
CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

1

CS473-Algorithms I

Lecture 10

Dynamic Programming

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

2

Introduction

• An algorithm design paradigm like divide-and-conquer

• “Programming”: A tabular method (not writing computer code)

• Divide-and-Conquer (DAC): subproblems are independent

• Dynamic Programming (DP): subproblems are not independent

• Overlapping subproblems: subproblems share sub-subproblems

– In solving problems with overlapping subproblems

• A DAC algorithm does redundant work

– Repeatedly solves common subproblems

• A DP algorithm solves each problem just once

– Saves its result in a table

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

3

Optimization Problems

• DP typically applied to optimization problems

• In an optimization problem

– There are many possible solutions (feasible solutions)

– Each solution has a value

– Want to find an optimal solution to the problem

• A solution with the optimal value (min or max value)

– Wrong to say “the” optimal solution to the problem

• There may be several solutions with the same optimal value

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

4

Development of a DP Algorithm

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal

solution

3. Compute the value of an optimal solution in a

bottom-up fashion

4. Construct an optimal solution from the

information computed in Step 3

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

5

Example: Matrix-chain Multiplication

• Input: a sequence (chain) A1,A2,  , An of n matrices

• Aim: compute the product A1·A2· ·An

• A product of matrices is fully parenthesized if

– It is either a single matrix

– Or, the product of two fully parenthesized matrix products surrounded by

a pair of parentheses.

(Ai(Ai+1Ai+2  Aj))

((AiAi+1Ai+2  Aj-1)Aj)

((AiAi+1Ai+2  Ak)(Ak+1Ak+2  Aj)) for ikj

– All parenthesizations yield the same product; matrix product is associative

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

6

Matrix-chain Multiplication: An Example

Parenthesization

• Input: A1, A2, A3, A4

• 5 distinct ways of full parenthesization

(A1(A2(A3A4)))

(A1((A2A3)A4))

((A1A2)(A3A4))

((A1(A2A3))A4)

(((A1A2)A3)A4)

• The way we parenthesize a chain of matrices can have a
dramatic effect on the cost of computing the product

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

7

Matrix has two attributes

• rows[A]: # of rows

• cols[A]: # of columns

of scalar mult-adds in

C AB is

rows[A]cols[B]cols[A]

A: (pq)

B: (qr)

of mult-adds is prq

Cost of Multiplying two Matrices

MATRIX-MULTIPLY(A, B)

if cols[A]rows[B] then
error(“incompatible dimensions”)

for i 1 to rows[A] do

for j1 to cols[B] do

C[i,j]  0

for k1 to cols[A] do

C[i,j]
C[i,j]A[i,k]·B[k,j]

return C

C=A·B is pr.

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

8

Matrix-chain Multiplication Problem
Input: a chain  A1,A2,  , An  of n matrices, Ai is a pi1pi matrix

Aim: fully parenthesize the product A1 ·A2· ·An such that the
number of scalar mult-adds are minimized.

• Ex.: A1, A2, A3 where A1: 10100; A2: 1005; A3: 550

((A1 A2) A3): 10  100  5  10  5  50 =7500

(A1 (A2A3)): 100550  1010050 =75000

First parenthesization yields 10 times faster computation.

105 550 A1 A2 (A1 A2)A3

10100 10050 A2 A3 A1 (A2A3)

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

9

Counting the Number of Parenthesizations

• Brute force approach: exhaustively check all parenthesizations

• P(n): # of parenthesizations of a sequence of n matrices

• We can split sequence between kth and (k1)st matrices for any

k=1, 2,  , n1, then parenthesize the two resulting sequences

independently, i.e.,

(A1A2A3  Ak)(Ak+1Ak+2  An)

• We obtain the recurrence

P(1) = 1 and P(n) =





1

1

)(P)(P
n

k

knk

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

10

Number of Parenthesizations:

• The recurrence generates the sequence of Catalan Numbers

• Solution is P(n) = C(n1) where

C(n) = = (4n/n3/2)

• The number of solutions is exponential in n

• Therefore, brute force approach is a poor strategy







1

1

)()(
n

k

knPkP

1

n1

2n
n

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

11

The Structure of an Optimal Parenthesization

Step 1: Characterize the structure of an optimal solution

• Ai..j: matrix that results from evaluating the product

AiAi+1Ai+2  Aj

• An optimal parenthesization of the product A1A2 An

– Splits the product between Ak and Ak1, for some 1k<n

(A1A2A3  Ak) · (Ak+1Ak+2  An)

