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Introduction

• An algorithm design paradigm like divide-and-conquer

• “Programming”: A tabular method (not writing computer code)

• Divide-and-Conquer (DAC): subproblems are independent

• Dynamic Programming (DP): subproblems are not independent

• Overlapping subproblems: subproblems share sub-subproblems

– In solving problems with overlapping subproblems

• A DAC algorithm does redundant work

– Repeatedly solves common subproblems

• A DP algorithm solves each problem just once

– Saves its result in a table
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Optimization Problems

• DP typically applied to optimization problems

• In an optimization problem

– There are many possible solutions (feasible solutions)

– Each solution has a value

– Want to find an optimal solution to the problem

• A solution with the optimal value (min or max value)

– Wrong to say “the” optimal solution to the problem

• There may be several solutions with the same optimal value
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Development of a DP Algorithm

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal 

solution

3. Compute the value of an optimal solution in a 

bottom-up fashion

4. Construct an optimal solution from the 

information computed in Step 3
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Example: Matrix-chain Multiplication

• Input: a sequence (chain) A1,A2,  , An of n matrices

• Aim: compute the product A1·A2· ·An

• A product of matrices is fully parenthesized if

– It is either a single matrix

– Or, the product of two fully parenthesized matrix products surrounded by 

a pair of parentheses. 

(Ai(Ai+1Ai+2  Aj))

((AiAi+1Ai+2  Aj-1)Aj)

((AiAi+1Ai+2  Ak)(Ak+1Ak+2  Aj)) for ikj

– All parenthesizations yield the same product; matrix product is associative
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Matrix-chain Multiplication: An Example 

Parenthesization

• Input: A1, A2, A3, A4

• 5 distinct ways of full parenthesization

(A1(A2(A3A4)))

(A1((A2A3)A4))

((A1A2)(A3A4))

((A1(A2A3))A4)

(((A1A2)A3)A4)

• The way we parenthesize a chain of matrices can have a 
dramatic effect on the cost of computing the product
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Matrix has two attributes 

• rows[A]: # of rows

• cols[A]: # of columns

# of scalar mult-adds in 

C AB is

rows[A]cols[B]cols[A]

A: (pq)

B: (qr)

# of mult-adds is prq

Cost of Multiplying two Matrices

MATRIX-MULTIPLY(A, B)

if cols[A]rows[B] then 
error(“incompatible dimensions”)

for i 1 to rows[A] do

for j1 to cols[B] do

C[i,j]  0

for k1 to cols[A] do

C[i,j]
C[i,j]A[i,k]·B[k,j]

return C 

C=A·B is pr. 



CS473 – Lecture 10 Cevdet Aykanat - Bilkent University 

Computer Engineering Department

8

Matrix-chain Multiplication Problem
Input: a chain  A1,A2,  , An  of n matrices, Ai is a pi1pi matrix

Aim: fully parenthesize the product A1 ·A2· ·An such that the 
number of scalar mult-adds are minimized.

• Ex.: A1, A2, A3 where A1: 10100; A2: 1005; A3: 550

((A1 A2) A3): 10  100  5  10  5  50 =7500

(A1 (A2A3)): 100550  1010050  =75000

First parenthesization  yields 10 times faster computation.

105 550 A1 A2 (A1 A2)A3

10100 10050 A2 A3 A1 (A2A3)
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Counting the Number of Parenthesizations

• Brute force approach: exhaustively check all parenthesizations

• P(n): # of parenthesizations of a sequence of n matrices

• We can split sequence between kth and (k1)st matrices for any 

k=1, 2,  , n1, then parenthesize the two resulting sequences 

independently, i.e.,

(A1A2A3  Ak)(Ak+1Ak+2  An)

• We obtain the recurrence

P(1) = 1 and P(n) =

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Number of Parenthesizations: 

• The recurrence generates the sequence of Catalan Numbers

• Solution is P(n) = C(n1) where

C(n) =                   = (4n/n3/2) 

• The number of solutions is exponential in n

• Therefore, brute force approach is a poor strategy
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The Structure of an Optimal Parenthesization

Step 1: Characterize the structure of an optimal solution

• Ai..j: matrix that results from evaluating the product 

AiAi+1Ai+2  Aj

• An optimal parenthesization of the product A1A2 An

– Splits the product between Ak and Ak1, for some 1k<n

(A1A2A3  Ak) · (Ak+1Ak+2  An)

