
CS 473 Lecture 11 1

CS473-Algorithms I

Lecture 11

Greedy Algorithms

CS 473 Lecture 11 2

Activity Selection Problem
• Input: a set S ={1, 2, …, n} of n activities

– si=Start time of activity i,
– fi= Finish time of activity i
Activity i takes place in [si, fi)

• Aim: Find max-size subset A of mutually
compatible activities
– Max number of activities, not max time spent in

activities
– Activities i and j are compatible if intervals [si, fi)

and [sj, fj) do not overlap, i.e., either si ≥ fj or sj ≥ fi

CS 473 Lecture 11 3

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1
2

3
4

5

6

CS 473 Lecture 11 4

Optimal Substructure
Theorem: Let k be the activity with the earliest finish

time in an optimal soln A ⊆ S then
A−{k} is an optimal solution to subproblem
Sk´ ={i∈S: si ≥ fk }

Proof (by contradiction):
> Let B´ be an optimal solution to Sk´ and

|B´| > | A−{k}| = | A | − 1
> Then, B = B´ ∪ {k} is compatible and
|B| = |B´|+1 > | A |

Contradiction to the optimality of A Q.E.D.

CS 473 Lecture 11 5

Repeated Subproblems
• Consider recursive algorithm that tries all

possible compatible subsets
• Notice repeated subproblems (e.g., S2´)

(let f1 ≤…≤ fn)

S2́ S1́ S2́ S-{1,2}

2 A?∈
YES NO

2 A?∈

YES NO

1 A?∈
YES NO

-{2}

S1́
S-{1}

CS 473 Lecture 11 6

Greedy Choice Property

• Repeated subproblems and optimal substructure
properties hold in activity selection problem

• Dynamic programming?
Memoize?
Yes, but…

• Greed choice property: a sequence of locally
optimal (greedy) choices ⇒ an optimal solution

• Assume (without loss of generality) f ≤ f ≤ …1 2 ≤
fn
– If not sort activities according to their finish times in

non-decreasing order

CS 473 Lecture 11 7

Greedy Choice Property in Activity Selection

Theorem: There exists an optimal solution
A ⊆ S such that 1∈ A (Remember f1 ≤ f2 ≤ …≤ fn)

Proof: Let A ={k, l, m, …} be an optimal solution such
that fk ≤ fl ≤ fm ≤ …
> If k = 1 then schedule A begins with the greedy choice
> If k > 1 then show that ∃ another optimal soln that begins

with the greedy choice 1
> Let B = A−{k} ∪ {1}, since f1 ≤ fk activity 1 is

compatible with A−{k}; B is compatible
> |B| = | A| − 1+1 = | A |
> Hence B is optimal Q.E.D.

CS 473 Lecture 11 8

Activity Selection Problem
j: specifies the index of most recent
activity added to A

fj = Max{fk : k ∈ A}, max finish
time of any activity in A; because
activities are processed in non-
decreasing order of finish times

Thus, “si ≥ fj ”checks the
compatibility of i to current A

Running time: Θ(n) assuming that
the activities were already sorted

GAS(s, f , n)
A ← {1}
j ← 1
for i ←2 to n do

if si ≥ fj then
A ← A ∪ {i}
j ← i

return A

CS 473 Lecture 11 9

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

fj=0

1 9 1817161514131211108765432

1

CS 473 Lecture 11 10

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1
2

fj=4

CS 473 Lecture 11 11

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1
2

3

fj=7

CS 473 Lecture 11 12

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1
2

4

fj=7

CS 473 Lecture 11 13

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1 2

5

fj=7

CS 473 Lecture 11 14

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1 2 5
6

fj=15

CS 473 Lecture 11 15

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1 2 5

A={1, 2, 5}

CS 473 Lecture 11 16

Greedy vs Dynamic Programming
• Optimal substructure property exploited by both Greedy and

DP strategies
• Greedy Choice Property: A sequence of locally optimal

choices ⇒ an optimal solution
– We make the choice that seems best at the moment
– Then solve the subproblem arising after the choice is made

• DP: We also make a choice/decision at each step, but the
choice may depend on the optimal solutions to subproblems

• Greedy: The choice may depend on the choices made so far,
but it cannot depend on any future choices or on the solutions
to subproblems

CS 473 Lecture 11 17

Greedy vs Dynamic Programming

• DP is a bottom-up strategy
• Greedy is a top-down strategy

– each greedy choice in the sequence iteratively
reduces each problem to a similar but smaller
problem

CS 473 Lecture 11 18

Proof of Correctness of Greedy
Algorithms

• Examine a globally optimal solution
• Show that this soln can be modified so that

1) A greedy choice is made as the first step
2) This choice reduces the problem to a similar but smaller

problem
• Apply induction to show that a greedy choice can

be used at every step
• Showing (2) reduces the proof of correctness to

proving that the problem exhibits optimal
substructure property

CS 473 Lecture 11 19

Elements of Greedy Strategy
• How can you judge whether
• A greedy algorithm will solve a particular

optimization problem?

