CS473-Algorithms I

Lecture 11

Greedy Algorithms
Activity Selection Problem

• **Input:** a set $S = \{1, 2, ..., n\}$ of n activities
 – $s_i =$ Start time of activity i,
 – $f_i =$ Finish time of activity i

 Activity i takes place in $[s_i, f_i)$

• **Aim:** Find max-size subset A of mutually compatible activities
 – Max number of activities, not max time spent in activities
 – Activities i and j are compatible if intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap, i.e., either $s_i \geq f_j$ or $s_j \geq f_i$
Activity Selection Problem: An Example

\[S = \{ [1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18) \} \]
Optimal Substructure

Theorem: Let k be the activity with the earliest finish time in an optimal soln $A \subseteq S$ then
$A - \{k\}$ is an optimal solution to subproblem
$S_k' = \{i \in S: s_i \geq f_k\}$

Proof (by contradiction):

▷ Let B' be an optimal solution to S_k' and
$|B'| > |A - \{k\}| = |A| - 1$

▷ Then, $B = B' \cup \{k\}$ is compatible and
$|B| = |B'| + 1 > |A|$

Contradiction to the optimality of A Q.E.D.
Repeated Subproblems

- Consider recursive algorithm that tries all possible compatible subsets
- Notice repeated subproblems (e.g., S_2') (let $f_1 \leq \ldots \leq f_n$)

Diagram:

- S_1'
 - 2 ∈ A?
 - YES $1 \in A$?
 - NO $S' - \{1\}$
 - NO S_2'
 - NO $S_1' - \{2\}$
- 2 ∈ A?
 - YES S_2'
 - NO $S' - \{1,2\}$
Greedy Choice Property

- Repeated subproblems and optimal substructure properties hold in activity selection problem
- Dynamic programming? Memoize? Yes, but…
- **Greedy choice property**: a sequence of locally optimal (greedy) choices ⇒ an optimal solution
- Assume (without loss of generality) \(f_1 \leq f_2 \leq \ldots \leq f_n \)
 - If not sort activities according to their finish times in non-decreasing order
Greedy Choice Property in Activity Selection

Theorem: There exists an optimal solution
\[A \subseteq S \text{ such that } 1 \in A \text{ (Remember } f_1 \leq f_2 \leq \ldots \leq f_n) \]

Proof: Let \(A = \{k, \ell, m, \ldots\} \) be an optimal solution such that \(f_k \leq f_\ell \leq f_m \leq \ldots \)

- If \(k = 1 \) then schedule \(A \) begins with the greedy choice
- If \(k > 1 \) then show that \(\exists \) another optimal soln that begins with the greedy choice 1
 - Let \(B = A - \{k\} \cup \{1\} \), since \(f_1 \leq f_k \) activity 1 is compatible with \(A - \{k\} \); \(B \) is compatible
 - \(|B| = |A| - 1 + 1 = |A| \)
 - Hence \(B \) is optimal Q.E.D.
Activity Selection Problem

\(j \): specifies the index of most recent activity added to \(A \)

\(f_j = \text{Max}\{f_k : k \in A\} \), max finish time of any activity in \(A \); because activities are processed in non-decreasing order of finish times

Thus, “\(s_i \geq f_j \)” checks the compatibility of \(i \) to current \(A \)

Running time: \(\Theta(n) \) assuming that the activities were already sorted

\[
\text{GAS}(s, f, n)
\]

\[
A \leftarrow \{1\} \\
j \leftarrow 1 \\
\text{for } i \leftarrow 2 \text{ to } n \text{ do} \\
\quad \text{if } s_i \geq f_j \text{ then} \\
\quad \quad A \leftarrow A \cup \{i\} \\
\quad \quad j \leftarrow i \\
\text{return } A
\]
Activity Selection Problem: An Example

