Lecture 10

Dynamic Programming
Introduction

- An algorithm design paradigm like divide-and-conquer
- “Programming”: A tabular method (not writing computer code)
- **Divide-and-Conquer (DAC)**: subproblems are independent
- **Dynamic Programming (DP)**: subproblems are not independent
- Overlapping subproblems: subproblems share sub-subproblems
 - In solving problems with overlapping subproblems
 - A DAC algorithm does redundant work
 - Repeatedly solves common subproblems
 - A DP algorithm solves each problem just once
 - Saves its result in a table
Optimization Problems

• **DP** typically applied to optimization problems

• In an optimization problem
 – There are many possible solutions (feasible solutions)
 – Each solution has a value
 – Want to find an optimal solution to the problem
 • A solution with the optimal value (min or max value)
 – Wrong to say “the” optimal solution to the problem
 • There may be several solutions with the same optimal value
Development of a DP Algorithm

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution in a bottom-up fashion
4. Construct an optimal solution from the information computed in Step 3
Example: Matrix-chain Multiplication

- **Input:** a sequence (chain) $\langle A_1, A_2, \ldots, A_n \rangle$ of n matrices
- **Aim:** compute the product $A_1 \cdot A_2 \cdot \ldots \cdot A_n$
- A product of matrices is fully parenthesized if
 - It is either a single matrix
 - Or, the product of two fully parenthesized matrix products surrounded by a pair of parentheses.

\[\triangleright (A_i(A_{i+1}A_{i+2} \ldots A_j)) \]

\[\triangleright ((A_iA_{i+1}A_{i+2} \ldots A_{j-1})A_j) \]

\[\triangleright ((A_iA_{i+1}A_{i+2} \ldots A_k)(A_{k+1}A_{k+2} \ldots A_j)) \quad \text{for } i \leq k < j \]
- All parenthesizations yield the same product; matrix product is associative.
Matrix-chain Multiplication: An Example Parenthesization

- Input: \(\langle A_1, A_2, A_3, A_4 \rangle \)
- 5 distinct ways of full parenthesization

 \[
 (A_1(A_2(A_3A_4))) \\
 (A_1((A_2A_3)A_4)) \\
 ((A_1A_2)(A_3A_4)) \\
 ((A_1(A_2A_3))A_4) \\
 (((A_1A_2)A_3)A_4)
 \]

- The way we parenthesize a chain of matrices can have a dramatic effect on the cost of computing the product
Matrix has two attributes
- rows[A]: # of rows
- cols[A]: # of columns

of scalar mult-adds in C ← AB is rows[A]×cols[B]×cols[A]
A: (p×q)
B: (q×r)
C=A·B is p×r.

of mult-adds is p×r×q

MATRIX-MULTIPLY(A, B)

if cols[A]≠rows[B] then
error ("incompatible dimensions")

for i ← 1 to rows[A] do
 for j ← 1 to cols[B] do
 C[i,j] ← 0
 for k ← 1 to cols[A] do
 C[i,j]← C[i,j]+A[i,k]·B[k,j]

return C
Matrix-chain Multiplication Problem

Input: a chain $\langle A_1, A_2, \ldots, A_n \rangle$ of n matrices, A_i is a $p_{i-1} \times p_i$ matrix

Aim: fully parenthesize the product $A_1 \cdot A_2 \cdot \ldots \cdot A_n$ such that the number of scalar mult-adds are minimized.

- Ex.: $\langle A_1, A_2, A_3 \rangle$ where $A_1: 10 \times 100; A_2: 100 \times 5; A_3: 5 \times 50$

\[
\begin{array}{|c|c|c|}
\hline
((A_1 A_2) A_3): & 10 \times 100 \times 5 & 10 \times 5 \times 50 \\
& 10 \times 5 & 5 \times 50 \\
\hline
\end{array}
= 7500
\]

\[
\begin{array}{|c|c|c|}
\hline
(A_1 (A_2 A_3)): & 100 \times 5 \times 50 & 10 \times 100 \times 50 \\
& 10 \times 100 & 100 \times 50 \\
\hline
\end{array}
= 75000
\]

⇒ First parenthesization yields 10 times faster computation.
Counting the Number of Parenthesizations

- **Brute force approach**: exhaustively check all parenthesizations
- \(P(n) \): # of parenthesizations of a sequence of \(n \) matrices
- We can split sequence between \(k \)th and \((k+1)\)st matrices for any \(k=1, 2, \ldots, n-1 \), then parenthesize the two resulting sequences independently, i.e.,

\[
(A_1A_2A_3 \ldots A_k)(A_{k+1}A_{k+2} \ldots A_n)
\]

- We obtain the recurrence

\[
P(1) = 1 \quad \text{and} \quad P(n) = \sum_{k=1}^{n-1} P(k)P(n-k)
\]
Number of Parenthesizations: \[
\sum_{k=1}^{n-1} P(k) P(n-k)
\]

- The recurrence generates the sequence of **Catalan Numbers**
- Solution is \(P(n) = C(n-1) \) where

\[
C(n) = \frac{1}{n+1} \binom{2n}{n} = \Omega\left(\frac{4^n}{n^{3/2}}\right)
\]

- The number of solutions is exponential in \(n \)
- Therefore, brute force approach is a poor strategy
The Structure of an Optimal Parenthesization

Step 1: Characterize the structure of an optimal solution

- $A_{i..j}$: matrix that results from evaluating the product $A_i A_{i+1} A_{i+2} \ldots A_j$

- An optimal parenthesization of the product $A_1 A_2 \ldots A_n$
 - Splits the product between A_k and A_{k+1}, for some $1 \leq k < n$
 - i.e., first compute $A_{1..k}$ and $A_{k+1..n}$ and then multiply these two