Two key ingredients
– Greedy choice property
– Optimal substructure property

CS 473 Lecture 11 20

Key Ingredients of Greedy Strategy
• Greedy Choice Property: A globally optimal solution can be

arrived at by making locally optimal (greedy) choices
• In DP,we make a choice at each step but the choice may

depend on the solutions to subproblems
• In Greedy Algorithms, we make the choice that seems best at

that moment then solve the subproblems arising after the
choice is made
– The choice may depend on choices so far, but it cannot depend on any

future choice or on the solutions to subproblems
• DP solves the problem bottom-up
• Greedy usually progresses in a top-down fashion by making

one greedy choice after another reducing each given problem
instance to a smaller one

CS 473 Lecture 11 21

Key Ingredients: Greedy Choice Property

• We must prove that a greedy choice at each step
yields a globally optimal solution

• The proof examines a globally optimal solution
• Shows that the soln can be modified so that a greedy

choice made as the first step reduces the problem to a
similar but smaller subproblem

• Then induction is applied to show that a greedy
choice can be used at each step

• Hence, this induction proof reduces the proof of
correctness to demonstrating that an optimal solution
must exhibit optimal substructure property

CS 473 Lecture 11 22

Key Ingredients: Optimal Substructure
• A problem exhibits optimal substructure if an

optimal solution to the problem contains within it
optimal solutions to subproblems

Example: Activity selection problem S
If an optimal solution A to S begins with activity 1
then the set of activities

A´ = A−{1}
is an optimal solution to the activity selection
problem

S´ = {i∈S: si ≥ f1 }

CS 473 Lecture 11 23

Key Ingredients: Optimal Substructure

• Optimal substructure property is exploited by both
Greedy and dynamic programming strategies

• Hence one may
– Try to generate a dynamic programming soln to a

problem when a greedy strategy suffices
– Or, may mistakenly think that a greedy soln works

when in fact a DP soln is required

Example:Knapsack Problems(S, w)

CS 473 Lecture 11 24

Knapsack Problems
• The 0-1Knapsack Problem(S, W)

– A thief robbing a store finds n items S ={I1, I2, …, In},
the ith item is worth vi dollars and weighs wi pounds,
where v and w are integersi i

– He wants to take as valuable a load as possible, but he
can carry at most W pounds in his knapsack, where W
is an integer

– The thief cannot take a fractional amount of an item

• The Fractional Knapsack Problem (S, W)
– The scenario is the same
– But, the thief can take fractions of items rather than

having to make binary (0-1) choice for each item

CS 473 Lecture 11 25

0-1 and Fractional Knapsack Problems
• Both knapsack problems exhibit the optimal substructure property
The 0-1Knapsack Problem(S, W)

– Consider a most valuable load L where WL≤W
– If we remove item j from this optimal load L

The remaining load
Lj´ = L −{Ij}

must be a most valuable load weighing at most
Wj´ = W − wj

pounds that the thief can take from
Sj´ = S −{Ij}

– That is, Lj´ should be an optimal soln to the
0-1 Knapsack Problem(Sj´, Wj´)

CS 473 Lecture 11 26

0-1 and Fractional Knapsack Problems
The Fractional Knapsack Problem(S, W)

– Consider a most valuable load L where WL ≤ W
– If we remove a weight 0< w ≤ wj of item j from optimal load L

The remaining load
Lj´ = L −{w pounds of Ij}

must be a most valuable load weighing at most
Wj´ = W − w

pounds that the thief can take from
Sj´ = S −{Ij}∪{wj − w pounds of Ij}

– That is, Lj´ should be an optimal soln to the
Fractional Knapsack Problem(Sj´, Wj´)

CS 473 Lecture 11 27

Knapsack Problems

Although the problems are similar

• the Fractional Knapsack Problem is solvable
by Greedy strategy

• whereas, the 0-1 Knapsack Problem is not

CS 473 Lecture 11 28

Greedy Solution to Fractional Knapsack
1) Compute the value per pound vi /wi for each item
2) The thief begins by taking, as much as possible, of

the item with the greatest value per pound
3) If the supply of that item is exhausted before filling

the knapsack he takes, as much as possible, of the
item with the next greatest value per pound

4) Repeat (2-3) until his knapsack becomes full

• Thus, by sorting the items by value per pound the
greedy algorithm runs in O(nlg n) time

CS 473 Lecture 11 29

0-1 Knapsack Problem
• Greedy strategy does not work

w1 = 10 w2 = 20 w3 = 30

W = 50
Item 1

Item 2

Item 3

Knapsack

v1 = $60 v2 = $100 v3 = $120

v1 /w1 = 6 v2 /w2 = 5 v3 /w3 = 4

CS 473 Lecture 11 30

0-1 Knapsack Problem
• Taking item 1 leaves empty space; lowers

the effective value of the load

w2 = 20

w3 = 30

Item 3

Item 2

Knapsack

$220(optimal)

v2 = $100

v3 = $120

w2 = 20 w3 = 30

Item 3
Item 2

Knapsack

$160

v2 = $100 v3 = $120

w1 = 10 w1 = 10

Knapsack

$180

w2 = 20

w1 = 10

(out of 30)

w3 = 20

Fractional is
optimally solved
with $240

$80

$100

$60$60

CS 473 Lecture 11 31

0-1 Knapsack Problem
• When we consider an item Ij for inclusion we

must compare the solutions to two
subproblems
– Subproblems in which Ij is included and excluded

