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CS473-Algorithms I

Lecture 11

Greedy Algorithms
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Activity Selection Problem
• Input: a set S ={1, 2, …, n} of n activities

– si=Start time of activity i, 
– fi=  Finish time of activity i
Activity i takes place in [si, fi )

• Aim: Find max-size subset A of mutually 
compatible activities
– Max number of activities, not max time spent in 

activities
– Activities i and j are compatible if intervals [si, fi )

and [sj, fj ) do not overlap, i.e., either si ≥ fj or sj ≥ fi 
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Activity Selection Problem: 
An Example

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )}

1 9 1817161514131211108765432
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5

6
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Optimal Substructure
Theorem: Let k be the activity with the earliest finish 

time in an optimal soln A ⊆ S then 
A−{k} is an optimal solution to subproblem
Sk´ ={i∈S: si ≥ fk }

Proof (by contradiction):
> Let B´ be an optimal solution to Sk´ and 

|B´| > | A−{k}| = | A | − 1
> Then, B = B´ ∪ {k} is compatible and
|B| = |B´|+1 > | A |

Contradiction to the optimality of A                  Q.E.D.
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Repeated Subproblems
• Consider recursive algorithm that tries all 

possible compatible subsets
• Notice repeated subproblems (e.g., S2´) 

(let f1 ≤…≤ fn)

S2́ S1́ S2́ S-{1,2}

2 A?∈
YES NO

2 A?∈

YES NO

1 A?∈
YES    NO

-{2}

S1́
S-{1}
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Greedy Choice Property 

• Repeated subproblems and optimal substructure 
properties hold in activity selection problem

• Dynamic programming? 
Memoize? 
Yes, but…

• Greed choice property: a sequence of locally 
optimal (greedy) choices ⇒ an optimal solution

• Assume (without loss of generality) f ≤ f ≤ …1 2 ≤
fn
– If not sort activities according to their finish times in 

non-decreasing order



CS 473 Lecture 11 7

Greedy Choice Property in Activity Selection

Theorem: There exists an optimal solution
A ⊆ S such that 1∈ A (Remember f1 ≤ f2 ≤ …≤ fn)

Proof: Let A ={k, l, m, …} be an optimal solution such 
that fk ≤ fl ≤ fm ≤ …
> If k = 1 then schedule A begins with the greedy choice
> If k > 1 then show that ∃ another optimal soln that begins 

with the greedy choice 1
> Let B = A−{k} ∪ {1}, since f1 ≤ fk activity 1 is 

compatible with A−{k}; B is compatible
> |B| = | A| − 1+1 = | A |
> Hence B is optimal Q.E.D.
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Activity Selection Problem
j: specifies the index of most recent 
activity added to A

fj = Max{fk : k ∈ A}, max finish 
time of any activity in A; because 
activities are processed in non-
decreasing order of finish times

Thus, “si ≥ fj ”checks the 
compatibility of i to current A

Running time: Θ(n) assuming that 
the activities were already sorted

GAS(s, f , n)
A ← {1}
j  ← 1
for i ←2 to n do

if si ≥ fj then
A ← A ∪ {i}
j  ← i

return A
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Activity Selection Problem: 
An Example

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )}

fj=0

1 9 1817161514131211108765432

1
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Activity Selection Problem: 
An Example

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )}

1 9 1817161514131211108765432

1
2

fj=4
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Activity Selection Problem: 
An Example

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )}

1 9 1817161514131211108765432

1
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Activity Selection Problem: 
An Example

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )}

1 9 1817161514131211108765432
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Activity Selection Problem: 
An Example

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )}

1 9 1817161514131211108765432

1 2

5

fj=7
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Activity Selection Problem: 
An Example

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )}

1 9 1817161514131211108765432

1 2 5
6

fj=15
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Activity Selection Problem: 
An Example

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )}

1 9 1817161514131211108765432

1 2 5

A={1, 2, 5}
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Greedy vs Dynamic Programming
• Optimal substructure property exploited by both Greedy and 

DP strategies
• Greedy Choice Property: A sequence of locally optimal 

choices ⇒ an optimal solution
– We make the choice that seems best at the moment
– Then solve the subproblem arising after the choice is made

• DP: We also make a choice/decision at each step, but the 
choice may depend on the optimal solutions to subproblems

• Greedy: The choice may depend on the choices made so far, 
but it cannot depend on any future choices or on the solutions 
to subproblems
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Greedy vs Dynamic Programming

• DP is a bottom-up strategy
• Greedy is a top-down strategy

– each greedy choice in the sequence iteratively 
reduces each problem to a similar but smaller 
problem
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Proof of Correctness of Greedy 
Algorithms

• Examine a globally optimal solution
• Show that this soln can be modified so that 

1) A greedy choice is made as the first step
2) This choice reduces the problem to a similar but smaller 

problem
• Apply induction to show that a greedy choice can 

be used at every step
• Showing (2) reduces the proof of correctness to 

proving that the problem exhibits optimal 
substructure property
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Elements of Greedy Strategy
• How can you judge whether
• A greedy algorithm will solve a particular 

optimization problem?