$S = \{ [1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18) \}$

$f_j = 0$
Activity Selection Problem: An Example

\[S = \{ [1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18) \} \]

\[f_j = 4 \]
Activity Selection Problem: An Example

\[S = \{ [1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18) \} \]

\[f_j = 7 \]
Activity Selection Problem: An Example

\[S = \{ [1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18) \} \]
Activity Selection Problem: An Example

\[S = \{ [1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18) \} \]

\[f_j = 7 \]
Activity Selection Problem: An Example

\[S = \{[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)\} \]

\[f_j = 15 \]
Activity Selection Problem: An Example

\[S = \{[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)\} \]

\[A = \{1, 2, 5\} \]
Greedy vs Dynamic Programming

- Optimal substructure property exploited by both Greedy and DP strategies
- **Greedy Choice Property**: A sequence of locally optimal choices ⇒ an optimal solution
 - We make the choice that seems best at the moment
 - Then solve the subproblem arising after the choice is made
- **DP**: We also make a choice/decision at each step, but the choice may depend on the optimal solutions to subproblems
- **Greedy**: The choice may depend on the choices made so far, but it cannot depend on any future choices or on the solutions to subproblems
Greedy vs Dynamic Programming

- **DP** is a bottom-up strategy
- **Greedy** is a top-down strategy
 - each greedy choice in the sequence iteratively reduces each problem to a similar but smaller problem
Proof of Correctness of Greedy Algorithms

- Examine a globally optimal solution
- Show that this soln can be modified so that
 1) A greedy choice is made as the first step
 2) This choice reduces the problem to a similar but smaller problem
- Apply induction to show that a greedy choice can be used at every step
- Showing (2) reduces the proof of correctness to proving that the problem exhibits optimal substructure property
Elements of Greedy Strategy

- How can you judge whether
- A greedy algorithm will solve a particular optimization problem?

Two key ingredients
- Greedy choice property
- Optimal substructure property
Key Ingredients of Greedy Strategy

- **Greedy Choice Property**: A globally optimal solution can be arrived at by making locally optimal (greedy) choices.
- In **DP**, we make a choice at each step but the choice may depend on the solutions to subproblems.
- In **Greedy Algorithms**, we make the choice that seems best at that moment then solve the subproblems arising after the choice is made.
 - The choice may depend on choices so far, but it cannot depend on any future choice or on the solutions to subproblems.
- **DP** solves the problem bottom-up.
- Greedy usually progresses in a top-down fashion by making one greedy choice after another reducing each given problem instance to a smaller one.
Key Ingredients: Greedy Choice Property

- We must prove that a greedy choice at each step yields a globally optimal solution
- The proof examines a globally optimal solution
- Shows that the soln can be modified so that a greedy choice made as the first step reduces the problem to a similar but smaller subproblem
- Then induction is applied to show that a greedy choice can be used at each step
- Hence, this induction proof reduces the proof of correctness to demonstrating that an optimal solution must exhibit optimal substructure property
Key Ingredients: Optimal Substructure

• A problem exhibits optimal substructure if an optimal solution to the problem contains within it optimal solutions to subproblems

Example: Activity selection problem \(S \)

If an optimal solution \(A \) to \(S \) begins with activity 1 then the set of activities

\[A' = A - \{1\} \]

is an optimal solution to the activity selection problem

\[S' = \{i \in S: s_i \geq f_1\} \]
Key Ingredients: Optimal Substructure

- Optimal substructure property is exploited by both Greedy and dynamic programming strategies
- Hence one may
 - Try to generate a dynamic programming solution to a problem when a greedy strategy suffices
 - Or, may mistakenly think that a greedy solution works when in fact a DP solution is required

Example: Knapsack Problems (S, w)
Knapsack Problems

• The 0-1 Knapsack Problem \((S, W)\)
 – A thief robbing a store finds \(n\) items \(S = \{I_1, I_2, \ldots, I_n\}\), the \(i\)th item is worth \(v_i\) dollars and weighs \(w_i\) pounds, where \(v_i\) and \(w_i\) are integers
 – He wants to take as valuable a load as possible, but he can carry at most \(W\) pounds in his knapsack, where \(W\) is an integer
 – The thief cannot take a fractional amount of an item

• The Fractional Knapsack Problem \((S, W)\)
 – The scenario is the same
 – But, the thief can take fractions of items rather than having to make binary (0-1) choice for each item
0-1 and Fractional Knapsack Problems

• Both knapsack problems exhibit the optimal substructure property.