– i.e., first compute A1..k and Ak+1..n and then multiply these two

• The cost of this optimal parenthesization

 Cost of computing A1..k

+ Cost of computing Ak+1..n

+ Cost of multiplying A1..k · Ak+1..n

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

12

Step 1: Characterize the Structure of an Optimal Solution

• Key observation: given optimal parenthesization

(A1A2A3  Ak) · (Ak+1Ak+2  An)

– Parenthesization of the subchain A1A2A3  Ak

– Parenthesization of the subchain Ak+1Ak+2  An

should both be optimal

– Thus, optimal solution to an instance of the problem contains

optimal solutions to subproblem instances

– i.e., optimal substructure within an optimal solution exists.

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

13

The Structure of an Optimal Parenthesization

Step 2: Define the value of an optimal solution recursively in terms

of optimal solutions to the subproblems

• Subproblem: The problem of determining the minimum cost of

computing Ai..j, i.e., parenthesization of AiAi+1Ai+2  Aj

• mij: min # of scalar mult-adds needed to compute subchain Ai..j

– the value of an optimal solution is m1n

– mii = 0, since subchain Ai..i contains just one matrix; no

multiplication at all

– mij = ?

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

14

Step 2: Define Value of an Optimal Soln Recursively(mij =?)

• For i < j, optimal parenthesization splits subchain Ai..j

as Ai..k and Ak+1..j where ik<j

 optimal cost of computing Ai..k : mik

+ optimal cost of computing Ak+1.. j : mk+1, j

+ cost of multiplying Ai..k Ak+1.. j: pi1pk pj

(Ai..k is a pi1pk matrix and Ak+1.. j is a pkpj matrix)

 mij = mik + mk+1, j + pi1pk pj

– The equation assumes we know the value of k, but we do not

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

15

Step 2: Recursive Equation for mij

• mij = mik + mk+1, j + pi1pk pj

– We do not know k, but there are ji possible values

for k; k =i, i +1, i+2, …, j 1

– Since optimal parenthesization must be one of these

k values we need to check them all to find the best

0 if i=j

mij =

MIN{mik + mk+1, j +pi1pk pj} if i < j
ik<j

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

16

Step 2: mij = MIN{mik + mk+1, j +pi1pk pj}

• The mij values give the costs of optimal solutions

to subproblems

• In order to keep track of how to construct an

optimal solution

– Define Sij to be the value of k which yields the

optimal split of the subchain Ai..j

That is, Sij =k such that

mij = mik + mk+1, j +pi1pk pj holds

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

17

Computing the Optimal Cost (Matrix-Chain Multiplication)

An important observation:

• We have relatively few subproblems

 one problem for each choice of i and j satisfying 1  i  j  n

 total n  (n1) …  2  1  n(n1)  (n2) subproblems

• We can write a recursive algorithm based on recurrence.

• However, a recursive algorithm may encounter each subproblem

many times in different branches of the recursion tree

• This property, overlapping subproblems, is the second important

feature for applicability of dynamic programming

2

1

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

18

Computing the Optimal Cost (Matrix-Chain Multiplication)

Compute the value of an optimal solution in a bottom-up fashion

 matrix Ai has dimensions pi1  pi for i  1, 2, …, n

 the input is a sequence p0, p1, …, pn where length[p]  n + 1

Procedure uses the following auxiliary tables:

 m[1…n, 1…n]: for storing the m[i, j] costs

 s[1…n, 1…n]: records which index of k achieved the optimal

cost in computing m[i, j]

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

19

Algorithm for Computing the Optimal Costs

MATRIX-CHAIN-ORDER(p)

n  length[p] 1

for i  1 to n do

m[i, i]  0

for  2 to n do

for i  1 to n    1 do

j  i    1

m[i, j] 

for k  i to j1 do

q  m[i, k]  m[k1, j]  pi-1 pk pj

if q < m[i, j] then

m[i, j]  q

s[i, j]  k

return m and s

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

20

Algorithm for Computing the Optimal Costs

• The algorithm first computes

m[i, i]  0 for i 1, 2, …, n min costs for all chains of length 1

• Then, for   2, 3, …, n computes

m[i, i1] for i  1, …, n1 min costs for all chains of length 

• For each value of   2, 3, …, n,

m[i, i1] depends only on table entries m[i, k] & m[k1, i1]

for ik<i1, which are already computed

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

21

Algorithm for Computing the Optimal Costs

  2
for i  1 to n  1

m[i, i1]   compute m[i, i1]
for k  i to i do {m[1, 2], m[2, 3], …, m[n1, n]}

.

