, Towards situation-oriented
programming languages, ACM Sigplan Notices 30(1) (1995),
27–36.