- The cost of this optimal parenthesization

 $\text{Cost of computing } A_{1..k} + \text{Cost of computing } A_{k+1..n} + \text{Cost of multiplying } A_{1..k} \cdot A_{k+1..n}$
Step 1: Characterize the Structure of an Optimal Solution

- **Key observation:** given optimal parenthesization
 \[(A_1A_2A_3 \ldots A_k) \cdot (A_{k+1}A_{k+2} \ldots A_n)\]
 - Parenthesization of the subchain \(A_1A_2A_3 \ldots A_k\)
 - Parenthesization of the subchain \(A_{k+1}A_{k+2} \ldots A_n\)
 should both be optimal

 - Thus, optimal solution to an instance of the problem contains optimal solutions to subproblem instances
 - i.e., **optimal substructure** within an optimal solution exists.
The Structure of an Optimal Parenthesization

Step 2: Define the value of an optimal solution recursively in terms of optimal solutions to the subproblems

- **Subproblem**: The problem of determining the minimum cost of computing $A_{i..j}$, i.e., parenthesization of $A_i A_{i+1} A_{i+2} \ldots A_j$

- m_{ij}: min # of scalar mult-adds needed to compute subchain $A_{i..j}$
 - the value of an optimal solution is m_{1n}
 - $m_{ii} = 0$, since subchain $A_{i..i}$ contains just one matrix; no multiplication at all
 - $m_{ij} =$?
Step 2: Define Value of an Optimal Soln Recursively ($m_{ij} = ?$)

- For $i < j$, optimal parenthesesization splits subchain $A_{i..j}$ as $A_{i..k}$ and $A_{k+1..j}$ where $i \leq k < j$

 \[
 \text{optimal cost of computing } A_{i..k} : m_{ik} \\
 + \text{optimal cost of computing } A_{k+1..j} : m_{k+1,j} \\
 + \text{cost of multiplying } A_{i..k} A_{k+1..j} : p_{i-1} \times p_k \times p_j
 \]

 ($A_{i..k}$ is a $p_{i-1} \times p_k$ matrix and $A_{k+1..j}$ is a $p_k \times p_j$ matrix)

 \[\Rightarrow m_{ij} = m_{ik} + m_{k+1,j} + p_{i-1} \times p_k \times p_j \]

 - The equation assumes we know the value of k, but we do not
Step 2: Recursive Equation for \(m_{ij} \)

- \(m_{ij} = m_{ik} + m_{k+1,j} + p_{i-1} \times p_k \times p_j \)
 - We do not know \(k \), but there are \(j-i \) possible values for \(k \); \(k = i, i+1, i+2, \ldots, j-1 \)
 - Since optimal parenthesization must be one of these \(k \) values we need to check them all to find the best

\[
 m_{ij} = \begin{cases}
 0 & \text{if } i=j \\
 \min_{i \leq k < j} \{ m_{ik} + m_{k+1,j} + p_{i-1} p_k p_j \} & \text{if } i < j
 \end{cases}
\]
Step 2: $m_{ij} = \text{MIN}\{m_{ik} + m_{k+1,j} + p_{i-1}p_k p_j\}$

- The m_{ij} values give the costs of optimal solutions to subproblems.
- In order to keep track of how to construct an optimal solution:
 - Define S_{ij} to be the value of k which yields the optimal split of the subchain $A_{i..j}$.
 That is, $S_{ij} = k$ such that
 $$m_{ij} = m_{ik} + m_{k+1,j} + p_{i-1}p_k p_j$$ holds.
Computing the Optimal Cost (Matrix-Chain Multiplication)

An important observation:

- We have relatively few subproblems
 - one problem for each choice of i and j satisfying $1 \leq i \leq j \leq n$
 - total $n + (n-1) + \ldots + 2 + 1 = \frac{1}{2} n(n+1) = \Theta(n^2)$ subproblems
- We can write a recursive algorithm based on recurrence.
- However, a recursive algorithm may encounter each subproblem many times in different branches of the recursion tree.
- This property, overlapping subproblems, is the second important feature for applicability of dynamic programming.
Computing the Optimal Cost (Matrix-Chain Multiplication)

Compute the value of an optimal solution in a bottom-up fashion

- matrix A_i has dimensions $p_{i-1} \times p_i$ for $i = 1, 2, \ldots, n$
- the input is a sequence $\langle p_0, p_1, \ldots, p_n \rangle$ where $\text{length}[p] = n + 1$

Procedure uses the following auxiliary tables:

- $m[1\ldots n, 1\ldots n]$: for storing the $m[i, j]$ costs
- $s[1\ldots n, 1\ldots n]$: records which index of k achieved the optimal cost in computing $m[i, j]$
Algorithm for Computing the Optimal Costs

MATRIX-CHAIN-ORDER\((p)\)

\[n \leftarrow \text{length}[p] - 1 \]

for \(i \leftarrow 1\) to \(n\) do

\[m[i, i] \leftarrow 0 \]

for \(\ell \leftarrow 2\) to \(n\) do

for \(i \leftarrow 1\) to \(n - \ell + 1\) do

\[j \leftarrow i + \ell - 1 \]

\[m[i, j] \leftarrow \infty \]

for \(k \leftarrow i\) to \(j-1\) do

\[q \leftarrow m[i, k] + m[k+1, j] + p_{i-1} p_k p_j \]

if \(q < m[i, j]\) then

\[m[i, j] \leftarrow q \]

\[s[i, j] \leftarrow k \]

return \(m\) and \(s\)
Algorithm for Computing the Optimal Costs

• The algorithm first computes
 \(m[i, i] \leftarrow 0 \) for \(i = 1, 2, \ldots, n \) min costs for all chains of length 1