. (n1) values
  3
for i  1 to n  2

m[i, i2]   compute m[i, i2]
for k  i to i1 do {m[1, 3], m[2, 4], …, m[n2, n]}

.

. (n2) values
  4
for i  1 to n  3

m[i, i3]   compute m[i, i3]
for k  i to i2 do {m[1, 4], m[2, 5], …, m[n3, n]}

.

. (n3) values

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

22

Table access pattern in computing m[i, j]s for ji1
 Table Entries currently computed

 n

1

Table entries currently computed
 j

 1 2 3 4 i . 1  j n

 i

n1

Table entries already computed

Table entries referenced

 k

 k

for k  i to j1 do

q  m[i, k]  m[k1, j]  pi-1 pk

pj

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

23

Table access pattern in computing m[i, j]s for ji1
 Table Entries currently computed

 n

1

Table entries currently computed
 j

 1 2 3 4 i . 1  j n

 i

n1

Table entries already computed

Table entries referenced

 k

 k

for k  i to j1 do

q  m[i, k]  m[k1, j]  pi-1 pk

pj

((Ai) (Ai+1Ai+2 Aj))

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

24

Table access pattern in computing m[i, j]s for ji1
 Table Entries currently computed

 n

1

Table entries currently computed
 j

 1 2 3 4 i . 1  j n

 i

n1

Table entries already computed

Table entries referenced

 k

 k

for k  i to j1 do

q  m[i, k]  m[k1, j]  pi-1 pk

pj

((AiAi+1) (Ai+2 Aj))

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

25

Table access pattern in computing m[i, j]s for ji1
 Table Entries currently computed

 n

1

Table entries currently computed
 j

 1 2 3 4 i . 1  j n

 i

n1

Table entries already computed

Table entries referenced

 k

 k

for k  i to j1 do

q  m[i, k]  m[k1, j]  pi-1 pk

pj

((AiAi+1Ai+2) (Ai+3Aj))

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

26

Table access pattern in computing m[i, j]s for ji1
 Table Entries currently computed

 n

1

Table entries currently computed
 j

 1 2 3 4 i . 1  j n

 i

n1

Table entries already computed

Table entries referenced

for k  i to j1 do

q  m[i, k]  m[k1, j]  pi-1 pk

pj

((AiAi+1Aj-1) (Aj))

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

27

Table reference pattern for m[i, j] (1  i  j  n)

m[i, j] is referenced for the computation of

 m[i, r] for j < r  n (n  j) times

 m[r, j] for 1  r < i (i  1) times

 Table Entries currently computed

Table entries referencing m[i, j]

The referenced table entry m[i, j]

 n

1 2 3 j n

 i

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

28

Table reference pattern for m[i, j] (1  i  j  n)

R(i, j) = # of times that m[i, j] is

referenced in computing other entries

R(i, j) = (nj)  (i1)

 (n1)  (ji)

The total # of references for the entire table is

 Table Entries currently computed

 n

1 2 3 j n

 i

i  1

n  j


 

n

i

n

ij

nn
jiR

1

3

3
),(

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

29

Constructing an Optimal Solution

• MATRIX-CHAIN-ORDER determines the optimal # of scalar mults/adds

 needed to compute a matrix-chain product

 it does not directly show how to multiply the matrices

• That is,

 it determines the cost of the optimal solution(s)

 it does not show how to obtain an optimal solution

• Each entry s[i, j] records the value of k such that

optimal parenthesization of Ai … Aj splits the product between Ak & Ak1

• We know that the final matrix multiplication in computing A1…n optimally
is A1…s[1,n] As[1,n]1,n