– i.e., first compute A1..k and Ak+1..n and then multiply these two

• The cost of this optimal parenthesization

 Cost of computing A1..k

+ Cost of computing Ak+1..n

+ Cost of multiplying A1..k · Ak+1..n
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Step 1: Characterize the Structure of an Optimal Solution

• Key observation: given optimal parenthesization

(A1A2A3  Ak) · (Ak+1Ak+2  An)

– Parenthesization of the subchain A1A2A3  Ak

– Parenthesization of the subchain Ak+1Ak+2  An

should both be optimal

– Thus, optimal solution to an instance of the problem contains 

optimal solutions to subproblem instances

– i.e., optimal substructure within an optimal solution exists.
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The Structure of an Optimal Parenthesization

Step 2: Define the value of an optimal solution recursively in terms 

of optimal solutions to the subproblems

• Subproblem: The problem of determining the minimum cost of 

computing Ai..j, i.e., parenthesization of AiAi+1Ai+2  Aj

• mij: min # of scalar mult-adds needed to compute subchain Ai..j

– the value of an optimal solution is m1n

– mii = 0, since subchain Ai..i contains just one matrix; no 

multiplication at all

– mij = ? 
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Step 2: Define Value of an Optimal Soln Recursively(mij =?)

• For i < j, optimal parenthesization splits subchain Ai..j

as Ai..k and Ak+1..j where ik<j

 optimal cost of computing Ai..k : mik

+ optimal cost of computing Ak+1.. j : mk+1, j

+ cost of multiplying Ai..k Ak+1.. j: pi1pk pj

(Ai..k is a pi1pk matrix and Ak+1.. j is a pkpj matrix)

 mij = mik + mk+1, j + pi1pk pj

– The equation assumes we know the value of k, but we do not
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Step 2: Recursive Equation for mij

• mij = mik + mk+1, j + pi1pk pj

– We do not know k, but there are ji possible values 

for k; k =i, i +1, i+2, …, j 1

– Since optimal parenthesization must be one of these 

k values we need to check them all to find the best 

0 if  i=j

mij =

MIN{mik + mk+1, j +pi1pk pj}  if i < j
ik<j
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Step 2: mij = MIN{mik + mk+1, j +pi1pk pj}

• The mij values give the costs of optimal solutions 

to subproblems 

• In order to keep track of how to construct an 

optimal solution

– Define Sij to be the value of k which yields the 

optimal split of the subchain Ai..j

That is, Sij =k such that

mij = mik + mk+1, j +pi1pk pj holds
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Computing the Optimal Cost (Matrix-Chain Multiplication)

An important observation:

• We have relatively few subproblems

 one problem for each choice of i and j satisfying 1  i  j  n

 total n  (n1) …  2  1  n(n1)  (n2) subproblems

• We can write a recursive algorithm based on recurrence. 

• However, a recursive algorithm may encounter each subproblem 

many times in different branches of the recursion tree

• This property, overlapping subproblems, is the second important 

feature for applicability of dynamic programming

2

1
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Computing the Optimal Cost (Matrix-Chain Multiplication)

Compute the value of an optimal solution in a bottom-up fashion

 matrix Ai has dimensions pi1  pi for i  1, 2, …, n

 the input is a sequence p0, p1, …, pn where length[p]  n + 1

Procedure uses the following auxiliary tables:

 m[1…n, 1…n]: for storing the m[i,  j] costs

 s[1…n, 1…n]:  records which index of k achieved the optimal 

cost in computing m[i,  j]
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Algorithm for Computing the Optimal Costs

MATRIX-CHAIN-ORDER(p)

n  length[p] 1

for i  1 to n do

m[i, i]  0

for  2 to n do

for i  1 to n    1 do

j  i    1

m[i, j] 

for k  i to j1 do

q  m[i, k]  m[k1, j]  pi-1 pk pj

if q < m[i, j] then

m[i, j]  q

s[i, j]  k

return m and s
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Algorithm for Computing the Optimal Costs

• The algorithm first computes 

m[i, i]  0 for i 1, 2, …, n min costs for all chains of length 1

• Then, for   2, 3, …, n computes 

m[i, i1] for i  1, …, n1 min costs for all chains of length 

• For each value of   2, 3, …, n,

m[i, i1] depends only on table entries m[i, k] & m[k1, i1] 

for ik<i1, which are already computed



CS473 – Lecture 10 Cevdet Aykanat - Bilkent University 

Computer Engineering Department

21

Algorithm for Computing the Optimal Costs

  2
for i  1 to n  1

m[i, i1]   compute m[i, i1]
for k  i to i do                     {m[1, 2], m[2, 3], …, m[n1, n]}

.

