CS473-Algorithms I

Lecture 2

Asymptotic Notation

O-notation (upper bounds)

• f(n) = O(g(n)) if \exists positive constants c, n_0 such that $0 \le f(n) \le cg(n)$, $\forall n \ge n_0$

e.g.,
$$2n^2 = O(n^3)$$

$$2n^2 \le cn^3 \implies cn \ge 2 \implies c = 1 & n_0 = 2$$
 or
$$c = 2 & n_0 = 1$$

Asymptotic running times of algorithms are usually defined by functions whose domain are $N=\{0, 1, 2, ...\}$ (natural numbers)

O-notation (upper bounds)

- "=" is funny; "one-way" equality
- O-notation is sloppy, but convenient
- though sloppy, must understand what really means
- think of O(g(n)) as a set of functions:

$$O(g(n)) = \{f(n): \exists \text{ positive constants } c, n_0 \text{ such that}$$

 $0 \le f(n) \le cg(n), \forall n \ge n_0 \}$

hence, $2n^2 = O(n^3)$ means that $2n^2 \in O(n^3)$

O-notation

- O-notation is an upper-bound notation
- e.g., makes no sense to say "running time of an algorithm is at least $O(n^2)$ ". Why?
 - let running time be T(n)
 - $T(n) \ge O(n^2)$ means $T(n) \ge h(n) \text{ for some } h(n) \in O(n^2)$
 - however, this is true for any T(n) since
 h(n) = 0 ∈ O(n²), & running time > 0,
 so stmt tells nothing about running time

O-notation (upper bounds)

Ω -notation (lower bounds)

• $f(n) = \Omega(g(n))$ if \exists positive constants c, n_0 such that $0 \le cg(n) \le f(n)$, $\forall n \ge n_0$ e.g., $\sqrt{n} = \Omega(\lg n)$ ($c = 1, n_0 = 16$)
i.e., $1 \times \lg n \le \sqrt{n}$ $\forall n \ge 16$

• $\Omega(g(n)) = \{f(n): \exists \text{ positive constants } c, n_0 \text{ such that}$ $0 \le cg(n) \le f(n), \forall n \ge n_0 \}$

Ω -notation (lower bounds)

• $f(n)=\Theta(g(n))$ if \exists positive constants c_1, c_2, n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0$

example:

$$\frac{1}{2}n^2 - 2n = \Theta(n^2)$$

$$0 \le c_1 n^2 \le \frac{1}{2}n^2 - 2n \le c_2 n^2$$

$$c_1 \le \frac{1}{2} - \frac{2}{n} \le c_2$$

Θ -notation: example $(0 < c_1 \le h(n) \le c_2)$

Θ -notation: example $(0 < c_1 \le h(n) \le c_2)$

$$h(n) = \frac{1}{2} - \frac{2}{n} \le \frac{1}{2} = c_2, \forall n \ge 0$$

$$h(n) = \frac{1}{2} - \frac{2}{n} \ge \frac{1}{10} = c_1, \forall n \ge 5$$

therefore

$$c_1 = \frac{1}{10}, c_2 = \frac{1}{2}, n_0 = 5$$

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n), \ \forall n \ge n_0$$

- Prove that $10^{-8} \, \mathrm{n}^2 \neq \Theta(\mathrm{n})$
 - suppose c_2 , n_0 exist such that 10^{-8} $n^2 \le c_2 n$, $\forall n \ge n_0$
 - but then $c_2 \ge 10^{-8}$ n
 - contradiction since c_2 is a constant
- Theorem: leading constants & low-order terms don't matter
- Justification: can choose the leading constant large enough to make high-order term dominate other terms

- Theorem: (O and Ω) $\Leftrightarrow \Theta$
 - Θ is stronger than both O and Ω
 - i.e., $\Theta(g(n)) \subseteq O(g(n))$ and

$$\Theta(g(n)) \subseteq \Omega(g(n))$$

Using asymptotic notation for describing running times

O-notation

- used to bound worst-case running times
 - also bounds running time on arbitrary inputs as well
- e.g., O(n²) bound on worst-case running time of insertion sort also applies to its running time on every input

Using O-notation for describing running times

- Abuse to say "running time of insertion sort is O(n²)"
 - for a given n, actual running time depends on particular input of size n
 - i.e., running time is not only a function of n
 - however, worst-case running time is only a function of n

Using O-notation for describing running times

- What we really mean by "running time of insertion sort is O(n²)"
 - worst-case running time of insertion sort is $O(n^2)$

or equivalently

- no matter what particular input of size n is chosen (for each value of) running time on that set of inputs is O(n²)

Using Ω -notation for describing running times

- used to bound the best-case running times
 - ⇒ also bounds the running time on arbitrary inputs as well
- e.g., $\Omega(n)$ bound on best-case running time of insertion sort
 - \Rightarrow running time of insertion sort is $\Omega(n)$

