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a b s t r a c t

For the parallelization of sparse matrix–vector multiplication (SpMV) on distributed memory systems,
nonzero-based fine-grain and medium-grain partitioning models attain the lowest communication vol-
ume and computational imbalance among all partitioning models. This usually comes, however, at the
expense of high message count, i.e., high latency overhead. This work addresses this shortcoming by
proposing new fine-grain and medium-grain models that are able to minimize communication volume
and message count in a single partitioning phase. The new models utilize message nets in order to
encapsulate the minimization of total message count. We further fine-tune these models by proposing
delayed addition and thresholding for message nets in order to establish a trade-off between the
conflicting objectives of minimizing communication volume and message count. The experiments on
an extensive dataset of nearly one thousand matrices show that the proposed models improve the total
message count of the original nonzero-based models by up to 27% on the average, which is reflected on
the parallel runtime of SpMV as an average reduction of 15% on 512 processors.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Sparsematrix partitioningplays a pivotal role in scaling applica-
tions that involve irregular sparsematrices on distributedmemory
systems. Several decades of research on this subject led to elegant
combinatorial partitioning models that are able to address the
needs of these applications.

A key operation in sparse applications is the sparse matrix–
vector multiplication (SpMV), which is usually performed in a
repeated manner with the same sparse matrix in various itera-
tive solvers. The irregular sparsity pattern of the matrix in SpMV
necessitates a non-trivial parallelization. In that sense, graph and
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hypergraph models prove to be powerful tools in their immense
ability to represent SpMV with the aim of optimizing desired
parallel performance metrics. We focus on the hypergraph models
as they correctly encapsulate the total communication volume in
SpMV [6,7,13,15] and the proposed models in this work rely on
hypergraphs.

Among various hypergraph models, the fine-grain hypergraph
model [8,10] achieves the lowest communication volume and the
lowest imbalance on computational loads of the processors [10].
Since the nonzeros of the matrix are treated individually in the
fine-grain model, the nonzeros that belong to the same row/
column are more likely to be scattered to multiple processors
compared to the other models. This may result in a high message
count and hinder scalability. The fine-grain hypergraphs have the
largest size for the same reason, causing this model to have the
highest partitioning overhead. The recently proposed medium-
grain model [19] alleviates this issue by operating on groups of
nonzeros instead of individual nonzeros. The partitioning overhead
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of the medium-grain model is significantly lower than that of the
fine-grain model, while these two models achieve comparable
communication volume. The fine-grain and medium-grain models
are referred to as nonzero-based models as they obtain nonzero-
based matrix partitions, the most general possible [24].

Although the nonzero-based models attain the lowest commu-
nication volume, the overall communication cost is not determined
by the volume only, but better formulated as a function of multiple
communication cost metrics. Another important cost metric is the
total message count, which is not only overlooked by both the
fine-grain and medium-grain models, but also exacerbated due to
having nonzero-based partitions. Note that among the two basic
components of the communication cost, the total communication
volume determines the bandwidth component and the total mes-
sage count determines the latency component.

In this work, we aim at addressing the latency overheads of
nonzero-based partitioningmodels. Our contributions can be sum-
marized as follows:

• We propose a novel fine-grain model to simultaneously re-
duce the bandwidth and latency costs of parallel SpMV.
• We propose a novel medium-grain model to simultaneously

reduce the bandwidth and latency costs of parallel SpMV.
• We utilize the message net concept [21] within the recursive

bipartitioning framework to incorporate the minimization
of the latency cost into the partitioning objective of these
two models. Message nets aim to group the matrix nonzeros
and/or the vector entries in the SpMV that necessitate a
message together.
• We also propose two enhancements, delayed addition and

thresholding for message nets, to better exploit the trade-off
between the bandwidth and latency costs for the proposed
models.
• We conduct extensive experiments on nearly one thousand

matrices and show that the proposed models improve the
total message count of the original nonzero-based models by
up to 27% on the average, which is reflected on the parallel
runtime of SpMV as an average reduction of 15% on 512
processors.

The remainder of the paper is organized as follows. Section 2
gives background on parallel SpMV, performance cost metrics, the
fine-grain model, recursive bipartitioning, and the medium-grain
model. Sections 3 and 4 present the proposed fine-grain and
medium-grain models, respectively. Section 5 describes practical
enhancements to these models. Sections 6 and 7 give the ex-
perimental results and related work, respectively, and Section 8
concludes.

2. Preliminaries

2.1. Row–column-parallel SpMV

We consider the parallelization of SpMV of the form y = Ax
with a nonzero-based partitioned matrix A, where A = (ai,j) is an
nr × nc sparse matrix with nnz nonzero entries, and x and y are
dense vectors. The ith row and the jth column of A are, respectively,
denoted by ri and cj. The jth entry of x and the ith entry of y are,
respectively, denoted by xj and yi. Let A denote the set of nonzero
entries in A, that is, A = {ai,j : ai,j ̸= 0}. Let X and Y , respectively,
denote the sets of entries in x and y, that is, X = {x1, . . . , xnc }
and Y = {y1, . . . , ynr }. Assume that there are K processors in the
parallel system denoted by P1, . . . , PK . Let ΠK (A) = {A1, . . . ,AK },
ΠK (X ) = {X1, . . . ,XK }, and ΠK (Y) = {Y1, . . . ,YK } denote K -way
partitions of A, X , and Y , respectively.

Given partitionsΠK (A),ΠK (X ), andΠK (Y), without loss of gen-
erality, the nonzeros in Ak and the vector entries in Xk and Yk are

Algorithm 1: Row–column-parallel SpMV as performed by pro-
cessor Pk.
Require: Ak, Xk

▷ Pre-communication phase — expands on x-vector entries
Receive the needed x-vector entries that are not in Xk
Send the x-vector entries in Xk needed by other processors

▷ Computation phase
y(k)i ← y(k)i + ai,jxj for each ai,j ∈ Ak

▷ Post-communication phase — folds on y-vector entries
Receive the partial results for y-vector entries in Yk and

compute yi ←
∑

y(ℓ)i for each partial result y(ℓ)i
Send the partial results for y-vector entries not in Yk

return Yk

assigned to processor Pk. For each ai,j ∈ Ak, Pk is held responsible
for performing the respective multiply-and-add operation y(k)i ←

y(k)i + ai,jxj, where y(k)i denotes the partial result computed for yi by
Pk. Algorithm 1 displays the basic steps performed by Pk in parallel
SpMV for a nonzero-based partitioned matrix A. This algorithm is
called the row–column-parallel SpMV [22]. In this algorithm, Pk first
receives the needed x-vector entries that are not in Xk from their
owners and sends its x-vector entries to the processors that need
them in a pre-communication phase. Sending xj to possiblymultiple
processors is referred to as the expand operation on xj. When Pk has
all needed x-vector entries, it performs the local SpMV by comput-
ing y(k)i ← y(k)i +ai,jxj for each ai,j ∈ Ak. Pk then receives the partial
results for the y-vector entries in Yk from other processors and
sends its partial results to the processors that own the respective
y-vector entries in a post-communication phase. Receiving partial
result(s) for yi from possibly multiple processors is referred to as
the fold operation on yi. Note that overlapping of computation and
communication is not considered in this algorithm for the sake of
clarity.

2.2. Performance cost metrics

In this section, we describe the performance cost metrics that
are minimized by the proposed models and formulate them on
given K -way partitions ΠK (A), ΠK (X ), and ΠK (Y). Let e(Pk, Pℓ)
denote the set of x-vector entries sent (expanded) from processor
Pk to processor Pℓ during the pre-communication phase. Similarly,
let f (Pk, Pℓ) denote the set of partial results for y-vector entries sent
(folded) from Pk to Pℓ during the post-communication phase. That
is,

e(Pk, Pℓ) = {xj : xj ∈ Xk and ∃at,j ∈ Aℓ} and
f (Pk, Pℓ) = {y

(k)
i : yi ∈ Yℓ and ∃ai,t ∈ Ak}.

(1)

Total communication volume is equal to the sum of the sizes
of all messages transmitted during pre-communication and post-
communication phases and formulated as∑
k

∑
ℓ

|e(Pk, Pℓ)| + |f (Pk, Pℓ)|.

Total message count is equal to the total number of messages
and formulated as

|{(k, ℓ) : e(Pk, Pℓ) ̸= ∅}| + |{(k, ℓ) : f (Pk, Pℓ) ̸= ∅}|.

Computational imbalance is equal to the ratio of themaximum to
the average amount of computation performed by a processor mi-
nus one. Since the amount of computation in SpMV is proportional
to the number of nonzeros, computational imbalance is formulated
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Fig. 1. A sample y = Ax and the corresponding fine-grain hypergraph.

as
maxk |Ak|

|A|/K
− 1.

