
Regularizing Irregularly Sparse Point-to-point Communications
Oguz Selvitopi

Computational Research Division
Lawrence Berkeley National Laboratory

Berkeley, CA, USA
roselvitopi@lbl.gov

Cevdet Aykanat
Computer Engineering Department

Bilkent University
Ankara, Turkey

aykanat@cs.bilkent.edu.tr

ABSTRACT
This work tackles the communication challenges posed by the
latency-bound applications with irregular communication patterns,
i.e., applicationswith high average and/ormaximummessage counts.
We propose a novel algorithm for reorganizing a given set of irreg-
ular point-to-point messages with the objective of reducing total
latency cost at the expense of increased volume. We organize pro-
cesses into a virtual process topology inspired by the k-ary n-cube
networks and regularize irregular messages by imposing regular
communication pattern(s) onto them. Exploiting this process topol-
ogy, we propose a flexible store-and-forward algorithm to control
the trade-off between latency and volume. Our approach is able
to reduce the communication time of sparse-matrix multiplication
with latency-bound instances drastically: up to 22.6× for 16K pro-
cesses on a 3D Torus network and up to 7.2× for 4K processes
on a Dragonfly network, with its performance getting better with
increasing number of processes.
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1 INTRODUCTION
The time a parallel application spends in communication on dis-
tributed memory systems is affected by many factors. Apart from
the underlying network topology and hardware, which can effec-
tively provide a practical value for the latency and the bandwidth
cost of transmitting a message, the computation and communica-
tion characteristics of the application are crucial for its scalability.

The communication operations may exhibit a certain degree of
regularity, which one can take advantage of by realizing them via
MPI collectives [3, 4, 10, 14, 17, 21] in an easy and efficient manner.
For example, in stencil applications a process communicates with a
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well-defined set of a few other processes, or in the case of global col-
lectives each process participates in gathering, scattering, reducing,
etc. data they possess. In the presence of a high variation among
the communicating processes, the communication operations be-
come irregular and a certain subset of processes communicate with
relatively more processes compared to other remaining processes.
Consider a scenario where a single process communicates with
more than half of the processes in the system via point-to-point
(P2P) messages, while the remaining processes communicate only
with a few processes. In such a scenario, this single process has the
potential of rendering the whole application unscalable. Moreover,
using collectives under similar scenarios may not always prove fea-
sible in terms of efficiency. The goal of this work is to improve the
performance of such scenarios, where the communication patterns
are sparse and irregular, and there is a high variance among the
number of processes each process communicates with.

The sparse and irregular communication operations are often
manifested with a high imbalance in communicated message counts.
Figure 1 illustrates three such example matrices from a sparse
matrix-vector multiplication on 256 processes. In all three instances,
there are a few processes that send out more P2P messages com-
pared to other processes. This is reflected as a large difference
between the average message count (indicated with a dashed line)
and the maximum message count (indicated with a solid line). Such
instances exhibit high overall latency and easily become latency-
bound when the communicated messages have small sizes, i.e., no
more than a few kilobytes.

We propose a structured way of performing sparse and irregular
communication operations by organizing processes into a regular
structure called virtual process topology (VPT). By utilizing this
VPT, we restrict the processes that can directly communicate with
each other and impose a regular communication pattern onto oth-
erwise irregular communication operations. Our ideas for forming
the VPT are inspired by the k-ary n-cube networks. The two funda-
mental differences between the proposed VPT and these networks
are: (i) our VPT is on the software level and oblivious to the under-
lying networking, and (ii) the neighborhood definitions in these
structures are different. We propose a novel store-and-forward al-
gorithm to realize the communication operations for a given set of
processes (along with the data they want to send) and the VPT these
processes are organized into. Our methodology can be implemented
as an alternative communication pattern in an MPI distribution.

The organization of processes into the proposed VPT and per-
forming communications on this VPT enable a trade-off between
the maximum message count (which is related to the total latency
cost) and the communication volume (which is related to the band-
width cost). An important parameter in forming a VPT for a given
set of processes is its dimension. A low-dimensional VPT results
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Figure 1: Message counts of 256 processes during sparse matrix-vector multiplication. The straight horizontal line is the max-
imummessage count and the dashed line is the average message count. See Table 1 for the properties of these three matrices.

in a higher maximum message count and lower communication
volume than a high-dimensional VPT. Hence, by varying the VPT
dimension, our methodology is able to control the trade-off between
the latency and bandwidth costs. The upper bounds on the maxi-
mummessage count attained by the proposed VPT vary from linear
to logarithmic complexities, which offer a wide range of choices
in the control of total latency cost. The wide breadth of cases en-
compassed by our methodology provides a powerful mechanism to
trade important performance metrics in communication to get the
best performance. Our contributions are summarized as follows:

(1) We propose a novel virtual process topology to regularize sparse
and irregular communication operations.We give process neigh-
borhood definitions in this VPT and discuss how to form VPTs
of various dimensions.

