CS473-Algorithms |

Lecture 2

Asymptotic Notation

CS 473

Lecture 2

O-notation (upper bounds)

e f(n) = O(g(n)) if 3 positive constants c, n,such that
0 <f(n) <cg(n), vn > n,

e.g., 2n? = O(n3)
22 < cn® = ¢cn=22 = c=1&ny=2
or
c=2&n,=1

Asymptotic running times of algorithms
are usually defined by functions whose
domain are N={0, 1, 2, ...} (natural numbers)

CS 473 Lecture 2

O-notation (upper bounds)

€%

1s funny; “one-way” equality

O-notation Is sloppy, but convenient
though sloppy, must understand what really means
think of O(g(n)) as a set of functions:

O(g(n)) = {f(n): 3 positive constants c, n,such that
0 <f(n) <cg(n), vn >n,}

hence, 2n? = O(n3) means that 2n? e O(n3)

CS 473 Lecture 2

O-notation

* O-notation is an upper-bound notation

 e.¢., makes no sense to say “running time of an
algorithm is at least O(n?)”. Why?

- let running time be T(n)
- T(n) = O(n?) means
T(n) = h(n) for some h(n) € O(n?)
- however, this is true for any T(n) since
h(n) =0 € O(n?), & running time > 0,
so stmt tells nothing about running time

CS 473 Lecture 2

O-notation (upper bounds)

A

f(n) = O(g(n))

.
.
.
.
.
.
.
.
.
.
.
.
-

cg(n)

CS 473

Lecture 2

Q-notation (lower bounds)

« f(n) =Q(g(n)) If 3 positive constants c, nysuch that
0 <cg(n) <f(n), vn>n,

eg., Jn=Q(Ign) (c=1,n,=16)
le,1xlgn < /h Vn>16

« Q(g(n)) = {f(n): 3 positive constants c, nysuch that
0 <cg(n) <f(n), Vn > ngy}

CS 473 Lecture 2

Q-notation (lower bounds)

A

f(n) = Q(g(n))

.
.
.
.
.
.
.
.
.
.
.
.
-

f(n)

CS 473

Lecture 2

®-notation (tight bounds)

» f(n)=0G(g(n)) If 3 positive constants c,, c,, Nysuch that
0 <c,g(n) <f(n) <c,g(n), vn > n,

« example:

%nz —2n=0(n?%)

1
0<c¢n°<=n’-2n<c,n’
2

1 2
<5 —=<C;

CS 473 Lecture 2 8

®-notation: example (0<c, <h(n) <c,)

A h(n)=1/2-2/n

1/2

1/10

(No)

CS 473 Lecture 2

®-notation: example (0 <c, <h(n) <c,)

CS 473 Lecture 2

10

®-notation (tight bounds)
O(g(n))={f(n): 3 positive constants c,, c,, nysuch that

0 <c,g(n) <f(n) <c,g(n), vn > ny}

. No n

CS 473 Lecture 2 11

®-notation (tight bounds)

 Prove that 10-8n2= ©(n)
- SUppose C,, N, exist such that 10°¥n2<c,n, vn >n,
- but then ¢,> 103n
- contradiction since c, IS a constant

« Theorem: leading constants & low-order terms don’t
matter

» Justification: can choose the leading constant large
enough to make high-order term dominate other terms

CS 473 Lecture 2 12

®-notation (tight bounds)

e Theorem: (O and Q) < ©

- O Is stronger than both O and Q

- 1.e., ©(g(n)) < O(g(n)) and
®(g(n)) = (g(n))

CS 473 Lecture 2

13

Using asymptotic notation for describing
running times

O-notation

» used to bound worst-case running times
— also bounds running time on arbitrary inputs as well

* e.g., O(n?) bound on worst-case running time of
Insertion sort also applies to Its running time on every

Input

CS 473 Lecture 2 14

Using O-notation for describing running times

« Abuse to say “running time of insertion sort is O(n?)”

- for a given n, actual running time depends on
particular input of size n

- 1.e., running time is not only a function of n

- however, worst-case running time is only a
function of n

CS 473 Lecture 2 15

Using O-notation for describing running times

* What we really mean by “running time of insertion
sort is O(n?)”
- worst-case running time of insertion sort is O(n?)

or equivalently

- no matter what particular input of size n is chosen
(for each value of) running time on that set of
Inputs is O(n?)