For an efficient row–column-parallel SpMV, the goal is to find
partitions ΠK (A), ΠK (X ) and ΠK (Y) that achieve low communi-
cation overheads and low computational imbalance. Existing fine-
grain [9] and medium-grain [19] models, which are, respectively,
described in Sections 2.3 and 2.5, meet this goal partially by only
minimizing the bandwidth cost (i.e., total communication volume)
while maintaining balance on the computational loads of proces-
sors.

2.3. Fine-grain hypergraph model

In the fine-grain hypergraph H = (V,N ), each entry in A, X ,
and Y is represented by a different vertex. Vertex set V contains a
vertex va

i,j for each ai,j ∈ A, a vertex vx
j for each xj ∈ X , and a vertex

v
y
i for each yi ∈ Y . That is,

V = {va
i,j : ai,j ̸= 0} ∪ {vx

1, . . . , v
x
nc } ∪ {v

y
1, . . . , v

y
nr }.

va
i,j represents both the data element ai,j and the computational

task yi ← yi+ai,jxj associatedwith ai,j, whereas vx
j and v

y
i only rep-

resent the input and output data elements xj and yi, respectively.
The net set N contains two different types of nets to represent

the dependencies of the computational tasks on x- and y-vector
entries. For each xj ∈ X and yi ∈ Y , N , respectively, contains the
nets nx

j and ny
i . That is,

N = {nx
1, . . . , n

x
nc } ∪ {n

y
1, . . . , n

y
nr }.

Net nx
j represents the input dependency of the computational tasks

on xj; hence, it connects the vertices that represent these tasks and
vx
j . Net n

y
i represents the output dependency of the computational

tasks on yi; hence, it connects the vertices that represent these
tasks and v

y
i . The sets of vertices connected by nx

j and ny
i are,

respectively, formulated as

Pins(nx
j ) = {v

x
j } ∪ {v

a
t,j : at,j ̸= 0} and

Pins(ny
i ) = {v

y
i } ∪ {v

a
i,t : ai,t ̸= 0}.

H contains nnz+nc+nr vertices, nc+nr nets and 2nnz+nc+nr
pins. Fig. 1 displays a sample SpMV instance and its corresponding
fine-grain hypergraph. In H, the vertices are assigned the weights
that signify their computational loads. Hence, w(va

i,j) = 1 for each
va
i,j ∈ V as vi,j represents a single multiply-and-add operation,

whereas w(vx
j ) = w(vy

i ) = 0 for each vx
j ∈ V and v

y
i ∈ V as they do

not represent any computation. The nets are assigned unit costs,
i.e., c(nx

j ) = c(ny
i ) = 1 for each nx

j ∈ N and ny
i ∈ N .

A K -way vertex partition ΠK (H) = {V1, . . . ,VK } can be de-
coded to obtain ΠK (A), ΠK (X ), and ΠK (Y) by assigning the entries

represented by the vertices in part Vk to processor Pk. That is,

Ak = {ai,j : va
i,j ∈ Vk},

Xk = {xj : vx
j ∈ Vk}, and

Yk = {yi : v
y
i ∈ Vk}.

Let Λ(n) denote the set of the parts connected by net n in ΠK (H),
where a net is said to connect a part if it connects at least one vertex
in that part. Let λ(n) denote the number of parts connected by n,
i.e., |Λ(n)|. A net n is called cut if it connects at least two parts,
i.e., λ(n) > 1, and uncut, otherwise. The cutsize ofΠK (H) is defined
as

cutsize(ΠK (H)) =
∑
n∈N

c(n)(λ(n)− 1). (2)

Consider cut nets nx
j and ny

i in ΠK (H) and assume that vx
j , v

y
i ∈

Vk. The cut net nx
j necessitates sending (expanding) of xj from Pk

to the processors that correspond to the parts in Λ(nx
j ) − {Vk} in

the pre-communication phase. Hence, it can be said that if nx
j is

cut, then vx
j incurs a communication volume of λ(nx

j ) − 1. The cut
net ny

i , on the other hand, necessitates sending (folding) of the
partial results from the processors that correspond to the parts in
Λ(ny

i ) − {Vk} to Pk, which then sums them up to obtain yi. Hence,
it can be said that if ny

i is cut, then v
y
i incurs a communication

volume of λ(ny
i ) − 1. Since each cut net n increases the cutsize by

λ(n) − 1 > 0, cutsize(ΠK (H)) is equal to the sum of the volume
in pre- and post-communication phases. Therefore, minimizing
cutsize(ΠK (H)) corresponds to minimizing the total communica-
tion volume in row–column-parallel SpMV.

The contents of the messages sent from Pk to Pℓ in the pre- and
post-communication phases in terms of a partitioned hypergraph
are, respectively, given by

e(Pk, Pℓ) = {xj : vx
j ∈ Vk and Vℓ ∈ Λ(nx

j )} and
f (Pk, Pℓ) = {y

(k)
i : v

y
i ∈ Vℓ and Vk ∈ Λ(ny

i )}.
(3)

Note the one-to-one correspondence between sparse matrix and
hypergraph partitionings in determining the message contents
given by Eqs. (1) and (3).

In ΠK (H), the weight W (Vk) of part Vk is defined as the sum
of the weights of the vertices in Vk, i.e., W (Vk) =

∑
v∈Vk

w(v),
which is equal to the total computational load of processor Pk.
Then, maintaining the balance constraint

W (Vk) ≤ Wavg (1+ ϵ), for k = 1, . . . , K ,

corresponds to maintaining balance on the computational loads of
the processors. Here, Wavg and ϵ denote the average part weight
and a maximum imbalance ratio, respectively.

2.4. Recursive bipartitioning (RB) paradigm

In RB, a given domain is first bipartitioned and then this bipar-
tition is used to form two new subdomains. In our case, a domain
refers to a hypergraph (H) or a set of matrix and vector entries
(A, X , Y). The newly-formed subdomains are recursively biparti-
tioned until K subdomains are obtained. This procedure forms a
hypothetical full binary tree, which contains ⌈log K⌉+1 levels. The
root node of the tree represents the given domain, whereas each
of the remaining nodes represents a subdomain formed during
the RB process. At any stage of the RB process, the subdomains
represented by the leaf nodes of the RB tree collectively induce a
partition of the original domain.

The RB paradigm is successfully used for hypergraph parti-
tioning. Fig. 2 illustrates an RB tree currently in the process of
partitioning a hypergraph. The current leaf nodes induce a four-
way partition Π4(H) = {V1,V2,V3,V4} and each node in the RB
tree represents both a hypergraph and its vertex set.While forming
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Fig. 2. The RB tree during partitioning H = (V,N ). The current RB tree contains
four leaf hypergraphs with the hypergraph to be bipartitioned next being H1 =

(V1,N1).

two new subhypergraphs after each RB step, the cut-net splitting
technique is used [7] to encapsulate the cutsize in (2). The sum of
the cutsizes incurred in all RB steps is equal to the cutsize of the
resulting K -way partition.

2.5. Medium-grain hypergraph model

In themedium-grain hypergraphmodel, the setsA,X andY are
partitioned into K parts using RB. The medium-grain model uses a
mapping for a subset of the nonzeros at each RB step. Because this
mapping is central to themodel, we focus on a single bipartitioning
step to explain the medium-grain model. Before each RB step, the
nonzeros to be bipartitioned are first mapped to their rows or
columns by a heuristic and a new hypergraph is formed according
to this mapping.

Consider an RB tree for the medium-grain model with K ′ leaf
nodes, where K ′ < K , and assume that the kth node from the left
is to be bipartitioned next. This node represents Ak, Xk, and Yk
in the respective K ′-way partitions {A1, . . . ,AK ′}, {X1, . . . ,XK ′},
and {Y1, . . . ,YK ′}. First, each ai,j ∈ Ak is mapped to either ri or
cj, where this mapping is denoted by map(ai,j). With a heuristic,
ai,j ∈ Ak is mapped to ri if ri has fewer nonzeros than cj in Ak,
and to cj if cj has fewer nonzeros than ri in Ak. After determining
map(ai,j) for each nonzero in Ak, the medium-grain hypergraph
Hk = (Vk,Nk) is formed as follows. Vertex set Vk contains a vertex
vx
j if xj is in Xk or there exists at least one nonzero inAk mapped to

cj. Similarly, Vk contains a vertex v
y
i if yi is in Yk or there exists at

least one nonzero inAk mapped to ri. Hence, vx
j represents xj and/or

the nonzero(s) assigned to cj, whereas v
y
i represents yi and/or the

nonzero(s) assigned to ri. That is,

Vk = {v
x
j : xj ∈ Xk or ∃at,j ∈ Ak s.t. map(at,j) = cj} ∪

{v
y
i : yi ∈ Yk or ∃ai,t ∈ Ak s.t.map(ai,t ) = ri}.

