Lecture 15

Graph Searching:

Depth-First Search and Topological Sort
Depth-First Search

- Graph $G = (V,E)$ directed or undirected
- Adjacency list representation
- **Goal**: Systematically explore every vertex and every edge
- **Idea**: search deeper whenever possible
 - Using a LIFO queue (Stack; FIFO queue used in BFS)
Depth-First Search

• Maintains several fields for each $v \in V$
• Like BFS, colors the vertices to indicate their states. Each vertex is
 – Initially white,
 – grayed when discovered,
 – blackened when finished
• Like BFS, records discovery of a white v during scanning $\text{Adj}[u]$ by $\pi[v] \leftarrow u$
Depth-First Search

• Unlike BFS, predecessor graph G_π produced by DFS forms spanning forest

• $G_\pi = (V, E_\pi)$ where

 $$E_\pi = \{ (\pi[v], v) : v \in V \text{ and } \pi[v] \neq \text{NIL} \}$$

• $G_\pi =$ depth-first forest (DFF) is composed of disjoint depth-first trees (DFTs)
Depth-First Search

- DFS also timestamps each vertex with two timestamps:
 - $d[v]$: records when v is first discovered and grayed
 - $f[v]$: records when v is finished and blackened
- Since there is only one discovery event and finishing event for each vertex we have $1 \leq d[v] < f[v] \leq 2|V|$
Depth-First Search

DFS(G)

for each \(u \in V \) do

- \(\text{color}[u] \leftarrow \text{white} \)
- \(\pi[u] \leftarrow \text{NIL} \)

\(time \leftarrow 0 \)

for each \(u \in V \) do

- if \(\text{color}[u] = \text{white} \) then
 - \(\text{DFS-Visit}(G, u) \)

DFS-Visit(G, u)

- \(\text{color}[u] \leftarrow \text{gray} \)
- \(d[u] \leftarrow \text{time} \leftarrow \text{time} + 1 \)

for each \(v \in \text{Adj}[u] \) do

 - if \(\text{color}[v] = \text{white} \) then
 - \(\pi[v] \leftarrow u \)
 - \(\text{DFS-Visit}(G, v) \)

- \(\text{color}[u] \leftarrow \text{black} \)
- \(f[u] \leftarrow \text{time} \leftarrow \text{time} + 1 \)
Depth-First Search

- Running time: $\Theta(V+E)$
- Initialization loop in DFS: $\Theta(V)$
- Main loop in DFS: $\Theta(V)$ exclusive of time to execute calls to DFS-Visit
- DFS-Visit is called exactly once for each $v \in V$ since
 - DFS-Visit is invoked only on white vertices and
 - $\text{DFS-Visit}(G, u)$ immediately colors u as gray
- For loop of $\text{DFS-Visit}(G, u)$ is executed $|\text{Adj}[u]|$ time
- Since $\Sigma |\text{Adj}[u]| = E$, total cost of executing loop of DFS-Visit is $\Theta(E)$
Depth-First Search: Example

\[
\begin{array}{ccc}
\text{s} & \text{x} & \text{z} \\
\text{w} & \text{y} & \text{u} \\
\text{1} & \text{2} & \text{3} \\
\end{array}
\]
Depth-First Search: Example
Depth-First Search: Example
Depth-First Search: Example

- The graph represents a depth-first search process.
- The nodes are labeled with letters (s, t, u, v, w, x, y, z).
- The edges connect these nodes, showing the search progression.
Depth-First Search: Example

\[\begin{align*}
\text{Depth} & \quad \text{First Search: Example} \\
\begin{array}{cccccc}
\text{s} & \text{w} & \text{x} & \text{y} & \text{z} \\
\text{s} & \text{t} & \text{u} & \text{v} & \text{w} & \text{x} & \text{y} \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\end{align*}\]
Depth-First Search: Example

DFS(G) terminated

Depth-first forest (DFF)