
CS 473 Lecture 11 1

CS473-Algorithms I

Lecture 11

Huffman Codes

CS 473 Lecture 11 2

Huffman Codes
• Widely used and very effective technique for compressing data
• Savings of 20% to 90% are typical
• Depending on the characteristics of the file being compressed

Huffman’s greedy algorithm
− uses a table of the frequencies of occurrence of each character
− to build up an optimal way of representing each character as a

binary string
Example: A 100,000-character data file that is to be compressed

only 6 characters {a, b, c, d, e, f} appear
a b c d e f

frequency (in thousands) 45K 13K 12K 16K 9K 5K
fixed-length codeword 000 001 010 011 100 101
variable-length codeword 0 101 100 111 1101 1100
variable-length codeword 0 10 110 1110 11110 11111

CS 473 Lecture 11 3

Huffman Codes

Binary character code:
• each character is represented by a unique binary string

Fixed-length code:
• needs 3 bits to represent 6 characters
• requires 100.000×3=300,000 bits to code the entire file

Variable-length code:
• can do better by giving frequent characters short

codewords & infrequent words long codewords
• requires 45×1+13×3+12×3+16×3+9×4+5×4

=224,000 bits

CS 473 Lecture 11 4

Prefix Codes

Prefix codes: No codeword is also a prefix of some other
codeword

It can be shown that:
optimal data compression achievable by a character code
can always be achieved with a prefix code

Prefix codes simplify encoding (compression) and decoding

Encoding: Concatenate the codewords representing each
character of the file

e.g. 3 char file “abc” 0.101.100 = 0101100encoded

CS 473 Lecture 11 5

Prefix Codes

Decoding: is quite simple with a prefix code
the codeword that begins an encoded file is unambigious

since no codeword is a prefix of any other
• identify the initial codeword
• translate it back to the original character
• remove it from the encoded file
• repeat the decoding process on the remainder of the

encoded file
e.g. string 001011101 parses uniquely as

0.0.101.1101 aabedecoded

CS 473 Lecture 11 6

Prefix Codes

Convenient representation for the prefix code:
a binary tree whose leaves are the given characters

Binary codeword for a character is the path from the
root to that character in the binary tree

“0” means “go to the left child”
“1” means “go to the right child”

CS 473 Lecture 11 7

Binary Tree Representation of Prefix Codes

 100

86 14

58 28 14

c: 12b: 13a: 45 d: 16 e: 9 f: 5

0

0 1 0 1 0 1

0

10

1

The binary tree corresponding to the fixed-length code

CS 473 Lecture 11 8

Binary Tree Representation of Prefix Codes

 100

55

30 25

14 b: 13c: 12

a: 45

d: 16

e: 9f: 5

0

0

1

0

1

0 1

10

1

The binary tree corresponding
to the optimal variable-length
code

An optimal code for a file is always represented by a full binary tree

CS 473 Lecture 11 9

Full Binary Tree Representation of Prefix Codes

Consider an FBT corresponding to an optimal prefix code

It has |C| leaves (external nodes)

One for each letter of the alphabet where C is the alphabet
from which the characters are drawn

Lemma: An FBT with |C| external nodes has exactly
|C|−1 internal nodes

CS 473 Lecture 11 10

Full Binary Tree Representation of Prefix Codes

Consider an FBT T corresponding to a prefix code
How to compute, B(T), the number of bits required to

encode a file
f(c): frequency of character c in the file
dT(c): depth of c’s leaf in the FBT T
note that dT(c) also denotes length of the codeword for c

which we define as the cost of the tree T

∑
∈

=
Cc

T cdcfTB)()()(

CS 473 Lecture 11 11

Prefix Codes

Lemma: Let each internal node i is labeled with
the sum of the weight w(i) of the leaves in its subtree

Then where

IT denotes the set of internal nodes in T

Proof: Consider a leaf node c with f (c) & dT(c)
Then, f (c) appears in the weights of dT(c) internal node
along the path from c to the root
Hence, f (c) appears dT(c) times in the above summation

∑∑ == T iwcdcfTB)()()()(
∈∈ TIiCc

CS 473 Lecture 11 12

Constructing a Huffman Code

Huffman invented a greedy algorithm that constructs
an optimal prefix code called a Huffman code

The greedy algorithm
• builds the FBT corresponding to the optimal code

in a bottom-up manner
• begins with a set of |C| leaves
• performs a sequence of |C|−1 “merges” to create

the final tree

CS 473 Lecture 11 13

Constructing a Huffman Code

A priority queue Q, keyed on f, is used
to identify the two least-frequent objects to merge

The result of the merger of two objects is a new object
• inserted into the priority queue according to its

frequency
• which is the sum of the frequencies of the two

objects merged

CS 473 Lecture 11 14

Constructing a Huffman Code
HUFFMAN(C)

n ← |C|
Q ← C
for i ← 1 to n −1 do

z ← ALLOCATE-NODE()
x ← left[z] ← EXTRACT-MIN(Q)
y ← right[z] ← EXTRACT-MIN(Q)
f [z] ← f [x] + f [y]
INSERT(Q, z)

return EXTRACT-MIN(Q) ∆ only one object left in Q
Priority queue is implemented as a binary heap
Initiation of Q (BUILD-HEAP): O(n) time
EXTRACT-MIN & INSERT take O(lgn) time on Q with n objects