• Then, for \(\ell = 2, 3, \ldots, n \) computes
 \(m[i, i+\ell-1] \) for \(i = 1, \ldots, n-\ell+1 \) min costs for all chains of length \(\ell \)

• For each value of \(\ell = 2, 3, \ldots, n \),
 \(m[i, i+\ell-1] \) depends only on table entries \(m[i, k] \) & \(m[k+1, i+\ell-1] \)
 for \(i \leq k < i+\ell-1 \), which are already computed
Algorithm for Computing the Optimal Costs

\[\ell = 2 \]
for \(i = 1 \) to \(n - 1 \)
\[m[i, i+1] = \infty \]
for \(k = i \) to \(i \) do
\[
\ldots
\]
\[\ell = 3 \]
for \(i = 1 \) to \(n - 2 \)
\[m[i, i+2] = \infty \]
for \(k = i \) to \(i+1 \) do
\[
\ldots
\]
\[\ell = 4 \]
for \(i = 1 \) to \(n - 3 \)
\[m[i, i+3] = \infty \]
for \(k = i \) to \(i+2 \) do
\[
\ldots
\]
compute \(m[i, i+1] \)
\{ \(m[1, 2], m[2, 3], \ldots, m[n-1, n] \) \}
\((n-1) \) values

compute \(m[i, i+2] \)
\{ \(m[1, 3], m[2, 4], \ldots, m[n-2, n] \) \}
\((n-2) \) values

compute \(m[i, i+3] \)
\{ \(m[1, 4], m[2, 5], \ldots, m[n-3, n] \) \}
\((n-3) \) values
Table access pattern in computing $m[i, j]$s for $\ell = j - i + 1$

for $k \leftarrow i$ to $j - 1$ do

$q \leftarrow m[i, k] + m[k+1, j] + p_{i-1} p_k$

for $k \leftarrow i$ to $j - 1$ do

$q \leftarrow m[i, k] + m[k+1, j] + p_{i-1} p_k$

- Table entries currently computed
- Table entries already computed
- Table entries referenced
Table access pattern in computing $m[i, j]$s for $\ell = j - i + 1$

For $k \leftarrow i$ to $j - 1$ do

$$q \leftarrow m[i, k] + m[k+1, j] + p_{i-1} p_k$$
Table access pattern in computing \(m[i, j] \)s for \(\ell = j - i + 1 \)

\[
((A_i A_{i+1}) \ldots A_j))
\]

for \(k \leftarrow i \) to \(j - 1 \) do

\[
q \leftarrow m[i, k] + m[k+1, j] + p_{i-1} p_k
\]

\(p_j \)

- Table entries currently computed
- Table entries already computed
- Table entries referenced
Table access pattern in computing $m[i, j]$s for $\ell=j-i+1$

\[
\left(\left(A_i A_{i+1} A_{i+2}\right) \left(A_{i+3} \ldots A_j\right)\right)
\]

for $k \leftarrow i$ to $j-1$ do

\[
q \leftarrow m[i, k] + m[k+1, j] + p_{i-1} p_k
\]

\[
p_j
\]

- Table entries currently computed
- Table entries already computed
- Table entries referenced
Table access pattern in computing $m[i, j]$s for $\ell = j - i + 1$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
<th>i</th>
<th>$\ell - 1$</th>
<th>ℓ</th>
<th>...</th>
<th>j</th>
<th>...</th>
<th>n</th>
</tr>
</thead>
</table>

$((A_i A_{i+1} \ldots A_{j-1})(A_j))$

for $k \leftarrow i$ to $j-1$ do

$q \leftarrow m[i, k] + m[k+1, j] + p_{i-1} p_k$

p_j

- Table entries currently computed
- Table entries already computed
- Table entries referenced
Table reference pattern for $m[i, j]$ $(1 \leq i \leq j \leq n)$

$m[i, j]$ is referenced for the computation of

- $m[i, r]$ for $j < r \leq n$ $(n - j)$ times
- $m[r, j]$ for $1 \leq r < i$ $(i - 1)$ times
Table reference pattern for \(m[i, j] \) (\(1 \leq i \leq j \leq n \))

\[
R(i, j) = \# \text{ of times that } m[i, j] \text{ is referenced in computing other entries}
\]

\[
R(i, j) = (n-j) + (i-1)
\]

\[
= (n-1) - (j-i)
\]

The total \# of references for the entire table is

\[
\sum_{i=1}^{n} \sum_{j=i}^{n} R(i, j) \frac{n^3 - n}{3}
\]
Constructing an Optimal Solution

- **MATRIX-CHAIN-ORDER** determines the optimal # of scalar mults/adds
 - needed to compute a matrix-chain product
 - it does not directly show how to multiply the matrices

- That is,
 - it determines the cost of the optimal solution(s)
 - it does not show how to obtain an optimal solution

- Each entry $s[i, j]$ records the value of k such that
 optimal parenthesization of $A_i \ldots A_j$ splits the product between A_k & A_{k+1}

- We know that the final matrix multiplication in computing $A_{1\ldots n}$ optimally
 is $A_{1\ldots s[1,n]} \times A_{s[1,n]+1,n}$
Constructing an Optimal Solution

Earlier optimal matrix multiplications can be computed recursively

Given:
- the chain of matrices $A = \langle A_1, A_2, \ldots A_n \rangle$
- the s table computed by MATRIX-CHAIN-ORDER