Besides the data elements, vertex vx
j /v

y
i represents the group of

computational tasks associated with the nonzeros mapped to
them, if any.

The net set Nk contains a net nx
j if Ak contains at least one

nonzero in cj, and a net ny
i if Ak contains at least one nonzero in

ri. That is,

Nk = {nx
j : ∃at,j ∈ Ak} ∪ {n

y
i : ∃ai,t ∈ Ak}.

nx
j represents the input dependency of the groups of computational

tasks on xj, whereas ny
i represents the output dependency of the

groups of computational tasks on yi. Hence, the sets of vertices
connected by nx

j and ny
i are, respectively, formulated by

Pins(nx
j ) = {v

x
j } ∪ {v

y
t : map(at,j) = rt} and

Pins(ny
i ) = {v

y
i } ∪ {v

x
t : map(ai,t ) = ct}.

Fig. 3. The nonzero assignments of the sample y = Ax and the corresponding
medium-grain hypergraph.

InHk, each net is assigned a unit cost, i.e., c(nx
j ) = c(ny

i ) = 1 for
each nx

j ∈ N and ny
i ∈ N . Each vertex is assigned a weight equal to

the number of nonzeros represented by that vertex. That is,

w(vx
j ) = |{at,j : map(at,j) = cj}| and

w(vy
i ) = |{ai,t : map(ai,t ) = ri}|.

Hk is bipartitioned with the objective of minimizing the cutsize
and the constraint of maintaining balance on the part weights. The
resulting bipartition is further improved by an iterative refinement
algorithm. In every RB step, minimizing the cutsize corresponds
to minimizing the total volume of communication, whereas main-
taining balance on the weights of the parts corresponds to main-
taining balance on the computational loads of the processors.

Fig. 3 displays a sample SpMV instance with nonzero map-
ping information and the corresponding medium-grain hyper-
graph. This example illustrates the first RB step, hence, A1 = A,
X1 = X , Y1 = Y , and K ′ = k = 1. Each nonzero in A is denoted
by an arrow, where the direction of the arrow shows the mapping
for that nonzero. For example, nx

3 connects vx
3, v

y
1, v

y
2, and v

y
3 since

map(a1,3) = r1, map(a2,3) = r2, and map(a3,3) = r3.

3. Optimizing fine-grain partitioning model

In this section, we propose a fine-grain hypergraph partitioning
model that simultaneously reduces the bandwidth and latency
costs of the row–column-parallel SpMV. Our model is built upon
the original fine-grain model (Section 2.3) via utilizing the RB
paradigm. The proposedmodel contains two different types of nets
to address the bandwidth and latency costs. The nets of the original
fine-grain model already address the bandwidth cost and they are
called ‘‘volume nets’’ as they encapsulate the minimization of the
total communication volume. At eachRB step, ourmodel forms and
adds new nets to the hypergraph to be bipartitioned. These new
nets address the latency cost and they are called ‘‘message nets’’ as
they encapsulate the minimization of the total message count.

Message nets aim to group the matrix nonzeros and vector
entries that altogether necessitate a message. The formation and
addition of message nets rely on the RB paradigm. To determine
the existence and the content of amessage, a partition information
is needed first. At each RB step, prior to bipartitioning the current
hypergraph that already contains the volume nets, the message
nets are formed using the K ′-way partition information and added
to this hypergraph, where K ′ is the number of leaf nodes in the
current RB tree. Then this hypergraph is bipartitioned, which re-
sults in a (K ′ + 1)-way partition as the number of leaves becomes
K ′ + 1 after bipartitioning. Adding message nets just before each
bipartitioning allows us to utilize the most recent global partition
information at hand. In contrast to the formation of the message
nets, the formation of the volumenets via cut-net splitting requires
only the local bipartition information.
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3.1. Message nets in a single RB step

Consider an SpMV instance y = Ax and its corresponding fine-
grain hypergraphH = (V,N ) with the aim of partitioningH into K
parts to parallelize y = Ax. The RB process starts with bipartition-
ing H, which is represented by the root node of the corresponding
RB tree. Assume that the RB process is at the state where there are
K ′ leaf nodes in the RB tree, for 1 < K ′ < K , and the hypergraphs
corresponding to these nodes are denoted byH1, . . . ,HK ′ from left
to right. Let ΠK ′ (H) = {V1, . . . ,VK ′} denote the K ′-way partition
induced by the leaf nodes of the RB tree. ΠK ′ (H) also induces K ′-
way partitions ΠK ′ (A), ΠK ′ (X ), and ΠK ′ (Y) of sets A, X , and Y ,
respectively. Without loss of generality, the entries in Ak, Xk, and
Yk are assigned to processor group Pk. Assume that Hk = (Vk,Nk)
is next to be bipartitioned among these hypergraphs. Hk initially
contains only the volume nets. In our model, we add message nets
to Hk to obtain the augmented hypergraph HM

k = (Vk,NM
k ). Let

Π (HM
k ) = {Vk,L,Vk,R} denote a bipartition of HM

k , where L and
R in the subscripts refer to left and right, respectively. Π (HM

k )
induces bipartitions Π (Ak) = {Ak,L,Ak,R}, Π (Xk) = {Xk,L,Xk,R},
and Π (Yk) = {Yk,L,Yk,R} on Ak, Xk, and Yk, respectively. Let
Pk,L and Pk,R denote the processor groups to which the entries in
{Ak,L,Xk,L,Yk,L} and {Ak,R,Xk,R,Yk,R} are assigned.

Algorithm 2 displays the basic steps of forming message nets
and adding them to Hk. For each processor group Pℓ that Pk
communicates with, four different message nets may be added
to Hk: expand-send net, expand-receive net, fold-send net and
fold-receive net, respectively, denoted by seℓ, r

e
ℓ , s

f
ℓ and r fℓ . Here,

s and r , respectively, denote the messages sent and received, the
subscript ℓ denotes the id of the processor group communicated
with, and the superscripts e and f , respectively, denote the expand
and fold operations. These nets are next explained in detail.

• expand-send net seℓ: Net s
e
ℓ represents themessage sent from

Pk to Pℓ during the expand operations on x-vector entries
in the pre-communication phase. This message consists of
the x-vector entries owned by Pk and needed by Pℓ. Hence,
seℓ connects the vertices that represent the x-vector entries
required by the computational tasks in Pℓ. That is,

Pins(seℓ) = {v
x
j : xj ∈ Xk and ∃at,j ∈ Aℓ}.

The formation and addition of expand-send nets are per-
formed in lines 2–7 of Algorithm 2. After bipartitioningHM

k , if
seℓ becomes cut in Π (HM

k ), both Pk,L and Pk,R send a message
to Pℓ, where the contents of the messages sent from Pk,L
and Pk,R to Pℓ are {xj : vx

j ∈ Vk,L and at,j ∈ Aℓ} and {xj :
vx
j ∈ Vk,R and at,j ∈ Aℓ}, respectively. The overall number of

messages in the pre-communication phase increases by one
in this case since Pk was sending a single message to Pℓ and
it is split into twomessages after bipartitioning. If seℓ becomes
uncut, the overall number of messages does not change since
only one of Pk,L and Pk,R sends a message to Pℓ.
• expand-receive net reℓ : Net reℓ represents the message re-

ceived by Pk from Pℓ during the expand operations on x-
vector entries in the pre-communication phase. Thismessage
consists of the x-vector entries owned by Pℓ and needed by
Pk. Hence, reℓ connects the vertices that represent the compu-
tational tasks requiring x-vector entries from Pℓ. That is,

Pins(reℓ ) = {v
a
t,j : at,j ∈ Ak and xj ∈ Xℓ}.

The formation and addition of expand-receive nets are per-
formed in lines 8–13 of Algorithm 2. After bipartitioningHM

k ,
if reℓ becomes cut in Π (HM

k ), both Pk,L and Pk,R receive a mes-
sage from Pℓ, where the contents of the messages received
by Pk,L and Pk,R from Pℓ are {xj : va

t,j ∈ Vk,L and xj ∈ Xℓ} and
{xj : va

t,j ∈ Vk,R and xj ∈ Xℓ}, respectively. The overall number

Algorithm 2: ADD-MESSAGE-NETS.