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

30

Constructing an Optimal Solution

Earlier optimal matrix multiplications can be computed recursively

Given:

 the chain of matrices A  A1, A2, … An

 the s table computed by MATRIX-CHAIN-ORDER

The following recursive procedure computes the matrix-chain product Ai…j

MATRIX-CHAIN-MULTIPLY(A, s, i, j)

if j > i then

X  MATRIX-CHAIN-MULTIPLY(A, s, i, s[i, j])

Y  MATRIX-CHAIN-MULTIPLY(A, s, s[i, j]1, j)

return MATRIX-MUTIPLY(X, Y)

else

return Ai
Invocation: MATRIX-CHAIN-MULTIPLY(A, s, 1, n)

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

31

Example: Recursive Construction of an Optimal Solution

MCM(1,6)
XMCM(1,3)(A1A2A3) MCM(1,3) return A1

YMCM(4,6)(A4A5A6) XMCM(1,1)A1

return (?) YMCM(2,3)(A2A3)
return (?)

 2 3 4 5 6

1 1 1 3 3 3

2 2 3 4 3

 3 3 3 3

4 4 5

 5 5

s[1…6, 1…6]

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

32

Example: Recursive Construction of an Optimal Solution

MCM(1,6)
XMCM(1,3)(A1(A2A3)) MCM(1,3) return A1

YMCM(4,6)(A4A5A6) XMCM(1,1)A1

return (?) YMCM(2,3)(A2A3) MCM(2,3)
return (A1(A2A3)) XMCM(2,2)A2 return A2

YMCM(3,3)A3 return A3

return (A2A3)

 2 3 4 5 6

1 1 1 3 3 3

2 2 3 4 3

 3 3 3 3

4 4 5

 5 5

s[1…6, 1…6]

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

33

Example: Recursive Construction of an Optimal Solution

MCM(1,6)
XMCM(1,3)(A1(A2A3)) MCM(1,3) return A1

YMCM(4,6)((A4A5)A6) XMCM(1,1)A1

return (A1(A2A3))((A4A5)A6) YMCM(2,3)(A2A3) MCM(2,3)
return (A1(A2A3)) XMCM(2,2)A2 return A2

YMCM(3,3)A3 return A3

return (A2A3)
MCM(4,6)
XMCM(4,5)(A4A5) MCM(4,5)
YMCM(6,6)A6 XMCM(4,4)A4 return A4

return ((A4A5)A6) YMCM(5,5)A5 return A5

return (A4A5)

return A6

 2 3 4 5 6

1 1 1 3 3 3

2 2 3 4 3

 3 3 3 3

4 4 5

 5 5

s[1…6, 1…6]

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

34

Elements of Dynamic Programming

• When should we look for a DP solution to an

optimization problem?

• Two key ingredients for the problem

– Optimal substructure

– Overlapping subproblems

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

35

DP Hallmark #1

Optimal Substructure

• A problem exhibits optimal substructure

– if an optimal solution to a problem contains within

it optimal solutions to subproblems

• Example: matrix-chain-multiplication

Optimal parenthesization of A1A2 An that splits

the product between Ak and Ak1,

contains within it optimal soln’s to the problems of

parenthesizing A1A2 Ak and Ak+1Ak+2  An

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

36

Optimal Substructure

• The optimal substructure of a problem often suggests a

suitable space of subproblems to which DP can be

applied

• Typically, there may be several classes of subproblems

that might be considered natural

• Example: matrix-chain-multiplication

– All subchains of the input chain

We can choose an arbitrary sequence of matrices from the input chain

– However, DP based on this space solves many more

subproblems

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

37

Optimal Substructure

Finding a suitable space of subproblems

• Iterate on subproblem instances

• Example: matrix-chain-multiplication

– Iterate and look at the structure of optimal soln’s to

subproblems, sub-subproblems, and so forth

– Discover that all subproblems consists of subchains of

A1, A2,  , An

– Thus, the set of chains of the form

Ai,Ai+1,  , Aj for 1 i  j  n

– Makes a natural and reasonable space of subproblems

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

38

DP Hallmark #2

Overlapping Subproblems

• Total number of distinct subproblems should

be polynomial in the input size

• When a recursive algorithm revisits the same

problem over and over again

we say that the optimization problem has

overlapping subproblems

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

39

Overlapping Subproblems

• DP algorithms typically take advantage of

overlapping subproblems

– by solving each problem once

– then storing the solutions in a table

where it can be looked up when needed

– using constant time per lookup

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

40

Overlapping Subproblems

Recursive matrix-chain order

RMC(p, i, j)

if i = j then
return 0

m[i, j] 

for k i to j 1 do

q  RMC(p, i, k)  RMC(p, k1, j)  pi-1 pk pj

if q < m[i, j] then

m[i, j]  q

return m[i, j]