The following recursive procedure computes the matrix-chain product $A_{i \ldots j}$

\[\text{MATRIX-CHAIN-MULTIPLY}(A, s, i, j) \]

\[
\begin{align*}
\text{if } j > i \text{ then } \\
X &\leftarrow \text{MATRIX-CHAIN-MULTIPLY}(A, s, i, s[i, j]) \\
Y &\leftarrow \text{MATRIX-CHAIN-MULTIPLY}(A, s, s[i, j]+1, j) \\
\text{return } &\text{MATRIX-MUTIPLY}(X, Y) \\
\text{else } \\
\text{return } &A_i
\end{align*}
\]

Invocation: \text{MATRIX-CHAIN-MULTIPLY}(A, s, 1, n)
Example: Recursive Construction of an Optimal Solution

\[
\begin{array}{cccccc}
1 & 1 & 1 & 3 & 3 & 3 \\
2 & 2 & 3 & 4 & 3 & 3 \\
3 & 3 & 3 & 3 & 3 & 3 \\
\end{array}
\]

\[
\begin{array}{cccccc}
s[1\ldots6, 1\ldots6] \quad 4 & 4 & 5 \\
\end{array}
\]

\[
\begin{array}{cccc}
2 & 3 & 4 & 5 \\
1 & 1 & 1 & 3 & 3 & 3 \\
2 & 2 & 3 & 4 & 3 & 3 \\
3 & 3 & 3 & 3 & 3 & 3 \\
4 & 4 & 5 & 5 & 5 & \end{array}
\]

\[
\begin{array}{cccc}
\text{MCM}(1,6) & \text{MCM}(1,3) & \text{return } A_1 \\
X \leftarrow \text{MCM}(1,3) = (A_1A_2A_3) & \text{MCM}(1,3) \quad \text{return } (?) \\
Y \leftarrow \text{MCM}(4,6) = (A_4A_5A_6) & \text{MCM}(1,1) = A_1 \quad \text{return } (?) \\
\end{array}
\]
Example: Recursive Construction of an Optimal Solution

\[
\begin{array}{cccccc}
1 & 1 & 1 & 3 & 3 & 3 \\
2 & 2 & 3 & 4 & 3 & 3 \\
3 & 3 & 3 & 3 & 3 & 3 \\
4 & 4 & 5 & & & \\
5 & 5 & & & & \\
\end{array}
\]

\(s[1…6, 1…6] \)

\[
\begin{align*}
MCM(1,6) & \quad X \leftarrow MCM(1,3) = (A_1(A_2A_3)) \quad \rightarrow MCM(1,3) \\
& \hphantom{\rightarrow} \text{return } A_1 \\
Y & \leftarrow MCM(4,6) = (A_4A_5A_6) \\
\text{return } (?)
\end{align*}
\]

\[
\begin{align*}
MCM(1,3) & \quad X \leftarrow MCM(1,1) = A_1 \\
& \hphantom{\rightarrow} \text{return } (A_1(A_2A_3)) \\
Y & \leftarrow MCM(2,3) = (A_2A_3) \quad \rightarrow MCM(2,3) \\
& \hphantom{\rightarrow} \text{return } (A_1(A_2A_3)) \\
\end{align*}
\]

\[
\begin{align*}
MCM(2,2) & \quad X \leftarrow MCM(2,2) = A_2 \quad \rightarrow \text{return } A_2 \\
Y & \leftarrow MCM(3,3) = A_3 \quad \rightarrow \text{return } A_3 \\
\end{align*}
\]

\[
\begin{align*}
& \text{return } (A_2A_3)
\end{align*}
\]
Example: Recursive Construction of an Optimal Solution

MCM(1,6)
X ← MCM(1,3) = (A_1(A_2A_3))
Y ← MCM(4,6) = ((A_4A_5)A_6)
return (A_1(A_2A_3))((A_4A_5)A_6)

MCM(1,3)
X ← MCM(1,1) = A_1
return A_1

MCM(4,6)
X ← MCM(4,5) = (A_4A_5)
Y ← MCM(6,6) = A_6
return ((A_4A_5)A_6)

MCM(2,3)
X ← MCM(2,3) = (A_2A_3)
return (A_1(A_2A_3))

MCM(2,2)
X ← MCM(2,2) = A_2
return A_2

MCM(3,3)
X ← MCM(3,3) = A_3
return A_3

MCM(4,4)
X ← MCM(4,4) = A_4
return A_4

MCM(5,5)
X ← MCM(5,5) = A_5
return A_5

MCM(2,3)
X ← MCM(2,3) = (A_2A_3)
return (A_1(A_2A_3))

MCM(4,6)
X ← MCM(4,5) = (A_4A_5)
Y ← MCM(6,6) = A_6
return ((A_4A_5)A_6)

MCM(1,6)
X ← MCM(1,3) = (A_1(A_2A_3))
Y ← MCM(4,6) = ((A_4A_5)A_6)
return (A_1(A_2A_3))((A_4A_5)A_6)

return (A_1(A_2A_3))((A_4A_5)A_6)

return A_6
Elements of Dynamic Programming

• When should we look for a DP solution to an optimization problem?
• Two key ingredients for the problem
 – Optimal substructure
 – Overlapping subproblems
Optimal Substructure

• A problem exhibits optimal substructure
 – if an optimal solution to a problem contains within it optimal solutions to subproblems

• **Example**: matrix-chain-multiplication

 Optimal parenthesization of $A_1 A_2 \ldots A_n$ that splits the product between A_k and A_{k+1}, contains within it optimal soln’s to the problems of parenthesizing $A_1 A_2 \ldots A_k$ and $A_{k+1} A_{k+2} \ldots A_n$
Optimal Substructure

• The optimal substructure of a problem often suggests a suitable space of subproblems to which DP can be applied.
• Typically, there may be several classes of subproblems that might be considered natural.
• **Example:** matrix-chain-multiplication
 – All subchains of the input chain
 We can choose an arbitrary sequence of matrices from the input chain
 – However, DP based on this space solves many more subproblems.
Optimal Substructure