Require: Hk = (Vk,Nk), ΠK ′ (A) = {A1, . . . ,AK ′}, ΠK ′ (X ) =
{X1, . . . ,XK ′}, ΠK ′ (Y) = {Y1, . . . ,YK ′}.

1: NM
k ← Nk

▷ Expand-send nets
2: for each xj ∈ Xk do
3: for each at,j ∈ Aℓ̸=k do
4: if seℓ /∈ NM

k then
5: Pins(seℓ)← {v

x
j }, N

M
k ← NM

k ∪ {s
e
ℓ}

6: else
7: Pins(seℓ)← Pins(seℓ) ∪ {v

x
j }

▷ Expand-receive nets
8: for each at,j ∈ Ak do
9: for each xj ∈ Xℓ̸=k do

10: if reℓ /∈ NM
k then

11: Pins(reℓ )← {v
a
t,j}, N

M
k ← NM

k ∪ {r
e
ℓ}

12: else
13: Pins(reℓ )← Pins(reℓ ) ∪ {v

a
t,j}

▷ Fold-send nets
14: for each ai,t ∈ Ak do
15: for each yi ∈ Yℓ̸=k do
16: if sfℓ /∈ NM

k then
17: Pins(sfℓ)← {v

a
i,t}, N

M
k ← NM

k ∪ {s
f
ℓ}

18: else
19: Pins(sfℓ)← Pins(sfℓ) ∪ {v

a
i,t}

▷ Fold-receive nets
20: for each yi ∈ Yk do
21: for each ai,t ∈ Aℓ̸=k do
22: if r fℓ /∈ NM

k then
23: Pins(r fℓ )← {v

y
i }, N

M
k ← NM

k ∪ {r
f
ℓ }

24: else
25: Pins(r fℓ )← Pins(r fℓ ) ∪ {v

y
i }

26: return HM
k = (Vk,NM

k )

of messages in the pre-communication phase increases by
one in this case and does not change if reℓ becomes uncut.
• fold-send net sfℓ: Net sfℓ represents the message sent from

Pk to Pℓ during the fold operations on y-vector entries in the
post-communication phase. Thismessage consists of the par-
tial results computed by Pk for the y-vector entries owned by
Pℓ. Hence, s

f
ℓ connects the vertices that represent the compu-

tational taskswhose partial results are required byPℓ. That is,

Pins(sfℓ) = {v
a
i,t : ai,t ∈ Ak and yi ∈ Yℓ}.

The formation and addition of fold-send nets are performed
in lines 14–19 of Algorithm 2. After bipartitioning HM

k , if sfℓ
becomes cut in Π (HM

k ), both Pk,L and Pk,R send a message to
Pℓ, where the contents of the messages sent from Pk,L and
Pk,R to Pℓ are {y(k,L)i : va

i,t ∈ Vk,L and yi ∈ Yℓ} and {y
(k,R)
i :

va
i,t ∈ Vk,R and yi ∈ Yℓ}, respectively. The overall number of

messages in the post-communication phase increases by one
in this case and does not change if sfℓ becomes uncut.
• fold-receive net r fℓ : Net r

f
ℓ represents the message received

byPk fromPℓ during the fold operations on y-vector entries in
the post-communication phase. This message consists of the
partial results computed byPℓ for the y-vector entries owned
by Pk. Hence, r

f
ℓ connects the vertices that represent the

y-vector entries for whichPℓ produces partial results. That is,

Pins(r fℓ ) = {v
y
i : yi ∈ Yk and ∃ai,t ∈ Aℓ}.
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Fig. 4. A 5-way nonzero-based partition of an SpMV instance y = Ax.

Table 1
The messages communicated by P3 in pre- and post-communication phases be-
fore and after bipartitioning HM

3 . The number of messages communicated by P3

increases from 4 to 6 due to two cut message nets in Π (HM
3 ).

RB state Phase Message Due to

Before Π (HM
3 )

Pre P3 sends {x3, x7} to P4 a5,3, a5,7
P3 receives {x4, x5} from P1 a2,4, a4,5

Post P3 sends {y(3)2 } to P2 a2,3, a2,4
P3 receives {y(4)1 , y(4)4 } from P4 a1,1, a4,1

After Π (HM
3 )

Pre P3,L sends {x3, x7} to P4 a5,3, a5,7
P3,R receives {x4, x5} from P1 a2,4, a4,5

Post

P3,L sends {y
(3,L)
2 } to P2 a2,3

P3,R sends {y(3,R)2 } to P2 a2,4
P3,L receives {y

(4)
1 } from P4 a1,1

P3,R receives {y(4)4 } from P4 a4,1

The formation and addition of fold-receive nets are per-
formed in lines 20–25 of Algorithm2. After bipartitioningHM

k ,
if r fℓ becomes cut in Π (HM

k ), both Pk,L and Pk,R receive a mes-
sage fromPℓ, where the contents of themessages received by
Pk,L and Pk,R from Pℓ are {y(ℓ)i : v

y
i ∈ Vk,L and ai,t ∈ Aℓ} and

{y(ℓ)i : v
y
i ∈ Vk,R and ai,t ∈ Aℓ}, respectively. The overall num-

ber of messages in the post-communication phase increases
by one in this case and does not change if r fℓ becomes uncut.

Note that atmost fourmessage nets are required to encapsulate
the messages between processor groups Pk and Pℓ. The message
nets in HM

k encapsulate all the messages that Pk communicates
with other processor groups. Since the number of leaf hypergraphs
is K ′, Pk may communicate with at most K ′ − 1 processor groups,
hence the maximum number of message nets that can be added to
Hk is 4(K ′ − 1).

Fig. 4 displays an SpMV instance with a 6 × 8 matrix A, which
is being partitioned by the proposed model. The RB process is at
the state where there are five leaf hypergraphs H1, . . . ,H5, and
the hypergraph to be bipartitioned next is H3. The figure displays
the assignments of the matrix nonzeros and vector entries to the
corresponding processor groups P1, . . . ,P5. Each symbol in the
figure represents a distinct processor group and a symbol inside a
cell signifies the assignment of the corresponding matrix nonzero
or vector entry to the processor group represented by that symbol.
For example, the nonzeros in A3 = {a1,3, a1,7, a2,3, a2,4, a4,5, a4,7},
x-vector entries in X3 = {x3, x7}, and y-vector entries in Y3 =

{y1, y4} are assigned toP3. The left of Fig. 5 displays the augmented
hypergraphHM

3 that contains volume andmessage nets. In the fig-
ure, the volume nets are illustrated by small black circles with thin
lines, whereas the message nets are illustrated by the respective
processor’s symbol with thick lines.

The messages communicated by P3 under the assignments
given in Fig. 4 are displayed at the top half of Table 1. In the pre-
communication phase, P3 sends a message to P4 and receives a
message from P1, and in the post-communication phase, it sends
a message to P2 and receives a message from P4. Hence, we add
four message nets to H3: expand-send net se4, expand-receive net
re1 , fold-send net sf2, and fold-receive net r f4 . In Fig. 5, for example, re1
connects the vertices va

2,4 and va
4,5 since it represents the message

received by P3 from P1 containing {x4, x5} due to nonzeros a2,4
and a4,5. The right of Fig. 5 displays a bipartition Π (HM

3 ) and the
messages thatP3,L andP3,R communicate with the other processor
groups due to Π (HM

3 ) are given in the bottom half of Table 1. Since
se4 and re1 are uncut, only one ofP3,L andP3,R participates in sending
or receiving the corresponding message. Since sf2 is cut, both P3,L

and P3,R send a message to P2, and since r f4 is cut, both P3,L and
P3,R receive a message from P4.

In HM
k , each volume net is assigned the cost of the per-word

transfer time, tw , whereas each message net is assigned the cost
of the start-up latency, tsu. Let v and m, respectively, denote the
number of volume and message nets that are cut in Π (HM

k ). Then,

cutsize(Π (HM
k )) = vtw +mtsu.

Here, v is equal to the increase in the total communication volume
incurred by Π (HM

k ) [7]. Recall that each cut message net increases
the number ofmessages thatPk communicateswith the respective
processor group by one. Hence, m is equal to the increase in the
number of messages that Pk communicates with other processor
groups. The overall increase in the total message count due to
Π (HM

k ) is m + δ, where δ denotes the number of messages be-
tween Pk,L and Pk,R, and is bounded by two (empirically found to
be almost always two). Hence, minimizing the cutsize of Π (HM

k )
corresponds to simultaneously reducing the increase in the total
communication volume and the total message count in the re-
spective RB step. Therefore, minimizing the cutsize in all RB steps
corresponds to reducing the total communication volume and the
total message count simultaneously.

