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a b s t r a c t

Many scientific and engineering applications necessitate computing the minimum norm solution of a
sparse underdetermined linear system of equations. The minimum 2-norm solution of such systems
can be obtained by a recent parallel algorithm, whose numerical effectiveness and parallel scalability
are validated in both shared- and distributed-memory architectures. This parallel algorithm assumes
the coefficient matrix in a block-diagonal column-overlapped (BDCO) form, which is a variant of the
block-diagonal form where the successive diagonal blocks may overlap along their columns. The total
overlap size of the BDCO form is an important metric in the performance of the subject parallel
algorithm since it determines the size of the reduced system, solution of which is a bottleneck
operation in the parallel algorithm. In this work, we propose a hypergraph partitioning model for
reordering sparse matrices into BDCO form with the objective of minimizing the total overlap size
and the constraint of maintaining balance on the number of nonzeros of the diagonal blocks. Our
model makes use of existing partitioning tools that support fixed vertices in the recursive bipartitioning
paradigm. Experimental results validate the use of our model as it achieves small overlap size and
balanced diagonal blocks.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Many scientific and engineering applications [6,12,19,22,25,
27] require computing the minimum norm solution of an under-
determined system of equations of the form

Ax = f , (1)

where A is an m × n sparse matrix and m < n [18]. A com-
mon approach for obtaining the minimum 2-norm solution of
an underdetermined linear least squares problem is the use of
a QR factorization in a direct method. Various packages such as
SuiteSparseQR [13,14], HSL MA49 [2], and qr_mumps [7] provide
efficient parallel and sequential implementations for the general
sparse QR algorithm.

One recent approach [24] for obtaining the minimum 2-norm
solution of an underdetermined linear least squares problem is
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the use of the Balance scheme [17,21,23], which is an effec-
tive and efficient parallel algorithm originally proposed for an
ill-conditioned banded linear system of equations. This parallel
algorithm [24] can also be considered as an extension of the
general sparse QR factorization to distributed-memory systems
for obtaining the minimum 2-norm solution. In this parallel algo-
rithm, the coefficient matrix is assumed to be in block-diagonal
column-overlapped (BDCO) form with K diagonal blocks, which
is shown in Fig. 1. As seen in the figure, the kth diagonal block Ek
of the BDCO form is given by

Ek = [Ck Ak Bk],

for k = 2, 3, . . . , K −1, whereas the first and last diagonal blocks
E1 and EK are respectively given by

E1 = [A1 B1] and EK = [CK AK ].

Here, successive diagonal blocks Ek−1 and Ek overlap along the
columns of their submatrices Bk−1 and Ck. Columns of the over-
lapping submatrices are referred to as coupling columns.

The parallel algorithm [24] exploits the BDCO form so that
each of K processors independently solves a small linear least
squares problem of the form

Ekzk = fk, (2)
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Fig. 1. A sample underdetermined system of equations Ax = f where matrix A
is in a K -way BDCO form.

where

z1 =
[

x1
e1

]
, zk =

[ êk−1
xk
ek

]
for k = 2, 3, . . . , K − 1, and

zK =
[

êK−1
xK

]
.

This step is performed in parallel without any communication. For
x to be a solution, ek and êk should be equal for k = 1, 2, . . . , K−1.
This is ensured by a sequential step in which a small system
called reduced system is solved. The size of the reduced system
is determined by the total overlap size, i.e., the total number of
coupling columns. When compared to the state-of-the-art par-
allel QR implementations, this approach is reported to achieve
better scalability on both shared- and distributed-memory archi-
tectures [24].

In this paper, our aim is to find two permutations P and
Q such that PAQ is in a K -way BDCO form. We refer to this
permutation problem as the BDCO problem. In the BDCO problem,
the objective is to minimize the total overlap size in PAQ since the
performance of the above-mentioned parallel algorithm consid-
erably deteriorates with increasing total overlap size, as reported
in [24]. The constraint of the BDCO problem is to maintain balance
on the number of nonzeros in the diagonal blocks of PAQ to
ensure balanced workload for processors.

To the best of our knowledge, literature lacks an algorithm for
solving the BDCO problem. However, there are efforts for solv-
ing problems that resemble the BDCO problem. In [5] and [26],
the problems of reordering sparse matrices into singly-bordered
block diagonal (SBBD) form and separated block diagonal (SBD)
form were addressed, respectively. In the SBBD form, all coupling
rows are reordered to a border at the bottom or all coupling
columns are reordered to a border on the right. In the SBD
form, coupling rows are reordered in between two parts as they
are encountered during the recursive bipartitioning steps. The
SBBD and SBD forms differ from the BDCO form as they allow
coupling rows/columns to span more than two diagonal blocks,
which are not necessarily consecutive. In [1], the problem of
reordering sparse square matrices into block diagonal form with
overlap (BDO form) was addressed. The differences between the
BDCO and BDO forms are two-fold: (i) the BDO form is obtained
on structurally symmetric matrices via symmetric row/column
permutation, whereas the BDCO form is obtained on non-square

matrices via row and column permutations that are different from
each other, (ii) consecutive diagonal blocks overlap along both
rows and columns in the BDO form, whereas they overlap along
only columns in the BDCO form.

In order to solve the BDCO problem, we propose the HPBDCO
algorithm, which utilizes the column-net hypergraph model [8] of
the given coefficient matrix A. First, we investigate the feasibility
of the K -way BDCO permutation for matrix A by considering the
vertex-to-vertex adjacency topology of the column-net hyper-
graph of A. If the respective permutation is feasible, then the
corresponding hypergraph is partitioned by the proposed HPBDCO
algorithm so that the partitioning objective corresponds to mini-
mizing the total overlap size, whereas the partitioning constraint
corresponds to maintaining balance on the number of nonzeros of
the diagonal blocks. The HPBDCO algorithm utilizes fixed vertices
within the recursive bipartitioning paradigm in order to ensure
that only the successive diagonal blocks may share columns. The
proposed algorithm is flexible in the sense that any hypergraph
partitioning tool that supports fixed vertices can be used in the
implementation. The effectiveness of the proposed HPBDCO algo-
rithm is validated by reordering a wide range of matrices into
BDCO form with small overlap size and balanced diagonal blocks
as well as by running the parallel code [24] on the reordered
matrices.

The rest of the paper is organized as follows. Section 2 gives
background on hypergraph partitioning. The proposed HPBDCO
algorithm is given in Section 3. Section 4 gives experimental
results and Section 5 concludes.

2. Background

2.1. Hypergraphs

A hypergraph H = (V,N ) is defined as a set V of vertices and
a set N of nets. Each net n ∈ N connects a subset of vertices in
V , which is denoted by Pins(n). We use phrase ‘‘pins of n’’ to refer
to the vertices connected by net n. In a dual manner, each vertex
v ∈ V is connected by a subset of nets in N , which is denoted by
Nets(v).

We adapt the following graph terminology to hypergraphs. In
a hypergraph, two vertices are said to be adjacent if they are
connected by at least one common net. Let Adj(v) denote the set
of vertices adjacent to vertex v. Then,

Adj(v) = {u : Nets(v) ∩ Nets(u) ̸= ∅} − {v}.

