CS473-Algorithms I

Lecture 6-b

Randomized QuickSort
Randomized Quicksort

• Average-case assumption:
 – all permutations are equally likely
 – cannot always expect to hold

• Alternative to assuming a distribution: Impose a distribution
 – Partition around a random pivot
Randomized Quicksort

Typically useful when

– there are many ways that an algorithm can proceed
– but, it is difficult to determine a way that is guaranteed to be good.
– Many good alternatives; simply choose one randomly

• Running time is independent of input ordering
• No specific input causes worst-case behavior
• Worst case determined only by output of random number generator
Randomized Quicksort

R-QUICKSORT(A, p, r)

if $p < r$ then
 $q \leftarrow$ R-PARTITION(A, p, r)
 R-QUICKSORT(A, p, q)
 R-QUICKSORT(A, q+1, r)

R-PARTITION(A, p, r)

 $s \leftarrow$ RANDOM(p, r)
 exchange A[p] \leftrightarrow A[s]
 return H-PARTITION(A, p, r)

exchange A[r] \leftrightarrow A[s]
return L-PARTITION(A, p, r)

for Lomuto’s partitioning

- Permuting whole array also works well on the average
 - more difficult to analyze
Formal Average - Case Analysis

• Assume all elements in $A[p \ldots r]$ are distinct

• $n = r - p + 1$

• $\text{rank}(x) = |\{A[i]: p \leq i \leq r \text{ and } A[i] \leq x\}|$

• “exchange $A[p] \leftrightarrow x = A[s]$” ($x \in A[p \ldots r]$ random pivot)

$\Rightarrow P(\text{rank}(x)=i)=1/n, \text{ for } i=1,2,\ldots, n$
Likelihood of Various Outcomes of Hoare’s Partitioning Algorithm

• \text{\textit{rank}}(x) = 1:

 \[k = 1 \text{ with } i_1 = j_1 = p \Rightarrow L_1 = \{ A[p] = x \} \]

 \[\Rightarrow |L| = 1 \]

• \text{\textit{rank}}(x) > 1 \Rightarrow k > 1

 – iteration 1: \[i_1 = p, p < j_1 \leq r \Rightarrow A[p] \leftrightarrow x = A[j_1] \]

 \[\Rightarrow \text{pivot } x \text{ stays in the right region} \]

 – termination: \[L_k = \{ A[i] : p \leq i \leq r \text{ and } A[i] < x \} \]

 \[\Rightarrow |L| = \text{\textit{rank}}(x) - 1 \]
Various Outcomes

- \(\text{rank}(x) = 1 : \Rightarrow |L| = 1 \)
- \(\text{rank}(x) > 1 : \Rightarrow |L| = \text{rank}(x) - 1 \)
- \(P(|L| = 1) = P(\text{rank}(x) = 1) + P(\text{rank}(x) = 2) \)
 \[= \frac{1}{n} + \frac{1}{n} = \frac{2}{n} \]
- \(P(|L| = i) = P(\text{rank}(x) = i + 1) \)
 \[= \frac{1}{n} \quad \text{for } i = 2, \ldots, n - 1 \]
Average - Case Analysis: Recurrence

\[
T(n) = \frac{1}{n} (T(1)+T(n-1)) + \frac{1}{n} (T(1)+T(n-1)) + \frac{1}{n} (T(2)+T(n-2)) + \frac{1}{n} (T(i)+T(n-i)) + \frac{1}{n} (T(n-1)+T(1)) + \Theta(n)
\]

\[\text{rank}(x)\]

\[
\begin{align*}
x = \text{pivot} \\
\text{rank}(x) = 1 \\
1 \\
2 \\
3 \\
i+1 \\
\vdots \\
n
\end{align*}
\]
Recurrence

\[T(n) = \frac{1}{n} \sum_{q=1}^{n-1} (T(q)+T(n-q)) + \frac{1}{n} (T(1)+T(n-1)) + \Theta(n) \]