(2) We propose a store-and-forward algorithm to realize the com-
munication operations on a given VPT. We describe in detail
how messages are communicated in the VPT and give illustra-
tive examples to clarify characteristics of the VPT.

(3) We analyze the proposed store-and-forward algorithm in terms
of its maximum message count, communication volume, and
buffer usage. We give upper bounds for each of these in order
to examine different aspects of our algorithm.

(4) We test the proposed methodology on 22 latency-bound sparse
matrix-vector multiplication instances that are difficult to scale.
We analyze our algorithm’s performance in terms of several
important performance metrics and parallel runtime on up to
16K processes.

The rest of this paper is organized as follows. Section 2 introduces
the terminology and states the addressed problem. In Section 3, we
give our algorithm to perform communication operations on a
given VPT. We analyze our algorithm’s performance in terms of
three important metrics in Section 4. Section 5 describes how we
form the VPT. Section 6 evaluates the proposed methodology. We
give our related work in Section 7 and conclude in Section 8.

2 TERMINOLOGY & PROBLEM STATEMENT
Our focus is on a distributed parallel processing setting, where
there are K processes, denoted with P = {P1, P2, . . . , PK }, which
communicate with each other via message passing. We consider a
communication scenario, in which each process has a set of mes-
sages that it needs to send to a subset of processes, denoted with
SendSet(Pi ) ⊆ P. The message that needs to be sent from Pi to Pj
is denoted withmi j . This is a very common scenario prevalent in

many parallel applications. We assume K is a power of 2, however,
our methodology and algorithms can easily be extended where this
is not the case. We use h, i, j , and ℓ for process indices (k is reserved
for the definitions about VPT).

A VPT organizes K processes into a special structure and is
characterized by its dimension, the sizes of these dimensions, and
the process neighborhood definition. An n-dimensional VPT is
denoted byTn (k1,k2, . . . ,kn ), where dimension 1 ≤ d ≤ n is of size
kd and K = k1 ×k2 × . . . ×kn . We useTn and omit the parentheses
in the notation when the dimension sizes are irrelevant to the
subject discussions. For dimension indices, we use c and d . Each
process Pi in the VPT is identified by a vector ⟨Pni , P

n−1
i , . . . , P1i ⟩

of n coordinates, where Pdi is a number with radix kd , i.e., Pdi ∈
{1, 2, . . . ,kd }. Pi and Pj have the same coordinate in dimension d
if Pdi = Pdj and they are said to be neighbors if they differ only in a
single coordinate. The coordinate they differ in is the dimension
they are neighbors in. Hence, Pi and Pj are neighbors in dimension
d if

Pdi , Pdj and Pci = Pcj for 1 ≤ c , d ≤ n.

In dimension d , there are a total of K/kd process groups, each
of which contains kd processes. Hence, each process has kd − 1
neighbors in dimension d and the processes in the same group differ
only in the dth coordinate. We use the function ν (Pi ,d) to denote
the neighbors of Pi in dimension d :

ν (Pi ,d) = {Pj : Pci = Pcj for 1 ≤ c , d ≤ n}.

Figure 2 illustrates 64 processes organized into a VPT T3(4, 4, 4). The
figure illustrates the neighbors of Pi = ⟨3, 2, 3⟩ in each dimension
with different colors. The processes Ph = ⟨3, 2, 1⟩, Pj = ⟨1, 2, 3⟩,
and Pℓ = ⟨3, 4, 3⟩ are neighbors of Pi in dimensions three, one, and
two, respectively. The figure has links between processes shown by
faded lines, which are included for discussing our method’s relation
to k-ary n-cube networks. These links do not indicate the actual
neighborhood information.

The neighborhood definition in our VPT is quite different from
the neighborhood definitions in common regular-structured appli-
cations such as stencils. Consider the neighbors of a process Pi in
Figure 2 for a 7-point stencil. Each process would have two neigh-
bors along each dimension, whose respective coordinates differ
only by one from Pi . In our VPT, Pi is neighbor to all the processes
that are along the same dimension with it and the coordinates of
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Figure 2: 64 processes organized into a 4×4×4 virtual process
topologywithn = 3, i.e.,T3(4, 4, 4). Theneighbors of Pi in each
dimension are indicated with different colors.

these neighbors can differ by more than one. The distinct neighbor-
hood definition in our VPT necessitates a custom communication
algorithm to realize P2P messages, which we discuss in Section 3.

2.1 Virtual process topology versus k-ary
n-cube networks

The way we organize the processes for communication can be con-
sidered to be similar to the topology of the k-ary n-cube networks.
Our ideas are indeed motivated by the principles governing these
networks, however, there are certain differences. We describe these
differences in order to get a better understanding of the virtual
process topology we use by relating it to a well-studied subject.

The first and foremost difference is the context where the topolo-
gies are utilized: networking is on the hardware level and the topol-
ogy we form for the processes on the other hand, is virtual and
on the software level. Our method organizes a number of parallel
processes (i.e., MPI tasks) into a virtual structure that resembles to
the structure of k-ary n-cube networks. Our method is oblivious to
the underlying network of the parallel system and takes advantage
of certain characteristics of a virtual topology in order to improve
the communication performance.