In a hypergraph, a path is defined as a sequence ⟨v1, v2, . . . ,

vp⟩ of vertices such that each two consecutive vertices are adja-
cent. The distance between vertices vi and vj, which is denoted
by d(vi, vj), is defined as the number of vertex-to-vertex hops
in a shortest path from vi to vj. For example, if ⟨vi, vk, vj⟩ is a
shortest path, then the distance between vi and vj is equal to 2,
i.e., d(vi, vj) = 2. Trivially, d(v, v) = 0. The distance between
a vertex u and a set of vertices V is defined as the minimum
of distances between u and vertices in V , that is, d(u,V) =
minv∈V d(u, v).

The diameter of hypergraph H = (V,N ) is then defined as the
maximum distance between two vertices, that is,

diameter(H) = max
vi,vj∈V

d(vi, vj).

For a hypergraph with diameter D, a vertex v is said to be a
peripheral vertex if there exists a vertex u such that d(v, u) = D.
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2.2. Hypergraph partitioning (HP) problem

In a given K -way partition Π = {V1,V2, . . . ,VK } of hyper-
graph H = (V,N ), net n is said to connect part Vk if it connects at
least one vertex in Vk, i.e., Pins(n)∩Vk ̸= ∅. Let Λ(n) denote the set
of the parts connected by n, that is, Λ(n) = {Vk : Pins(n)∩Vk ̸= ∅}.
The number of parts connected by n is denoted by λ(n), hence,
λ(n) = |Λ(n)|. A net n is said to be cut if it connects more than
one part, i.e., λ(n) > 1. Otherwise, n is said to be uncut. If the
part that is connected by uncut net n is Vk, then n is said to be
internal to Vk. A vertex v is said to be boundary if it is connected
by at least one cut net.

In H, each vertex v ∈ V is assigned a non-negative weight
denoted by w(v), whereas each net is assigned a non-negative
cost denoted by c(nj). Then, the cutsize of Π is defined as the sum
of the costs of the cut nets in Π , that is,

cutsize(Π ) =
∑

n:λ(n)>1

c(n). (3)

Part weight Wk of Vk is defined as the sum of the weights of the
vertices in Vk, i.e., Wk =

∑
v∈Vk

w(v).
For given K and ϵ values and a hypergraph H, the HP problem

is defined as finding a partition Π = {V1,V2, . . . ,VK } of H with
the objective of minimizing the cutsize (3) and the constraint of
maintaining the balance on the part weights, which is given by

Wk < Wavg (1+ ϵ) for k = 1, 2, . . . , K . (4)

Here, Wavg and ϵ denote the average part weight in Π and
a predetermined threshold for maximum allowable imbalance
ratio, respectively.

The HP problem with fixed vertices is a variant of the HP prob-
lem which has been successfully used for solving the repartition-
ing/remapping problem in the context of parallelizing irregular
applications [3,4,9,11]. In this problem, vertices in Fk ⊆ V are
pre-assigned to part Vk in a K -way partition so that Fk ⊆ Vk
for k = 1, 2, . . . , K after the partitioning. A vertex v is referred
to as ‘‘fixed to Vk’’ if v ∈ Fk. Vertices can be fixed to at most
one part, that is, Fk ∩ Fℓ = ∅ holds for any fixed-vertex set
pair (Fk,Fℓ). A vertex v is referred to as ‘‘free’’ if it is not fixed,
i.e., v ∈ V −

⋃K
k=1 Fk.

2.3. Recursive bipartitioning (RB) paradigm

RB is a commonly-used paradigm for obtaining K -way hy-
pergraph partitioning. In RB, a given hypergraph is recursively
bipartitioned, i.e., partitioned into two parts, until K parts are ob-
tained. At each RB step, a bipartition Π = {V1,V2} of the current
hypergraph H is obtained and two new hypergraphs H1 and H2
are formed using vertex parts V1 and V2. This procedure forms
a hypothetical full binary tree in which each node represents
a hypergraph formed/bipartitioned. The vertex set of each leaf
hypergraph in the RB tree corresponds to a part in the resulting
K -way partition Π = {V1,V2, . . . ,VK }.

3. Proposed model

Suppose that we are given an m × n sparse matrix A and
an integer K > 1. For reordering A into K -way BDCO form,
we propose a hypergraph partitioning algorithm, HPBDCO, which
utilizes the column-net hypergraph model [8]. Let H = (V,N )
denote the column-net hypergraph of A with vertex and net sets

V = {v1, v2, . . . , vm} and N = {n1, n2, . . . , nn}.

Vertex vi represents row i of A for i = 1, 2, . . . ,m, whereas net
nj represents column j of A for j = 1, 2, . . . , n. Net nj connects

vertices that represent the rows with a nonzero entry in column j,
that is,

Pins(nj) = {vi : aij ̸= 0}.

Each net nj is assigned a unit cost, i.e., c(nj) = 1, whereas each
vertex vi is assigned a weight equal to the number of nonzeros in
row i of A, i.e., w(vi) = |{aij : aij ̸= 0}|.

Consider a K -way partition Π = {V1,V2, . . . ,VK } of H. In
Section 3.1, we introduce a new partitioning constraint, which we
refer to as the BDCO constraint, for Π to be utilized for reordering
A into K -way BDCO form. We refer to Π as a BDCO partition if it
satisfies the BDCO constraint. In Section 3.2, we investigate the
feasibility of a K -way BDCO partition for hypergraph H. Finally
in Section 3.3, we propose the RB-based HPBDCO algorithm which
obtains a K -way BDCO partition of a given hypergraph H, if it is
feasible.

3.1. BDCO constraint

We define the BDCO constraint as restricting each cut net in
Π to connect two consecutive parts. That is, for each n ∈ N with
λ(n) > 1, Λ(n) = {Vk,Vk+1} for some k ∈ {1, 2, . . . , K − 1}.

A K -way partition that satisfies the BDCO constraint, a K -way
BDCO partition, induces partial row and column orderings for
permuting A into K -way BDCO form as follows. The rows that
are represented by the vertices in Vk are ordered after the rows
that are represented by the vertices in Vk−1. The columns that
are represented by the internal nets of Vk are ordered after the
columns that are represented by the cut nets connecting Vk−1 and
Vk and before the columns that are represented by the cut nets
connecting Vk and Vk+1. In a dual manner, the columns that are
represented by the cut nets connecting Vk−1 and Vk are ordered
after the columns that are represented by the internal nets of Vk−1
and before the columns that are represented by the internal nets
of Vk. Internal orderings of the above-mentioned row/column
groups can be arbitrary. Consequently, the vertices and internal
nets of Vk respectively correspond to the rows and columns of Ak
in Fig. 1, whereas the cut nets connecting Vk and Vk+1 correspond
to the coupling columns shared by diagonal blocks Ek and Ek+1 in
Fig. 1.