Using Ω -notation for describing running times

- "running time of an algorithm is $\Omega(g(n))$ " means
 - no matter what particular input of size n is chosen (for any n), running time on that set of inputs is at least a constant times g(n), for sufficiently large n
 - however, it is not contradictory to say "worst-case running time of insertion sort is $\Omega(n^2)$ " since there exists an input that causes algorithm to take $\Omega(n^2)$ time

Using Θ-notation for describing running times

1) used to bound worst-case & best-case running times of an algorithm if they are not asymptotically equal

2) used to bound running time of an algorithm if its worst & best case running times are asymptotically equal

Using Θ-notation for describing running times

Case (1):

- a ⊕-bound on worst-/best-case running time does not apply to its running time on arbitrary inputs
- e.g., $\Theta(n^2)$ bound on worst-case running time of insertion sort does not imply a $\Theta(n^2)$ bound on running time of insertion sort on every input since $T(n) = O(n^2)$ & $T(n) = \Omega(n)$ for insertion sort

Using Θ-notation for describing running times

- implies a ⊕-bound on every input
 - e.g., merge sort

$$T(n) = O(nlgn) T(n) = \Omega(nlgn)$$

$$T(n) = \Theta(nlgn)$$

Asymptotic notation in equations

- Asymptotic notation appears alone on RHS of an equation
 - means set membership
 - e.g., $n = O(n^2)$ means $n \in O(n^2)$
- Asymptotic notation appears on RHS of an equation
 - stands for some anonymous function in the set
 - e.g., $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$ means that $2n^2 + 3n + 1 = 2n^2 + h(n), \text{ for some } h(n) \in \Theta(n)$ i.e., h(n) = 3n + 1

Asymptotic notation appears on LHS of an equation

- stands for any anonymous function in the set
 - e.g., $2n^2 + \Theta(n) = \Theta(n^2)$ means that for any function $g(n) \in \Theta(n)$ \exists some function $h(n) \in \Theta(n^2)$ such that $2n^2 + g(n) = h(n)$, $\forall n$
- RHS provides coarser level of detail than LHS

Other asymptotic notations

o-notation

- upper bound provided by O-notation may or may not be tight
 - e.g., bound $2n^2 = O(n^2)$ is asymptotically tight bound $2n = O(n^2)$ is not asymptotically tight
- o-notation denotes an upper bound that is not asymptotically tight

o-notation

• $o(g(n)) = \{f(n): \text{ for any constant } c > 0,$ $\exists \text{ a constant } n_0 > 0$ such that $0 \le f(n) < cg(n), \forall n \ge n_0 \}$

- Intuitively, $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$
 - e.g., $2n = o(n^2)$, any positive c satisfies
 - but $2n^2 \neq o(n^2)$, c = 2 does not satisfy

ω-notation

- denotes a lower bound that is not asymptotically tight
- $\omega(g(n)) = \{f(n): \text{ for any constant } c > 0,$ $\exists \text{ a constant } n_0 > 0$ $\text{such that } 0 \le cg(n) < f(n), \ \forall n \ge n_0 \}$
- Intuitively $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$
 - e.g., $n^2/2 = \omega(n)$, any c satisfies
 - but $n^2/2 \neq \omega(n^2)$, c=1/2 does not satisfy

Asymptotic comparison of functions

- similar to the relational properties of real numbers
- Transitivity: (holds for all)

e.g.,
$$f(n) = \Theta(g(n)) \& g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$$

- Reflexivity: (holds for Θ , O, Ω)

e.g.,
$$f(n) = O(f(n))$$

- Symmetry: (holds only for Θ)

e.g.,
$$f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$$

- Transpose symmetry: $((O \leftrightarrow \Omega) \text{ and } (o \leftrightarrow \omega))$

e.g.,
$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$

Analogy to the comparison of two real numbers

•
$$f(n) = O(g(n)) \leftrightarrow a \le b$$

•
$$f(n) = \Omega(g(n)) \leftrightarrow a \ge b$$

•
$$f(n) = \Theta(g(n)) \leftrightarrow a = b$$

•
$$f(n) = o(g(n)) \leftrightarrow a < b$$

•
$$f(n) = \omega(g(n)) \leftrightarrow a > b$$

Analogy to the comparison of two real numbers

- Trichotomy property of real numbers does not hold for asymptotic notation
 - i.e., for any two real numbers a and b, we have either a < b, or a = b, or a > b
 - i.e., for two functions f(n) & g(n), it may be the case that neither f(n) = O(g(n)) nor $f(n) = \Omega(g(n))$ holds
 - e.g., n and $n^{1+\sin(n)}$ cannot be compared asymptotically