The second crucial difference is the neighborhood definition. In
k-ary n-cube networks, two distinct nodes Pi and Pj are neighbors
in dimension d if (i) Pdi , Pdj , (ii) P

c
i =P

c
j for 1≤c,d ≤n, and (iii)

|Pdi − P
d
j | = 1 or |Pdi − P

d
j | = kd − 1 (including the wrap-around

links). In our VPT, however, the neighborhood definition is relaxed
by involving only the first two cases, hence, the kd processes in
each of K/kd groups are all neighbors. In a k-ary n-cube network,
each of the K/kd groups is a 1D torus, whereas in our virtual pro-
cess topology, the nodes in each of these groups are “completely
connected” in terms of networking. Therefore, in a k-ary n-cube
network, each node has two neighbors in dimension d , while in our
process topology each process has kd −1 neighbors. We should note
that the neighborhood definition of VPT Tlg2 K (2, . . . , 2) becomes
equivalent to the neighborhood definition of 2-ary lg2 K-cube net-
works (i.e., hypercubes). Figure 3 illustrates the neighbor processes
in three different dimensions of a VPT T3(4, 4, 4).

The last difference is the sizes of the dimensions. In k-ary n-cube
networks, the size of each dimension is the same and equal to k , and

Figure 3: The neighborhood of communication operations
executed in 3 stages.

there are a total of kn nodes. In our VPT, the sizes of the dimensions
can be different and there are a total of K =

∏
d kd processes. This

provides more freedom in the organization of processes and it is
important because in the software level having each dimension
the same size can be too restrictive. In this sense, our method
allows more irregular topologies as the processes for a certain VPT
dimension n can be organized in different ways.

2.2 Addressed problem
As mentioned earlier, we consider a scenario where a set P of pro-
cesses are involved in communicating with each other. A straight-
forward and common approach is to assume no structure in the
process topology and allow each process to communicate with each
other, i.e., each Pi simply sends a P2P message to the processes in
SendSet(Pi ). We address the problem of improving the communica-
tion performance of this scenario by assuming the described VPT.
As opposed to the straightforward approach, using a VPT Tn with
n > 1 disables the direct communication between certain processes
and necessitates a methodology based on storing and forwarding
messages. In other words, some processes need to communicate
indirectly with the help of the processes they can directly communi-
cate with. We propose an algorithm to perform the communications
between processes under the described process topology, sketch
the details of the proposed algorithm, analyze its performance and
discuss certain implementation issues.

We consider this as a black-box operation called by each process,
which simply provides their data to be sent along with the VPT.
Instead of using a pair of primitives such as MPI_Send/MPI_Recv
or MPI_Put/MPI_Get, each process passes their data and processes
they want to communicate this data to a procedure, which then
handles the communication by taking the process topology into
account using the same primitives. The described topology actually
encompasses the case where each process is allowed to directly
communicate with any other process. This is the case with T1, i.e.,
there is a single dimension and each process is neighbor to all other
processes. In that sense, our algorithm generalizes how processes
can communicate in a structured manner and on the extreme end
where there is no structure, it corresponds to being able to directly
send out P2P messages to any process.

3 A STORE-AND-FORWARD ALGORITHM
In an n-dimensional VPTTn , the communication between processes
is executed in n stages. The communication operations for a process
Pi in stage 1 ≤ d ≤ n start after Pi receives all its messages from
the previous communication stages. Without loss of generality, we
assume that the communications related to the first dimension are
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(a) initial state

Pa

〈2, 2, 1〉

Pb

〈2, 1, 4〉

Pc

〈3, 2, 3〉

Pd

〈4, 2, 3〉

Pe

〈2, 4, 3〉

Pf

〈1, 1, 3〉

Pg

〈2, 2, 3〉

Ph

〈2, 1, 3〉

Mag

Mbh

Mag = {(Pc,mac), (Pd,mad), (Pe,mae)}
Mbh = {(Pc,mbc), (Pd,mbd), (Pf ,mbf)}

(b) communication stage 1
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(c) communication stage 2
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Mgc = {(Pc,mac), (Pc,mbc)}
Mgd = {(Pd,mad), (Pd,mbd)}

Mhf = {(Pf ,mbf)}
(d) communication stage 3

Figure 4: Three stages of communication in a VPT T3(4, 4, 4) for SendSet(Pa ) = {Pc , Pd , Pe } and SendSet(Pb ) = {Pc , Pd , Pf }. The
source and destination processes are respectively illustrated in red and blue. Since Pa and Pb cannot directly communicate
with the processes in their SendSets, their messages are forwarded via their neighbors, which are illustrated in green.

executed in the first stage, the ones related to the second dimension
are executed in the second stage, etc. We restrict the processes
that can communicate with each other in a stage. In stage d , each
process Pi is allowed to communicate only with its kd −1 neighbors
in dimension d , i.e., the processes in ν (Pi ,d). Pi may or may not
communicate with these neighbors depending on what it has to
send in its buffers. Since there may be processes in SendSet(Pi ) that
are not neighbors of Pi in any dimension, for sending data to such
processes Pi needs the help of the other processes. This necessitates
a store-and-forward scheme, in which the messages that need be
communicated between non-neighbor processes are stored and
forwarded by a well-defined set of intermediate processes.