Finding a suitable space of subproblems

- Iterate on subproblem instances
- **Example**: matrix-chain-multiplication
 - Iterate and look at the structure of optimal soln’s to subproblems, sub-subproblems, and so forth
 - Discover that all subproblems consists of subchains of \(\langle A_1, A_2, \ldots, A_n \rangle \)
 - Thus, the set of chains of the form
 \(\langle A_i, A_{i+1}, \ldots, A_j \rangle \) for \(1 \leq i \leq j \leq n \)
 - Makes a natural and reasonable space of subproblems
DP Hallmark #2

Overlapping Subproblems

• Total number of distinct subproblems should be polynomial in the input size

• When a recursive algorithm revisits the same problem over and over again we say that the optimization problem has overlapping subproblems
Overlapping Subproblems

- **DP** algorithms typically take advantage of overlapping subproblems
 - by solving each problem once
 - then storing the solutions in a table
 where it can be looked up when needed
 - using constant time per lookup
Overlapping Subproblems

Recursive matrix-chain order

\[RMC(p, i, j) \]

- if \(i = j \) then
 - return 0
- \(m[i, j] \leftarrow \infty \)
- for \(k \leftarrow i \) to \(j - 1 \) do
 - \(q \leftarrow RMC(p, i, k) + RMC(p, k+1, j) + p_{i-1} p_k p_j \)
 - if \(q < m[i, j] \) then
 - \(m[i, j] \leftarrow q \)
 - return \(m[i, j] \)
Recursive Matrix-chain Order

Recursion tree for \(\text{RMC}(p,1,4) \)

Nodes are labeled with \(i \) and \(j \) values

Redundant calls are filled
Running Time of RMC

\(T(1) \geq 1 \)

\(T(n) \geq 1 + \sum_{k=1}^{n-1} \left(T(k) + T(n-k) + 1 \right) \) for \(n > 1 \)

- For \(i = 1, 2, \ldots, n \) each term \(T(i) \) appears twice
 - Once as \(T(k) \), and once as \(T(n-k) \)

- Collect \(n-1 \) 1’s in the summation together with the front 1

\[T(n) \geq 2 \sum_{i=1}^{n-1} T(i) + n \]

- Prove that \(T(n) =\Omega(2^n) \) using the substitution method
Running Time of RMC: Prove that $T(n) = \Omega(2^n)$

- Try to show that $T(n) \geq 2^{n-1}$ (by substitution)

Base case: $T(1) \geq 1 = 2^0 = 2^{1-1}$ for $n = 1$

IH: $T(i) \geq 2^{i-1}$ for all $i = 1, 2, \ldots, n - 1$ and $n \geq 2$

$$T(n) \geq 2 \sum_{i=1}^{n-1} 2^{i-1} + n$$

$$= 2 \sum_{i=0}^{n-2} 2^i + n = 2(2^{n-1} - 1) + n$$

$$= 2^{n-1} + (2^{n-1} - 2 + n)$$

$$\Rightarrow T(n) \geq 2^{n-1} \quad \text{Q.E.D.}$$
Running Time of RMC: $T(n) \geq 2^{n-1}$

Whenever

– a recursion tree for the natural recursive solution to a problem contains the same subproblem repeatedly

– the total number of different subproblems is small

it is a good idea to see if DP can be applied
Memoization

- Offers the efficiency of the usual DP approach while maintaining top-down strategy
- Idea is to memoize the natural, but inefficient, recursive algorithm
Memoized Recursive Algorithm

• Maintains an entry in a table for the soln to each subproblem
• Each table entry contains a special value to indicate that the entry has yet to be filled in
• When the subproblem is first encountered its solution is computed and then stored in the table
• Each subsequent time that the subproblem encountered the value stored in the table is simply looked up and returned
Memoized Recursive Algorithm

• The approach assumes that
 – The set of all possible subproblem parameters are known
 – The relation between the table positions and subproblems is established

• Another approach is to memoize
 – by using hashing with subproblem parameters as key
Memoized Recursive Matrix-chain Order

LookupC\((p, i, j)\)

\[
\text{if } m[i, j] = \infty \text{ then}
\]

\[
\text{if } i = j \text{ then}
\quad m[i, j] \leftarrow 0
\]

\[
\text{else}
\]

\[
\text{for } k \leftarrow i \text{ to } j - 1 \text{ do}
\]

\[
q \leftarrow \text{LookupC}(p, i, k) + \text{LookupC}(p, k+1, j) + p_{i-1}p_kp_j
\]

\[
\text{if } q < m[i, j] \text{ then}
\quad m[i, j] \leftarrow q
\]

\[
\text{return } m[i, j]
\]

MemoizedMatrixChain\((p)\)

\[
n \leftarrow \text{length}[p] - 1
\]

\[
\text{for } i \leftarrow 1 \text{ to } n \text{ do}
\]

\[
\quad \text{for } j \leftarrow 1 \text{ to } n \text{ do}
\]

\[
\quad m[i, j] \leftarrow \infty
\]

\[
\text{return } \text{LookupC}(p, 1, n)
\]

\(\triangleright\) Shaded subtrees are looked-up rather than recomputing
Elements of Dynamic Programming: Summary

• Matrix-chain multiplication can be solved in $O(n^3)$ time
 – by either a top-down memoized recursive algorithm
 – or a bottom-up dynamic programming algorithm

• Both methods exploit the overlapping subproblems property
 – There are only $\Theta(n^2)$ different subproblems in total
 – Both methods compute the soln to each problem once

• Without memoization the natural recursive algorithm runs in exponential time since subproblems are solved repeatedly
Elements of Dynamic Programming: Summary

In general practice

- If all subproblems must be solved at once
 - a bottom-up DP algorithm always outperforms a top-down memoized algorithm by a constant factor because, bottom-up DP algorithm
 - Has no overhead for recursion
 - Less overhead for maintaining the table

- **DP**: Regular pattern of table accesses can be exploited to reduce the time and/or space requirements even further

- **Memoized**: If some problems need not be solved at all, it has the advantage of avoiding solutions to those subproblems
Longest Common Subsequence

A subsequence of a given sequence is just the given sequence with some elements (possibly none) left out.