After obtaining a bipartition Π (HM
k ) = {Vk,L,Vk,R} of the aug-

mented hypergraph HM
k , the new hypergraphs Hk,L = (Vk,L,Nk,L)

and Hk,R = (Vk,R,Nk,R) are immediately formed with only volume
nets. Recall that the formation of the volume nets of Hk,L and Hk,R
is performed with the cut-net splitting technique and it can be
performed using the local bipartition information Π (HM

k ).

3.2. The overall RB

After completing an RB step and obtaining Hk,L and Hk,R, the
labels of the hypergraphs represented by the leaf nodes of the
RB tree are updated as follows. For 1 ≤ i < k, the label of
Hi = (Vi,Ni) does not change. For k < i < K ′, Hi = (Vi,Ni)
becomes Hi+1 = (Vi+1,Ni+1). Hypergraphs Hk,L = (Vk,L,Nk,L)
and Hk,R = (Vk,R,Nk,R) become Hk = (Vk,Nk) and Hk+1 =

(Vk+1,Nk+1), respectively. As a result, the vertex sets correspond-
ing to the updated leaf nodes induce a (K ′ + 1)-way partition
ΠK ′+1(H) = {V1, . . . ,VK ′+1}. The RB process then continues with
the next hypergraph Hk+2 to be bipartitioned, which was labeled
with Hk+1 in the previous RB state.

We next provide the cost of adding message nets through Algo-
rithm 2 in the entire RB process. For the addition of expand-send
nets, all nonzeros at,j ∈ Aℓ̸=k with xj ∈ Xk are visited once (lines
2–7). SinceXk∩Xℓ = ∅ for 1 ≤ k ̸= ℓ ≤ K ′ andX =

⋃K ′
k=1 Xk, each

nonzero of A is visited once. For the addition of expand-receive
nets, all nonzeros in Ak are visited once (lines 8–13). Hence, each
nonzero of A is visited once during the bipartitionings in a level
of the RB tree since Ak ∩ Aℓ = ∅ for 1 ≤ k ̸= ℓ ≤ K ′ and
A =

⋃K ′
k=1 Ak. Therefore, the cost of adding expand-send and
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Fig. 5. Left: Augmented hypergraphHM
3 with 5 volume and 4message nets. Right: A bipartition Π (HM

3 ) with two cut message nets (sf2, r
f
4 ) and two cut volume nets (nx

7, n
y
2).

expand-receive nets is O(nnz) in a single level of the RB tree. A dual
discussion holds for the addition of fold-send and fold-receive nets.
Since the RB tree contains ⌈log K⌉ levels in which bipartitionings
take place, the overall cost of adding message nets is O(nnz log K ).

3.3. Adaptation for conformal partitioning

Partitions on input and output vectors x and y are said to be
conformal if xi and yi are assigned to the same processor, for 1 ≤
i ≤ nr = nc . Note that conformal vector partitions are valid for
y = Ax with a square matrix. The motivation for a conformal
partition arises in iterative solvers in which the yi in an iteration
is used to compute the xi of the next iteration via linear vector
operations. Assigning xi and yi to the same processor prevents the
redundant communication of yi to the processor that owns xi.

Our model does not impose conformal partitions on vectors
x and y, i.e., xi and yi can be assigned to different processors.
However, it is possible to adapt our model to obtain conformal
partitions on x and y using the vertex amalgamation technique
proposed in [23]. To assign xi and yi to the same processor, the
vertices vx

i and v
y
i are amalgamated into a new vertex v

x/y
i , which

represents both xi and yi. The weight of v
x/y
i is set to be zero since

the weights of vx
i and v

y
i are zero. InHM

k , each volume/message net
that connects vx

i or v
y
i now connects the amalgamated vertex v

x/y
i .

At each RB step, xi and yi are both assigned to the processor group
corresponding to the leaf hypergraph that contains v

x/y
i .

4. Optimizing medium-grain partitioning model

In this section, we propose a medium-grain hypergraph par-
titioning model that simultaneously reduces the bandwidth and
latency costs of the row–column-parallel SpMV. Our model is built
upon the original medium-grain partitioning model (Section 2.5).
The medium-grain hypergraphs in RB are augmented with the
message nets before they are bipartitioned as in the fine-grain
model proposed in Section 3. Since the fine-grain and medium-
grain models both obtain nonzero-based partitions, the types and
meanings of themessage nets used in themedium-grainmodel are
the same as those used in the fine-grain model. However, forming
message nets for amedium-grain hypergraph ismore involved due
to the mappings used in this model.

Consider an SpMV instance y = Ax and the corresponding sets
A, X , and Y . Assume that the RB process is at the state before
bipartitioning the kth leaf node where there are K ′ leaf nodes in
the current RB tree. Recall from Section 2.5 that the leaf nodes
induce K ′-way partitions ΠK ′ (A) = {A1, . . . ,AK ′}, ΠK ′ (X ) =

{X1, . . . ,XK ′} and ΠK ′ (Y) = {Y1, . . . ,YK ′}, and the kth leaf node
represents Ak, Xk, and Yk. To obtain bipartitions of Ak, Xk, and Yk,
we perform the following four steps.

(1) Form the medium-grain hypergraph Hk = (Vk,Nk) using
Ak, Xk, and Yk. This process is the same with that in the original
medium-grain model (Section 2.5). Recall that the nets in the
medium-grain hypergraph encapsulate the total communication
volume. Hence, these nets are assigned a cost of tw .

(2) Add message nets to Hk to obtain augmented hypergraph HM
k .

For each processor group Pℓ other than Pk, there are four possible
message nets that can be added to Hk:

• expand-send net seℓ: The set of vertices connected by seℓ is
the same with that of the expand-send net in the fine-grain
model.
• expand-receive net reℓ : The set of vertices connected by reℓ is

given by

Pins(reℓ ) = {v
x
j : ∃at,j ∈ Ak s.t. map(at,j) = cj and xj ∈ Xℓ} ∪

{v
y
t : ∃at,j ∈ Ak s.t.map(at,j) = rt and xj ∈ Xℓ}.

• fold-send net sfℓ: The set of vertices connected by sfℓ is given
by

Pins(sfℓ) = {v
x
t : ∃ai,t ∈ Ak s.t. map(ai,t ) = ct and yi ∈ Yℓ} ∪

{v
y
i : ∃ai,t ∈ Ak s.t.map(ai,t ) = ri and yi ∈ Yℓ}.

• fold-receive net r fℓ : The set of vertices connected by r fℓ is the
samewith that of the fold-receive net in the fine-grainmodel.

The message nets are assigned a cost of tsu as they encapsulate the
latency cost.

(3) Obtain a bipartition Π (HM
k ). HM

k is bipartitioned to obtain
Π (HM

k ) = {Vk,L,Vk,R}.
(4) Derive bipartitions Π (Ak) = {Ak,L,Ak,R}, Π (Xk) = {Xk,L,

Xk,R} and Π (Yk) = {Yk,L,Yk,R} from Π (HM
k ). For each nonzero

ai,j ∈ Ak, ai,j is assigned to Ak,L if the vertex that represents ai,j
is in Vk,L, and to Ak,R, otherwise. That is,

Ak,L = {ai,j : map(ai,j) = cj with vx
j ∈ Vk,L or

map(ai,j) = ri with v
y
i ∈ Vk,L} and

Ak,R = {ai,j : map(ai,j) = cj with vx
j ∈ Vk,R or

map(ai,j) = ri with v
y
i ∈ Vk,R}.

For each x-vector entry xj ∈ Xk, xj is assigned to Xk,L if vx
j ∈ Vk,L,

and to Xk,R, otherwise. That is,

Xk,L = {xj : vx
j ∈ Vk,L} and Xk,R = {xj : vx

j ∈ Vk,R}.
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Fig. 6. The augmented medium-grain hypergraph HM
3 formed during the RB pro-

cess for the SpMV instance given in Fig. 4.

Similarly, for each y-vector entry yi ∈ Yk, yi is assigned to Yk,L if
v
y
i ∈ Vk,L, and to Yk,R, otherwise. That is,

Yk,L = {yi : v
y
i ∈ Vk,L} and Yk,R = {yi : v

y
i ∈ Vk,R}.