.                                                 (n1) values
  3
for i  1 to n  2

m[i, i2]   compute m[i, i2]
for k  i to i1 do                {m[1, 3], m[2, 4], …, m[n2, n]}

.

.                                                 (n2) values
  4
for i  1 to n  3

m[i, i3]   compute m[i, i3]
for k  i to i2 do                {m[1, 4], m[2, 5], …, m[n3, n]}

.

.                                                 (n3) values
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Table access pattern in computing m[i, j]s for ji1
 Table Entries currently computed 

 

 n 

1 

Table entries currently computed 
 j 

  1  2   3   4 .  .  .  . i  . 1    .  .  .  .  .  .  .  . j .  .  .  .  .  n 

 i 

 

 

n1 

 

Table entries already computed 

Table entries referenced  

 k 

 k 

for k  i to j1 do

q  m[i, k]  m[k1, j]  pi-1 pk 

pj
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Table access pattern in computing m[i, j]s for ji1
 Table Entries currently computed 

 

 n 

1 

Table entries currently computed 
 j 

  1  2   3   4 .  .  .  . i  . 1    .  .  .  .  .  .  .  . j .  .  .  .  .  n 

 i 

 

 

n1 

 

Table entries already computed 

Table entries referenced  

 k 

 k 

for k  i to j1 do

q  m[i, k]  m[k1, j]  pi-1 pk 

pj

((Ai) (Ai+1Ai+2 Aj))
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Table access pattern in computing m[i, j]s for ji1
 Table Entries currently computed 

 

 n 

1 

Table entries currently computed 
 j 

  1  2   3   4 .  .  .  . i  . 1    .  .  .  .  .  .  .  . j .  .  .  .  .  n 

 i 

 

 

n1 

 

Table entries already computed 

Table entries referenced  

  k 

 k 

for k  i to j1 do

q  m[i, k]  m[k1, j]  pi-1 pk 

pj

((AiAi+1) (Ai+2 Aj))
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Table access pattern in computing m[i, j]s for ji1
 Table Entries currently computed 

 

 n 

1 

Table entries currently computed 
 j 

  1  2   3   4 .  .  .  . i  . 1    .  .  .  .  .  .  .  . j .  .  .  .  .  n 

 i 

 

 

n1 

 

Table entries already computed 

Table entries referenced  

  k 

 k 

for k  i to j1 do

q  m[i, k]  m[k1, j]  pi-1 pk 

pj

((AiAi+1Ai+2 ) (Ai+3Aj))
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Table access pattern in computing m[i, j]s for ji1
 Table Entries currently computed 

 

 n 

1 

Table entries currently computed 
 j 

  1  2   3   4 .  .  .  . i  . 1    .  .  .  .  .  .  .  . j .  .  .  .  .  n 

 i 

 

 

n1 

 

Table entries already computed 

Table entries referenced  

for k  i to j1 do

q  m[i, k]  m[k1, j]  pi-1 pk 

pj

((AiAi+1Aj-1) (Aj))
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Table reference pattern for m[i, j] (1  i  j  n)

m[i, j] is referenced for the computation of

 m[i, r] for j < r  n (n  j ) times

 m[r, j] for 1  r < i (i  1 ) times

 Table Entries currently computed 
 

Table entries referencing m[i, j] 

The referenced table entry m[i, j] 

 n 
 

1  2   3                                            j                             n 

 i 
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Table reference pattern for m[i, j] (1  i  j  n)

R(i, j) = # of times that m[i, j] is

referenced in computing other entries

R(i, j) = (nj)  (i1)

 (n1)  (ji)

The total # of references for the entire table is

 Table Entries currently computed 
 

 n 
 

1  2   3                                            j                             n 

 i 
 

 

 

 

  

i  1 

n  j 


 

n

i

n

ij

nn
jiR

1

3

3
),(
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Constructing an Optimal Solution