Fig. 2 displays a sample 10 × 12 sparse matrix A, a 4-way
BDCO partition Π of the column-net hypergraph of A, and matrix
ABDCO in a 4-way BDCO form which is obtained via decoding Π as
described above. For example, consider vertex part V3 = {v2, v5}

in Π and nets connecting V3, namely, n1, n6, n8, n11, and n12. Then,
diagonal block E3 = [C3 A3 B3] in ABDCO consists of rows 5 and 2
and columns 1, 6, 8, 11 and 12, where C3 contains column 1, A3
contains columns 6 and 8, and B3 contains columns 11 and 12.
Note that column 1 is a coupling column and it is shared by E2
and E3 in ABDCO since cut net n1 connects both V2 and V3 in Π .
Similarly, columns 11 and 12 are coupling columns and they are
shared by E3 and E4 since cut nets n11 and n12 connect both V3
and V4.

The BDCO constraint ensures that each coupling column is
shared by two consecutive diagonal blocks in the resulting BDCO
form. Consider a column j in A and the corresponding net nj in H.
Note that the rows that have at least one nonzero in column j are
those represented by the vertices in Pins(nj), by the construction
of the column-net hypergraph model. First, assume that nj is
internal to part Vk for some k, that is, Pins(nj) ⊆ Vk. Since the
vertices in Vk correspond to the rows of Ak (or equivalently, Ek),
each row that contains at least one nonzero in column j is a row
of Ak. Hence, column j only links diagonal block Ek. Now, assume
that nj is a cut net, that is, nj connects parts Vk and Vk+1 for some
k. Then, the vertices in Pins(nj) are either in Vk or in Vk+1. Then,
each row that contains at least one nonzero in column j is either
a row of Ak or a row of Ak+1. Hence, column j links consecutive
diagonal blocks Ek and Ek+1.
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Fig. 2. A sample matrix A, a 4-way BDCO partition Π of the column-net hypergraph of A, and the permuted matrix ABDCO in 4-way BDCO form, where the corresponding
permutation is induced by Π .

3.2. Feasibility of a K-way BDCO partition

Consider a K -way BDCO partition Π of a given hypergraph H.
Note that the BDCO constraint implies that the adjacent vertices
are assigned either to the same part or to the consecutive parts.
In other words, no two adjacent vertices can be assigned to parts
that have one or more parts in between. This statement relates
the maximum number of parts that one can have at a BDCO
partition of H to the length of the longest shortest path in H,
i.e., the diameter of H. In this section, we investigate the relation
between the existence of a K -way BDCO partition of H and the
diameter of H.

Assume that vi and vj are two arbitrary vertices in H such that
d(vi, vj) = δ. Consider a K -way BDCO partition Π of H. Assume
that vi and vj are assigned to the Ith part VI and the Jth part VJ in
Π , respectively. We first claim that |I − J| ≤ δ, that is, the parts
containing vi and vj can have at most δ − 1 parts in between.
Assume to the contrary that |I − J| = δ′ > δ and consider the
case I < J . Then, there exists a path ⟨vI , vI+1, . . . , vI+δ′=J⟩ with
end vertices vi = vI and vj = vJ such that vI+k ∈ VI+k for
k = 0, 1, . . . , δ′. This path is a shortest path since no two vertices
vI+k and vI+k′ in this path can be adjacent if |k− k′| > 1 by the
BDCO constraint. Then d(vi, vj) > δ, which is a contradiction.
This implies that for a hypergraph H with diameter D, at most
D− 1 parts can exist between any two parts in a BDCO partition.
Consequently, a K -way BDCO partition of H is not feasible if the
diameter of H is less than K − 1.

3.3. HPBDCO algorithm

The HPBDCO algorithm utilizes the RB paradigm to obtain a K -
way BDCO partition of a given hypergraph H = (V,N ). Before
invoking the HPBDCO algorithm, we first find a pseudo-peripheral

vertex u in H by utilizing the algorithm in [16], which is originally
proposed for finding pseudo-peripheral vertices in graphs. This
algorithm easily extends to hypergraphs thanks to the definition
of adjacent vertices in hypergraphs, which is introduced in Sec-
tion 2.1. After a pseudo-peripheral vertex u is obtained, a vertex
v which is one of the furthest vertices from u is found. If the
distance between u and v is less than K − 1, we conclude that
a K -way BDCO partition of H is not feasible by the discussion
given in Section 3.2. Otherwise, the recursive HPBDCO algorithm is
invoked to obtain a K -way BDCO partition of H.

The basic outline of the recursive step of the HPBDCO algorithm
is given as follows:

1. Obtain a bipartition {V1,V2} of hypergraph H = (V,N ).
2. Construct two hypergraphs H1 and H2 respectively on the

vertex sets V1 and V2.
3. Invoke the HPBDCO algorithm on H1, which returns a K/2-

way BDCO partition Π1 = ⟨V1
1 , . . . ,V

1
K/2⟩ of H1.

4. Invoke the HPBDCO algorithm on H2, which returns a K/2-
way BDCO partition Π2 = ⟨V2

1 , . . . ,V
2
K/2⟩ of H2.

5. Concatenate Π1 and Π2 to obtain a K -way BDCO partition
Π of H and return Π .

This basic outline does not involve the details that are essential to
satisfying the constraint and feasibility of a BDCO partition. In the
following paragraphs, we construct the proposed BDCO algorithm
on top of this basic outline by stressing the points where this
basic outline fails and describing techniques to resolve them.

One problem with the given outline is that Π1 and Π2 being
BDCO partitions does not automatically guarantee that Π too is a
BDCO partition. In order for Π to satisfy the BDCO requirement,
the cross-partition adjacencies between Π1 and Π2 should be
confined to be between the last part of Π1 and the first part of Π2.
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In other words, the vertices in V1 that are adjacent to vertices in
V2 should be assigned to V1

K/2 in Π1. In a dual manner, the vertices
in V2 that are adjacent to vertices in V1 should be assigned to V2

1 in
Π2. The HPBDCO algorithm confines the cross-partition adjacencies
to be between V1

K/2 and V2
1 by fixing the end vertices of these

adjacencies to respective parts before each bipartitioning. How
we achieve this will be clear after we introduce the vertex fixation
scheme in the proposed algorithm.

Another problem with the given outline is that the feasibility
of BDCO partitions Π1 and Π2 is not guaranteed. That is, depend-
ing on the bipartition {V1,V2} of H, the diameters of hypergraphs
H1 or H2 may be less than K/2− 1 even though the diameter of
H is at least K − 1. Assume that two pseudo-peripheral vertices
u and v in H are given, where the distance between u and v is at
least K − 1, i.e., d(u, v) ≥ K − 1. The HPBDCO algorithm ensures
that the diameters of both H1 and H2 are at least K/2− 1 by

• fixing vertex u′ to V1 for each vertex u′ ∈ V with d(u′, u) <
K/2 and
• fixing vertex v′ to V2 for each vertex v′ ∈ V with d(v′, v) <

K/2.