Fig. 6 displays the medium-grain hypergraph HM
3 = (V3,NM

3 )
augmentedwithmessage nets, which is formed during bipartition-
ing A3, X3 and Y3 given in Fig. 4. The table in the figure displays
map(ai,j) value for each nonzero in A3 computed by the heuristic
described in Section 2.5. Augmented medium-grain hypergraph
HM

3 has four message nets. Observe that the sets of vertices con-
nected by expand-send net se4 and fold-receive net r f4 are the
same for the fine-grain and medium-grain hypergraphs, which
are, respectively, illustrated in Figs. 5 and 6. Expand-receive net
re1 connects vx

4 and vx
5 since P3 receives {x4, x5} due to nonzeros

in {a2,4, a4,5} with map(a2,4) = c4 and map(a4,5) = c5. Fold-send
net sf2 connects vx

4 and v
y
2 since P3 sends partial result y(3)2 due to

nonzeros in {a2,3, a2,4}with map(a2,3) = r2 and map(a2,4) = c4.
Similar to Section 3, after obtaining bipartitions Π (Ak) =

{Ak,L,Ak,R}, Π (Xk) = {Xk,L,Xk,R}, and Π (Yk) = {Yk,L,Yk,R}, the
labels of the parts represented by the leaf nodes are updated in
such a way that the resulting (K ′ + 1)-way partitions are denoted
by ΠK ′+1(A) = {A1, . . . ,AK ′+1}, ΠK ′+1(X ) = {X1, . . . ,XK ′+1}, and
ΠK ′ (Y) = {Y1, . . . ,YK ′+1}.

4.1. Adaptation for conformal partitioning

Adapting the medium-grain model for a conformal partition on
vectors x and y slightly differs from adapting the fine-grain model.
Vertex set Vk contains an amalgamated vertex v

x/y
i if at least one of

the following conditions holds:

• xi ∈ Xk, or equivalently, yi ∈ Yk.
• ∃at,i ∈ Ak s.t.map(at,i) = ci.
• ∃ai,t ∈ Ak s.t.map(ai,t ) = ri.

The weight of vi is assigned as

w(vi) = |{at,i : at,i ∈ Ak andmap(at,i) = ci}|+
|{ai,t : ai,t ∈ Ak andmap(ai,t ) = ri}|.

Each volume/message net that connects vx
i or v

y
i in HM

k now con-
nects the amalgamated vertex v

x/y
i .

5. Delayed addition and thresholding for message nets

Utilization of the message nets decreases the importance at-
tributed to the volume nets in the partitioning process and this
may lead to a relatively high bandwidth cost compared to the

case where no message nets are utilized. The more the number
of RB steps in which the message nets are utilized, the higher the
total communication volume. A high bandwidth cost can especially
be attributed to the bipartitionings in the early levels of the RB
tree. There are only a few nodes in the early levels of the RB tree
compared to the late levels and each of these nodes represents a
large processor group. The messages among these large processor
groups are difficult to refrain from. In terms of hypergraph par-
titioning, since the message nets in the hypergraphs at the early
levels of the RB tree connect more vertices and the cost of the
message nets is much higher than the cost of the volume nets
(tsu ≫ tw), it is very unlikely for these message nets to be uncut.
While the partitioner tries to save these nets from the cut in the
early bipartitionings, it may cause high number of volume nets to
be cut, which in turn are likely to introduce new messages in the
late levels of the RB tree. Therefore, adding message nets in the
early levels of the RB tree adversely affects the overall partition
quality in multiple ways.

The RB approach provides the ability to adjust the partitioning
parameters in the individual RB steps for the sake of the overall
partition quality. In our model, we use this flexibility to exploit the
trade-off between the bandwidth and latency costs by selectively
deciding whether to add message nets in each bipartitioning. To
make this decision, we use the level information of the RB steps in
the RB tree. For a given L < log K , the addition of the message nets
is delayed until the Lth level of the RB tree, i.e., the bipartitionings
in level ℓ are performed only with the volume nets for 0 ≤ ℓ < L.
Thus, themessage nets are included in the bipartitionings inwhich
they are expected to connect relatively fewer vertices.

Using a delay parameter L aims to avoid large message nets by
not utilizing them in the early levels of the RB tree. However, there
may still exist such nets in the late levels depending on the struc-
ture of the matrix being partitioned. Another idea is to eliminate
the message nets whose size is larger than a given threshold. That
is, for a given threshold T > 0, a message net n with |Pins(n)| >

T is excluded from the corresponding bipartition. This approach
also enables a selective approach for send and receive message
nets. In our implementation of the row–column-parallel SpMV, the
receive operations are performed by non-blocking MPI functions
(i.e., MPI_Irecv), whereas the send operations are performed by
blockingMPI functions (i.e., MPI_Send).When themaximummes-
sage count or the maximum communication volume is considered
to be a serious bottleneck, blocking send operations may be more
limiting compared to non-blocking receive operations. Note that
saving message nets from the cut tends to assign the respective
communication operations to fewer processors, hence the maxi-
mum message count and maximum communication volume may
increase. Hence, a smaller threshold is preferable for the send
message nets while a higher threshold is preferable for the receive
nets.

6. Experiments

We consider a total of five partitioning models for evaluation.
Four of them are nonzero-based partitioning models: the fine-
grain model (FG), the medium-grain model (MG), and the proposed
models which simultaneously reduce the bandwidth and latency
costs, as described in Section 3 (FG-LM) and Section 4 (MG-LM).
The last partitioning model tested is the one-dimensional model
(1D-LM) that simultaneously reduces the bandwidth and latency
costs [21]. Two of these five models (FG and MG) encapsulate a
single communication cost metric, i.e., total volume, while three of
them (FG-LM,MG-LM, and1D-LM) encapsulate two communication
cost metrics, i.e., total volume and total message count. The par-
titioning constraint of balancing part weights in all these models
corresponds to balancing of the computational loads of processors.
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Table 2
The communication cost metrics obtained by the nonzero-based partitioning mod-
els with varying delay values (L).
Model L Volume Message

Max Total Max Total

FG – 567 52,357 60 5560
FG-LM 1 2700 96,802 56 2120
FG-LM 4 2213 94,983 49 2186
FG-LM 5 1818 90,802 46 2317
FG-LM 6 1346 82,651 46 2694
FG-LM 7 926 69,572 49 3574
MG – 558 49,867 57 5103
MG-LM 1 1368 77,479 50 2674
MG-LM 4 1264 77,227 48 2735
MG-LM 5 1148 74,341 47 2809
MG-LM 6 969 69,159 47 3066
MG-LM 7 776 61,070 50 3695

In the models that address latency cost with the message nets, the
cost of the volumenets is set to 1while the cost of themessage nets
is set to 50, i.e., it is assumed tsu = 50tw , which is also the setting
recommended in [21].

The performance of the compared models are evaluated in
terms of the partitioning cost metrics and the parallel SpMV run-
time. The partitioning cost metrics include total volume, total
message count, and load imbalance (these are explained in detail
in following sections) and they are helpful to test the validity of the
proposedmodels. At each RB step in all models, we used PaToH [7]
in the default settings to obtain a two-way partition of the respec-
tive hypergraph. An imbalance ratio of 10% is used in all models,
i.e., ϵ = 0.10.We test for five different number of parts/processors,
K ∈ {64, 128, 256, 512, 1024}. The parallel SpMV is implemented
using the PETSc toolkit [3]. PETSc contains structures and routines
for parallel solution of applications modeled by partial differential
equations. It supportsMPI-based and hybrid parallelism, and offers
a wide range of sparse linear solvers and preconditioners. The
parallel SpMV realizedwithin PETSc is run on a BlueGene/Q system
using the partitions provided by the five comparedmodels. A node
on Blue Gene/Q system consists of 16 PowerPC A2 processors with
1.6 GHz clock frequency and 16 GB memory.

The experiments are performed on an extensive dataset con-
taining matrices from the SuiteSparse Matrix Collection [11]. We
consider the case of conformal vector partitioning as it is more
common for the applications in which SpMV is used as a kernel
operation. Hence, only the square matrices are considered. We
use the following criteria for the selection of test matrices: (i) the
minimum and maximum number of nonzeros per processor are,
respectively, set to 100 and 100,000, (ii) the matrices that have
more than 50million nonzeros are excluded, and (iii) theminimum
number of rows/columns per processor is set to 50. The resulting
number ofmatrices are 833, 730, 616, 475, and316 forK = 64, 128,
256, 512, and 1024 processors, respectively. The union of these sets
of matrices makes up to a total of 978 matrices.

6.1. Tuning parameters for nonzero-based partitioning models

There are two important issues described in Section 5 regarding
the addition of the message nets for the nonzero-based partition-
ing models. We next discuss setting these parameters.

