To demonstrate that a set of clauses is
inconsistent, using the matrix connection
method, we simply show that each path
through the set is closed by the presence of at
least one complementary pair of literals. In the
example above, path (a) is closed by the pair
-P, P, path (b) is closed by the pair Q, -Q,
and path (¢) is closed by the pair R, -R. Hence
we have shown that the set of clauses is
inconsistent.

To prove that a formula is a theorem of a
set of formulas, we proceed as follows: (a)
convert the set of formulas to a clause set S;
(b) negate the formula being tested for
theoremhood and convert to a set of clauses
C; (c) check the clause set SUC for
consistency as described above; (d) if SU C is
inconsistent then we have succeeded in our
proof.

The problem which we have identified
concerns the analysis of algorithms which
have been developed to implement the matrix
connection method. Although intuitively ap-
pealing algorithms have been developed, for
example by Wallen at Edinburgh University
for the general case, and by Frost at Glasgow
University for the propositional case, the
mathematical machinery to analyse the per-
formance of such algorithms has not been fully
developed.

A domain-independent description of the
‘same’ problem

The problem above may be re-expressed as the

SHORT NOTES

problem of determining the efficiency of
algorithms which check for the existence or
lack of existence of an open (unclosed) path in
an array of integers such as the following:

-1 2 3
=2
-3

1

where ‘path’ and ‘closed’, in this case, are
defined analogously to the definitions given
earlier.

Essentially, we want the mathematical
machinery which will allow us (a) to describe
various types of array (e.g. types in which 75%
of rows contain a single integer), (b) to
describe various algorithms based on different
heuristics (e.g. algorithms which delete rows
which contain an integer whose negation does
not appear elsewhere), (c) to determine the
efficiency of various algorithms in different
cases, and (d) to identify exact bounds on the
computational complexity of various cases.
The ultimate aim is to identify the provably
best algorithms for consistency checking in
various cases. When we first described the
problem in the domain-independent terms
above, we had the feeling that this problem
must have cropped up elsewhere, possibly in
networking or scheduling applications, and
that the mathematical machinery which we
required had, most likely, been developed
elsewhere. Consequently, we approached vari-
ous people working on networking/scheduling
problems in operational research and mathe-

matics departments. Unfortunately, we have
not yet found a ready-made solution, and have
begun to develop our own techniques. How-
ever, we are not pursuing this work with any
great urgency since we are hoping that this
short note will prompt someone to write to us
saying that they recognize the problem and can
direct us to a solution.

(On reading through the draft of these notes,
we realised that we had not followed sugges-
tion (b) when we chose a title. Our solution was
to put parentheses round the domain-specific
part of the title).

R. A. FROST

Department of Computing Science,
The University of Glasgow,
Glasgow G12 8QQ.

References

1. A. Deliyanni and R. A. Kowalski, Logic
and semantic networks. CACM 22 (3),
184-192 (1979).

2. D. A. Prawitz, A proof procedure with
matrix reduction. In Lecture Notes in
Mathematics 125, pp. 207-213. Springer,
Berlin (1976).

3. P. B. Andrews, Theorem proving via
general matings. JACM 28, 193-214
(1981).

4. W. Bibel, Matings in matrices. CACM 26
(11), 844-852 (1983).

Writing Self-replicating Code

Writing a nontrivial self-replicating program is
not difficult, yet when encountered with the task
people in general seem confused. In this note we
argue that this need not be the case.

Received July 1986

1. Introduction

Writing self-replicating code is fun and has
educational value but it seems that people in
general find it confusing. In this note we argue
that this can be overcome and give a Franz
Lisp function which does the job. The function
is sufficiently general to let the reader solve the
problem in another language. Our impression
is that the problem is also a nice exercise to see
the real power of your favourite language
‘printability’.

Let us first define what we mean by

self-replicating code.

Let P be a source program which resides in

file F. Then P is self-replicating if, when

executed, it writes an exact copy of the
contents of F to e.g. the terminal.

Several points need clarification in this
informal definition. First, it may or may not
be the case that P needs compilation. For
instance, in our case P will be in Franz Lisp
and be interpreted (although it also works
under compilation). In another language, e.g.
Fortran, the assumption is that you first
compile your program. Second, P must be in
a source language. This is required just to
make the exercise interesting. If one allows a
‘program’ written, for example, in binary (a
string of ones and zeros), then Lisp, for
instance, will simply echo the string back on
your terminal and there you get the answer! In

fact, this furthermore proves that any binary
program (be it self-replicating or not) is
self-replicating from Lisp’s viewpoint. Clearly,
such a program is not very interesting. In a
similar way, there exist two short programs in
Lisp (namely ¢ and nil) which are also
self-replicating but dull.* The triviality of the
preceding examples are due to Lisp’s insistence
in reading, evaluating, and printing —a fact
often referred to as a read—eval-print loop.
Thus one is normally expected to write
something less trivial. That is what we are
going to do in the sequel.