Note that the vertices that are fixed to V1 and the vertices that
are fixed to V2 are disjoint due to d(u, v) ≥ K − 1. Having the
above-mentioned fixed vertices during the bipartitioning, H1 and
H2 are guaranteed to have vertex pairs (u, u′) and (v, v′) with
d(u, u′) ≥ K/2−1 and d(v, v′) ≥ K/2−1, respectively. Therefore,
by the described vertex fixation scheme, the existence of BDCO
partitions Π1 and Π2 is guaranteed by the discussion given in
Section 3.2.

Algorithm 1 displays the proposed recursive HPBDCO algorithm,
which we build upon the basic outline by adding a vertex fixation
scheme to resolve the two problems mentioned above. As input,
it takes a hypergraph H = (V,N ), the desired number of parts K ,
and two vertex subsets P1 ⊆ V and P2 ⊆ V that are respectively
referred to as the left and the right boundary vertex sets of H.
At the initial invocation of this recursive algorithm, the input
boundary vertex sets P1 and P2 are respectively set to {v} and
{u}, where v and u are two pseudo-peripheral vertices of H with
d(u, v) = diameter(H).

In Algorithm 1, the first step is to perform the proposed vertex
fixation scheme (lines 1–2). We obtain sets of vertices fixed to
V1 and V2, i.e., F1 and F2, by invoking the FIX function on
H and boundary vertex sets P1 and P2, respectively. Algorithm
2 displays the basic steps of the FIX function. This algorithm
performs multi-source BFS sourced at a given boundary vertex
set P in order to find vertices in H whose distances to P are
smaller than D = K/2. In other words, for each vertex v ∈ V
with d(v,P1) < K/2, the first invocation of FIX includes v in
F1, whereas for each vertex v ∈ V with d(v,P2) < K/2, the
second invocation of FIX includes v in F2. Note that P1 ⊆ F1 and
P2 ⊆ F2, that is, the vertices in the left and right boundary vertex
sets are always fixed to the left and right parts, respectively.
This ensures that the cross-partition adjacencies between Π1 and
Π2 are confined to be between the last part of Π1 and the first
part of Π2, which is required for maintaining the BDCO structure
throughout the overall RB process.

After fixing vertices, Algorithm 1 obtains a bipartition {V1,V2}

of hypergraph H with fixed vertices assigned to their respective
parts, i.e., F1 ⊆ V1 and F2 ⊆ V2 (line 3). Here, any hypergraph
partitioning tool that supports fixed vertices can be utilized. If K
is equal to 2, which is the base case, then bipartition Π = ⟨V1,V2⟩

is returned (lines 5 and 22). Note that any bipartition is trivially
a 2-way BDCO partition. If K is larger than 2, the recursive step
of the HPBDCO algorithm is performed (lines 6–21).

In the recursive step of Algorithm 1, new hypergraphs H1 =

(V1,N1) and H2 = (V2,N2) are formed on vertex sets V1 and V2

Algorithm 1 HPBDCO
Require: Hypergraph H = (V,N ), integer K , boundary vertex

sets P1 and P2

▷ Fix vertices
1: F1 ← FIX(H,P1, K/2) ▷ fix some vertices to V1
2: F2 ← FIX(H,P2, K/2) ▷ fix some vertices to V2

▷ Bipartition H with fixed vertices
3: {V1,V2} ← PARTITIONER(H,F1,F2, 2)

4: if K = 2 then ▷ base case
5: Π ← ⟨V1,V2⟩ ▷ Π is a 2-way BDCO partition
6: else ▷ form H1 and H2 and recurse on them
7: H1 ← (V1,N1 = ∅)
8: H2 ← (V2,N2 = ∅)

▷ Form N1 and N2 using cut-net removal technique
9: for each n ∈ N do

10: if n is internal to V1 then
11: N1 ← N1 ∪ {n}
12: else if n is internal to V2 then
13: N2 ← N2 ∪ {n}

▷ Form boundary vertex sets of H1 and H2
14: P11 ← P1, P22 ← P2 ▷ inherited boundary vertex sets
15: P12 ← P21 ← ∅ ▷ new boundary vertex sets
16: for each cut-net n ∈ N do
17: P12 ← P12 ∪ (Pins(n) ∩ V1)
18: P21 ← P21 ∪ (Pins(n) ∩ V2)

▷ Recursive invocations on H1 and H2
19: Π1 = ⟨V1

1 , . . . ,V
1
K/2⟩ ← HPBDCO(H1, K/2,P11,P12)

20: Π2 = ⟨V2
1 , . . . ,V

2
K/2⟩ ← HPBDCO(H2, K/2,P21,P22)

▷ Concatenate Π1 and Π2 to obtain Π

21: Π ← ⟨Π1, Π2⟩

22: return Π

and the HPBDCO algorithm is invoked on H1 and H2 to obtain K/2-
way BDCO partitions Π1 and Π2, respectively. Net sets N1 and
N2 are obtained via cut-net removal scheme which is described
as follows. They are both initialized as empty sets (lines 7–8) and
each internal net of V1 is included in N1, whereas each internal
net of V2 is included in N2 (lines 9–13). Note that none of the
net sets include cut nets. Also note that the pin set of each net
included in N1 and N2 remains unchanged.

Before performing the recursive invocations on newly formed
hypergraphs H1 and H2, Algorithm 1 forms boundary vertex
sets for H1 and H2. H1 inherits its left boundary vertex set P11
from H, i.e., P11 = P1. In a similar manner, H2 inherits its
right boundary vertex set P22 from H, i.e., P22 = P2. The right
boundary vertex set of H1 and the left boundary vertex set of
H2, which are respectively denoted by P12 and P21, are newly
formed by utilizing bipartition Π (lines 15–18). Each boundary
vertex in V1 that is connected by at least one cut net in Π is
included in P12. In a dual manner, each boundary vertex in V2 that
is connected by at least one cut net in Π is included in P21. Note
that except for the boundary vertex sets P1 = {v} and P2 = {u}
of the initial invocation, all vertices in boundary vertex sets are
indeed boundary vertices of some bipartition obtained during the
overall partitioning procedure.

After obtaining the left and right boundary vertex sets for both
H1 and H2, the recursive invocations of the HPBDCO algorithm on
H1 and H2 are performed to obtain K/2-way BDCO partitions
Π1 = ⟨V1

1 , . . . ,V
1
K/2⟩ and Π2 = ⟨V2

1 , . . . ,V
2
K/2⟩ (lines 19–20).

These BDCO partitions are then concatenated to obtain a K -way
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Algorithm 2 FIX

Require: H = (V,N ), boundary vertex set P , integer D

▷ Initialize fixed vertex set
1: F ← ∅

▷ Initialize distance and mark arrays
2: for each vertex v ∈ V do
3: dist[v] ← ∞
4: mark[v] ← false

▷ Initialize the queue for multi-source BFS
5: Q← ∅
6: for each vertex v ∈ P do
7: ENQUEUE(Q, v)
8: dist[v] ← 0
9: mark[v] ← true

▷ Run BFS
10: while Q ̸= ∅ do
11: v← DEQUEUE(Q )
12: F ← F ∪ {v} ▷ Add v to fixed vertex set
13: if dist[v] < D− 1 then
14: for each vertex u ∈ Adj(v) do
15: if mark[u] = false then
16: ENQUEUE(Q, u)
17: dist[u] ← dist[v] + 1
18: mark[u] ← true

19: return F

Fig. 3. The proposed vertex fixation scheme illustrated on the first three levels
of the RB tree.

