CS473-Algorithms I

Lecture 7

Median and Order Statistics
Order Statistics (Selection Problem)

- Select the i-th smallest of n elements (select the element with rank i)
 - $i = 1$: minimum
 - $i = n$: maximum
 - $i = \left\lfloor (n+1)/2 \right\rfloor$ or $\left\lceil (n+1)/2 \right\rceil$: median
- **Naive algorithm**: Sort and index i-th element
 \[T(n) = \Theta(n \log n) + \Theta(1) \]
 \[= \Theta(n \log n) \]
 using merge sort or heapsort *(not quicksort)*
Selection in Expected Linear Time

- Randomized algorithm
- Divide and conquer
- Similar to randomized quicksort
 - Like quicksort: Partitions input array recursively
 - Unlike quicksort:
 - Only works on one side of the partition
 - Quicksort works on both sides of the partition
- Expected running times:
 - SELECT: $E[n] = \Theta(n)$
 - QUICKSORT: $E[n] = \Theta(n\log n)$
Selection in Expected Linear Time (example)

Select the \(i = 7 \)th smallest

\[
\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
\end{array}
\]

\(i = 7 \)

Partition:

\[
\begin{array}{cccccccc}
2 & 3 & 5 & 13 & 8 & 10 & 6 & 11 \\
\end{array}
\]

select the \(7 - 3 = 4 \)th smallest element recursively
Selection in Expected Linear Time

\[
\text{R-SELECT}(A, p, r, i) \\
\text{\quad if } p = r \text{ then} \\
\quad \text{return } A[p] \\
q \leftarrow \text{R-PARTITION}(A, p, r) \\
k \leftarrow q-p+1 \\
\text{\quad if } i \leq k \text{ then} \\
\quad \text{return } \text{R-SELECT}(A, p, q, i) \\
\text{else} \\
\quad \text{return } \text{R-SELECT}(A, q+1, r, i-k)
\]

\[x = \text{pivot}\]

\[
\begin{array}{ccc}
\leq x & \text{(k smallest elements)} & \geq x \\
p & q & r
\end{array}
\]
Selection in Expected Linear Time

- All elements in $L \leq$ all elements in R
- L contains $|L| = q - p + 1 = k$ smallest elements of $A[p...r]$
 - if $i \leq |L| = k$ then
 - search L recursively for its i-th smallest element
 - else
 - search R recursively for its $(i-k)$-th smallest element
Selection in Expected Linear Time

• Excellent algorithm in practise

• Worst-case: $T(n) = T(n-1) + \Theta(n) \Rightarrow T(n) = \Theta(n^2)$
 – Worse than sorting
 – e.g., occurs when
 – $i = 1$ and
 – Partition returns $q = r - 1$ at each level of recursion

• Best-case: $T(n) = T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n)$
Average-Case Analysis of Randomized Select

Recall: \(P(|L|=i) = \begin{cases} \frac{2}{n} & \text{for } i = 1 \\ \frac{1}{n} & \text{for } i = 2, 3, \ldots, n-1 \end{cases} \)

Upper bound: Assume \(i \)-th element always falls into the larger part

\[
T(n) \leq \frac{1}{n} T(\max(1, n-1)) + \frac{1}{n} \sum_{q=1}^{n-1} T(\max(q, n-q)) + O(n)
\]

But, \(\frac{1}{n} T(\max(1, n-1)) = \frac{1}{n} \quad T(n-1) = \frac{1}{n} \quad O(n^2) = O(n) \)

\[
\therefore \quad T(n) \leq \frac{1}{n} \sum_{q=1}^{n-1} T(\max(q, n-q)) + O(n)
\]
Average-Case Analysis of Randomized Select

\[T(n) \leq \frac{1}{n} \sum_{q=1}^{n-1} T(\max(q, n-q)) + O(n) \]

\[\max(q, n-q) = \begin{cases}
q & \text{if } q \geq \lceil n/2 \rceil \\
n-q & \text{if } q < \lceil n/2 \rceil
\end{cases} \]

\(n \) is odd: \(T(k) \) appears twice for \(k = \lceil n/2 \rceil + 1, \lceil n/2 \rceil + 2, \ldots, n-1 \)

\(n \) is even: \(T(\lceil n/2 \rceil) \) appears once \(T(k) \) appears twice for \(k = \lceil n/2 \rceil + 1, \lceil n/2 \rceil + 2, \ldots, n-1 \)

Hence, in both cases:

\[\sum_{q=1}^{n-1} T(\max(q, n-q)) + O(n) \leq 2 \sum_{q=\lceil n/2 \rceil}^{n-1} T(q) \]

\[
\therefore \quad T(n) \leq \frac{2}{n} \sum_{q=\lceil n/2 \rceil}^{n-1} T(q) + O(n) \]
Average-Case Analysis of Randomized Select

\[T(n) \leq \frac{2}{n} \sum_{q=\lceil n/2 \rceil}^{n-1} T(q) + O(n) \]

By substitution guess \(T(n) = O(n) \)