Formal definition: Given a sequence \(X = \langle x_1, x_2, \ldots, x_m \rangle \), sequence \(Z = \langle z_1, z_2, \ldots, z_k \rangle \) is a subsequence of \(X \) if \(\exists \) a strictly increasing sequence \(\langle i_1, i_2, \ldots, i_k \rangle \) of indices of \(X \) such that \(x_{i_j} = z_j \) for all \(j = 1, 2, \ldots, k \), where \(1 \leq k \leq m \).

Example: \(Z = \langle B, C, D, B \rangle \) is a subsequence of \(X = \langle A, B, C, B, D, A, B \rangle \) with the index sequence \(\langle i_1, i_2, i_3, i_4 \rangle = \langle 2, 3, 5, 7 \rangle \).
Longest Common Subsequence (LCS)

Given two sequences \(X \) & \(Y \), \(Z \) is a common subsequence of \(X \) & \(Y \)

Example: \(X = \langle A, B, C, B, D, A, B \rangle \) and \(Y = \langle B, D, C, A, B, A \rangle \)
Sequence \(\langle B, C, A \rangle \) is a common subsequence of \(X \) and \(Y \).
However, \(\langle B, C, A \rangle \) is not a longest common subsequence (LCS) of \(X \) and \(Y \).
\(\langle B, C, B, A \rangle \) is an LCS of \(X \) and \(Y \).

Longest common subsequence (LCS):
Given two sequences \(X = \langle x_1, x_2, \ldots, x_m \rangle \) and \(Y = \langle y_1, y_2, \ldots, y_n \rangle \)
We wish to find the LCS of \(X \) & \(Y \)
Characterizing a Longest Common Subsequence

A brute force approach

• Enumerate all subsequences of X
• Check each subsequence to see if it is also a subsequence of Y meanwhile keeping track of the LCS found
• Each subsequence of X corresponds to a subset of the index set $\{1, 2, \ldots, m\}$ of X

• So, there are 2^m subsequences of X
• Hence, this approach requires exponential time
Characterizing a Longest Common Subsequence

Definition: The i-th prefix X_i of X for $i = 0, 1, \ldots, m$ is

$$X_i = \langle x_1, x_2, \ldots, x_i \rangle$$

Example: Given $X = \langle A, B, C, B, D, A, B \rangle$

$$X_4 = \langle A, B, C, B \rangle$$ and $X_\emptyset = \text{empty sequence}$

Theorem: (Optimal substructure of an LCS)

Let $X = \langle x_1, x_2, \ldots, x_m \rangle$ and $Y = \langle y_1, y_2, \ldots, y_n \rangle$ are given

Let $Z = \langle z_1, z_2, \ldots, z_k \rangle$ be any LCS of X and Y

1. If $x_m = y_n$ then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}

2. If $x_m \neq y_n$ and $z_k \neq x_m$ then Z is an LCS of X_{m-1} and Y

3. If $x_m \neq y_n$ and $z_k \neq y_n$ then Z is an LCS of X and Y_{n-1}
Optimal Substructure Theorem (case 1)

If $x_m = y_n$ then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
Optimal Substructure Theorem (case 2)

If \(x_m \neq y_n \) and \(z_k \neq x_m \) then \(Z \) is an LCS of \(X_{m-1} \) and \(Y \).
Optimal Substructure Theorem (case 3)

If $x_m \neq y_n$ and $z_k \neq y_n$ then Z is an LCS of X and Y_{n-1}.
Proof of Optimal Substructure Theorem (case 1)

If \(x_m = y_n \) then \(z_k = x_m = y_n \) and \(Z_{k-1} \) is an LCS of \(X_{m-1} \) and \(Y_{n-1} \)

Proof: If \(z_k \neq x_m = y_n \) then

we can append \(x_m = y_n \) to \(Z \) to obtain a common subsequence of length \(k+1 \) \(\Rightarrow \) contradiction

Thus, we must have \(z_k = x_m = y_n \)

Hence, the prefix \(Z_{k-1} \) is a length-(\(k-1 \)) CS of \(X_{m-1} \) and \(Y_{n-1} \)

We have to show that \(Z_{k-1} \) is in fact an LCS of \(X_{m-1} \) and \(Y_{n-1} \)

Proof by contradiction:

Assume that \(\exists \) a CS \(W \) of \(X_{m-1} \) and \(Y_{n-1} \) with \(|W| = k \)

Then appending \(x_m = y_n \) to \(W \) produces a CS of length \(k+1 \)
Proof of Optimal Substructure Theorem (case 2)

If $x_m \neq y_n$ and $z_k \neq x_m$ then Z is an LCS of X_{m-1} and Y

Proof: If $z_k \neq x_m$ then Z is a CS of X_{m-1} and Y_n

We have to show that Z is in fact an LCS of X_{m-1} and Y_n

(Proof by contradiction)