BDCO partition Π = ⟨Π1, Π2⟩ = ⟨V1, . . . ,VK ⟩ (line 21). Finally,
partition Π is returned.

Fig. 3 illustrates the proposed vertex fixation scheme on the
first three levels of the corresponding RB tree. In the figure,
boundary vertices are shown in dark gray, whereas the fixed
vertices are shown in light gray. As seen in the figure, the left
and right boundary vertex sets at the initial invocation of the
HPBDCO algorithm consist of pseudo-peripheral vertices u and v,
respectively. Note that {u} and {v} remain to constitute the left
and right boundary vertex sets of each of the further invocations
on the leftmost and rightmost hypergraphs formed, respectively.
As seen in lines 16–18 of Algorithm 1, each of the remaining
boundary vertex sets utilized throughout the proposed algorithm
is introduced by a bipartition.

Recall that the HPBDCO algorithm utilizes the cut-net removal
technique while forming the net sets of the new hypergraphs
at each RB step (lines 9–13 of Algorithm 1). Minimizing the
cutsize at all RB steps together with utilizing the cut-net removal
technique corresponds to minimizing the cutsize metric (3) of the
K -way partition obtained at the end of the overall RB process [8].
Also recall from Section 3.1 that the cut nets in a BDCO partition
of the column-net hypergraph H of a given matrix A correspond
to the coupling columns in the resulting BDCO form. Then, the
partitioning objective of minimizing the sum of the cutsizes of the
RB steps corresponds to the permutation objective of minimizing
the total overlap size of the BDCO form.

Recall that for each vertex vi in the column-net hypergraph H
of A, we set the weight of vi to the number of nonzeros in row i
of A. Then, the weight of a part Vk in a K -way BDCO partition of
H corresponds to the total number of nonzeros in diagonal block
Ek in the permuted matrix ABDCO. So, maintaining balance on the
part weights in (4) corresponds to maintaining balance on the
number of nonzeros in diagonal blocks of the BDCO form. Since
maintaining balance on the part weights of each bipartition in
the proposed algorithm corresponds to maintaining balance on
the part weights of the resulting K -way BDCO partition, it also
corresponds to the permutation constraint of maintaining balance
on the number of nonzeros of diagonal blocks of the BDCO form.

The proposed algorithm introduces an additional overhead of
finding fixed vertices to the partitioning cost of the standard
recursive hypergraph bipartitioning approach. The runtime of the
FIX algorithm on a particular hypergraph H = (V,N ) is O(V +
E), where E denotes the number of adjacency relations in H,
i.e., E =

∑
v∈V |Adj(v)|. Since the vertices considered on the two

invocations of the FIX algorithm in lines 1 and 2 of Algorithm
1 cannot overlap, each adjacency relation in H is considered
only once during the invocation of the HPBDCO algorithm on H.
Similarly, the vertices processed in separate HPBDCO invocations
at the same level of the RB tree cannot overlap. Therefore, the
proposed vertex fixation scheme introduces an O(V + E)-time
overhead to each level of the RB-tree, where V and E denote the
number of vertices and the number of adjacency relations in the
initial hypergraph, respectively. For K being a power of 2, which
leads to log K levels in the RB tree, the total overhead introduced
by the proposed algorithm is O(log K (V + E)).

4. Experiments

Recall that the HPBDCO algorithm is the first algorithm in the
literature that addresses the BDCO problem. For evaluating the
performance of HPBDCO, we consider a baseline method that first
permutes the given matrix into a banded form and then applies
block partitioning on it to obtain K diagonal blocks with column
overlap. The details of this baseline algorithm, which we refer to
as the RCMBDCO algorithm, are described in Section 4.1.

We performed two different sets of experiments. The first
set of experiments, which are described in Section 4.2, were
performed on 45 semi-real sparse matrices, for which we already
know nice BDCO forms exist. The second set of experiments,
which are described in Section 4.3, were performed on 8 real
sparse matrices, for which no prior BDCO-form knowledge exists.
In both sets, we first compare RCMBDCO and HPBDCO in terms
of total overlap size and the imbalance ratio on the number of
nonzeros in diagonal blocks. Then we compare these two algo-
rithms in terms of the runtime of the target parallel code [24] on
a subset of matrices on which RCMBDCO performs relatively close
to HPBDCO in terms of overlap size.

We used the parallel code [24] with default settings and mea-
sured the total time for solving the least squares problems in
diagonal blocks, forming the reduced system and solving it, and
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Fig. 4. Obtaining a BDCO form on a banded matrix.

finally broadcasting the solution of the reduced system. We con-
ducted the parallel experiments on up to 64 processors on a
Linux workstation equipped with four 18-core CPUs (Intel Xeon
Processor E7-8860 v4) and 256 GB of memory.

For the hypergraph bipartitioning in the proposed algorithm
(line 3 in Algorithm 1), we used PaToH [10] with the quality
setting. We used 10% as the maximum allowable imbalance ratio
for the resulting K -way partition.

4.1. Baseline algorithm: RCMBDCO

In the baseline RCMBDCO algorithm, we first permute A into a
banded form and then apply block partitioning on the banded
matrix. Note that K -way block row partitioning on a banded
matrix results in a K -way BDCO form, which is illustrated in Fig. 4.

For permuting A into a banded form, we use one of the
bandwidth minimization algorithms proposed for nonsymmetric
matrices in [20]. While it is cumbersome to define the bandwidth
of a rectangular matrix, we expect this algorithm to place the
nonzeros of A in a hopefully narrow band that starts from the
top left corner and ends at the bottom right corner, as illustrated
in Fig. 4.

In this algorithm, first a symmetric B matrix of size (m+ n)×
(m+ n) is obtained using A as follows:

B =
[

0 A
AT 0

]
.

Row i of B represents row i of A if i ≤ m, and it represents
column i − m of A, otherwise. It is important to note that the
standard graph representation of B corresponds to the bipartite
graph representation of A. Then, the standard RCM algorithm
(symrcm routine in MATLAB) is run on B for finding a row/column
permutation that minimizes the bandwidth of B. This is effectively
equivalent to running RCM on the bipartite graph of A.

To reorder the rows and columns of A, we consider rows/
columns of B in the order provided by the above-mentioned
permutation. Suppose that row/column j of B is being considered
at the moment. If j represents a row of A (i.e., j ≤ m), then row
j of A is ordered as the next row. If j represents a column of A
(i.e., j > m), then column j−m of A is ordered as the next column.
After obtaining the reordered matrix A, which is assumed to be
in a banded form, we obtain K row blocks on it by simple block
partitioning where we balance the number of nonzeros across the
blocks.