- but, \(\frac{1}{n} (T(1)+T(n-1)) = \frac{1}{n} (\Theta(1)+O(n^2)) = O(n) \)

\[\Rightarrow T(n) = \frac{1}{n} \sum_{q=1}^{n-1} (T(q)+T(n-q)) + \Theta(n) \]

• for \(k = 1,2,\ldots,n-1 \) each term \(T(k) \) appears twice
 – once for \(q = k \) and once for \(q = n-k \)

• \(T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + \Theta(n) \)
Solving Recurrence: Substitution

Guess: \(T(n) = O(n \lg n) \)

I.H. : \(T(k) \leq ak \lg k + b \Rightarrow k < n \), for some constants \(a > 0 \) and \(b \geq 0 \)

\[
T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + \Theta(n)
\]

\[
\leq \frac{2}{n} \sum_{k=1}^{n-1} (ak \lg k + b) + \Theta(n)
\]

\[
= \frac{2a}{n} \sum_{k=1}^{n-1} (k \lg k + b) + \frac{2b}{n} (n-1) + \Theta(n)
\]

\[
\leq \frac{2a}{n} \sum_{k=1}^{n-1} k \lg k + (2b) + \Theta(n)
\]

Need a tight bound for \(\sum k \lg k \)
Tight bound for $\sum k\lg k$

- Bounding the terms

$$\sum_{k=1}^{n-1} k\lg k \leq \sum_{k=1}^{n-1} n\lg n = n(n-1)\lg n \leq n^2\lg n$$

This bound is not strong enough because

- $T(n) \leq \frac{2a}{n} n^2 \lg n + 2b + \Theta(n)$

 $$= 2an\lg n + 2b + \Theta(n)$$
Tight bound for $\sum k\lg k$

- **Splitting summations:** ignore ceilings for simplicity

\[
\sum_{k=1}^{n-1} k\lg k \leq \sum_{k=1}^{n/2-1} k\lg k + \sum_{k=n/2}^{n-1} k\lg k
\]

First summation: \(\lg k < \lg(n/2) = \lg n - 1 \)

Second summation: \(\lg k < \lg n \)
Splitting: \[\sum_{k=1}^{n-1} k \log k \leq \sum_{k=1}^{n/2-1} k \log k + \sum_{k=n/2}^{n-1} k \log k \]

\[\sum_{k=1}^{n-1} k \log k \leq \frac{\log n - 1}{\log n} \sum_{k=1}^{n-1} k + \log n \sum_{k=n/2}^{n-1} k \]

\[= \log n \sum_{k=1}^{n-1} k - \sum_{k=1}^{n/2-1} k = \frac{1}{2} n(n-1) \log n - \frac{1}{2} n \left(\frac{n}{2} - 1\right) \]

\[= \frac{1}{2} n^2 \log n - \frac{1}{8} n^2 - \frac{1}{2} n(\log n - 1/2) \]

\[\sum_{k=1}^{n-1} k \log k \leq \frac{1}{2} n^2 \log n - \frac{1}{8} n^2 \quad \text{for} \ \log n \geq 1/2 \Rightarrow n \geq \sqrt{2} \]
Substituting: \[\sum_{k=1}^{n-1} k \log k \leq \frac{1}{2} n^2 \log n - \frac{1}{8} n^2 \]

\[
T(n) \leq \frac{2a}{n} \sum_{k=1}^{n-1} k \log k + 2b + \Theta(n)
\]

\[
\leq \frac{2a}{n} \left(\frac{1}{2} n^2 \log n - \frac{1}{8} n^2\right) + 2b + \Theta(n)
\]

\[
= an \log n + b - \left(\frac{a}{4} n - (\Theta(n) + b)\right)
\]

We can choose \(a\) large enough so that \(\frac{a}{4} n \geq \Theta(n) + b\)

\[
\Rightarrow T(n) \leq an \log n + b \Rightarrow T(n) = O(n \log n)
\]

Q.E.D.