6.1.1. Delay parameter (L)
We investigate the effect of the delay parameter L on four dif-

ferent communication costmetrics for the fine-grain andmedium-
grain models with the message nets. These cost metrics are max-
imum volume, total volume, maximum message count, and total
message count. The volume metrics are in terms of number of
words communicated. We compare FG-LM with delay against FG,

Fig. 7. The effect of the delay parameter on nonzero-based partitioning models in
four different communication metrics.

aswell as MG-LMwith delay against MG.We only present the results
for K = 256 since the observationsmade for the results of different
K values are similar. Note that there are log 256 = 8 bipartitioning
levels in the corresponding RB tree. The tested values of the delay
parameter L are 1, 4, 5, 6, and 7. Note that the message nets are
added in a total of 4, 3, 2, and 1 levels for the L values of 4, 5, 6, and
7, respectively. When L = 1, it is equivalent to adding message
nets throughout the whole partitioning without any delay. Note
that it is not possible to add message nets at the root level (i.e., by
setting L = 0) since there is no partition available yet to form
the message nets. The results for the remaining values of L are not
presented, as the tested values contain all the necessary insight
for picking a value for L. Table 2 presents the results obtained. The
value obtained by a partitioning model for a specific cost metric is
the geometric mean of the values obtained for thematrices by that
partitioning model (i.e., the mean of the results for 616 matrices).
We also present two plots in Fig. 7 to provide a visual comparison
of the values presented in Table 2. The plot at the top belongs to
the fine-grainmodels and each different cost metric is represented
by a separate line in which the values are normalized with respect
to those of the standard fine-grain model FG. Hence, a point on a
line below y = 1 indicates the variants of FG-LM attaining a better
performance in the respective metric compared to FG, whereas a
point in a line above indicates a worse performance. For example,
FG-LM with L = 7 attains 0.72 times the total message count of
FG, which corresponds to the second point of the line marked with
a filled circle. The plot at the bottom compares the medium-grain
models in a similar fashion.

It can be seen from Fig. 7 that, compared to FG, FG-LM attains
better performance in maximum and total message count, and a
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Table 3
The communication cost metrics of FG-LM with varying message net thresholds
(TS , TR).
TS TR Volume Message

Max Total Max Total

– – 1346 82,651 46 2694
15 15 706 56,218 58 4539
15 30 773 58,452 56 4258
15 50 835 60,864 54 4043
30 15 793 58,418 59 4251
30 30 827 60,086 57 4087
30 50 900 62,393 55 3879
50 15 879 61,099 59 4037
50 30 908 62,516 58 3877
50 50 952 64,041 56 3729

worse performance inmaximumand total volume. A similar obser-
vation is also valid for comparing MG with MG-LM. As the number
of RB tree levels in which the message nets are added increases,
FG-LM and MG-LM obtain lower latency and higher bandwidth
overheads compared to FG and MG, respectively. The improvement
rates in latency cost obtained by the partitioning models utilizing
the message nets saturate around L = 6 or L = 5, whereas the
deterioration rates in bandwidth cost continue to increase. In other
words, addingmessage nets in the bipartitionings other than those
in the last two or three levels of the RB tree has small benefits in
terms of improving the latency cost but it has a substantial negative
effect on the bandwidth cost, especially on maximum volume. For
this reason, we choose FG-LM and MG-LM with L = 6, i.e., add
message nets in the last two levels of the RB tree.

6.1.2. Message net threshold parameters (TS, TR)
The message net threshold parameters for the send and receive

message nets are, respectively, denoted with TS and TR. The tested
values are set based upon the average degree of the message nets
throughout the partitioning, which is found to be close to 30.
We evaluate threshold values smaller than, roughly equal to, and
greater than this average degree: TS, TR ∈ {15, 30, 50}. We follow
a similar experimental setting as for the delay parameter and only
present the results for K = 256. In addition, we omit the discus-
sions for the medium-grain models as the observations made for
the fine-grain andmedium-grainmodels are alike. Table 3 presents
the values for four different cost metrics obtained by FG-LM and

FG-LM with nine different threshold settings. Note that the delay
value of L = 6 is utilized in all these experiments.

The partitionings without large message nets lead to lower
bandwidth and higher latency costs as seen in Table 3 compared to
the case without any threshold, i.e., FG-LM. The more the number
of eliminated message nets, the higher the latency cost and the
lower the bandwidth cost. Among the nine combinations for TS and
TR in the table, we pick TS = 15 and TR = 50 due to its reasonable
maximum volume and maximum message count values for the
reasons described in Section 5.

6.2. Comparison of all partitioning models

6.2.1. Partitioning cost metrics
We present the values obtained by the four nonzero-based par-

titioningmodels in six different partitioning costmetrics in Table 4.
These cost metrics are computational imbalance (indicated in the
column titled ‘‘Imb (%)’’), maximum and total volume, maximum
and total message count, and partitioning time in seconds. Note
that these metrics include the three metrics described in Section
2.2. Each entry in the table is the geometric mean of the values for
the matrices that belong to the respective value of K . The columns
three to eight in the table display the actual values, whereas the
columns nine to fourteen display the normalized values, where the
results obtained by FG-LM and MG-LM at each K value are normal-
ized with respect to those obtained by FG and MG at that K value,
respectively. The top half of the table displays the results obtained
by the fine-grain models, whereas the bottom half displays the
results obtained by the medium-grain models.

Among the four nonzero-based partitioning models compared
in Table 4, the models that consider both the bandwidth and
latency overheads achieve better total and maximum message
counts compared to themodels that solely consider the bandwidth
overhead. For example at K = 256, FG-LM attains 27% improve-
ment in total message count compared to FG, while MG-LM attains
24% improvement in total message count compared to MG. On the
other hand, the two models that solely consider the bandwidth
overhead achieve better total and maximum volume compared to
the two models that also consider the latency overhead. This is
because FG and MG optimize a single cost metric, while FG-LM and
MG-LM aim to optimize two cost metrics at once. At K = 256,
FG-LM causes 16% deterioration in total volume compared to FG,
while MG-LM causes 18% deterioration in total volume compared to

Table 4
Comparison of nonzero-based partitioning models in six cost metrics.
K Model Actual values Normalized values w.r.t. FG/MG

Imb (%) Volume Message Part. time Imb Volume Message Part. time
Max Total Max Total Max Total Max Total

64 FG 0.91 413 11,811 32 968 7.7 – - – - – –
FG-LM 0.88 542 13,267 29 753 7.4 0.97 1.31 1.12 0.91 0.78 0.97

128 FG 1.11 484 24,670 45 2,332 16.4 – - – - – –
FG-LM 1.01 669 28,159 40 1,751 16.3 0.91 1.38 1.14 0.89 0.75 1.00

256 FG 1.36 567 52,357 60 5,560 40.9 – - – - – –
FG-LM 1.21 835 60,864 54 4,043 40.8 0.89 1.47 1.16 0.90 0.73 1.00

512 FG 1.67 584 92,141 72 11,186 77.9 – - – - – –
FG-LM 1.61 863 108,497 66 8,218 77.2 0.96 1.48 1.18 0.92 0.73 0.99

1024 FG 1.87 530 165,923 69 20,209 156.2 – - – - – –
FG-LM 1.81 811 196,236 66 15,415 159.6 0.97 1.53 1.18 0.96 0.76 1.02

64 MG 0.90 412 11,655 31 928 3.9 – - – - – –
MG-LM 0.87 521 13,205 28 732 4.1 0.97 1.26 1.13 0.90 0.79 1.06

128 MG 1.13 482 24,256 44 2,217 8.1 – - – - – –
MG-LM 1.08 634 27,799 39 1,690 8.4 0.96 1.32 1.15 0.89 0.76 1.04

256 MG 1.48 558 49,867 57 5,103 19.1 – - – - – –
MG-LM 1.39 766 58,981 52 3,876 20.6 0.94 1.37 1.18 0.91 0.76 1.08

512 MG 1.91 588 91,856 67 10,265 39.7 – - – - – –
MG-LM 1.80 785 108,128 62 7,878 43.7 0.94 1.34 1.18 0.93 0.77 1.10

1024 MG 2.05 530 165,722 65 18,692 82.2 – - – - – –
MG-LM 2.00 724 196,443 61 14,827 87.5 0.98 1.37 1.19 0.94 0.79 1.06
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Table 5
Comparison of partitioning models in six cost metrics at K = 256.
Model Imb (%) Volume Message Part. time

Max Total Max Total

1D-LM 2.50 968 101,565 33 2448 13.2
FG 1.36 567 52,357 60 5560 40.9
FG-LM 1.21 835 60,864 54 4043 40.8
MG 1.48 558 49,867 57 5103 19.1
MG-LM 1.39 766 58,981 52 3876 20.6

MG. Note that the models behave accordingly in maximum volume
and maximum message count metrics as although these metrics
are not directly addressed by any of the models, the former one
is largely dependent on the total volume while the latter one is
largely dependent on the total message count. FG-LM and MG-LM
have slightly lower imbalance compared toFG andMG, respectively.
Addition of the message nets does not seem to change the parti-
tioning overhead, a result likely to be a consequence of the choice
of the delay and net threshold parameters.