4.2. Reordering semi-real matrices into BDCO form

While forming the dataset in this section, we follow an ap-
proach similar to the one utilized for obtaining ‘‘Realistic Dataset’’
in [24]. In the SuiteSparse collection [15], there were a total of 38
non-square matrices in categories ‘‘least squares problem’’, ‘‘com-
puter graphics/vision problem’’, and ‘‘power network problem’’
at the time of experimentation. To eliminate small matrices, we
excluded those with the sum of the number of rows and number
of columns smaller than 3000. Due to the memory limitation, we
excluded the matrices with more than 1,000,000 nonzeros. For
each of the remaining matrices in the dataset, we linked together
64 copies of it to obtain a semi-real matrix in 64-way BDCO form
so that each diagonal block of the semi-real matrix corresponds
to the original matrix. For tall and skinny matrices in the dataset,
we utilized their transposes in order to have underdetermined
systems of linear equations.

While obtaining a semi-real matrix by linking together 64
copies of an original matrix, we used a fixed size for the column
overlap, denoted by o, between each pair of consecutive diagonal
blocks. For each original matrix, we obtained five different semi-
real matrices in 64-way BDCO forms obtained by utilizing overlap
sizes o ∈ {5, 10, 20, 50, 100}. Among the obtained semi-real
matrices, we excluded matrices with disconnected hypergraphs.
In order to prevent the RCMBDCO and HPBDCO algorithms from
being biased with the existing BDCO forms, we destroyed those
BDCO forms by randomly reordering rows and columns of each
semi-real matrix. The resulting dataset consists of 45 semi-real
matrices derived from a total of 9 original matrices.

Table 1 displays the properties of the test matrices obtained
by the above-mentioned procedure along its first four columns.
In the table, matrices are displayed in increasing order of their
number of nonzeros. Columns 1, 2, 3, and 4 display matrix name,
number of rows, number of columns, and number of nonzeros,
respectively. Note that for each original matrix M, five semi-real
matrices obtained from M are displayed consecutively. The semi-
real matrix obtained from M with column overlap o is denoted by
M_o. Note that for each matrix M, the number of rows in semi-
real matrices M_5, M_10, M_20, M_50, and M_100 is the same as
well as the number of nonzeros. On the other hand, the number
of columns differs for each semi-real matrix as the overlap size
also differs. Since larger overlap size implies smaller number of
columns, the number of columns decreases as overlap size o
increases.

Table 1 displays the results obtained by the RCMBDCO and
HPBDCO algorithms along columns 5–7 and 8–11, respectively.
The RCMBDCO algorithm was run on each matrix M_o once as
described in Section 4.1. In the HPBDCO algorithm, the column-
net hypergraph of matrix M_o was partitioned into 64 parts and
then the resulting partition was utilized to permute M_o into
a 64-way BDCO form. This was repeated for ten times and the
average results of these ten runs are reported in columns 8–10.
Columns 5 and 8 display the resulting imbalance values, which
are computed as the ratio of the maximum to the average num-
ber of nonzeros in diagonal blocks minus one. Column 6 and 9
display the total overlap sizes, which are computed as the sum
of the number of coupling columns in the resulting BDCO form.
Column 7 and 10 display the ratio of the total overlap size to the
total number of columns in the corresponding matrix. Column 11
displays the number of HPBDCO runs that resulted in an ideal BDCO
permutation on the corresponding matrix in terms of total overlap
size out of ten runs. For a matrix M_o, we define an ideal BDCO
permutation as a permutation having a total overlap size smaller
than 63× o× 1.1. That is, for o = 5, 10, 20, 50, and 100, an ideal
64-way BDCO permutation has a total overlap size smaller than
347, 693, 1386, 3465, and 6930, respectively. The table does not
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Table 1
Properties of the semi-real test matrices and permutation results obtained by the RCMBDCO and HPBDCO algorithms.
Matrix #rows #columns #nonzeros RCMBDCO HPBDCO

imbalance
(%)

overlap† overlap/
#columns

imbalance
(%)

overlap† overlap/
#columns

#ideal
runs*

photogrammetry2_5 59,904 285,893 2,371,584 0.1 199,801 0.6989 0.0 315 0.0011 10
photogrammetry2_10 59,904 285,578 2,371,584 0.0 190,726 0.6679 0.0 630 0.0022 10
photogrammetry2_20 59,904 284,948 2,371,584 0.0 191,730 0.6729 0.0 8,929 0.0313 1
photogrammetry2_50 59,904 283,058 2,371,584 0.0 193,401 0.6833 0.0 3,605 0.0127 9
photogrammetry2_100 59,904 279,908 2,371,584 0.4 219,117 0.7828 9.1 20,446 0.0730 0
gemat1_5 315,456 677,765 3,031,616 0.0 92,146 0.1360 0.0 5,298 0.0078 3
gemat1_10 315,456 677,450 3,031,616 0.0 536,989 0.7927 2.8 14,783 0.0218 0
gemat1_20 315,456 676,820 3,031,616 0.0 157,881 0.2333 4.5 25,890 0.0383 0
gemat1_50 315,456 674,930 3,031,616 0.0 577,555 0.8557 0.0 13,294 0.0197 3
gemat1_100 315,456 671,780 3,031,616 10.3 319,351 0.4754 0.0 29,304 0.0436 3
psse1_5 705,792 916,037 3,672,064 0.0 106,617 0.1164 0.0 632 0.0007 1
psse1_10 705,792 915,722 3,672,064 0.0 104,075 0.1137 3.7 1,666 0.0018 0
psse1_20 705,792 915,092 3,672,064 0.0 184,804 0.2020 3.0 2,138 0.0023 0
psse1_50 705,792 913,202 3,672,064 0.0 290,077 0.3176 2.8 2,233 0.0024 10
psse1_100 705,792 910,052 3,672,064 0.0 413,962 0.4549 2.9 2,168 0.0024 10
Kemelmacher_5 620,352 1,820,613 6,456,000 0.0 843,697 0.4634 0.0 355 0.0002 8
Kemelmacher_10 620,352 1,820,298 6,456,000 0.0 427,100 0.2346 0.0 630 0.0003 10
Kemelmacher_20 620,352 1,819,668 6,456,000 0.0 834,819 0.4588 0.0 1,374 0.0008 6
Kemelmacher_50 620,352 1,817,778 6,456,000 0.0 567,986 0.3125 0.0 2,960 0.0016 10
Kemelmacher_100 620,352 1,814,628 6,456,000 0.0 864,040 0.4762 1.3 10,919 0.0060 0
psse0_5 705,792 1,709,893 6,555,648 0.0 79,383 0.0464 0.0 369 0.0002 7
psse0_10 705,792 1,709,578 6,555,648 0.0 1,459,255 0.8536 0.2 712 0.0004 7
psse0_20 705,792 1,708,948 6,555,648 0.0 319,190 0.1868 1.7 2,265 0.0013 1
psse0_50 705,792 1,707,058 6,555,648 0.0 313,960 0.1839 1.0 2,735 0.0016 8
psse0_100 705,792 1,703,908 6,555,648 0.0 414,302 0.2431 4.0 6,313 0.0037 9
psse2_5 705,792 1,832,261 7,376,768 0.0 240,840 0.1314 0.0 575 0.0003 4
psse2_10 705,792 1,831,946 7,376,768 0.0 297,952 0.1626 0.0 990 0.0005 4
psse2_20 705,792 1,831,316 7,376,768 0.1 458,841 0.2506 0.0 4,048 0.0022 1
psse2_50 705,792 1,829,426 7,376,768 0.0 483,611 0.2644 3.1 4,968 0.0027 3
psse2_100 705,792 1,826,276 7,376,768 0.0 723,853 0.3964 2.6 4,918 0.0027 10
graphics_5 756,608 1,887,237 7,549,056 0.0 22,908 0.0121 0.0 315 0.0002 10
graphics_10 756,608 1,886,922 7,549,056 0.0 4,780 0.0025 0.0 1,068 0.0006 8
graphics_20 756,608 1,886,292 7,549,056 0.0 6,406 0.0034 0.0 1,559 0.0008 9
graphics_50 756,608 1,884,402 7,549,056 0.0 8,275 0.0044 0.1 3,629 0.0019 8
graphics_100 756,608 1,881,252 7,549,056 0.0 44,322 0.0236 0.3 5,657 0.0030 8
image_interp_5 7,680,000 15,359,685 45,547,712 0.0 95,484 0.0062 0.0 315 0.0000 10
image_interp_10 7,680,000 15,359,370 45,547,712 0.0 92,576 0.0060 0.0 630 0.0000 10
image_interp_20 7,680,000 15,358,740 45,547,712 0.0 87,563 0.0057 0.0 1,259 0.0001 10
image_interp_50 7,680,000 15,356,850 45,547,712 0.0 73,343 0.0048 0.0 3,149 0.0002 10
image_interp_100 7,680,000 15,353,700 45,547,712 0.0 49,695 0.0032 0.0 6,173 0.0004 10
mesh_deform_5 601,152 14,977,157 54,645,056 0.0 1,007,329 0.0673 0.0 315 0.0000 10
mesh_deform_10 601,152 14,976,842 54,645,056 0.0 921,691 0.0615 0.0 630 0.0000 10
mesh_deform_20 601,152 14,976,212 54,645,056 0.0 755,161 0.0504 0.0 1,259 0.0001 10
mesh_deform_50 601,152 14,974,322 54,645,056 0.0 2,222,376 0.1484 0.0 3,149 0.0002 10
mesh_deform_100 601,152 14,971,172 54,645,056 0.0 1,714,018 0.1145 0.0 6,299 0.0004 10