Before describing the complete algorithm, we first focus on how
a single message is communicated between two processes. Consider
a messagemi j with its source Pi and destination Pj . Depending on
where these two processes are in the VPT,mi j may need to visit
multiple hops before reaching Pj . To communicatemi j , Pi checks
its coordinate in the first dimension, P1i , and if it is different than P

1
j ,

it forwards this message to one of its neighbors in the first dimen-
sion, which is the process with the coordinates ⟨Pni , . . . , P

2
i , P

1
j ⟩.

Otherwise, i.e., if P1i = P1j , Pi keeps the message because it does not
need to communicate it in this stage. Let Pℓ be the process that has
mi j after the communication in the first stage completes (which
is either Pi or ⟨Pni , . . . , P

2
i , P

1
j ⟩). Pℓ then repeats the same process

for d = 2, and either forwards or storesmi j . This is repeated until
mi j reaches its destination. Hence, at stage d , the process that has
mi j , Pℓ , has to decide whether to forwardmi j by comparing its dth
coordinate with the dth coordinate of the destination process:

forwardmi j to ⟨Pnℓ , . . . , P
d+1
ℓ , Pdj , P

d−1
ℓ , . . . , P1ℓ⟩ if P

d
ℓ , Pdj ,

storemi j if Pdℓ = Pdj .

In other words, if Pℓ and Pj differ in coordinate d , Pℓ forwardsmi j
to its neighbor in dimension d whose dth coordinate is the same
with that of Pj . Otherwise, it does not communicate the message in
this stage. By this logic, it can be easily seen thatmi j is forwarded

in stage d if Pdi , Pdj , and the number of times it gets forwarded is
equal to |{d : Pdi , Pdj }|, i.e., the number of coordinates they differ
in, which is the Hamming distance. This process of communicating
a message in the VPT can be considered to be similar to the e-cube
routing for hypercubes [20], and more generally to dimension-
ordered deterministic routing.

Consider a process Pi and its SendSet(Pi ). Let the coordinates of
the processes in SendSet(Pi ) differ from those of Pi only after dth
coordinate, i.e., {Pℓ ∈ SendSet(Pi ) : Pni ,P

n
ℓ
, . . . , Pdi ,P

d
ℓ
, Pd−1i =

Pd−1
ℓ
, . . . , P1i =P

1
ℓ
}. All the relevant messages in this scenario have

to be first communicated to some neighbor of Pi in dimension d , say
Pj , in order to reach their destination. Hence, the communication
between Pi and Pj is actually amessage that contains a list of smaller
messages, which we refer to as submessages. Each submessage is
simply a two-tuple that consists of the id of the destination process
and the message destined for that process. Note that there is a
single actual message that is communicated between Pi and Pj , but
it contains a number of submessages that will be sorted out by Pj .
In fact, Pj may also receive messages from its other neighbors in
dimension d , which may inherently contain other submessages,
and it may also possess submessages from the messages that are
received in previous communication stages. To make a distinction
between a message and a submessage, we denote the direct message
between Pi and Pj withMi j , and the submessage with source Pi and
destination Pj as (Pj ,mi j ). The submessages are always contained
within messages, and these messages are communicated between
neighbors in distinct stages of the communication.

Figure 4 illustrates two processes Pa = ⟨2, 2, 1⟩ and Pb = ⟨2, 1, 4⟩
that need to send data to SendSet(Pa ) = {Pc , Pd , Pe } and SendSet(Pb ) =
{Pc , Pd , Pf }, respectively. Both processes need to send their data
with the help of their neighbors in the first communication stage.
For Pa this neighbor is Pд = ⟨2, 2, 3⟩ and for Pb it is Ph = ⟨2, 1, 3⟩.
Observe that the message Maд sent from Pa to Pд consists of
three submessages (Pc ,mac ), (Pd ,mad ), and (Pe ,mae ). The mes-
sage Mbh sent from Pb to Ph also consists of three submessages
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Algorithm 1: Store-and-Forward
Input: Pi , SendSet(Pi ), Tn (k1,k2, . . . ,kn )
Output: List L of messages

▷ Initialize buffers
1 Let fwbuf be a list of size n
2 for d ← 1 to n do
3 Let fwbuf[d] be a list of size kd
▷ Process my send list

4 for Pj ∈ SendSet(Pi ) do
5 d ← argminc≤n Pci , Pcj
6 fwbuf[d][Pdj ] ← fwbuf[d][Pdj ] ∪ (Pj ,mi j )

▷ Communication in d stages
7 for d ← 1 to n do
8 Allocate stbuf to receive messages in this stage