Another observationworth discussion is the performance of the
medium-grain models against the performance of the fine-grain
models. When MG is compared to FG or MG-LM is compared to
FG-LM, the medium-grain models achieve slightly better results
in volume and message cost metrics, and slightly worse results
in imbalance. However, the partitioning overhead of the medium-
grain models is much lower than the partitioning overhead of the
fine-grain models: the medium grain models are 1.8–2.2× faster.
This is also one of the main findings of [19], which makes the
medium-grain model a better alternative for obtaining nonzero-
based partitions.

1D-LM and nonzero-based partitioningmodels are compared in
Table 5 at K = 256. 1D-LM has higher total volume and imbalance,
and lower total message count compared to the nonzero-based
partitioning models. The nonzero-based models have broader
search space due to their representation of the SpMV via smaller
units, which allows them to attain better volume and imbalance.
The latency overheads of FG and MG are higher than the latency
overhead of 1D-LM simply because latency is not addressed in
the former two. Although FG-LM and MG-LM may as well obtain
comparable latency overheads with 1D-LM (e.g., compare total
message count of FG-LM with L = 1 in Table 2 against total
message count of1D-LM in Table 5),we favor a decrease in volume-
related cost metrics at the expense of a small deterioration in
latency-related cost metrics in these two models. 1D-LM has the
lowest partitioning overhead due to having the smallest hyper-
graph among the five models. A similar discussion follows for the
maximum volume andmaximummessage countmetrics as for the
total volume and total message count metrics.

In the remainder of the paper, we use MG and MG-LM among the
nonzero-based models for evaluation due to their lower partition-
ing overhead and slightly better performance compared to FG and
FG-LM, respectively, in the remaining metrics.

6.2.2. Parallel SpMV performance
We compare 1D-LM, MG, and MG-LM in terms of parallel SpMV

runtime. Parallel SpMV is runwith the partitions obtained through
these three models. There are 12 matrices tested, listed with their
types as follows: eu-2005 (web graph), ford2 (mesh),
Freescale1 (circuit simulation), invextr1_new (computational
fluid dynamics), k1_san (2D/3D), LeGresley_87936 (power net-
work), mouse_gene (gene network), olesnik0 (2D/3D), tuma1
(2D/3D), turon_m (2D/3D), usroads (road network),
web-Google (web graph). Number of nonzeros in these matrices
varies between 87,760 and 28,967,291. These 12 matrices consti-
tute a subset of 978matrices for which the partitioningmodels are

compared in terms of partitioning cost metrics in the preceding
sections. Four different number of processors (i.e.,K ) are tested: 64,
128, 256, and 512.We did not test for 1024 processors as inmost of
the tested matrices SpMV could not scale beyond 512 processors.
We only consider the strong-scaling case. The parallel SpMV is run
for 100 times and the average runtime (inmilliseconds) is reported.
The obtained results are presented in Fig. 8.

The plots in Fig. 8 show that both MG and MG-LM scale usually
better than 1D-LM. It is known the nonzero-based partitioning
models scale better than the 1D models due to their lower com-
munication overheads and computational imbalance. In difficult
instances such as invextr1_new or mouse_gene at which 1D-
LM does not scale, using a nonzero-based model such as MG or
MG-LM successfully scales the parallel SpMV. MG-LM improves the
scalability of MG in most of the test instances. Apart from the in-
stances Freescale1, invextr1_new, and turon_m, MG-LM per-
forms significantly better than MG. MG-LM’s performance especially
gets more prominent with increasing number of processors, which
is due to the fact that the latency overheads are more critical in
the overall communication costs in high processor counts since
themessage size usually decreases with increasing number of pro-
cessors. These plots show that using a nonzero-based partitioning
model coupled with the addressing of multiple communication
cost metrics yields the best parallel SpMV performance.

7. Related work

We first provide a brief taxonomy of the sparse matrix parti-
tioning models for parallel SpMV in order to place the proposed
models in their context by arguing their pros and cons. Then,
we describe the works that have similar goals with this work,
i.e., the reduction of multiple cost metrics, of which at least one
is a latency-related cost metric.

The literature is rich in terms of the sparse matrix partitioning
models based on graph partitioning [5,14,16,20] and hypergraph
partitioning (HP) [1,2,7–10,12,17–19,21–25]. The HP models are
grouped into two as one-dimensional (1D) and two-dimensional
(2D) depending on the dimensions of thematrix partitioning. Fig. 9
provides a visual taxonomy for the partitioningmodels mentioned
in this section. 1D models [7] partition the nonzeros in the matrix
along a single dimension, either row or column, while 2D models
partition them along both row and column dimensions. The two
main variants of the 1D partitioning are the row-wise and column-
wise partitionings. The 2Dmodels are generally superior to the 1D
models in terms of parallel SpMV performance due to their higher
flexibility in distributing thematrix nonzeros. The threemain vari-
ants of the 2D partitioning are the checkerboard [9,10], jagged [10],
and nonzero-based [8,10,19] partitionings. A 2D virtual processor
mesh is assumed for the checkerboard and jagged partitionings in
order to provide upper bounds on communication overheads.

Unlike the partitioning models mentioned so far, the nonzero-
based partitioning does not possess any structure in terms of the
nonzero distribution among processors, so, it is the most general
partitioning possible [24]. The two variants of the nonzero-based
partitioning are the fine-grain and medium-grain partitionings,
in which each nonzero and groups of nonzeros are treated indi-
vidually during the partitioning, respectively. This work focuses
on improving the fine-grain and medium-grain HP models and
they differ from the HP models proposed in [8,19] for obtaining
nonzero-based partitionings in the sense that our models address
both the bandwidth and latency costs, while they address only the
bandwidth cost.

The existing partitioning models that address the bandwidth
and latency costs in the literature can be grouped into two ac-
cording to whether they explicitly address the latency cost or not
(the bandwidth cost is usually addressed explicitly). The models
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Fig. 8. Comparison of partitioning models in terms of parallel SpMV runtime.

that do not explicitly address the latency cost provide an upper
bound on the message counts [5,9,10]. We focus on the works that
explicitly address the latency cost [12,21,22], which is also the case
in thiswork. Among theseworks, the one proposed in [22] is a two-
phase approach which addresses the bandwidth cost in the first
phase utilizing a 1Dmodel and the latency cost in the second phase

utilizing the communication hypergraph model. In the two-phase
approaches, since different cost metrics are addressed in separate
phases, a metric minimized in a particular phase may deteriorate
in the other phase. Our models fall into the category of single-
phase approaches. The other two works also adopt a single-phase
approach to address multiple communication cost metrics, where
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Fig. 9. Partitioning taxonomy.

UMPa [12] uses a direct K -way partitioning approach, while [21]
exploits the recursive bipartitioning paradigm. UMPa is rather
expensive as it introduces an additional cost involving a quadratic
factor in terms of the number of processors to each refinement
pass. Our approach introduces an additional cost involving a mere
logarithmic factor in terms of the number of processors to the
entire partitioning. Furthermore, our approach enables the use of
existing HP tools for bipartitioning within the RB framework.

Themessage net concept has recently been proposed for certain
types of iterative applications that involve a computational phase
either preceded or followed by a communication phase with a
restriction of conformal partitions on input and output data [21].
1D row-parallel and column-parallel SpMV operations constitute
examples for these applications. This work differs from [21] in
the sense that the nonzero-based partitions necessitate a parallel
SpMV that involves two communication phases with no restriction
of conformal partitions on input and output vectors of the SpMV
operation. Partitions on the vectors can also be found after finding
a partition on matrix nonzeros [4,22]. Our proposed HP models,
on the other hand, find all three partitions at once in a single
partitioning phase.

8. Conclusion

We proposed two novel nonzero-based matrix partitioning
models, a fine-grain and a medium-grain model, that simultane-
ously address the bandwidth and latency costs of parallel SpMV.
These models encapsulate two communication cost metrics at
once as opposed to their existing counterparts which only address
a single cost metric regarding the bandwidth cost. Our approach
exploits the recursive bipartitioning paradigm to incorporate the
latency minimization into the partitioning objective via message
nets. In addition, we proposed two practical enhancements to find
a good balance between reducing the bandwidth and the latency
costs. The experimental results obtained on an extensive dataset
show that the proposed models attain up to 27% improvement in
latency-related cost metrics over their existing counterparts on
average and the scalability of parallel SpMV can substantially be
improved with the proposed models.
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