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

41

2..2 3..4 2..3 4..4 1..1 2..2 3..3 4..4 1..1 2..3 1..2 3..3

3..3 4..4 2..2 3..3 2..2 3..3 1..1 2..2

1..1 2..4 1..2 3..4 1..3 4..4

1..4

k = 1

k = 1

k
 =

 2
k =

 2

k = 3
k = 3

k
=

2

k
 =

 3

k
 =

 3k
 =

 2

k
 =

 1

k
 =

 1

k
 =

 3

k
 =

 3

k
=
 1

k
 =

 1

k
 =

 2
k =

 2
k

=
 3

k
 =

 3

k
 =

 2

k
 =

 2 Redundant

calls are

filled

Recursive Matrix-chain Order
Recursion tree for RMC(p,1,4)

Nodes are labeled

with i and j values

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

42

Running Time of RMC
T(1)  1

T(n)  1  (T(k)  T(nk)  1) for n 1

• For i 1, 2, …, n each term T(i) appears twice

– Once as T(k), and once as T(n k)

• Collect n1 1’s in the summation together with the

front 1

T(n)  2  T(i)  n

• Prove that T(n) (2n) using the substitution method

k 1

n  1

i 1

n  1

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

43

Running Time of RMC: Prove that T(n)  (2n)

• Try to show that T(n)  2n1 (by substitution)

Base case: T(1)  1  20  211 for n  1

IH: T(i)  2i1 for all i 1, 2, …, n 1 and n  2

T(n)  2  2i1  n

 2  2i  n  2(2n 1 1)  n

 2n 1  (2n 1 2  n)

T(n)  2n1 Q.E.D.

i 1

n  1

i  0

n  2

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

44

Running Time of RMC: T(n)  2n1

Whenever

– a recursion tree for the natural recursive solution

to a problem contains the same subproblem

repeatedly

– the total number of different subproblems is small

it is a good idea to see if DP can be applied

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

45

Memoization

• Offers the efficiency of the usual DP approach

while maintaining top-down strategy

• Idea is to memoize the natural, but inefficient,

recursive algorithm

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

46

Memoized Recursive Algorithm

• Maintains an entry in a table for the soln to each

subproblem

• Each table entry contains a special value to indicate

that the entry has yet to be filled in

• When the subproblem is first encountered its solution

is computed and then stored in the table

• Each subsequent time that the subproblem

encountered the value stored in the table is simply

looked up and returned

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

47

Memoized Recursive Algorithm

• The approach assumes that

– The set of all possible subproblem parameters are

known

– The relation between the table positions and

subproblems is established

• Another approach is to memoize

– by using hashing with subproblem parameters as key

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

48

Memoized Recursive Matrix-chain Order

LookupC(p, i, j)

if m[i, j] =  then

if i = j then
m[i, j]  0

else

for k  i to j 1 do

q  LookupC(p, i, k)  LookupC(p, k1, j)  pi-1 pk pj

if q < m[i, j] then

m[i, j]  q

return m[i, j]

MemoizedMatrixChain(p)

n  length[p] 1

for i 1 to n do

for j 1 to n do

m[i, j] 

return LookupC(p, 1, n)

Shaded subtrees are looked-up

rather than recomputing

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

49

Elements of Dynamic Programming:

Summary

• Matrix-chain multiplication can be solved in O(n3) time

– by either a top-down memoized recursive algorithm

– or a bottom-up dynamic programming algorithm

• Both methods exploit the overlapping subproblems

property

– There are only (n2) different subproblems in total

– Both methods compute the soln to each problem once

• Without memoization the natural recursive algorithm

runs in exponential time since subproblems are solved

repeatedly

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

50

Elements of Dynamic Programming:

Summary

In general practice

• If all subproblems must be solved at once

– a bottom-up DP algorithm always outperforms a top-down
memoized algorithm by a constant factor

because, bottom-up DP algorithm

• Has no overhead for recursion

• Less overhead for maintaining the table

• DP: Regular pattern of table accesses can be exploited to reduce
the time and/or space requirements even further