)lg())!(lg(lg)(
1

nnOnOinT
n

i
===∑

=

CS 473 Lecture 11 15

Constructing a Huffman Code

c: 12e: 9f: 5 b: 13 d: 16 a: 45(a)

f: 5

b: 13c: 12

e: 9

d: 16 a: 45(b) 14
0 1

CS 473 Lecture 11 16

Constructing a Huffman Code

b: 13c: 12

d: 16 a: 45(c)

f: 5 e: 9

14
0 1

25
0 1

d: 16

e: 9f: 5

a: 45(d)

c: 12 b: 13

25
0 1

30
0 1

0
14

1

CS 473 Lecture 11 17

Constructing a Huffman Code

a: 45(e)

c: 12 b: 13

25
0 1

d: 16

e: 9f: 5

30
0 1

0
14

1

55
0 1

CS 473 Lecture 11 18

Constructing a Huffman Code

a: 45

(f)

c: 12 b: 13

25
0 1

d: 16

e: 9f: 5

30
0 1

0
14

1

55
0 1

100
0 1

CS 473 Lecture 11 19

Correctness of Huffman’s Algorithm

We must show that the problem of determining an
optimal prefix code
• exhibits the greedy choice property
• exhibits the optimal substructure property

Lemma 1: Let x & y be two characters in C having the
lowest frequencies

Then, ∃ an optimal prefix code for C in which the
codewords for x & y have the same length and differ
only in the last bit

CS 473 Lecture 11 20

Correctness of Huffman’s Algorithm

Proof: Take tree T representing an arbitrary optimal code
Modify T to make a tree representing another optimal code

such that characters x & y appear as sibling leaves of
max-depth in the new tree

Assume that f [b] ≤ f [c] & f [x] ≤ f [y]

Since f [x] & f [y] are two lowest leaf frequencies, in order,
and f [b] & f [c] are two arbitrary leaf frequencies, in order,
f [x] ≤ f [b] & f [y] ≤ f [c]

CS 473 Lecture 11 21

Correctness of Huffman’s Algorithm
 T

x

y

b c

b

y

x c

b

c

x y

T′ T′′

T ⇒ T′ : exchange the positions of the leaves b & x
T′ ⇒ T′′: exchange the positions of the leaves c & y

CS 473 Lecture 11 22

Greedy-Choice Property of Determining an Optimal Code

Proof of Lemma 1 (continued):
The difference in cost between T and T′ is

0))()(])([][(
))()(]([))()(]([

)(][)()()(][)(][
)(][)(][)(][)(][

)()()()()'()(

''

'

≥−−=
−−−=
−−+=
−−+=

−== ∑∑
∈∈

xdbdxfbf
xdbdxfxdbdbf

xdbfbdxfbdbfxdxf
bdbfxdxfbdbfxdxf

cdcfcdcfTBTB

TT

TTTT

TTTT

TTTT

Cc
T

Cc
T

CS 473 Lecture 11 23

Greedy-Choice Property of Determining an Optimal Code

Proof of Lemma 1 (continued):

Since f [b]−f [x] ≥ 0 and dT(b) ≥ dT(x)
therefore B(T′) ≤ B(T)

We can similary show that
B(T′)−B(T′′) ≥ 0 ⇒ B(T′′) ≤ B(T′)
which implies B(T′′) ≤ B(T)

Since T is optimal ⇒ B(T′′) = B(T) ⇒ T′′ is also optimal

CS 473 Lecture 11 24

Greedy-Choice Property of Determining an Optimal Code

Lemma 1 implies that
process of building an optimal tree by mergers
can begin with the greedy choice of merging
those two characters with the lowest frequency

We have already proved that , that is,
the total cost of the tree constructed
is the sum of the costs of its mergers (internal nodes)
of all possible mergers

At each step Huffman chooses the merger that incurs the
least cost

∑
∈

=
TIi

iwTB)()(

CS 473 Lecture 11 25

Greedy-Choice Property of Determining an Optimal Code

Lemma 2: Consider any two characters x & y that appear
as sibling leaves in optimal T and let z be their parent

Then, considering z as a character with frequency
f [z] = f [x] + f [y]

The tree T′ = T − {x, y} represents an optimal prefix code
for the alphabet C′ = C − {x, y} ∪ {z}

CS 473 Lecture 11 26

Greedy-Choice Property of Determining an Optimal Code

Proof: Try to express cost of T in terms of cost of T′
For each c ∈ C′ = C − {x, y} we have

dT(c) = dT′(c) ⇒ f (c)dT(c) = f (c)dT′(c)

f [z]= f [x]+ f [y]f [y]f [x]

T

x y

T′

z

z

][][)'(][)'(
)(][)1)(]([)'(

)(][)1)(]([)1)(]([)'()(

yfxfTBzfTB
zdzfzdzfTB

zdzfzdyfzdxfTBTB

TT

TTT

++=+=
−++=

+++++=

CS 473 Lecture 11 27

Greedy-Choice Property of Determining an Optimal Code

Proof (continued): If T′ represents a nonoptimal prefix
code for the alphabet C′

Then, ∃ a tree T′′ whose leaves are characters in C′
such that B(T′′) < B(T′)

Since z is a character in C′, it appears as a leaf in T′′

If we add x & y as children of z in T′′
then we obtain a prefix code for x with cost

B(T′′) + f [x] + f [y] < B(T′) + f [x] + f [y] = B(T)
contradicting the optimality of T

	CS473-Algorithms I