▷ Send out messages to my neighbors
9 for Pj ∈ ν (Pi ,d) do

10 if fwbuf[d][Pdj ] , ∅ then
11 FormMi j from the submessages in fwbuf[d][Pdj ]
12 SendMi j to Pj
13 Wait for messages from my neighbors

▷ Process received messages
14 forMji ∈ stbuf do

▷ Scatter the submessages into their buffers
15 for (Pℓ ,mhℓ) ∈ Mji do
16 c ← argmind<c ′≤n Pc

′

i , Pc
′

ℓ
17 fwbuf[c][Pc

ℓ
] ← fwbuf[c][Pc

ℓ
] ∪ (Pℓ ,mhℓ)

▷ Gather messages that belong to Pi
18 L = ∅

19 for d ← 1 to n do
20 L← L ∪ fwbuf[d][Pdi ]
21 return L

(Pc ,mbc ), (Pd ,mbd ), and (Pf ,mbf ). After these messages are re-
ceived by Pд and Ph , they process the submessages in them to
determine which stage they will be forwarded in. For Pд , the sub-
message (Pe ,mae ) will be forwarded in the second stage while the
submessages (Pc ,mac ) and (Pd ,mad )will be forwarded in the third
stage. For Ph , the submessages (Pc ,mbc ) and (Pd ,mbd ) will be for-
warded in the second stage while the submessage (Pf ,mbf ) will be
forwarded in the third stage. Another important point to note is
that a message sent by a process can contain submessages that it
received in earlier stages. For instance, the messageMдc sent from
Pд to Pc in the third stage consists of submessages that Pд received
from Pa in the first stage and Ph in the second stage.

Algorithm 1 presents a high-level description of the proposed
store-and-forward communication scheme for a given VPTTn . The
algorithm focuses on the operations as performed by Pi ∈ P. Pi
first initializes its buffers in lines 1-3. The buffer fwbuf[d][x] holds
the submessages that will be forwarded in stage d to neighbor of
Pi whose coordinate d is equal to x , i.e., Pdj = x . Then, Pi traverses
the processes in SendSet(Pi ) and concatenates each submessage

into the respective buffer (lines 4-6). The first stage thatmi j will be
communicated is given by the index of the smallest coordinate that
Pi and Pj differ in. The communication operations are performed
in d stages between lines 7-17. In stage d , Pi communicates with a
subset of its neighbors in ν (Pi ,d) and examines the submessages in
received messages. Using the buffers corresponding to stage d , Pi
sends out a message to each Pj if the respective buffer is not empty
(lines 9-12). It then examines the received messages from its neigh-
bors in ν (Pi ,d). For each received message Mji , it examines the
submessages in them by finding which communication stage they
will be forwarded in and putting them in their respective locations
in fwbuf (lines 14-17). For a submessage (Pℓ ,mhℓ) received in stage
d , the stage it will be forwarded is given by the smallest coordinate
greater than d that Pi and Pℓ differ in. The data that belongs to
Pi is given by the submessages in the locations fwbuf[d][Pdi ] for
1 ≤ d ≤ n (lines 18-21).

In Algorithm 1, when two submessages (Pℓ ,miℓ) and (Pℓ ,mjℓ)

that originate from distinct processes Pi and Pj but destined for the
same process Pℓ arrive at an intermediate process Ph , they will be
put into the same forward buffer and in the rest of the algorithm
they will always be communicated within the same messages. Dual
of this case, when two submessages (Pj ,mi j ) and (Pℓ ,miℓ) that
originate from the same process Pi but destined for the distinct
processes Pj and Pℓ arrive at an intermediate process Ph , they will
be put into different forward buffers and in the rest of the algorithm
they will always be communicated within distinct messages.

In a certain communication stage, the processing of submessages
in the received messages involves putting each submessage in its
respective buffer from which it will be forwarded in later stages. In
this operation, the submessages in a received message are scattered
across multiple forward buffers. This operation is illustrated in
Figure 5. A buffer that will be used for communication in stage d
may be filled with the submessages from any stage earlier than d .
After a buffer is used for communication in stage d , it cannot be
further filled with the submessages that arrive in further stages.

It is interesting to examine certain cases in the proposed VPT.
For a given number of processes K , where K is a power of 2, if
we use n = 1, Algorithm 1 simply corresponds to each process
communicating with each other directly. This is no different than
Pi sending a direct P2P message to each process in SendSet(Pi ).
Since kd > 1 for each dimension, the largest Tn we can get is
n = lg2 K , and kd = 2 for all d . In this case, each process can
communicate with exactly one process in each stage. In network
terminology, this is equivalent to hypercubes, where each node is
connected to exactly one node in each dimension.

