CS473-Algorithms I

Lecture 2

Asymptotic Notation
O-notation (upper bounds)

- $f(n) = O(g(n))$ if \exists positive constants c, n_0 such that

 $0 \leq f(n) \leq cg(n), \forall n \geq n_0$

 e.g., $2n^2 = O(n^3)$

 $2n^2 \leq cn^3 \Rightarrow cn \geq 2 \Rightarrow c = 1 \& n_0 = 2$

 or

 $c = 2 \& n_0 = 1$

Asymptotic running times of algorithms are usually defined by functions whose domain are $N=\{0, 1, 2, \ldots\}$ (natural numbers)
O-notation (upper bounds)

• “=” is funny; “one-way” equality
• O-notation is sloppy, but convenient
• though sloppy, must understand what really means
• think of O(g(n)) as a set of functions:

\[O(g(n)) = \{ f(n) : \exists \text{ positive constants } c, n_0 \text{ such that } 0 \leq f(n) \leq cg(n), \forall n \geq n_0 \} \]

hence, \(2n^2 = O(n^3) \) means that \(2n^2 \in O(n^3) \)
O-notation

• O-notation is an upper-bound notation
• e.g., makes no sense to say “running time of an algorithm is at least $O(n^2)$”. Why?
 - let running time be $T(n)$
 - $T(n) \geq O(n^2)$ means

 $T(n) \geq h(n)$ for some $h(n) \in O(n^2)$
 - however, this is true for any $T(n)$ since

 $h(n) = 0 \in O(n^2)$, & running time > 0,
 so stmt tells nothing about running time
O-notation (upper bounds)

\[f(n) = O(g(n)) \]

\[n_0 \]

[Graph showing the relationship between \(f(n) \) and \(cg(n) \), where \(f(n) = O(g(n)) \) for some constant \(c \) and \(n_0 \).]
Ω-notation (lower bounds)

- \(f(n) = \Omega(g(n)) \) if \(\exists \) positive constants \(c, n_0 \) such that
 \[0 \leq cg(n) \leq f(n), \forall n \geq n_0 \]

 e.g., \(\sqrt{n} = \Omega(lg n) \) (\(c = 1, n_0 = 16 \))

 i.e., \(1 \times lg n \leq \sqrt{n} \) \(\forall n \geq 16 \)

- \(\Omega(g(n)) = \{ f(n): \exists \) positive constants \(c, n_0 \) such that
 \[0 \leq cg(n) \leq f(n), \forall n \geq n_0 \} \)
Ω-notation (lower bounds)

\[f(n) = \Omega(g(n)) \]
\(\Theta\)-notation (tight bounds)

- \(f(n) = \Theta(g(n))\) if there exist positive constants \(c_1, c_2, n_0\) such that

 \[
 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n), \quad \forall n \geq n_0
 \]

- example:

 \[
 \frac{1}{2} n^2 - 2n = \Theta(n^2)
 \]

 \[
 0 \leq c_1 n^2 \leq \frac{1}{2} n^2 - 2n \leq c_2 n^2
 \]

 \[
 c_1 \leq \frac{1}{2} - \frac{2}{n} \leq c_2
 \]
\(\Theta \)-notation: example \((0 < c_1 \leq h(n) \leq c_2)\)

\[
h(n) = \frac{1}{2} - \frac{2}{n}
\]

Diagram showing the function \(h(n) = \frac{1}{2} - \frac{2}{n} \) with values at \(n = 1, 2, 3, 4, 5 \) and \(h(n) \) values at \(\frac{1}{2}, \frac{1}{10} \).
Θ-notation: example \((0 < c_1 \leq h(n) \leq c_2)\)

\[
h(n) = \frac{1}{2} - \frac{2}{n} \leq \frac{1}{2} = c_2, \forall n \geq 0
\]

\[
h(n) = \frac{1}{2} - \frac{2}{n} \geq \frac{1}{10} = c_1, \forall n \geq 5
\]

therefore

\[
c_1 = \frac{1}{10}, c_2 = \frac{1}{2}, n_0 = 5
\]
Θ-notation (tight bounds)

\[\Theta(g(n)) = \{ f(n) : \exists \text{ positive constants } c_1, c_2, n_0 \text{ such that } \]
\[0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \} \]
Θ-notation (tight bounds)

• Prove that $10^{-8}n^2 \neq \Theta(n)$
 - suppose c_2, n_0 exist such that $10^{-8}n^2 \leq c_2n$, $\forall n \geq n_0$
 - but then $c_2 \geq 10^{-8}n$
 - contradiction since c_2 is a constant

• Theorem: leading constants & low-order terms don’t matter

• Justification: can choose the leading constant large enough to make high-order term dominate other terms
Θ-notation (tight bounds)

- **Theorem:** $(O \text{ and } \Omega) \iff \Theta$
 - Θ is stronger than both O and $Ω$
 - i.e., $Θ(g(n)) \subseteq O(g(n))$ and $Θ(g(n)) \subseteq Ω(g(n))$
Using asymptotic notation for describing running times

O-notation

• used to bound worst-case running times
 – also bounds running time on arbitrary inputs as well

• e.g., $O(n^2)$ bound on worst-case running time of insertion sort also applies to its running time on every input
Using O-notation for describing running times

- Abuse to say “running time of insertion sort is $O(n^2)$”
 - for a given n, actual running time depends on particular input of size n
 - i.e., running time is not only a function of n
 - however, worst-case running time is only a function of n
Using O-notation for describing running times

- What we really mean by “running time of insertion sort is $O(n^2)$”
 - worst-case running time of insertion sort is $O(n^2)$

 or equivalently

 - no matter what particular input of size n is chosen (for each value of) running time on that set of inputs is $O(n^2)$
Using Ω -notation for describing running times