Average – – – 0.2 – 0.2752 1.0 – 0.0065

(†): boldface denotes achieving an ideal BDCO permutation on average.
(∗): #ideal runs denotes the number of runs that HPBDCO achieves an ideal BDCO permutation out of ten runs.

have such a column for RCMBDCO, because it is not able achieve
any ideal BDCO permutations.

As seen in Table 1, compared to the RCMBDCO algorithm, the
HPBDCO algorithm always obtains smaller total overlap size while
usually obtaining slightly larger imbalance. On average, RCMBDCO

places 27.5% of the columns in overlaps, while this ratio is only
0.6% for HPBDCO. The overlap size obtained by RCMBDCO gets
closest to those obtained by HPBDCO on matrices graphic_10,
graphic_20, and graphic_50, still being 4.48x, 4.11x, and
2.28x worse, respectively. For RCMBDCO and HPBDCO, imbalance

ratios on the number of nonzeros in diagonal blocks are 0.2% and
1.0% on average, respectively.

As seen in Table 1, the HPBDCO algorithm obtains an ideal BDCO
permutation in each of the 10 runs on 18 test matrices, which
correspond to the 40% of the dataset. It obtains 9, 8, 7, and 6
ideal BDCO permutations out of 10 runs on 3, 5, 2, and 1 test
matrices, respectively. So, the HPBDCO algorithm obtains an ideal
permutation in at least 5 of the 10 runs on 29 out of 45 test
matrices, which correspond to 64% of the dataset. When all runs
of all test matrices are considered, the HPBDCO algorithm obtains
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Table 2
Runtimes of the parallel code [24] on three
semi-real matrices for K = 64 (in seconds).
Matrix RCMBDCO HPBDCO

graphics_10 1.70 0.87
graphics_20 2.54 0.88
graphics_50 3.00 1.16

Fig. 5. Matrix mri1.

an ideal permutation in 291 runs, which correspond to the 64%
of the 450 runs.

Although the HPBDCO algorithm could not obtain any ideal
permutations on some test matrices, the overlap size normalized
with respect to the number of columns is still small on almost
all test matrices. For example on each of matrices psse1_10,
psse1_20, and Kemelmacher_100, the normalized overlap size
is smaller than 0.01 although no ideal permutations are obtained
on them. Note that the HPBDCO algorithm obtains a normalized
overlap size smaller than 0.05 for each test matrix. For 38 out of
45 matrices, the normalized overlap size obtained by the HPBDCO
algorithm is smaller than 0.05. It is smaller than 0.001 and 0.0001
for 21 and 4 matrices, respectively.

As seen in Table 1, the performance of the HPBDCO algorithm
in total overlap size usually increases with increasing matrix size.
This can be attributed to the increasing solution space of the
respective partitioning problem. For example, consider the largest
15 matrices in the dataset. The HPBDCO algorithm almost always
finds an ideal BDCO partition on these large matrices.

As seen in Table 1, the HPBDCO algorithm obtains an im-
balance value smaller than 5% on each test matrix, except for
photogrammetry_2_100 which has an imbalance value of 9.1%.
Note that the HPBDCO algorithm obtains an imbalance value smaller
than 1% on 32 matrices, which corresponds to the 71% of the 45
matrices.

Table 2 displays the runtimes of the parallel code [24] on 64
processors when the input coefficient matrix is reordered into
64-way BDCO form by RCMBDCO and HPBDCO. In these experiments,
we only consider the three matrices on which RCMBDCO performs
relatively close to HPBDCO in terms of total overlap size. As seen in
the table, the parallel runtimes obtained by RCMBDCO on graph-
ics_10, graphics_20, and graphics_50 are 1.70, 2.54, and
3.00 seconds, whereas these runtimes are 0.87, 0.88, and 1.16
seconds for RCMBDCO, respectively. On these matrices, the 1.95x,
2.88x, and 2.58x speedups in parallel runtime are due to the
4.48x, 4.11x, and 2.28x reductions in total overlap size.