• MATRIX-CHAIN-ORDER determines the optimal # of  scalar mults/adds

 needed to compute a matrix-chain product

 it does not directly show how to multiply the matrices

• That is,

 it determines the cost of the optimal solution(s)

 it does not show how to obtain an optimal solution

• Each entry s[i, j] records the value of k such that

optimal parenthesization of Ai … Aj splits the product between Ak & Ak1

• We know that the final matrix multiplication in computing A1…n optimally 
is A1…s[1,n] As[1,n]1,n
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Constructing an Optimal Solution

Earlier optimal matrix multiplications can be computed recursively 

Given: 

 the chain of matrices A  A1, A2, … An

 the s table computed by MATRIX-CHAIN-ORDER

The following recursive procedure computes the matrix-chain product Ai…j

MATRIX-CHAIN-MULTIPLY(A, s, i,  j)

if j > i then

X  MATRIX-CHAIN-MULTIPLY(A, s, i, s[i, j])

Y  MATRIX-CHAIN-MULTIPLY(A, s, s[i, j]1, j)

return MATRIX-MUTIPLY(X, Y)

else

return Ai
Invocation: MATRIX-CHAIN-MULTIPLY(A, s, 1, n)
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Example: Recursive Construction of an Optimal Solution

MCM(1,6)
XMCM(1,3)(A1A2A3) MCM(1,3)                            return A1

YMCM(4,6)(A4A5A6) XMCM(1,1)A1

return (?)                                        YMCM(2,3)(A2A3)
return (?)                  

 

 2      3     4      5      6 

1    1      1     3      3      3 

2    2     3      4      3 

  3    3      3      3 

4    4      5 

 5      5 

s[1…6, 1…6] 
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Example: Recursive Construction of an Optimal Solution

MCM(1,6)
XMCM(1,3)(A1(A2A3))        MCM(1,3)                            return A1

YMCM(4,6)(A4A5A6)             XMCM(1,1)A1

return (?)                                        YMCM(2,3)(A2A3)       MCM(2,3)
return (A1(A2A3))                  XMCM(2,2)A2 return A2

YMCM(3,3)A3            return A3

return (A2A3) 

 

 2      3     4      5      6 

1    1      1     3      3      3 

2    2     3      4      3 

  3    3      3      3 

4    4      5 

 5      5 

s[1…6, 1…6] 
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Example: Recursive Construction of an Optimal Solution

MCM(1,6)
XMCM(1,3)(A1(A2A3))        MCM(1,3)                            return A1

YMCM(4,6)((A4A5)A6)          XMCM(1,1)A1

return (A1(A2A3))((A4A5)A6)        YMCM(2,3)(A2A3)       MCM(2,3)
return (A1(A2A3))                  XMCM(2,2)A2 return A2

YMCM(3,3)A3            return A3

return (A2A3) 
MCM(4,6)
XMCM(4,5)(A4A5)       MCM(4,5)
YMCM(6,6)A6                        XMCM(4,4)A4 return A4

return ((A4A5)A6 )                 YMCM(5,5)A5           return A5

return (A4A5)

return A6

 

 2      3     4      5      6 

1    1      1     3      3      3 

2    2     3      4      3 

  3    3      3      3 

4    4      5 

 5      5 

s[1…6, 1…6] 
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Elements of Dynamic Programming

• When should we look for a DP solution to an 

optimization problem?

• Two key ingredients for the problem

– Optimal substructure 

– Overlapping subproblems
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DP Hallmark #1

Optimal Substructure

• A problem exhibits optimal substructure 

– if an optimal solution to a problem contains within 

it optimal solutions to subproblems

• Example: matrix-chain-multiplication

Optimal parenthesization of A1A2 An that splits 

the product between Ak and Ak1, 

contains within it optimal soln’s to the problems of 

parenthesizing A1A2 Ak and Ak+1Ak+2  An
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Optimal Substructure

• The optimal substructure of a problem often suggests a 

suitable space of subproblems to which DP can be 

applied

• Typically, there may be several classes of subproblems 

that might be considered natural

• Example: matrix-chain-multiplication

– All subchains of the input chain

We can choose an arbitrary sequence of matrices from the input chain

– However, DP based on this space solves many more 

subproblems
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Optimal Substructure

Finding a suitable space of subproblems

• Iterate on subproblem instances

• Example: matrix-chain-multiplication

– Iterate and look at the structure of optimal soln’s to 

subproblems, sub-subproblems, and so forth

– Discover that all subproblems consists of subchains of     

A1, A2,  , An

– Thus, the set of chains of the form 

Ai,Ai+1,  , Aj for 1 i  j  n

– Makes a natural and reasonable space of subproblems
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DP Hallmark #2