- used to bound the best-case running times
 - \Rightarrow also bounds the running time on arbitrary inputs as well

- e.g., $\Omega(n)$ bound on best-case running time of insertion sort
 - \Rightarrow running time of insertion sort is $\Omega(n)$
Using \(\Omega \)-notation for describing running times

- “running time of an algorithm is \(\Omega(g(n)) \)” means
 - no matter what particular input of size \(n \) is chosen (for any \(n \)), running time on that set of inputs is at least a constant times \(g(n) \), for sufficiently large \(n \)
 - however, it is not contradictory to say “worst-case running time of insertion sort is \(\Omega(n^2) \)” since there exists an input that causes algorithm to take \(\Omega(n^2) \) time
Using \(\Theta \)-notation for describing running times

1) used to bound worst-case & best-case running times of an algorithm if they are not asymptotically equal

2) used to bound running time of an algorithm if its worst & best case running times are asymptotically equal
Using Θ-notation for describing running times

Case (1):

- a Θ-bound on worst-/best-case running time does not apply to its running time on arbitrary inputs

- e.g., $\Theta(n^2)$ bound on worst-case running time of insertion sort does not imply a $\Theta(n^2)$ bound on running time of insertion sort on every input since $T(n) = O(n^2)$ & $T(n) = \Omega(n)$ for insertion sort
Using Θ-notation for describing running times

Case (2):

• implies a Θ-bound on every input
 - e.g., merge sort

\[
\begin{align*}
T(n) &= O(n \log n) \\
T(n) &= \Omega(n \log n) \quad \left\{ \right. \\
\end{align*}
\]

\[
T(n) = \Theta(n \log n)
\]
Asymptotic notation in equations

- Asymptotic notation appears alone on RHS of an equation
 - means set membership
 - e.g., \(n = O(n^2) \) means \(n \in O(n^2) \)

- Asymptotic notation appears on RHS of an equation
 - stands for some anonymous function in the set
 - e.g., \(2n^2 + 3n + 1 = 2n^2 + \Theta(n) \) means that
 \[
 2n^2 + 3n + 1 = 2n^2 + h(n), \text{ for some } h(n) \in \Theta(n)
 \]
 i.e., \(h(n) = 3n + 1 \)
Asymptotic notation appears on LHS of an equation

• stands for any anonymous function in the set
 - e.g., $2n^2 + \Theta(n) = \Theta(n^2)$ means that for any function $g(n) \in \Theta(n)$
 \exists some function $h(n) \in \Theta(n^2)$
 such that $2n^2 + g(n) = h(n), \forall n$

• RHS provides coarser level of detail than LHS
Other asymptotic notations

o-notation

- upper bound provided by *O*-notation may or may not be tight
 - e.g., bound $2n^2 = O(n^2)$ is asymptotically tight
 - bound $2n = O(n^2)$ is not asymptotically tight

- **o-notation** denotes an upper bound that is not asymptotically tight
o-notation

• \(o(g(n)) = \{ f(n) : \text{for any constant } c > 0, \)
 \[\exists \text{ a constant } n_0 > 0 \]
 \[\text{such that } 0 \leq f(n) < cg(n), \forall n \geq n_0 \} \]

• Intuitively, \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \)

 - e.g., \(2n = o(n^2) \), any positive \(c \) satisfies
 - but \(2n^2 \neq o(n^2), c = 2 \) does not satisfy
ω-notation

- denotes a lower bound that is not asymptotically tight
- \(\omega(g(n)) = \{ f(n): \text{for any constant } c > 0, \}

\[\exists \text{ a constant } n_0 > 0 \]

\[\text{such that } 0 \leq cg(n) < f(n), \forall n \geq n_0 \}\]

- Intuitively \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \)

 - e.g., \(n^2 / 2 = \omega(n) \), any \(c \) satisfies
 - but \(n^2 / 2 \neq \omega(n^2) \), \(c=1/2 \) does not satisfy
Asymptotic comparison of functions

- Transitivity: (holds for all)
 e.g., \(f(n) = \Theta(g(n)) \) & \(g(n) = \Theta(h(n)) \) \(\Rightarrow \) \(f(n) = \Theta(h(n)) \)

- Reflexivity: (holds for \(\Theta, O, \Omega \))
 e.g., \(f(n) = O(f(n)) \)

- Symmetry: (holds only for \(\Theta \))
 e.g., \(f(n) = \Theta(g(n)) \iff g(n) = \Theta(f(n)) \)

- Transpose symmetry: ((\(O \leftrightarrow \Omega \)) and (\(o \leftrightarrow \omega \)))
 e.g., \(f(n) = O(g(n)) \iff g(n) = \Omega(f(n)) \)
Analogy to the comparison of two real numbers

- \(f(n) = O(g(n)) \iff a \leq b \)
- \(f(n) = \Omega(g(n)) \iff a \geq b \)
- \(f(n) = \Theta(g(n)) \iff a = b \)
- \(f(n) = o(g(n)) \iff a < b \)
- \(f(n) = \omega(g(n)) \iff a > b \)
Analogy to the comparison of two real numbers

- **Trichotomy property of real numbers** does not hold for asymptotic notation
 - i.e., for any two real numbers a and b, we have either $a < b$, or $a = b$, or $a > b$
 - i.e., for two functions $f(n)$ & $g(n)$, it may be the case that neither $f(n) = O(g(n))$ nor $f(n) = \Omega(g(n))$ holds
 - e.g., n and $n^{1+\sin(n)}$ cannot be compared asymptotically