4.3. Reordering real matrices into BDCO form

In this section, we performed experiments on eight real matri-
ces obtained from the SuiteSparse collection [15]. Unlike the case

Fig. 6. 4-, 8-, 16-, and 32-way BDCO forms obtained on matrix mri1 by the
HPBDCO algorithm.
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Table 3
Properties of real matrices and permutation results obtained by RCMBDCO and HPBDCO .
Matrix #rows #columns #nonzeros K RCMBDCO HPBDCO

imbalance
(%)

overlap overlap/
#columns

imbalance
(%)

overlap overlap/
#columns

watson_1 201,155 386,992 1,055,093 2 0.0 98,866 0.2555 0.0 26 0.0001
watson_2 352,013 677,224 1,846,391 2 0.0 160,097 0.2364 4.8 16 0.0000
lp_ganges 1,309 1,706 6,937 4 4.7 628 0.3681 4.3 212 0.1243
model8 2,896 6,464 25,277 8 0.2 3,459 0.5351 6.7 2,005 0.3102
l30 2,701 16,281 52,070 8 0.3 5,052 0.3103 2.2 434 0.0267
lp_truss 1,000 8,806 27,836 16 1.6 6,487 0.7367 6.3 3,410 0.3872
progas 1,650 1,900 8,897 16 2.0 1,303 0.6858 0.4 737 0.3879

in Section 4.2, we do not know if a K -way BDCO form exists on
these matrices for a given K value, until we run the RCMBDCO and
HPBDCO algorithms.

In the first part of these experiments, we used seven matrices
on which the HPBDCO algorithm is able to obtain a 16-way BDCO
form. The properties of these matrices and the permutation re-
sults are given in Table 3. The RCMBDCO algorithm, however, fails
to obtain a 16-way BDCO form on most of these matrices. It fails
when more than two diagonal blocks overlap along a column,
which happens when the band obtained by RCM is not narrow
enough. Hence, on each of these matrices, we ran the RCMBDCO
algorithm for K ∈ {2, 4, 8, 16} values and report the results for
the largest K value where RCM does not fail to obtain a K -way
BDCO form.

As seen in Table 3, the overlap size obtained by HPBDCO is
smaller than that obtained by HPBDCO on each of the seven matri-
ces. On watson_1 and watson_2, the total overlap sizes obtained
by RCMBDCO are 98,866 and 160,097 for K = 2, whereas they
are only 26 and 16 for HPBDCO, respectively. On lp_ganges, the
overlap sizes obtained by RCMBDCO and HPBDCO for K = 4 are 628
and 212, which correspond to 36.8% and 12.4% of all columns,
respectively. On model8 and l30, RCMBDCO places 53.5% and
31.0% of columns in overlaps for K = 8, while these ratios are
31.0% and 2.7% for HPBDCO, respectively. Finally on lp_truss and
progas, the respective ratios for K = 16 are 73.7% and 68.6% for
RCMBDCO and 38.7% and 38.8% for HPBDCO, respectively. On these
matrices, the imbalance values obtained by RCMBDCO are generally
smaller than those obtained by HPBDCO.

In the second part of the experiments, we show how the
performances of the RCMBDCO and HPBDCO algorithms vary on
different K values. These experiments were performed for K ∈
{4, 8, 16, 32, 64} values on a real matrix, mri1, which is also
obtained from the SuiteSparse collection [15]. This matrix was
obtained from MRI reconstruction data and contains 65,536 rows,
147,456 columns, and 589,824 nonzeros. We removed 32,819
empty columns, so, the resulting matrix contains 114,637
columns. Fig. 5 displays the sparsity pattern of the resulting mri1
matrix. Table 4 displays the resulting imbalance values and total
overlap sizes obtained by RCMBDCO and HPBDCO on mri1. Fig. 6
displays the 4-, 8-, 16-, and 32-way BDCO forms of matrix mri1
obtained by HPBDCO.

As seen in Table 4, compared to the RCMBDCO algorithm, the
HPBDCO algorithm obtains smaller total overlap size while obtain-
ing slightly larger imbalance for each K value. For K being 4, 8,
16, 32, and 64, the total overlap sizes obtained by RCMBDCO are
2381, 5342, 11,103, 22,485, and 45,247, whereas those obtained
by HPBDCO are 2174, 5066, 9648, 19,687, and 41,067, respectively.
The performance degradation in the overlap size with increasing
K values is expected for both algorithms as the problem gets
harder. Note that the performance gap between RCMBDCO and
HPBDCO on mri1 is small compared to the other matrices in this
work. We attribute this small performance gap to the fact that
the graph/hypergraph corresponding to mri1 has a more regular

Table 4
Permutation results obtained on matrix mri1.
K RCMBDCO HPBDCO

imb.
(%)

overlap overlap/
#columns

imb.
(%)

overlap overlap/
#columns

4 0.0 2,381 0.0208 0.6 2,174 0.0190
8 0.0 5,342 0.0466 5.7 5,066 0.0442

16 0.0 11,103 0.0969 2.0 9,648 0.0842
32 0.0 22,485 0.1961 2.1 19,687 0.1717
64 0.1 45,247 0.3947 2.1 41,067 0.3582

Table 5
Runtimes of the parallel code [24] on real matrices (in
seconds).
Matrix K RCMBDCO HPBDCO

lp_ganges 4 0.11 0.03
model8 8 3.03 1.69
l30 8 9.52 0.57
lp_truss 16 7.58 3.78
progas 16 0.10 0.06
mri1 64 100.83 75.40

structure compared to the other matrices, so, RCMBDCO is able to
achieve a much narrower band on this matrix.

In the last part of the experiments, we ran the parallel code
[24] on the real matrices. Table 5 displays the respective results.
In these experiments, we considered all real matrices except for
watson_1 and watson_2. The reason why we excluded wat-
son_1 and watson_2 is because the reduced systems obtained
by the RCMBDCO algorithm for these matrices for K = 2 were too
large to be solved by the parallel code. For each remaining matrix,
we performed the parallel experiments for the largest K value
for which both RCMBDCO and HPBDCO are able to find solutions.
As seen in the table, the parallel runtimes obtained by RCMBDCO
on lp_ganges, model8, l30, lp_truss, progas, and mri1 are
0.11, 3.03, 9.52, 7.58, 0.10, and 100.83 seconds, respectively. The
parallel runtimes obtained by HPBDCO on lp_ganges, model8,
l30, lp_truss, progas, and mri1 are 0.03, 1.69, 0.57, 3.78, 0.06,
and 75.40 seconds, respectively. Note that the largest reduction
rate obtained by HPBDCO is observed on l30, where the parallel
runtime reduces from 9.52 seconds to 0.57 seconds. The 16x
speedup in the parallel runtime for this matrix is explained by
the 12x reduction in total overlap size.

5. Conclusion

In this paper, we target the problem of reordering a given
sparse matrix into block-diagonal column-overlapped (BDCO)
form, which arises in a recent parallel algorithm proposed for ob-
taining the minimum norm solution of a given underdetermined
system of equations. We first defined an equivalent hypergraph
partitioning problem with an additional constraint tailored to
the BDCO form and investigated the feasibility of its solutions.
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Then we proposed a recursive-bipartitioning-based partitioning
algorithm utilizing fixed vertices in order to solve this problem.
The experimental results prove the effectiveness of the proposed
algorithm in obtaining a BDCO form of a given sparse matrix.
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