Overlapping Subproblems

• Total number of distinct subproblems should 

be polynomial in the input size

• When a recursive algorithm revisits the same 

problem over and over again

we say that the optimization problem has 

overlapping subproblems
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Overlapping Subproblems

• DP algorithms typically take advantage of 

overlapping subproblems

– by solving each problem once

– then storing the solutions in a table

where it can be looked up when needed

– using constant time per lookup
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Overlapping Subproblems

Recursive matrix-chain order

RMC(p, i, j)

if i = j then 
return 0

m[i, j] 

for k i to j 1 do

q  RMC(p, i, k)  RMC(p, k1, j)  pi-1 pk pj

if q < m[i, j] then

m[i, j]  q

return m[i, j] 
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2..2 3..4 2..3 4..4 1..1 2..2 3..3 4..4 1..1 2..3 1..2 3..3

3..3 4..4 2..2 3..3 2..2 3..3 1..1 2..2

1..1 2..4 1..2 3..4 1..3 4..4

1..4

k = 1

k = 1

k
 =

 2
k =

 2

k = 3
k = 3

k 
= 

2

k
 =

 3

k
 =

 3k
 =

 2

k
 =

 1

k
 =

 1

k
 =

 3

k
 =

 3

k 
=
 1

k
 =

 1

k
 =

 2
k =

 2
k 

=
 3

k
 =

 3

k
 =

 2

k
 =

 2 Redundant

calls are

filled

Recursive Matrix-chain Order
Recursion tree for RMC(p,1,4)

Nodes are labeled 

with i and j values
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Running Time of RMC
T(1)  1

T(n)  1  (T(k)  T(nk)  1) for n 1

• For i 1, 2, …, n each term T(i) appears twice

– Once as T(k), and once as T(n k) 

• Collect n1 1’s in the summation together with the 

front 1

T(n)  2  T(i)  n

• Prove that T(n) (2n) using the substitution method

k 1

n  1

i 1

n  1
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Running Time of RMC: Prove that T(n)  (2n)

• Try to show that T(n)  2n1 (by substitution)

Base case: T(1)  1  20  211 for n  1

IH: T(i)  2i1 for all  i 1, 2, …, n 1 and n  2

T(n)  2  2i1  n

 2  2i  n  2(2n 1 1)  n 

 2n 1  (2n 1 2  n)

T(n)  2n1 Q.E.D.

i 1

n  1

i  0

n  2



CS473 – Lecture 10 Cevdet Aykanat - Bilkent University 

Computer Engineering Department

44

Running Time of RMC: T(n)  2n1

Whenever 

– a recursion tree for the natural recursive solution 

to a problem contains the same subproblem 

repeatedly

– the total number of different subproblems is small 

it is a good idea to see if DP can be applied
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Memoization

• Offers the efficiency of the usual DP approach 

while maintaining top-down strategy 

• Idea is to memoize the natural, but inefficient, 

recursive algorithm
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Memoized Recursive Algorithm

• Maintains an entry in a table for the soln to each 

subproblem 

• Each table entry contains a special value to indicate 

that the entry has yet to be filled in

• When the subproblem is first encountered its solution 

is computed and then stored in the table

• Each subsequent time that the subproblem 

encountered the value stored in the table is simply 

looked up and returned
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Memoized Recursive Algorithm

• The approach assumes that

– The set of all possible subproblem parameters are 

known

– The relation between the table positions and

subproblems is established

• Another approach is to memoize 

– by using hashing with subproblem parameters as key
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Memoized Recursive Matrix-chain Order

LookupC(p, i, j)

if m[i, j] =  then 

if i = j then 
m[i, j]  0

else

for k  i to j 1 do

q  LookupC(p, i, k)  LookupC(p, k1, j)  pi-1 pk pj

if q < m[i, j] then

m[i, j]  q

return m[i, j] 

MemoizedMatrixChain(p)

n  length[p] 1 

for i 1 to n do

for j 1 to n do

m[i, j] 

return LookupC(p, 1, n)

Shaded subtrees are looked-up 

rather than recomputing
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Elements of Dynamic Programming: 

Summary

• Matrix-chain multiplication can be solved in O(n3) time

– by either a top-down memoized recursive algorithm

– or a bottom-up dynamic programming algorithm

• Both methods exploit the overlapping subproblems

property

– There are only (n2) different subproblems in total 

– Both methods compute the soln to each problem once

• Without memoization the natural recursive algorithm 

runs in exponential time since subproblems are solved 

repeatedly
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Elements of Dynamic Programming: 