• The problem formulated in this way gives rise
to many
overlapping subproblems (a key ingredient of DP)

In fact, dynamic programming can be used to
solve the 0-1 Knapsack problem

CS 473 Lecture 11 32

0-1 Knapsack Problem
• A thief robbing a store containing n articles

{a1, a2, …, an}
– The value of ith article is vi dollars (vi is integer)
– The weight of ith article is wi kg (wi is integer)

• Thief can carry at most W kg in his knapsack
• Which articles should he take to maximize the value of

his load?
• Let Kn,W ={a1, a2, …,an:W} denote 0-1 knapsack problem
• Consider the solution as a sequence of n decisions

– i.e., ith decision: whether thief should pick ai for optimal load

CS 473 Lecture 11 33

0-1 Knapsack Problem
Optimal substructure property:
• Let a subset S of articles be optimal for Kn,W

• Let ai be the highest numbered article in S
Then

S´ = S −{ai}
is an optimal solution for subproblem

Ki−1,W−wi
={a1, a2, …, ai−1: W−wi} with

c(S) = vi + c(S´)
where c(·) is the value of an optimal load ‘·’

CS 473 Lecture 11 34

0-1 Knapsack Problem
Recursive definition for value of optimal soln:
• Define c[i,w] as the value of an optimal

solution for Ki,w ={a1, a2, …, ai:w}

c[i,w] =
0,
c[i −1,w],

if i = 0 or w = 0
if wi > w

max{vi + c[i −1,w − wi] , c[i −1,w]} o.w

CS 473 Lecture 11 35

0-1 Knapsack Problem
Recursive definition for value of optimal soln:
This recurrence say that an optimal solution Si,w for Ki,w

– either contain ai ⇒ c(Si,w) = vi + c(Si−1,w−wi
)

– or does not contain ai ⇒ c(Si,w) = c(Si−1,w)
• If thief decides to pick ai

– He takes vi value and he can choose from {a1, a2, …,ai−1}
up to the weight limit w − wi to get c[i −1,w − wi]

• If he decides not to pick ai
– He can choose from {a1, a2, …,ai−1} up to the weight limit

w to get c[i −1,w]
• The better of these two choices should be made

CS 473 Lecture 11 36

DP Solution to 0-1 Knapsack
KNAP0-1(v, w, n,W)

for ω← 0 to W do
c[0, ω] ← 0

for i ←1 to n do
c[i, 0] ← 0

for i←1 to n do
for ω←1 to W do

if wi ≤ ω then
c[i, ω] ← max{vi + c[i −1, ω − wi] , c[i −1, ω]}

else
c[i, ω] ← c[i −1, ω]

return c[n, W]

c is an (n+1)×(W+1)
array; c[0.. n : 0..W]

Note: table is computed
in row-major order

Run time: T(n) = Θ(nW)

CS 473 Lecture 11 37

Finding the Set S of Articles in an
Optimal Load

SOLKNAP0-1(a, v, w, n,W,c)
i ← n ; ω← W

S ←∅

while i > 0 do
if c[i, ω] = c[i −1, ω] then

i ← i −1
else

S ← S ∪{ai}
ω← ω − wi
i ← i −1

return S

	CS473-Algorithms I
	Activity Selection Problem
	Activity Selection Problem: An Example
	Optimal Substructure
	Repeated Subproblems
	Greedy Choice Property
	Greedy Choice Property in Activity Selection
	Activity Selection Problem: An Example
	Activity Selection Problem: An Example
	Activity Selection Problem: An Example
	Activity Selection Problem: An Example
	Activity Selection Problem: An Example
	Activity Selection Problem: An Example
	Activity Selection Problem: An Example
	Greedy vs Dynamic Programming
	Greedy vs Dynamic Programming
	Proof of Correctness of Greedy Algorithms
	Elements of Greedy Strategy
	Key Ingredients of Greedy Strategy
	Key Ingredients: Greedy Choice Property
	Key Ingredients: Optimal Substructure
	Key Ingredients: Optimal Substructure
	Knapsack Problems
	0-1 and Fractional Knapsack Problems
	0-1 and Fractional Knapsack Problems
	Knapsack Problems
	Greedy Solution to Fractional Knapsack
	0-1 Knapsack Problem
	0-1 Knapsack Problem
	0-1 Knapsack Problem
	0-1 Knapsack Problem
	0-1 Knapsack Problem
	0-1 Knapsack Problem
	0-1 Knapsack Problem
	DP Solution to 0-1 Knapsack
	Finding the Set S of Articles in an Optimal Load