Assume that \exists a CS W of X_{m-1} and Y_n with $|W| > k$

Then W would also be a CS of X and Y

Contradiction to the assumption that

Z is an LCS of X and Y with $|Z| = k$

Case 3: Dual of the proof for (case 2)
Longest Common Subsequence Algorithm

\textbf{LCS}(X, Y)

\begin{align*}
m & \leftarrow \text{length}[X] \\
n & \leftarrow \text{length}[Y] \\
\text{if } x_m = y_n & \text{ then} \\
\quad Z & \leftarrow \text{LCS}(X_{m-1}, Y_{n-1}) \quad \triangleright \text{solve one subproblem} \\
\quad \text{return } <Z, x_m = y_n> \quad \triangleright \text{append } x_m = y_n \text{ to } Z \\
\text{else} \\
\quad Z' & \leftarrow \text{LCS}(X_{m-1}, Y) \\
\quad Z'' & \leftarrow \text{LCS}(X, Y_{n-1}) \quad \quad \triangleright \text{solve two subproblems} \\
\quad \text{return longer of } Z' \text{ and } Z''
\end{align*}
A Recursive Solution to Subproblems

Theorem implies that there are one or two subproblems to examine

if $x_m = y_n$ then

we must solve the subproblem of finding an LCS of $X_{m-1} \& Y_{n-1}$

appending $x_m = y_n$ to this LCS yields an LCS of $X \& Y$

else

we must solve two subproblems

– finding an LCS of $X_{m-1} \& Y$

– finding an LCS of $X \& Y_{n-1}$

longer of these two LCSs is an LCS of $X \& Y$

endif
A Recursive Solution to Subproblems

Overlapping-subproblems property

- finding an LCS to $X_{m-1} \& Y$ and an LCS to $X \& Y_{n-1}$ has the subsubproblem of finding an LCS to $X_{m-1} \& Y_{n-1}$
- many other subproblems share subsubproblems

A recurrence for the cost of an optimal solution

$c[i, j]$: length of an LCS of the prefix subsequences $X_i \& Y_j$

If either $i = 0$ or $j = 0$, one of the prefix sequences has length 0, so the LCS has length 0

$$c[i, j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
\max \{ c[i, j-1], c[i-1, j] \} + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j \\
\max \{ c[i, j-1], c[i-1, j] \} & \text{if } i, j > 0 \text{ and } x_i \neq y_j
\end{cases}$$
Computing the Length of an LCS

We can easily write an exponential-time recursive algorithm based on the given recurrence. However, there are only $\Theta(mn)$ distinct subproblems. Therefore, we can use dynamic programming.

Data structures:
Table $c[0…m, 0…n]$ is used to store $c[i, j]$ values. Entries of this table are computed in row-major order.
Table $b[1…m, 1…n]$ is maintained to simplify the construction of an optimal solution.$b[i, j]$: points to the table entry corresponding to the optimal subproblem solution chosen when computing $c[i, j]$.
Computing the Length of an LCS

\[\text{LCS-LENGTH}(X,Y) \]
\[m \leftarrow \text{length}[X]; \; n \leftarrow \text{length}[Y] \]
\[\text{for } i \leftarrow 0 \text{ to } m \text{ do } c[i, 0] \leftarrow 0 \]
\[\text{for } j \leftarrow 0 \text{ to } n \text{ do } c[0, j] \leftarrow 0 \]
\[\text{for } i \leftarrow 1 \text{ to } m \text{ do } \]
\[\quad \text{for } j \leftarrow 1 \text{ to } n \text{ do } \]
\[\quad \text{if } x_i = y_j \text{ then } \]
\[\quad \quad c[i, j] \leftarrow c[i-1, j-1] + 1 \]
\[\quad \quad b[i, j] \leftarrow \text{“}\leftarrow\text{”} \]
\[\quad \text{else if } c[i-1, j] \geq c[i, j-1] \]
\[\quad \quad c[i, j] \leftarrow c[i-1, j] \]
\[\quad \quad b[i, j] \leftarrow \text{“}\uparrow\text{”} \]
\[\quad \text{else } \]
\[\quad \quad c[i, j] \leftarrow c[i, j-1] \]
\[\quad \quad b[i, j] \leftarrow \text{“}\leftarrow\text{”} \]
Computing the Length of an LCS

Operation of LCS-LENGTH on the sequences

\[X = \langle A, B, C, B, D, A, B \rangle \]

\[Y = \langle B, D, C, A, B, A \rangle \]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(x_i)</th>
<th>(\text{B})</th>
<th>(\text{D})</th>
<th>(\text{C})</th>
<th>(\text{A})</th>
<th>(\text{B})</th>
<th>(\text{A})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

\[X = \langle A, B, C, B, D, A, B \rangle \]
\[Y = \langle B, D, C, A, B, A \rangle \]
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

\[X = \langle A, B, C, B, D, A, B \rangle \]

\[Y = \langle B, D, C, A, B, A \rangle \]

<table>
<thead>
<tr>
<th>(j)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 A</td>
<td>(\uparrow)</td>
<td>0</td>
<td>0</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td>(\leftarrow)</td>
<td>(\leftarrow)</td>
</tr>
<tr>
<td>2 B</td>
<td>(\leftarrow)</td>
<td>1</td>
<td>(\leftarrow)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(\leftarrow)</td>
</tr>
<tr>
<td>3 C</td>
<td>0</td>
<td>(\leftarrow)</td>
<td>(\leftarrow)</td>
<td>1</td>
<td>(\leftarrow)</td>
<td>1</td>
<td>(\leftarrow)</td>
</tr>
<tr>
<td>4 B</td>
<td>0</td>
<td>(\leftarrow)</td>
</tr>
<tr>
<td>5 D</td>
<td>0</td>
<td>(\leftarrow)</td>
</tr>
<tr>
<td>6 A</td>
<td>0</td>
<td>(\leftarrow)</td>
</tr>
<tr>
<td>7 B</td>
<td>0</td>
<td>(\leftarrow)</td>
</tr>
</tbody>
</table>
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

\[X = <A, B, C, B, D, A, B> \]

\[Y = <B, D, C, A, B, A> \]
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

\[X = \langle A, B, C, B, D, A, B \rangle \]
\[Y = \langle B, D, C, A, B, A \rangle \]
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

\[X = \langle A, B, C, B, D, A, B \rangle \]

\[Y = \langle B, D, C, A, B, A \rangle \]