4 ANALYSIS
The end goal of using a virtual process topology is to provide a
flexible medium where one can easily achieve a trade-off between
the total latency (i.e., message count) and the bandwidth (i.e., the
amount of data communicated) costs by controlling the dimension
of the topology. For a fixed number of processes, increasing the VPT
dimension in the proposed store-and-forward scheme increases the
number of times a submessage gets forwarded. On the other hand,
since K = k1 × k2 × . . .kn , increasing the VPT dimension for a
fixed number of processes will result in smaller dimension sizes,
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Submessages in received messages

Forward buffer

Scattering

Figure 5: Scattering of submessages in received messages to
their corresponding buffers.

which means fewer messages communicated at each stage. Hence, a
low-dimensional VPT in our method results in higher total latency
and lower bandwidth cost compared to a high-dimensional VPT.
In this section, we analyze the performance of the proposed store-
and-forward scheme in terms of (i) maximum message count, (ii)
volume of communicated data, and (iii) buffer sizes. We analyze
the worst-case scenario where each process has data to send to
every other process, i.e., |SendSet(Pi )| = K − 1 for each Pi . For our
discussions, we assume that k1 = k2 = . . . = kn = k and each
process needs to send the same amount of data s . Note that under
these assumptions K = kn and for a fixed value of K the greatest
value that n can get is lg2 K , which occurs when k = 2.

In a communication stage d , each process can talk to its k − 1
neighbors. Hence, the maximum message count at any stage is
equal to k − 1. Since there are n stages, the maximum message
count in the overall store-and-forward scheme is n(k − 1). If we
have a single stage of communication (i.e., n = 1), the maximum
message count is K − 1, i.e.,O(K). Keeping the number of processes
fixed, for n = 2, we get a maximum message count of 2(

√
K −

1), which is O(K1/2) and asymptotically smaller than O(K). For
n = 3, this reduces to O(K1/3), and etc. On the most extreme case,
where we have k = 2 and n = lg2 K , the maximum message count
reduces to O(lg2 K). Hence, by varying the VPT dimension for a
specific number of processes, it is possible to obtain a wide spectrum
of different asymptotic bounds on the maximum message count,
and hence on the total latency cost. These bounds range between
linear and logarithmic complexities, with a wide range of sub-linear
complexities between them.

Compared to directly communicating messages between pro-
cesses, our store-and-forward scheme with n > 1 can increase the
communication volume as the submessages need to be forwarded.
We focus on the volume of data needed to communicate the mes-
sages that initially originate from Pi , i.e.,mi j for Pj ∈ P − {Pi }. As
all processes are assumed to have the same SendSet in our analysis,
the analysis performed for Pi applies to all processes. In the case
of direct communication (i.e., a VPT of dimension 1), the commu-
nication volume due to Pi is equal to V = s(K − 1), where each
message has the same size s . A loose upper bound on volume can
easily be obtained by assuming each submessage gets forwarded
in every stage, which gives nV for a VPT of dimension n. How-
ever, it is possible to derive the exact number of times a message
gets forwarded and hence find exact communication volume in-
curred in the store-and-forward scheme. A submessage with source
Pi = ⟨P

n
i , P

n−1
i , . . . , P1i ⟩ and destination Pj = ⟨P

n
j , P

n−1
j , . . . , P1j ⟩

gets forwarded by the number of coordinates these two processes

differ in. Hence, since we assume Pi has data to send to every other
process, we can count how many coordinates Pi differs from each
of them. There are (k − 1)ℓ

(n
ℓ

)
processes that differ by 1 ≤ ℓ ≤ n

coordinates from Pi . The submessages destined for these (k−1)ℓ
(n
ℓ

)
processes gets forwarded ℓ times. Hence, the volume incurred in
forwarding submessages of Pi is:

V = s
n∑
ℓ=1
(k − 1)ℓ

(
n

ℓ

)
ℓ.

For all processes, this quantity is simply multiplied by the number
of processes K . If we compare the loose upper bound and this
quantity, for example for K = 256 and T4, while the ratio between
the loose bound and the volume in direct communication is 4,
the ratio between the derived quantity and the volume in direct
communication is 3.01. For T8 these two values are 8 and 4.02, and
for T2 they are 2 and 1.88.

We next analyze the buffer size requirements of the processes in
the store-and-forward scheme. In the worst-case scenario, initially,
each process has a submessage for every other process. Hence, there
are a total of K(K −1) submessages, each of size s . The submessages
at Pi after the communication at stage d completes are given by
each submessage with source Pj and destination Pℓ that satisfies
the following two conditions: (i) the first d coordinates of the desti-
nation process Pℓ are equal to the first d coordinates of Pi and (ii)
the last n − d coordinates of the source process Pj are equal to the
last n − d coordinates of Pi . The submessages in Pi ’s buffers at the
beginning of stage d are given by

{(Pℓ ,mjℓ) :Pℓ ∈ SendSet(Pj ) and

P1ℓ =P
1
i , . . . , P

d−1
ℓ =Pd−1i and

Pdj =P
d
i , . . . , P

n
j = Pni }.

In the latter condition, there are kd processes whose last n − d
coordinates are equal to the last n − d coordinates of Pi . Regarding
the former condition, there are kn−d submessages whose destina-
tion’s first d coordinates are equal to the first d coordinates of Pi .
Multiplying these two quantities, we get kdkn−d = kn = K sub-
messages at process Pi after stage d completes. Since Pi does not
send a message to itself in stage d , there is one fewer submessage,
i.e., K − 1. Therefore, the buffer size required at any communication
stage at a process is bounded by s(K − 1). Observe that when we
multiply the number of submessages present at Pi , K − 1, with the
number of processes K , we get the total number of submessages
K(K − 1) being shuffled around the VPT at any communication
stage.