Inductive hypothesis: \(T(k) \leq ck, \ \forall \ k < n \)

\[T(n) \leq 2\sum_{k=\lceil n/2 \rceil}^{n-1} ck + O(n) \]

\[= \frac{2c}{n} \left(\sum_{k=1}^{\lceil n/2 \rceil} k - 1 \right) + O(n) \]

\[= \frac{2c}{n} \left(\frac{1}{2} n (n-1) - \frac{1}{2} \left(\frac{n}{2} - 1 \right) \right) + O(n) \]
Average-Case Analysis of Randomized Select

\[T(n) \leq \frac{2c}{n} \left(\frac{1}{2} n(n-1) - \frac{1}{2} \left\lfloor \frac{n}{2} \right\rfloor \left(\frac{n}{2} - 1 \right) \right) + O(n) \]

\[\leq c(n-1) - \frac{c}{4} n + \frac{c}{2} + O(n) \]

\[= cn - \frac{c}{4} n - \frac{c}{2} + O(n) \]

\[= cn - \left(\frac{c}{4} n + \frac{c}{2} \right) - O(n) \]

\[\leq cn \]

since we can choose c large enough so that \((cn/4+c/2) \) dominates \(O(n) \)
Summary of Randomized Order-Statistic Selection

• Works fast: linear expected time
• Excellent algorithm in practise
• But, the worst case is very bad: $\Theta(n^2)$

Q: Is there an algorithm that runs in linear time in the worst case?
A: Yes, due to Blum, Floyd, Pratt, Rivest & Tarjan[1973]
Idea: Generate a good pivot recursively..
Selection in Worst Case Linear Time

\[
\text{SELECT}(S, n, i) \quad \triangleright \text{return } i\text{-th element in set } S \text{ with } n \text{ elements}
\]

if \(n \leq 5 \) then

\[
\text{SORT } S \text{ and return the } i\text{-th element}
\]

DIVIDE \(S \) into \(\lceil n/5 \rceil \) groups

\[
\triangleright \text{first } \lceil n/5 \rceil \text{ groups are of size 5, last group is of size } n \mod 5
\]

FIND median set \(M = \{m_1, \ldots, m_{\lceil n/5 \rceil}\} \quad \triangleright m_j: \text{median of } j\text{-th group}

\[
x \leftarrow \text{SELECT}(M, \lceil n/5 \rceil, \lfloor (\lceil n/5 \rceil + 1)/2 \rfloor)
\]

PARTITION set \(S \) around the pivot \(x \) into \(L \) and \(R \)

if \(i \leq |L| \) then

\[
\text{return } \text{SELECT}(L, |L|, i)
\]

else

\[
\text{return } \text{SELECT}(R, n-|L|, i-|L|)
\]
Choosing the Pivot

1. Divide S into groups of size 5
Choosing the Pivot

1. Divide S into groups of size 5
2. Find the median of each group
Choosing the Pivot

1. Divide S into groups of size 5
2. Find the median of each group
3. Recursively select the median x of the medians
At least half of the medians $\geq x$

Thus $m = \lceil n/5 \rceil / 2$ groups contribute 3 elements to R except possibly the last group and the group that contains x

$|R| \geq 3\left(m - 2\right) \geq \frac{3n}{10} - 6$
Similarly

\[|L| \geq \frac{3n}{10} - 6 \]

Therefore, \textbf{SELECT} is recursively called on at most

\[n - \left(\frac{3n}{10} - 6 \right) = \frac{7n}{10} + 6 \text{ elements} \]
Selection in Worst Case Linear Time

\[\text{SELECT}(S, n, i) \quad \triangleright \text{return } i\text{-th element in set } S \text{ with } n \text{ elements} \]

\[
\begin{align*}
\text{if } n \leq 5 \text{ then } & \\
\text{SORT } S \text{ and return the } i\text{-th element} & \\
\Theta(n) & \\
\text{DIVIDE } S \text{ into } \lceil n/5 \rceil \text{ groups} & \\
\Theta(n) & \\
\text{first } \lceil n/5 \rceil \text{ groups are of size 5, last group is of size } n \mod 5 & \\
\Theta(n) & \\
\text{FIND median set } M=\{m, \ldots, m_{\lceil n/5 \rceil}\} \quad \triangleright m_j: \text{median of } j\text{-th group} & \\
T(\lceil n/5 \rceil) & \\
x & \leftarrow \text{SELECT}(M, \lceil n/5 \rceil, \lfloor (\lceil n/5 \rceil+1)/2 \rfloor) & \\
\Theta(n) & \\
\text{PARTITION set } S \text{ around the pivot } x \text{ into } L \text{ and } R & \\
T(\frac{7n}{10}+6) & \\
\text{if } i \leq |L| \text{ then } & \\
\text{return } \text{SELECT}(L, |L|, i) & \\
\text{else} & \\
\text{return } \text{SELECT}(R, n-|L|, i-|L|) & \\
\end{align*}
\]
Selection in Worst Case Linear Time

Thus recurrence becomes

\[T(n) \leq T\left(\left\lfloor \frac{n}{5} \right\rfloor\right) + T\left(\frac{7n}{10} + 6\right) + \Theta(n) \]

Guess \(T(n) = O(n) \) and prove by induction

Inductive step: \(T(n) \leq c \left\lfloor n/5 \right\rfloor + c \left(7n/10 + 6\right) + \Theta(n) \)
\[\leq cn/5 + c + 7cn/10 + 6c + \Theta(n) \]
\[= 9cn/10 + 7c + \Theta(n) \]
\[= cn - [c(n/10 - 7) - \Theta(n)] \leq cn \text{ for large } c \]

Work at each level of recursion is a constant factor (9/10) smaller