Two key ingredients
– Greedy choice property
– Optimal substructure property
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Key Ingredients of Greedy Strategy
• Greedy Choice Property: A globally optimal solution can be 

arrived at by making locally optimal (greedy) choices
• In DP,we make a choice at each step but the choice may 

depend on the solutions to subproblems
• In Greedy Algorithms, we make the choice that seems best at 

that moment then solve the subproblems arising after the 
choice is made
– The choice may depend on choices so far, but it cannot depend on any 

future choice or on the solutions to subproblems
• DP solves the problem bottom-up
• Greedy usually progresses in a top-down fashion by making 

one greedy choice after another reducing each given problem 
instance to a smaller one 
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Key Ingredients: Greedy Choice Property

• We must prove that a greedy choice at each step 
yields a globally optimal solution

• The proof examines a globally optimal solution
• Shows that the soln can be modified so that a greedy 

choice made as the first step reduces the problem to a 
similar but smaller subproblem

• Then induction is applied to show that a greedy 
choice can be used at each step

• Hence, this induction proof reduces the proof of 
correctness to demonstrating that an optimal solution 
must exhibit optimal substructure property
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Key Ingredients: Optimal Substructure
• A problem exhibits optimal substructure if an 

optimal solution to the problem contains within it 
optimal solutions to subproblems

Example: Activity selection problem S
If an optimal solution A to S begins with activity 1
then the set of activities 

A´ = A−{1} 
is an optimal solution to the activity selection 
problem 

S´ = {i∈S: si ≥ f1 }
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Key Ingredients: Optimal Substructure

• Optimal substructure property is exploited by both 
Greedy and dynamic programming strategies

• Hence one may
– Try to generate a dynamic programming soln to a 

problem when a greedy strategy suffices
– Or, may mistakenly think that a greedy soln works 

when in fact a DP soln is required

Example:Knapsack Problems(S, w)
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Knapsack Problems
• The 0-1Knapsack Problem(S, W)

– A thief robbing a store finds n items S ={I1, I2, …, In}, 
the ith item is worth vi dollars and weighs wi pounds, 
where v and w are integersi i

– He wants to take as valuable a load as possible, but he 
can carry at most W pounds in his knapsack, where W
is an integer

– The thief cannot take a fractional amount of an item

• The Fractional Knapsack Problem (S, W)
– The scenario is the same
– But, the thief can take fractions of items rather than 

having to make binary (0-1) choice for each item
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0-1 and Fractional Knapsack Problems
• Both knapsack problems exhibit the optimal substructure property
The 0-1Knapsack Problem(S, W)

– Consider a most valuable load L where WL≤W
– If we remove item j from this optimal load L

The remaining load 
Lj´ = L −{Ij} 

must be a most valuable load weighing at most 
Wj´ = W − wj

pounds that the thief can take from 
Sj´ = S −{Ij}

– That is, Lj´ should be an optimal soln to the 
0-1 Knapsack Problem(Sj´, Wj´)
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0-1 and Fractional Knapsack Problems
The Fractional Knapsack Problem(S, W)

– Consider a most valuable load L where WL ≤ W
– If we remove a weight 0< w ≤ wj of item j from optimal load L

The remaining load 
Lj´ = L −{w pounds of Ij} 

must be a most valuable load weighing at most 
Wj´ = W − w

pounds that the thief can take from 
Sj´ = S −{Ij}∪{wj − w pounds of Ij} 

– That is, Lj´ should be an optimal soln to the 
Fractional Knapsack Problem(Sj´, Wj´)
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Knapsack Problems

Although the problems are similar 

• the Fractional Knapsack Problem is solvable 
by Greedy strategy 

• whereas, the 0-1 Knapsack Problem is not
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Greedy Solution to Fractional Knapsack 
1) Compute the value per pound vi /wi for each item
2) The thief begins by taking, as much as possible, of 

the item with the greatest value per pound
3) If the supply of that item is exhausted before filling 

the knapsack he takes, as much as possible, of the 
item with the next greatest value per pound