• Memoized: If some problems need not be solved at all, it has

the advantage of avoiding solutions to those subproblems

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

51

Longest Common Subsequence

A subsequence of a given sequence is just the given sequence

with some elements (possibly none) left out

Formal definition: Given a sequence X  x1, x2, …, xm,

sequence Z  z1, z2, …, zk is a subsequence of X

if  a strictly increasing sequence i1, i2, …, ik  of indices of X such
that xi  zj for all j  1, 2, …, k, where 1  k  m

1 2 3 4 5 6 7

Example: Z B,C,D,B is a subsequence of X A,B,C,B,D,A,B

with the index sequence i1, i2, i3, i4   2, 3, 5, 7

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

52

Longest Common Subsequence (LCS)

Given two sequences X & Y, Z is a common subsequence of X & Y

Example: X  <A, B, C, B, D, A, B> and Y  <B, D, C, A, B, A>

Sequence <B, C, A> is a common subsequence of X and Y.

However, <B, C, A> is not a longest common subsequence (LCS)

of X and Y.

<B, C, B, A> is an LCS of X and Y.

Longest common subsequence (LCS):

Given two sequences X  <x1, x2, …, xm> and Y  <y1, y2, …, yn>

We wish to find the LCS of X & Y

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

53

Characterizing a Longest Common Subsequence

A brute force approach

• Enumerate all subsequences of X

• Check each subsequence to see if it is also a subsequence of Y

meanwhile keeping track of the LCS found

• Each subsequence of X corresponds to a subset of the index

set {1, 2, …, m} of X

• So, there are 2m subsequences of X

• Hence, this approach requires exponential time

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

54

Characterizing a Longest Common Subsequence

Definition: The i-th prefix Xi of X for i  0,1, …, m is
Xi <x1, x2, …, xi>

1 2 3 4 5 6 7

Example: Given X  <A, B, C, B, D, A, B>

X4 <A, B, C, B> and X empty sequence

Theorem: (Optimal substructure of an LCS)

Let X  <x1, x2, …, xm> and Y  <y1, y2, …, yn> are given

Let Z  <z1, z2, …, zk> be any LCS of X and Y

1. If xm yn then zk  xm yn and Zk1 is an LCS of Xm1 and Yn1

2. If xm  yn and zk  xm then Z is an LCS of Xm1 and Y

3. If xm  yn and zk  yn then Z is an LCS of X and Yn 1

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

55

Optimal Substructure Theorem (case 1)

If xm yn then zk  xm yn and Zk1 is an LCS of Xm1 and Yn1

Xm1

 1 2 m

X  C Y 

 1 2 n

 C

Yn1

 C

 1 2 k

Zk1

LCS

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

56

Optimal Substructure Theorem (case 2)

If xm  yn and zk  xm then Z is an LCS of Xm1 and Y

Xm1

 1 2 m

X  C Y 

 1 2 n

 D

Y

 1 2 k

Z

LCS

Z  C

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

57

Optimal Substructure Theorem (case 3)

If xm  yn and zk  yn then Z is an LCS of X and Yn 1

X

 1 2 m

X  C Y 

 1 2 n

 D

Yn1

 D

 1 2 k

Z

LCS

Z 

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

58

Proof of Optimal Substructure Theorem (case 1)

Proof: If zk  xm yn then

we can append xm  yn to Z to obtain a common

subsequence of length k1  contradiction

Thus, we must have zk  xm  yn

Hence, the prefix Zk1 is a length-(k1) CS of Xm1 and Yn1

We have to show that Zk1 is in fact an LCS of Xm1 and Yn1

Proof by contradiction:

Assume that  a CS W of Xm1 and Yn1 with |W|  k

Then appending xm  yn to W produces a CS of length k1

If xm yn then zk  xm yn and Zk1 is an LCS of Xm1 and Yn1

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

59

Proof of Optimal Substructure Theorem (case 2)

Proof : If zk  xm then Z is a CS of Xm1 and Yn

We have to show that Z is in fact an LCS of Xm1 and Yn

(Proof by contradiction)

Assume that  a CS W of Xm1 and Yn with |W| > k

Then W would also be a CS of X and Y

Contradiction to the assumption that

Z is an LCS of X and Y with |Z|  k

Case 3: Dual of the proof for (case 2)