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 A</td>
<td>0</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2 B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3 C</td>
<td>0</td>
<td>↑</td>
<td>↑</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4 B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5 D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6 A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7 B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

\[X = <A, B, C, B, D, A, B> \]

\[Y = <B, D, C, A, B, A> \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

\[X = \langle A, B, C, B, D, A, B \rangle \]

\[Y = \langle B, D, C, A, B, A \rangle \]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(0)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_i)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(y_j)</td>
<td>0</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td>(\leftarrow)</td>
<td>(\leftarrow)</td>
<td>(\leftarrow)</td>
<td></td>
</tr>
<tr>
<td>1 A</td>
<td>0</td>
<td>(\leftarrow)</td>
<td>(\leftarrow)</td>
<td>(\leftarrow)</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 B</td>
<td>0</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td>(\leftarrow)</td>
<td>(\leftarrow)</td>
<td>(\uparrow)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 C</td>
<td>0</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td>(\leftarrow)</td>
<td>(\leftarrow)</td>
<td>(\uparrow)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 B</td>
<td>0</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 D</td>
<td>0</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 A</td>
<td>0</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 B</td>
<td>0</td>
<td>(\uparrow)</td>
<td>(\uparrow)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computing the Length of an LCS

Operation of \textbf{LCS-LENGTH} on the sequences

$X = \langle A, B, C, B, D, A, B \rangle$

$Y = \langle B, D, C, A, B, A \rangle$

<table>
<thead>
<tr>
<th>(i)</th>
<th>(j)</th>
<th>(x_i)</th>
<th>(y_j)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

\[X = \langle A, B, C, B, D, A, B \rangle \]

\[Y = \langle B, D, C, A, B, A \rangle \]
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

\[X = \langle A, B, C, B, D, A, B \rangle \]

\[Y = \langle B, D, C, A, B, A \rangle \]
Computing the Length of an LCS

Operation of **LCS-LENGTH** on the sequences

\[X = \langle A, B, C, B, D, A, B \rangle \]

\[Y = \langle B, D, C, A, B, A \rangle \]

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>x_i</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>y_j</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>⇐</td>
<td>1</td>
<td>⇐</td>
</tr>
<tr>
<td>2</td>
<td>1 A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2 B</td>
<td>↑</td>
<td>↑</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3 C</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>4 B</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>5 D</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>6 A</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>7 B</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University Computer Engineering Department
Computing the Length of an LCS

Operation of LCS-LENGTH on the sequences

\[X = \langle A, B, C, B, D, A, B \rangle \]

\[Y = \langle B, D, C, A, B, A \rangle \]

Running-time = \(O(mn) \) since each table entry takes \(O(1) \) time to compute

LCS of \(X \) & \(Y = \langle B, C, B, A \rangle \)
Computing the Length of an LCS

Operation of LCS-LENGTH on the sequences

<table>
<thead>
<tr>
<th>Operation of LCS-LENGTH on the sequences</th>
<th>(X = \langle A, B, C, B, D, A, B \rangle)</th>
<th>(Y = \langle B, D, C, A, B, A \rangle)</th>
</tr>
</thead>
</table>

\[
\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
X & A & B & C & B & D & A & B \\
Y & B & D & C & A & B & A \\
\end{array}
\]

Running-time = \(O(mn) \)

Since each table entry takes \(O(1) \) time to compute

LCS of \(X \) & \(Y \) = \(\langle B, C, B, A \rangle \)
Constructing an LCS

The b table returned by \texttt{LCS-LENGTH} can be used to quickly construct an LCS of X & Y

Begin at $b[m, n]$ and trace through the table following arrows

Whenever you encounter a “\textbackslash” in entry $b[i, j]$ it implies that $x_i = y_j$ is an element of LCS

The elements of LCS are encountered in reverse order
Constructing an LCS

PRINT-LCS\((b, X, i, j)\)

if \(i = 0\) or \(j = 0\) then
 return
if \(b[i, j] = \text{“\l”}\) then
 PRINT-LCS\((b, X, i-1, j-1)\)
 print \(x_i\)
else if \(b[i, j] = \text{“\u”}\) then
 PRINT-LCS\((b, X, i-1, j)\)
else
 PRINT-LCS\((b, X, i, j-1)\)

The initial invocation:
PRINT-LCS\((b, X, \text{length}[X], \text{length}[Y])\)

The recursive procedure PRINT-LCS prints out LCS in proper order

This procedure takes \(O(m+n)\) time
since at least one of \(i\) and \(j\) is determined in each stage of the recursion
Longest Common Subsequence

Improving the code:

- we can eliminate the b table altogether
- each $c[i, j]$ entry depends only on 3 other c table entries $c[i-1, j-1], c[i-1, j]$ and $c[i, j-1]$

Given the value of $c[i, j]$

- we can determine in $O(1)$ time which of these 3 values was used to compute $c[i, j]$ without inspecting table b
- we save $\Theta(mn)$ space by this method
- however, space requirement is still $\Theta(mn)$ since we need $\Theta(mn)$ space for the c table anyway

We can reduce the asymptotic space requirement for LCS-LENGTH

- since it needs only two rows of table c at a time
- the row being computed and the previous row

This improvement works if we only need the length of an LCS