CS 473 Lecture 2 16

Using €2 -notation for describing running times

* used to bound the best-case running times
—> also bounds the running time on arbitrary
Inputs as well

* e.g., (n) bound on best-case running time of
Insertion sort

= running time of insertion sort Is Q(n)

CS 473 Lecture 2 17

Using €2 -notation for describing running times

* “running time of an algorithm is Q(g(n))” means

- no matter what particular input of size n is chosen
(for any n), running time on that set of inputs Is at
least a constant times g(n), for sufficiently large n

- however, it Is not contradictory to say
“worst-case running time of insertion sort is Q(n?)”

since there exists an input that causes algorithm to
take ©(n?) time

CS 473 Lecture 2 18

Using ®-notation for describing running times

1) used to bound worst-case & best-case running times
of an algorithm if they are not asymptotically equal

2) used to bound running time of an algorithm if its
worst & best case running times are asymptotically
equal

CS 473 Lecture 2 19

Using ®-notation for describing running times

Case (1):

« a ®-bound on worst-/best-case running time does not
apply to its running time on arbitrary inputs

¢ e.¢., ®(n?) bound on worst-case running time of
Insertion sort does not imply a ®(n?) bound on
running time of insertion sort on every input

since T(n) = O(n?) & T(n) = (n) for insertion sort

CS 473 Lecture 2 20

Using ®-notation for describing running times

Case (2):

« Implies a ®-bound on every input
- e.g., merge sort
T(n) = O(nlgn)

T =qnigny [=0(nlgn)

CS 473 Lecture 2 21

Asymptotic notation In equations

« Asymptotic notation appears alone on RHS of an equation
- means set membership
- e.g., N =0(n%) means n € O(n?)

« Asymptotic notation appears on RHS of an equation
- stands for some anonymous function in the set
- .0, 2n°+3n+1=2n% + ®(n) means that
2n%+ 3n + 1 = 2n? + h(n), for some h(n) € B(n)
l.e., h(n)=3n+1

CS 473 Lecture 2 22

Asymptotic notation appears
on LHS of an equation

» stands for any anonymous function in the set
- e.g., 2n°+ O(n) = ©(n%) means that
for any function g(n) € ©(n)
3 some function h(n) € ®(n?)
such that 2n?+g(n) = h(n), ¥n

* RHS provides coarser level of detail than LHS

CS 473 Lecture 2

23

Other asymptotic notations

0-notation

* upper bound provided by O-notation
may or may not be tight

- e.¢., bound 2n? = O(n?) is asymptotically tight
bound 2n = O(n?) is not asymptotically tight

* 0-notation denotes an upper bound
that Is not asymptotically tight

CS 473 Lecture 2

24

0-notation

* 0(g(n)) = {f(n): for any constant ¢ > 0,
3 a constant ny> 0
such that 0 < f(n) < cg(n), Vh > ngy}

e Intuitively, Iim —= r(n) =0
N—>00 g(n)

- e.g., 2n = o(n?), any positive c satisfies
- but 2n? % 0o(n?), ¢ = 2 does not satisfy

CS 473 Lecture 2

25

m-notation

» denotes a lower bound that is not asymptotically tight
* »(g(n)) = {f(n): for any constant ¢ > 0,

3 a constant ny> 0
such that 0 < cg(n) < f(n), vn>n,}

f(n)

 Intuitively |Im —= =
n—% () (n)
- e.g., n?/ 2 = w(n), any c satisfies
- but n?/2 # w(n?), c=1/2 does not satisfy

CS 473 Lecture 2 26

Asymptotic comparison of functions

similar to the relational properties of real numbers
Transitivity: (holds for all)

e.g., f(n) = ©(g(n)) & g(n) = ©(h(n)) = f(n) = ©(h(n))
Reflexivity: (holds for ®, O, Q)

e.g., f(n) = O(f(n))

Symmetry: (holds only for ®)

e.g., f(n) = ©(g(n)) < g(n) = O(f(n))

Transpose symmetry: ((O <> Q) and (0 <> ®))

e.g., f(n) = O(g(n)) < g(n) = Q(f(n))

CS 473 Lecture 2 27

Analogy to the comparison of two real numbers

f(n) =0(g(n)) <> a<hb
f(n) =Q(g(n)) «<>a=Db
f(n) =©(g(n)) «>a=>b
f(n) = o(g(n)) <> a<b

f(n) = o(g(n)) <> a>b

CS 473 Lecture 2

28

Analogy to the comparison of two real numbers

 Trichotomy property of real numbers does not hold for
asymptotic notation

- 1.e., for any two real numbers a and b,
we have eithera<b,ora=b,ora>Db

- 1.e., for two functions f(n) & g(n), it may be the case
that neither f(n) = O(g(n)) nor f(n) = Q(g(n)) holds

- e.¢., n and nt*s"(™ cannot be compared asymptotically

CS 473 Lecture 2 29