4) Repeat (2-3) until his knapsack becomes full

• Thus, by sorting the items by value per pound the 
greedy algorithm runs in O(nlg n) time
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0-1 Knapsack Problem
• Greedy strategy does not work

w1 = 10 w2 = 20 w3 = 30

W = 50
Item 1

Item 2

Item 3

Knapsack

v1 = $60 v2 = $100 v3 = $120

v1 /w1 = 6 v2 /w2 = 5 v3 /w3 = 4
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0-1 Knapsack Problem
• Taking item 1 leaves empty space; lowers 

the effective value of the load

w2 = 20

w3 = 30

Item 3

Item 2

Knapsack

$220(optimal)

v2 = $100

v3 = $120

w2 = 20 w3 = 30

Item 3
Item 2

Knapsack

$160

v2 = $100 v3 = $120

w1 = 10 w1 = 10

Knapsack

$180

w2 = 20

w1 = 10

(out of 30)

w3 = 20

Fractional is 
optimally solved 
with $240

$80

$100

$60$60
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0-1 Knapsack Problem
• When we consider an item Ij for inclusion we 

must compare the solutions to two 
subproblems 
– Subproblems in which Ij is included and excluded

• The problem formulated in this way gives rise 
to many 
overlapping subproblems (a key ingredient of DP)

In fact, dynamic programming can be used to 
solve the 0-1 Knapsack problem
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0-1 Knapsack Problem
• A thief robbing a store containing n articles 

{a1, a2, …, an}
– The value of ith article is vi dollars (vi is integer)
– The weight of ith article is wi kg (wi is integer)

• Thief can carry at most W kg in his knapsack
• Which articles should he take to maximize the value of 

his load?
• Let Kn,W ={a1, a2, …,an:W} denote 0-1 knapsack problem
• Consider the solution as a sequence of n decisions

– i.e., ith decision: whether thief should pick ai for optimal load
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0-1 Knapsack Problem
Optimal substructure property:
• Let a subset S of articles be optimal for Kn,W

• Let ai be the highest numbered article in S
Then 

S´ = S −{ai} 
is an optimal solution for subproblem 

Ki−1,W−wi
={a1, a2, …, ai−1: W−wi}       with

c(S) = vi + c(S´) 
where c(·) is the value of an optimal load ‘·’
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0-1 Knapsack Problem
Recursive definition for value of optimal soln:
• Define c[i,w] as the value of an optimal 

solution for Ki,w ={a1, a2, …, ai:w}

c[i,w] =
0,
c[i −1,w],

if i = 0 or w = 0
if wi > w

max{vi + c[i −1,w − wi] , c[i −1,w]} o.w
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0-1 Knapsack Problem
Recursive definition for value of optimal soln:
This recurrence say that an optimal solution Si,w for Ki,w

– either contain ai ⇒ c(Si,w) = vi + c(Si−1,w−wi
)

– or does not contain ai ⇒ c(Si,w) = c(Si−1,w)
• If thief decides to pick ai

– He takes vi value and he can choose from {a1, a2, …,ai−1} 
up to the weight limit w − wi to get c[i −1,w − wi]

• If he decides not to pick ai
– He can choose from {a1, a2, …,ai−1} up to the weight limit 

w to get c[i −1,w]
• The better of these two choices should be made
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DP Solution to 0-1 Knapsack
KNAP0-1(v, w, n,W)

for ω← 0 to W do
c[0, ω] ← 0

for i ←1 to n do
c[i, 0] ← 0

for i←1 to n do
for ω←1 to W do

if wi ≤ ω then
c[i, ω] ← max{vi + c[i −1, ω − wi] , c[i −1, ω]}

else
c[i, ω] ← c[i −1, ω]

return c[n, W] 

c is an (n+1)×(W+1) 
array; c[0.. n : 0..W]

Note: table is computed 
in row-major order

Run time: T(n) = Θ(nW)
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Finding the Set S of Articles in an 
Optimal Load

SOLKNAP0-1(a, v, w, n,W,c)
i ← n ; ω← W

S ←∅

while i > 0 do
if c[i, ω] = c[i −1, ω] then

i ← i −1
else

S ← S ∪{ai}
ω← ω − wi    
i ← i −1

return S
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