Summary

In general practice

• If all subproblems must be solved at once

– a bottom-up DP algorithm always outperforms a top-down 
memoized algorithm by a constant factor

because, bottom-up DP algorithm

• Has no overhead for recursion

• Less overhead for maintaining the table

• DP: Regular pattern of table accesses can be exploited to reduce 
the time and/or space requirements even further

• Memoized: If some problems need not be solved at all, it has 

the advantage of avoiding solutions to those subproblems
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Longest Common Subsequence

A subsequence of a given sequence is just the given sequence

with some elements (possibly none) left out

Formal definition: Given a sequence X  x1, x2, …, xm,

sequence Z  z1, z2, …, zk is a subsequence of X

if  a strictly increasing sequence i1, i2, …, ik  of indices of X such 
that xi  zj for all  j  1, 2, …, k, where 1  k  m

1    2   3 4   5    6    7

Example: Z B,C,D,B is a subsequence of X A,B,C,B,D,A,B

with the index sequence i1, i2, i3, i4   2, 3, 5, 7
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Longest Common Subsequence (LCS)

Given two sequences X & Y, Z is a common subsequence of X & Y

Example: X  <A, B, C, B, D, A, B> and Y  <B, D, C, A, B, A>

Sequence <B, C, A> is a common subsequence of X and Y.

However, <B, C, A> is not a longest common subsequence (LCS) 

of X and Y. 

<B, C, B, A> is an LCS of X and Y.

Longest common subsequence (LCS):

Given two sequences X  <x1, x2, …, xm> and Y  <y1, y2, …, yn>

We wish to find the LCS of X & Y
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Characterizing a Longest Common Subsequence

A brute force approach

• Enumerate all subsequences of X

• Check each subsequence to see if it is also a subsequence of Y

meanwhile keeping track of the LCS found

• Each subsequence of X corresponds to a subset of the index 

set {1, 2, …, m} of X

• So, there are 2m subsequences of X

• Hence, this approach requires exponential time
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Characterizing a Longest Common Subsequence

Definition: The i-th prefix Xi of X for i  0,1, …, m is 
Xi <x1, x2, …, xi>

1     2     3     4     5      6     7

Example: Given X  <A, B, C, B, D, A, B>

X4 <A, B, C, B> and X empty sequence

Theorem: (Optimal substructure of an LCS)

Let X  <x1, x2, …, xm> and Y  <y1, y2, …, yn> are given

Let Z  <z1, z2, …, zk> be any LCS of X and Y

1. If xm yn then zk  xm yn and Zk1 is an LCS of Xm1 and Yn1

2. If xm  yn and zk  xm then Z is an LCS of Xm1 and Y

3. If xm  yn and zk  yn then Z is an LCS of X and Yn 1
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Optimal Substructure Theorem (case 1)

If xm yn then zk  xm yn and Zk1 is an LCS of Xm1 and Yn1 

Xm1 

   1    2                                       m 

X    C Y  

   1    2                                       n 

  C 

Yn1 

  C 

   1    2                                       k 

Zk1 

LCS 
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Optimal Substructure Theorem (case 2)

If xm  yn and zk  xm then Z is an LCS of Xm1 and Y
 

Xm1 

   1    2                                       m 

X    C Y  

   1    2                                       n 

  D 

Y 

   1    2                                       k 

Z 

LCS 

Z    C 
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Optimal Substructure Theorem (case 3)

If xm  yn and zk  yn then Z is an LCS of X and Yn 1 

X 

   1    2                                       m 

X    C Y  

   1    2                                       n 

  D 

Yn1 

  D 

   1    2                                       k 

Z 

LCS 

Z  
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Proof of Optimal Substructure Theorem (case 1)

Proof: If zk  xm yn then 

we can append xm  yn to Z to obtain a common    

subsequence of length k1  contradiction

Thus, we must have zk  xm  yn

Hence, the prefix Zk1 is a length-(k1) CS of Xm1 and Yn1

We have to show that Zk1 is in fact an LCS of Xm1 and Yn1

Proof by contradiction:

Assume that  a CS W of Xm1 and Yn1 with |W|  k

Then appending xm  yn to W produces a CS of length k1

If xm yn then zk  xm yn and Zk1 is an LCS of Xm1 and Yn1
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Proof of Optimal Substructure Theorem (case 2)