The 0-1 Knapsack Problem \((S, W)\)
- Consider a most valuable load \(L\) where \(W_L \leq W\).
- If we remove item \(j\) from this optimal load \(L\),
 The remaining load

\[
L_j' = L - \{I_j\}
\]

must be a most valuable load weighing at most

\[
W_j' = W - w_j
\]

pounds that the thief can take from

\[
S_j' = S - \{I_j\}
\]

- That is, \(L_j'\) should be an optimal soln to the

 0-1 Knapsack Problem \((S_j', W_j')\)
0-1 and Fractional Knapsack Problems

The Fractional Knapsack Problem \((S, \ W)\)

- Consider a most valuable load \(L\) where \(W_L \leq W\)
- If we remove a weight \(0 < w \leq w_j\) of item \(j\) from optimal load \(L\)
 The remaining load
 \[
 L_j' = L - \{w \text{ pounds of } I_j\}
 \]
 must be a most valuable load weighing at most
 \[
 W_j' = W - w
 \]
 pounds that the thief can take from
 \[
 S_j' = S - \{I_j\} \cup \{w_j - w \text{ pounds of } I_j\}
 \]
 - That is, \(L_j'\) should be an optimal soln to the
 Fractional Knapsack Problem \((S_j', \ W_j')\)
Knapsack Problems

Although the problems are similar

- the **Fractional Knapsack Problem** is solvable by Greedy strategy
- whereas, the **0-1 Knapsack Problem** is not
Greedy Solution to Fractional Knapsack

1) Compute the value per pound \(\frac{v_i}{w_i} \) for each item
2) The thief begins by taking, as much as possible, of the item with the greatest value per pound
3) If the supply of that item is exhausted before filling the knapsack he takes, as much as possible, of the item with the next greatest value per pound
4) Repeat (2-3) until his knapsack becomes full

• Thus, by sorting the items by value per pound the greedy algorithm runs in \(O(n \log n) \) time
0-1 Knapsack Problem

- Greedy strategy does not work

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_1 = 10$</td>
<td>$w_2 = 20$</td>
<td>$w_3 = 30$</td>
</tr>
<tr>
<td>$v_1 = $60</td>
<td>$v_2 = $100</td>
<td>$v_3 = $120</td>
</tr>
<tr>
<td>$v_1 / w_1 = 6$</td>
<td>$v_2 / w_2 = 5$</td>
<td>$v_3 / w_3 = 4$</td>
</tr>
</tbody>
</table>

$W = 50$ Knapsack
0-1 Knapsack Problem

- Taking item 1 leaves empty space; lowers the effective value of the load

<table>
<thead>
<tr>
<th>Item 3</th>
<th>Item 2</th>
<th>Item 3</th>
<th>(out of 30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v_3 = $120</td>
<td>$v_2 = $100</td>
<td>$v_3 = $120</td>
<td></td>
</tr>
<tr>
<td>$w_3 = 30$</td>
<td>$w_2 = 20$</td>
<td>$w_3 = 30$</td>
<td>$w_3 = 20$</td>
</tr>
<tr>
<td>Knapsack</td>
<td>Knapsack</td>
<td>Knapsack</td>
<td>Fractional</td>
</tr>
<tr>
<td>220(optimal)</td>
<td>160</td>
<td>180</td>
<td>is optimally solved with 240</td>
</tr>
</tbody>
</table>

$v_1 = 10$

$w_1 = 10$

$w_2 = 20$

80

100

60

60
0-1 Knapsack Problem

- When we consider an item I_j for inclusion we must compare the solutions to two subproblems
 - Subproblems in which I_j is included and excluded
- The problem formulated in this way gives rise to many overlapping subproblems (a key ingredient of DP)
In fact, dynamic programming can be used to solve the 0-1 Knapsack problem
0-1 Knapsack Problem

• A thief robbing a store containing \(n \) articles
 \(\{a_1, a_2, \ldots, a_n\} \)
 – The value of \(i \)th article is \(v_i \) dollars (\(v_i \) is integer)
 – The weight of \(i \)th article is \(w_i \) kg (\(w_i \) is integer)

• Thief can carry at most \(W \) kg in his knapsack

• Which articles should he take to maximize the value of his load?