5 FORMING VIRTUAL PROCESS TOPOLOGY
For a given number of processes, there are several ways to organize
them into the virtual topology described earlier. There are two
important parameters in this respect: the dimension of the VPT,
i.e., n, and the organization of processes in that VPT, i.e., how we
determine k1,k2, . . . ,kn for a given n. In Section 4, we explained
howwe can attain a trade-off betweenmaximummessage count and
communication volume by varying n. These discussions assumed
each dimension has the same size. This is not required by our
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algorithm and the proposed store-and-forward scheme allows sizes
of these dimensions to be different from each other.

Recall that we assume K to be a power of two. For a given K and
n, we have k1 × k2 × . . . × kn = K and kd > 1 for 1 ≤ d ≤ n. Note
that since K is a power of two, each of the n dimensions is also a
power of two. To keep the maximum message count as small as
possible, the values k1,k2, . . . ,kn should be close to each other. The
maximum message count in communication stage d is kd − 1 and
in all stages this makes up to

∑
d (kd − 1). Keeping this observation

in mind, we propose a simple scheme to form a VPT that is optimal
in terms of maximum message count.

For a givenK , the values n can take range from 1 to lg2 K . For the
first (lg2 K modn) dimensions, we set their sizes to 2 ⌊lg2 K/n ⌋+1.
For the remaining n−(lg2 K mod n) dimensions, we set their sizes
to 2 ⌊lg2 K/n ⌋ . This scheme distributes the processes among the
dimensions as close as possible and ensures that no two dimension
sizes differ by more than a factor of 2. Hence, it provides the best
attainable overall maximum message count.

Although we aim to attain the lowest upper bound on the maxi-
mum message count in the VPT formation, this may not be always
desirable since it is likely to cause more forwarding. For a fixed
VPT dimension, it is also possible to achieve a trade-off between
message count and volume by varying how we set the size of each
dimension. If we distribute the processes in such a way that each
dimension ends up with close sizes (like the scheme above), we
attain good maximum message count at the expense of increasing
the likelihood of messages getting forwarded. On the other hand, if
the dimension sizes have high variance, this results in worse max-
imum message count but it decreases the likelihood of messages
getting forwarded. This is because a process in the former case has
fewer neighbors than it has in the latter case. We do not explore
this trade-off in our work since we can already obtain a similar
trade-off by adjusting the VPT dimension.

6 EXPERIMENTS
6.1 Setup
We test the proposed store-and-forward schemewithin a distributed
sparse matrix vector multiplication (SpMV). We chose SpMV for our
tests because it is a very common kernel. Moreover, testing SpMV
allows us to evaluate our algorithm’s impact in a realistic setting.
We utilize a row-parallel SpMV algorithm, which consists of a com-
munication phase followed by a computational phase: the processes
first communicate the input vector elements by sending/receiving
P2P messages and then they compute the output vector elements
through local SpMV operations. The proposed approach is not re-
stricted to any kind of partitioning and it is basically applicable to
any scenario where a number of processes interchange P2P mes-
sages. The communication phase is implemented in two different
ways:
(1) BL: The baseline scheme in which the P2P messages are ex-
changed without any regularization. In other words, processes
plainly issue simple sends and receives and do not aim to do any-
thing specific to address latency. This corresponds to the VPT T1.
(2) STFW: The proposed store-and-forward scheme in which the
communication operations are realized via VPTs of dimensionn > 1.
For a given number of processes K , since our algorithm embodies

Table 1: Properties of the matrices used in the experiments.

Number of Row/column degree

Matrix Kind rows/cols nonzeros max cv maxdr

cbuckle structural mechanics 13 681 676 515 600 0.16 0.044
msc10848 structural eng. 10 848 1 229 778 723 0.42 0.067
fe_rotor undirected graph 99 617 1 324 862 125 0.29 0.001
sparsine structural eng. 50 000 1 548 988 56 0.36 0.001
coAuthorsDBLP co-author network 299 067 1 955 352 336 1.50 0.001
net125 optimization 36 720 2 577 200 231 0.95 0.006
nd3k 2D/3D problem 9 000 3 279 690 515 0.26 0.057
GaAsH6 chemistry problem 61 349 3 381 809 1646 2.44 0.027
pkustk04 structural eng. 55 590 4 218 660 4230 1.46 0.076
gupta2 linear programming 62 064 4 248 286 8413 5.20 0.136
TSOPF_FS_b300_c2 power network 56 814 8 767 466 27742 6.23 0.488
pattern1 optimization 19 242 9 323 432 6028 0.78 0.313
SiO2 chemistry problem 155 331 11 283 503 2749 4.05 0.018
human_gene2 gene network 14 340 18 068 388 7229 1.09 0.504
coPapersCiteseer citation network 434 102 32 073 440 1188 1.37 0.003