If xm  yn and zk  xm then Z is an LCS of Xm1 and Y

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

60

Longest Common Subsequence Algorithm

LCS(X, Y)

m  length[X]

n  length[Y]

if xm  yn then

Z  LCS(Xm1, Yn1)  solve one subproblem

return <Z, xm yn>  append xm yn to Z

else

Z  LCS(Xm1, Y)

Z  LCS(X, Yn1)

return longer of Z and Z

 solve two subproblems

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

61

A Recursive Solution to Subproblems

Theorem implies that there are one or two subproblems to examine

if xm  yn then

we must solve the subproblem of finding an LCS of Xm1 & Yn1

appending xm  yn to this LCS yields an LCS of X & Y

else

we must solve two subproblems

 finding an LCS of Xm1 & Y

 finding an LCS of X & Yn1

longer of these two LCSs is an LCS of X & Y

endif

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

62

A Recursive Solution to Subproblems

Overlapping-subproblems property

 finding an LCS to Xm1 & Y and an LCS to X & Yn1 has the
subsubproblem of finding an LCS to Xm1 & Yn1

 many other subproblems share subsubproblems

A recurrence for the cost of an optimal solution

c[i, j]: length of an LCS of the prefix subsequences Xi & Yj

If either i  0 or j  0, one of the prefix sequences has length 0,
so the LCS has length 0

ji

ji

yxji

yxji

ji

jicjic

jicjic



















 and 0, if

 and 0, if

0or 0 if

]},1[],1,[max{

1]1,1[

0

],[

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

63

Computing the Length of an LCS

We can easily write an exponential-time recursive algorithm

based on the given recurrence

However, there are only (mn) distinct subproblems

Therefore, we can use dynamic programming

Data structures:

Table c[0…m, 0…n] is used to store c[i, j] values

Entries of this table are computed in row-major order

Table b[1…m, 1…n] is maintained to simplify the construction
of an optimal solution

b[i, j]: points to the table entry corresponding to the optimal
subproblem solution chosen when computing c[i, j]

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

64

Computing the Length of an LCS

LCS-LENGTH(X,Y)
m  length[X]; n  length[Y]
for i  0 to m do c[i, 0]  0
for j  0 to n do c[0, j]  0
for i  1 to m do

for j  1 to n do
if xi  yj then

c[i, j]  c[i1, j1]1

b[i, j]  “”
else if c[i  1, j]  c[i, j1]

c[i, j]  c[i1, j]
b[i, j]  “”

else
c[i, j]  c[i, j1]

b[i, j]  “”

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

65

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1 2 3 4 5 6

 0

 0

 0

 0

 0

 0

 0

 0 0 0 0 0 0 0

 j 0 1 2 3 4 5 6

 yj B D C A B A i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

66

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1 2 3 4 5 6

1 A

 0

     

 0 0 0 0 1 1 1

 0

 0

 0

 0

 0

 0 0 0 0 0 0 0

 j 0 1 2 3 4 5 6

 yj B D C A B A i

0 xi

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

67

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1 2 3 4 5 6

 0

     

 0 0 0 0 1 1 1

   

 0 1 1 1 1 2 2

 0

 0

 0

 0

 j 0 1 2 3 4 5 6

 yj B D C A B A

 0 0 0 0 0 0 0

i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

68

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1 2 3 4 5 6

 0

     

 0 0 0 0 1 1 1

   

 0 1 1 1 1 2 2

     

 0 1 1 2 2 2 2

 0

 0

 0

 j 0 1 2 3 4 5 6

 yj B D C A B A

 0 0 0 0 0 0 0

i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

69

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1 2 3 4 5 6

 0

 0 0 0 0 0 0 0

     

 0 0 0 0 1 1 1

   

 0 1 1 1 1 2 2

     

 0 1 1 2 2 2 2

 

 0 1

 0

 0

 j 0 1 2 3 4 5 6

 yj B D C A B A i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

70

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1 2 3 4 5 6

 0

 0 0 0 0 0 0 0

     

 0 0 0 0 1 1 1

   

 0 1 1 1 1 2 2

     

 0 1 1 2 2 2 2

  

 0 1 1

 0

 0

 j 0 1 2 3 4 5 6

 yj B D C A B A i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

71

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1 2 3 4 5 6

 0

 0 0 0 0 0 0 0

     