• Let \(K_{n,W} = \{a_1, a_2, \ldots, a_n : W\} \) denote 0-1 knapsack problem

• Consider the solution as a sequence of \(n \) decisions
 – i.e., \(i \)th decision: whether thief should pick \(a_i \) for optimal load
0-1 Knapsack Problem

Optimal substructure property:

• Let a subset S of articles be optimal for $K_{n,W}$
• Let a_i be the highest numbered article in S

Then

$$S' = S - \{a_i\}$$

is an optimal solution for subproblem

$$K_{i-1,W-w_i} = \{a_1, a_2, \ldots, a_{i-1}: W-w_i\}$$

with

$$c(S) = v_i + c(S')$$

where $c(\cdot)$ is the value of an optimal load ‘·’
0-1 Knapsack Problem

Recursive definition for value of optimal soln:

- Define \(c[i, w] \) as the value of an optimal solution for \(K_{i,w} = \{a_1, a_2, \ldots, a_i : w\} \)

\[
c[i, w] = \begin{cases}
0, & \text{if } i = 0 \text{ or } w = 0 \\
\max \{v_i + c[i - 1, w - w_i], c[i - 1, w]\} & \text{if } w_i > w \\
c[i - 1, w] & \text{o.w}
\end{cases}
\]
0-1 Knapsack Problem

Recursive definition for value of optimal soln:

This recurrence say that an optimal solution $S_{i,w}$ for $K_{i,w}$

- either contain a_i ⇒ $c(S_{i,w}) = v_i + c(S_{i-1,w-w_i})$
- or does not contain a_i ⇒ $c(S_{i,w}) = c(S_{i-1,w})$

• If thief decides to pick a_i
 - He takes v_i value and he can choose from \{$a_1, a_2, \ldots, a_{i-1}$\}
 up to the weight limit $w - w_i$ to get $c[i-1,w - w_i]$

• If he decides not to pick a_i
 - He can choose from \{$a_1, a_2, \ldots, a_{i-1}$\} up to the weight limit w to get $c[i-1,w]$

• The better of these two choices should be made
DP Solution to 0-1 Knapsack

KNAP0-1\((v, w, n, W)\)

```plaintext
for \(\omega \leftarrow 0\) to \(W\) do  
    \(c[0, \omega] \leftarrow 0\)
for \(i \leftarrow 1\) to \(n\) do  
    \(c[i, 0] \leftarrow 0\)
for \(i \leftarrow 1\) to \(n\) do
    for \(\omega \leftarrow 1\) to \(W\) do
        if \(w_i \leq \omega\) then
            \(c[i, \omega] \leftarrow \max\{v_i + c[i - 1, \omega - w_i], c[i - 1, \omega]\}\)
        else
            \(c[i, \omega] \leftarrow c[i - 1, \omega]\)
return \(c[n, W]\)
```

\(c\) is an \((n+1)\times(W+1)\) array; \(c[0..n : 0..W]\)

Note: table is computed in row-major order

Run time: \(T(n) = \Theta(nW)\)
Finding the Set S of Articles in an Optimal Load

$$\text{SOLKNAP0-1}(a, v, w, n, W, c)$$

$i \leftarrow n$; $\omega \leftarrow W$

$S \leftarrow \emptyset$

while $i > 0$ do

if $c[i, \omega] = c[i - 1, \omega]$ then

$i \leftarrow i - 1$

else

$S \leftarrow S \cup \{a_i\}$

$\omega \leftarrow \omega - w_i$

$i \leftarrow i - 1$

return S