Proof : If zk  xm then Z is a CS of Xm1 and Yn

We have to show that Z is in fact an LCS of Xm1 and Yn

(Proof by contradiction)

Assume that  a CS W of Xm1 and Yn with |W| > k

Then W would also be a CS of X and Y

Contradiction to the assumption that

Z is an LCS of X and Y with |Z|  k

Case 3: Dual of the proof for (case 2)

If xm  yn and zk  xm then Z is an LCS of Xm1 and Y
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Longest Common Subsequence Algorithm

LCS(X, Y)

m  length[X]

n  length[Y]

if xm  yn then

Z  LCS(Xm1, Yn1)     solve one subproblem

return <Z, xm yn>         append xm yn to Z

else

Z  LCS(Xm1, Y)

Z  LCS(X, Yn1)

return longer of Z and Z

 solve two subproblems
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A Recursive Solution to Subproblems

Theorem implies that there are one or two subproblems to examine

if xm  yn then

we must solve the subproblem of finding an LCS of Xm1 & Yn1

appending xm  yn to this LCS yields an LCS of X & Y

else

we must solve two subproblems

 finding an LCS of Xm1 & Y

 finding an LCS of X & Yn1

longer of these two LCSs is an LCS of X & Y

endif
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A Recursive Solution to Subproblems

Overlapping-subproblems property

 finding an LCS to Xm1 & Y and an LCS to X & Yn1 has the 
subsubproblem of finding an LCS to Xm1 & Yn1

 many other subproblems share subsubproblems

A recurrence for the cost of an optimal solution

c[i, j]: length of an LCS of the prefix subsequences Xi & Yj

If either i  0 or j  0, one of the prefix sequences has length 0,
so the LCS has length 0

ji

ji

yxji

yxji

ji

jicjic

jicjic



















 and 0, if

 and 0, if

0or  0 if

]},1[],1,[max{

1]1,1[

0

],[
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Computing the Length of an LCS

We can easily write an exponential-time recursive algorithm

based on the given recurrence

However, there are only (mn) distinct subproblems

Therefore, we can use dynamic programming

Data structures:

Table c[0…m, 0…n] is used to store c[i, j] values 

Entries of this table are computed in row-major order

Table b[1…m, 1…n] is maintained to simplify the construction 
of an optimal solution

b[i, j]: points to the table entry corresponding to the optimal 
subproblem solution chosen when computing c[i, j]
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Computing the Length of an LCS

LCS-LENGTH(X,Y)
m  length[X]; n  length[Y]
for i  0 to m do c[i, 0]  0
for j  0 to n do c[0, j]  0
for i  1 to m do

for j  1 to n do
if xi  yj then

c[i, j]  c[i1, j1]1

b[i, j]  “”
else if c[i  1, j]  c[i, j1]

c[i, j]  c[i1, j]
b[i, j]  “”

else
c[i, j]  c[i, j1]

b[i, j]  “”
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

             

  0          

          

  0          

             

  0          

 

  0          

             

  0          

             

  0          

          

  0          

 

  0         0        0        0         0        0        0   

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

1 A 

          

  0          

                                                

  0         0        0        0         1    1        1 

          

  0          

             

  0          

          

  0          

             

  0          

             

  0          

 

  0         0        0        0         0        0       0    

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A i 

0 xi 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

          

  0          

                                                

  0         0        0        0         1    1        1 

                                            

  0         1    1     1        1       2     2 

             

  0          

          

  0          

             

  0          

              

  0          

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A 

 

  0         0        0        0         0        0        0  

i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

          

  0          

                                                

  0         0        0        0         1    1        1 

                                            

  0         1    1     1        1       2     2 

                                                  

  0         1        1        2     2       2         2 

          

  0          

             

  0          

             

  0          

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A 

 

  0         0        0        0         0        0        0  

i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

          

  0          

 

  0         0        0        0         0        0        0     

                                                

  0         0        0        0         1    1        1 

                                            

  0         1    1     1        1       2     2 

                                                  

  0         1        1        2     2       2         2 

                    

  0         1        

             

  0          

             

  0          

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

          

  0          

 

  0         0        0        0         0        0        0     

                                                

  0         0        0        0         1    1        1 

                                            

  0         1    1     1        1       2     2 

                                                  