 0 0 0 0 1 1 1

   

 0 1 1 1 1 2 2

     

 0 1 1 2 2 2 2

   

 0 1 1 2

 0

 0

 j 0 1 2 3 4 5 6

 yj B D C A B A i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

72

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1 2 3 4 5 6

 0

 0 0 0 0 0 0 0

     

 0 0 0 0 1 1 1

   

 0 1 1 1 1 2 2

     

 0 1 1 2 2 2 2

    

 0 1 1 2 2

 0

 0

 j 0 1 2 3 4 5 6

 yj B D C A B A i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

73

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1 2 3 4 5 6

 0

 0 0 0 0 0 0 0

     

 0 0 0 0 1 1 1

   

 0 1 1 1 1 2 2

     

 0 1 1 2 2 2 2

     

 0 1 1 2 2 3

 0

 0

 j 0 1 2 3 4 5 6

 yj B D C A B A i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

74

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1 2 3 4 5 6

 0

 0 0 0 0 0 0 0

     

 0 0 0 0 1 1 1

   

 0 1 1 1 1 2 2

     

 0 1 1 2 2 2 2

     

 0 1 1 2 2 3 3

 0

 0

 j 0 1 2 3 4 5 6

 yj B D C A B A i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

75

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1 2 3 4 5 6

 0

     

 0 0 0 0 1 1 1

   

 0 1 1 1 1 2 2

     

 0 1 1 2 2 2 2

     

 0 1 1 2 2 3 3

      

 0 1 2 2 2 3 3

 0

 j 0 1 2 3 4 5 6

 yj B D C A B A

 0 0 0 0 0 0 0

i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

76

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1 2 3 4 5 6

 0

     

 0 0 0 0 1 1 1

   

 0 1 1 1 1 2 2

     

 0 1 1 2 2 2 2

     

 0 1 1 2 2 3 3

      

 0 1 2 2 2 3 3

      

 0 1 2 2 3 3 4

 j 0 1 2 3 4 5 6

 yj B D C A B A

 0 0 0 0 0 0 0

i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

77

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1 2 3 4 5 6

Running-time  O(mn)
since each table entry takes

O(1) time to compute

LCS of X & Y  <B, C, B, A>

      

 0 1 2 3 3 4 4

   

 0 1 1 1 1 2 2

     

 0 1 1 2 2 2 2

     

 0 1 1 2 2 3 3

      

 0 1 2 2 2 3 3

      

 0 1 2 2 3 3 4

     

 0 0 0 0 1 1 1

 0 0 0 0 0 0 0

 j 0 1 2 3 4 5 6

 yj B D C A B A i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

78

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1 2 3 4 5 6

Running-time  O(mn)
since each table entry takes

O(1) time to compute

LCS of X & Y  <B, C, B, A>

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

79

Constructing an LCS

The b table returned by LCS-LENGTH can be used to quickly

construct an LCS of X & Y

Begin at b[m, n] and trace through the table following arrows

Whenever you encounter a “” in entry b[i, j]

it implies that xi  yj is an element of LCS

The elements of LCS are encountered in reverse order

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

80

Constructing an LCS

PRINT-LCS(b, X, i, j)

if i  0 or j  0 then

return
if b[i, j]  “” then

PRINT-LCS(b, X, i1, j1)
print xi

else if b[i, j]  “” then

PRINT-LCS(b, X, i1, j)
else

PRINT-LCS(b, X, i, j1)

The recursive procedure PRINT-LCS prints out LCS in proper order

This procedure takes O(mn) time

since at least one of i and j is determined in each stage of the recursion

The initial invocation:

PRINT-LCS(b, X, length[X], length[Y])

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

81

Longest Common Subsequence

Improving the code:

 we can eliminate the b table altogether

 each c[i, j] entry depends only on 3 other c table entries

c[i1, j1], c[i1, j] and c[i, j1]

Given the value of c[i, j]

 we can determine in O(1) time which of these 3 values was used

to compute c[i, j] without inspecting table b

 we save (mn) space by this method

 however, space requirement is still (mn)

since we need (mn) space for the c table anyway

We can reduce the asymptotic space requirement for LCS-LENGTH

 since it needs only two rows of table c at a time

 the row being computed and the previous row

This improvement works if we only need the length of an LCS