2. The program

The complete program is given in Fig. 1. (The
line numbers inside square brackets are for
identification purposes only and are no part of
the code.) It consists of a function r which,
when executed by Franz Lisp (Opus 36), writes
a copy of itself on the terminal. We assume
familiarity with this particular dialect of Lisp.
(The reader is referred to the Franz Lisp
Manual' and Wilensky’s textbook? for de-
tails.) The function is not of minimal size nor
is it given in its nicest looking (from Lisp’s
viewpoint) form.

To start with, it is obvious that one should
store some information about the program
itself, for example, an array. Here a serves this
purpose. (Franz indexes arrays starting at 0,
we do not use the Oth entry of a.) Thus, lines
3 and 4 simply store the ‘declarative’

* It may safely be said that Lisp supports
the shortest self-replicating program!

[1] (defun r () (prog (i)
[2] (arrayat?7)
[3] (store (a 1) “(defun r () (prog (1))
[4] (store (a 2) “(arrayat 7))
[5] (store (a 3) “(princ (a 1)) (terpr)”)
[6] (store (a 4) “(princ (a 2)) (terpr)”)
[7] (store(a5)“(doil (1+i)(>i3)")
[8] (store (a 6) ‘|(princ (a 1)) (terpr) (princ
(a 2)) (terpr)
[9] (doil(1+i)(>1i5)
[10] (princ ““(store (a’) (print i) (princ ““)”)
(print (a i)) (princ “)”)
[11] (terpr)) ,
[12] (princ “(store (a 6)) (print (a 6)) (princ
“)”) (terpr)
[13] (princ (a 6)) (return)))|)
[14] (princ (a 1)) (terpr) (princ (a 2)) (terpr)
[15] (doil (1+i)(>i5)
[16] (princ “(store (a”) (print i) (princ “)”)
(print (a i)) (princ *)”)
[17] (terpr))
[18] (princ ““(store (a 6)') (print (a 6)) (princ
“)”) (terpr)
[19] (princ (a 6)) (return)))nil

Figure 1

statements in the beginning of the function.
Then by storing the printing functions for
these lines in @ we make sure that they will be
generated in the replication (lines 5 and 6).
The core of the replicative process is using the
values stored in a in a careful way (i.e. the
do-loop in line 7). The statement which starts
at line 8 and ends at line 13 stores the program
segment given in lines 14 to 19 in a. (The
careful reader will note that the very nil at the
end of the program is there just to get around
the fact that Lisp will return nil when r is

THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986 573

executed. Thus in our case F consists of r
followed by the program nil.) In general, the
most important issue during the design was to
solve the printing difficulties. For instance, the
reader will note the difference between the
value stored in (a6) and other entries of a. In
(a6) we cannot use a string as in the previous
cases since the value we are trying to store has
strings already. Thus the use of | | is invoked.
The reader should carefully check r to make
sure that all details are understood.

3. Discussion

It is trivial to modify r to make it recursive.
Then one would have a program which
replicates itself on a terminal indefinitely.

SHORT NOTES/CORRESPONDENCE

Although we have not taken the direction,
any optimization version will also be inter-
esting. In this respect, a better problem may be
the following:

Write a self-replicating P such that it does

something useful and is of small ‘size’ (total

number of characters in F). (Here the notion

of being useful is left to the imagination.)
We invite interested readers to send us copies
of their favourite self-replicating programs
written in a familiar language. These will be
included (with proper credits) in a future
anthology we are planning on the subject.

Acknowledgement

I thank Matthijs Kuiper for suggesting this
problem to me.

V. AKMAN

Department of Computer Science, University
of Utrecht, Budapestlaan 6, P.O. Box 80.012
3508 TA Utrecht, the Netherlands

References

1. J. K. Foderaro and K. L. Sklower, The
FRANZ LISP Manual. University of
California, Berkeley, Calif. (1981).

. R. Wilensky, LISPcraft. Norton, New
York (1984).

N

Correspondence

Algorithms for the Even Distribution of Entities

Dear Sir,

In recent editions of The Computer Journal
you have published correspondence on al-
gorithms for the even distribution of entities
(Compton, Brokate, Elston). In order that
readers unfamiliar with the subject should not
think this an undeveloped field, the following
is a brief review of the major achievements
already extant. Many of these works have
been published in, or referenced by articles in
The Computer Journal.

The problem has a particular relevance to
computer graphics. This is because drawing
straight lines with devices which use the logic
of incremental plotters or raster scan tubes
requires the even distribution of axial and
diagonal moves. All lines that can be drawn
must consist of a sequence of such movements,
and the straightness of the line depends upon
the even distribution of the move types. The
sequence of such movements, which represent
a straight line, is called its chain code
(Freeman, 1970).