  0         1        1        2     2       2         2 

                          

  0         1        1            

             

  0          

             

  0          

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

          

  0          

 

  0         0        0        0         0        0        0     

                                                

  0         0        0        0         1    1        1 

                                            

  0         1    1     1        1       2     2 

                                                  

  0         1        1        2     2       2         2 

                                 

  0         1        1        2         

             

  0          

             

  0          

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

          

  0          

 

  0         0        0        0         0        0        0     

                                                

  0         0        0        0         1    1        1 

                                            

  0         1    1     1        1       2     2 

                                                  

  0         1        1        2     2       2         2 

                                     

  0         1        1        2        2         

             

  0          

             

  0          

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

          

  0          

 

  0         0        0        0         0        0        0     

                                                

  0         0        0        0         1    1        1 

                                            

  0         1    1     1        1       2     2 

                                                  

  0         1        1        2     2       2         2 

                                     

  0         1        1        2        2        3      

             

  0          

             

  0          

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

          

  0          

 

  0         0        0        0         0        0        0     

                                                

  0         0        0        0         1    1        1 

                                            

  0         1    1     1        1       2     2 

                                                  

  0         1        1        2     2       2         2 

                                     

  0         1        1        2        2        3     3 

             

  0          

             

  0          

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 



CS473 – Lecture 10 Cevdet Aykanat - Bilkent University 

Computer Engineering Department

75

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

          

  0          

                                                

  0         0        0        0         1    1        1 

                                            

  0         1    1     1        1       2     2 

                                                  

  0         1        1        2     2       2         2 

                                     

  0         1        1        2        2        3     3 

                                               

  0         1        2        2        2        3         3 

             

  0          

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A 

 

  0         0        0        0         0        0        0   

i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

          

  0          

                                                

  0         0        0        0         1    1        1 

                                            

  0         1    1     1        1       2     2 

                                                  

  0         1        1        2     2       2         2 

                                     

  0         1        1        2        2        3     3 

                                               

  0         1        2        2        2        3         3 

                                            

  0         1        2        2        3        3         4 

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A 

 

  0         0        0        0         0        0        0    

i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1     2     3     4     5      6

Running-time  O(mn)
since each table entry takes

O(1) time to compute

LCS of X & Y  <B, C, B, A>

 

 

                                               

  0         1        2        3        3        4         4 

                                            

  0         1    1     1        1       2     2 

                                                  

  0         1        1        2     2       2         2 

                                     

  0         1        1        2        2        3     3 

                                               

  0         1        2        2        2        3         3 

                                            

  0         1        2        2        3        3         4 

                                                

  0         0        0        0         1    1        1 

 

  0         0        0        0         0        0        0   

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X  <A, B, C, B, D, A, B>

Y  <B, D, C, A, B, A>
1     2     3     4     5      6

Running-time  O(mn)
since each table entry takes

O(1) time to compute

LCS of X & Y  <B, C, B, A>
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Constructing an LCS

The b table returned by LCS-LENGTH can be used to quickly 

construct an LCS of X & Y

Begin at b[m, n] and trace through the table following arrows

Whenever you encounter a “” in entry b[i, j] 

it implies that xi  yj is an element of LCS

The elements of LCS are encountered in reverse order
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Constructing an LCS

PRINT-LCS(b, X, i, j)

if i  0 or j  0 then

return
if b[i, j]  “” then

PRINT-LCS(b, X, i1, j1)
print xi

else if b[i, j]  “” then

PRINT-LCS(b, X, i1, j)
else

PRINT-LCS(b, X, i, j1)

The recursive procedure PRINT-LCS prints out LCS in proper order

This procedure takes O(mn) time 

since at least one of i and j is determined in each stage of the recursion

The initial invocation:

PRINT-LCS(b, X, length[X], length[Y])
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Longest Common Subsequence

Improving the code:

 we can eliminate the b table altogether

 each c[i, j] entry depends only on 3 other c table entries 

c[i1, j1], c[i1, j] and c[i, j1]

Given the value of c[i, j]

 we can determine in O(1) time which of these 3 values was used

to compute c[i, j] without inspecting table b

 we save (mn) space by this method

 however, space requirement is still (mn) 

since we need (mn) space for the c table anyway

We can reduce the asymptotic space requirement for LCS-LENGTH

 since it needs only two rows of table c at a time

 the row being computed and the previous row

This improvement works if we only need the length of an LCS