In 1965 J. E.Bresenham produced an
entirely integer-based algorithm which cor-
rectly computed the appropriate move distri-
bution, using nothing more than sign tests and
additions. It is still the most regularly
implemented line-drawing algorithm, and
because of its seminal importance, it is
reproduced in the following Pascal
formulation.

PROGRAM Bresenham (INPUT,OUTPUT)
*constructs the series of 0’s and 1’s which
produce the*

best-fit from the origin to (u,v) with u >v)
VAR u,v,a,b,d,counter: INTEGER;

BEGIN
READLN(u,v);
b:=2*y;
a:=2%u—2%y;
d:=2*v—u;
counter:=0;
WHILE counter <u DO
BEGIN
IF d <0 THEN BEGIN
WRITE(‘0°);
d:=d+b;
END;
ELSE BEGIN

WRITE(‘ 1’);
d:=d-—a;
END;
counter : = SUCC(counter);
END;
END.

The algorithm resolves the equal-error
anomaly by selecting an upper grid point (thus
the line from the origin to (2,1) is 10 and not
01). It generates the ‘best-fit’ chain code
specified by minimising either the vertical or
perpendicular error distance (Bresenham,
1963). Bresenham’s algorithm has been
modified to generate circles and conics
(Bresenham, 1977; Pitteway, 1967).

Brons (1974) produced an algorithm for
generating chain code by using continued
fraction expansion via the division version of
Euclid’s algorithm (a more sophisticated
method than quoted in recent correspondence).
This was modified by Archelli and Massarotti
(1978) to generate ‘best-fit’ chain code. Brons
(1974) has also produced a grammar for the
highly context-sensitive language which en-
codes the even distribution of entities in one
dimension.

Modifications have been made to Bresen-
ham’s algorithm to improve its operational
efficiency (Pitteway and Green, 1982), and to
generate reversible plotter paths (Boothroyd
and Hamilton, 1970). More recently, Castle
and Pitteway (1985) have produced an
algorithm which generates ‘best-fit’ chain
code from the palindromic symmetry inherent
in its patterns.

The converse problem, that of recognising
chain code as belonging to a particular
straight line, has been addressed by Dorst &
Duin (1984). They have developed an appli-
cation of spirographic methods to act as a
recogniser and estimator for the accuracy of
chain code representations.

The purpose of this note is to describe the
solutions to this problem that have already
been produced, in order to encourage further
novel contributions. It is also interesting to
reflect that Compton’s original problem was
unrelated to the field of computer graphics,
but is an application of work already done in
that area.

References

1. C. Archelli and A. Massarotti, On the
parallel generation of straight digital lines.

574 THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986

Computer Graphics and Image Processing
7 (1), 67-83 (1978).

2. J. E. Bresenham, An incremental algo-
rithm for digital plotting. Proc. ACM
National Conference (1963).

3. J. E. Bresenham, Algorithm for computer
control of a digital plotter. IBM Systems
Journal, 4 (1), 25-30 (1965).

4. J. E. Bresenham, A linear algorithm for
incremental display of digital arcs. ACM
Communications 20, 100-106 (1977).

5. J. Boothroyd and P. A. Hamilton, Ex-
actly reversible plotter paths. Australian
Computer Journal 2 (1), 20-21 (1970).

6. R. Brons, Linguistic methods for the
description of straight lines upon a grid.
Computer Graphics and Image Processing
3 (1974).

7. C. M. Castle and M. L. V. Pitteway, An
application of Euclid’s algorithm to
drawing straight lines. Proc. NATO ASI
on Fundamental Algorithms for Computer
graphic, pp. 135-140. (1985). Springer-
Verlag.

8. C. M. Castle and M. L. V. Pitteway, An
efficient structural technique for encoding
‘best-fit’ straight lines. The Computer
Journal. (Accepted for publication.)

9. L. Dorst & R. Duin, A framework for
calculations on digitised straight lines.
IEEE Transactions on Pattern Analysis &
Machine Intelligence, PAMI-6, (5) (1984).

10. H. Freeman, Boundary encoding and
processing. In Picture Processing and
Psychopictorics, pp. 241-266. Academic
Press, New York (1970).

I1. M. L. V. Pitteway, Algorithm for draw-
ing ellipses or hyperbolae with a digital
plotter. The Computer Journal 10, 282-289
(1967).

12. M. L. V. Pitteway and A. Green, Bresen-
ham’s algorithm with run-line coding
shortcut. The Computer Journal 25 (1),
114-115 (1982).

Yours faithfully

C. M. CASTLE

Head of Department of Computing and
Information Technology, St Mary’s College,
Twickenham TW1 4SX

M. L. V.PITTEWAY

Professor of Computer Science, Brunel Univ-
ersity, Uxbridge UB8 3PH