mip1 optimization 66 463 10 352 819 66395 2.25 0.999
TSOPF_FS_b300_c3 power network 84 414 13 135 930 41542 7.59 0.492
crankseg_2 structural eng. 63 838 14 148 858 3423 0.43 0.054
Ga41As41H72 chemistry problem 268 096 17 488 476 702 1.53 0.003
bundle_adj computer vision prb. 513 351 20 208 051 12588 6.37 0.025
F1 structural eng. 343 791 26 837 113 435 0.52 0.001
nd24k 2D/3D problem 72 000 28 715 634 520 0.19 0.007

cv: coefficient of variation. maxdr: maximum degree ratio (i.e.,
max degree divided by the number of rows/columns).

lg2 K−1 different VPT dimensions (excludingT1, which corresponds
to the baseline), we use a suffix to indicate this. As a result, we use
STFWn to abbreviate our scheme, where n is the VPT dimension
1 < n ≤ lg2 K .

The test matrices are row-wise partitioned by using PaToH [5].
Using a partitioner reduces the communication overheads in SpMV,
which is a common technique to improve the parallel performance.
We test for five different number of processes,K ∈ {32, 64, 128, 256, 512}.
For STFW, this implies 2 ≤ n ≤ 9. For a different set of experiments
involving large-scale communication analysis in Section 6.5, we
utilize a 4K, 8K, and 16K processes. All codes are implemented in C
and use MPI for communication.

For parallel runs, we use a BlueGene/Q system, on which a node
consists of 16 PowerPC A2 CPUs with 1.6 GHz clock frequency and
16 GB memory. The nodes of this system are connected with 5D
torus chip-to-chip network. We also evaluate the communication
time performance of BL and STFW in Section 6.4 on a Cray XC40
system, in which a node consists of two 16-core Intel Haswell
CPUs with 2.3 GHz clock frequency and 128 GB memory. The
nodes in this system are connected with Cray Aries interconnect
in Dragonfly network topology. For large-scale communication
analysis in Section 6.5, we use this system and yet another system
- a Cray XK7 machine with a 3D torus network and Cray Gemini
interconnect. A node in the latter system consists of a single AMD
Opteron Interlagos CPU with 2.2 GHz clock frequency and 32 GB
memory. The parallel runtimes reported in the following sections
are the averages of 100 SpMV iterations.

The sparsity pattern of the matrix has a considerable effect on
the characteristics of the communication. Since the proposed algo-
rithm is tailored for latency-bound communications, we select a
subset of symmetric matrices that are expected to reflect this in BL.
Such matrices often have dense rows/columns and they are quite
irregular. A combination of these factors causes high latency. For
our evaluations in Sections 6.2, 6.3, 6.4, we utilize the top 15 test
matrices in Table 1. For the large-scale communication analysis
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Table 2: Comparison of schemes in terms of six different
metrics and four different process counts.

time (usec) buffer
size (KB)K Scheme mmax mavg vavg comm SpMV

64

BL 44.3 22.9 2105 573 1479 34.2
STFW2 13.3 10.4 3150 375 1360 62.6
STFW3 8.9 7.6 3879 366 1342 60.3
STFW4 7.9 6.9 4218 323 1320 55.5
STFW5 7.0 6.3 4569 330 1328 55.3
STFW6 6.0 5.5 5022 287 1304 53.9

128

BL 73.9 34.6 1578 674 1099 25.9
STFW2 20.8 15.5 2332 415 877 49.4
STFW3 12.9 10.9 2916 375 866 47.9
STFW4 10.0 8.6 3345 367 869 46.9
STFW5 9.0 8.0 3554 378 881 44.1
STFW6 8.0 7.3 3852 328 889 41.8
STFW7 7.0 6.3 4249 303 860 41.7

256

BL 120.5 50.2 1181 825 1091 20.1
STFW2 26.5 18.8 1844 439 681 38.8
STFW3 16.5 13.4 2279 386 631 38.3
STFW4 11.9 10.1 2736 359 608 37.9
STFW5 11.0 9.5 2848 383 649 36.1
STFW6 10.0 8.8 3082 334 632 33.6
STFW7 9.0 7.9 3336 329 622 34.5
STFW8 8.0 7.2 3544 322 636 32.3

512

BL 187.6 65.7 872 1223 1349 16.1
STFW2 41.6 28.0 1348 492 609 31.3
STFW3 20.1 15.5 1785 395 531 30.9
STFW4 15.9 13.5 2029 383 522 29.5
STFW5 13.0 10.8 2257 386 526 30.4
STFW6 12.0 10.6 2358 368 513 28.4
STFW7 11.0 9.8 2495 390 531 27.6
STFW8 10.0 9.0 2682 348 500 26.6
STFW9 9.0 8.0 2906 338 477 25.0

mmax: maximum message count. mavg: average message count.
vavg: average volume (words).

in Section 6.5, we utilize the bottom 10 matrices in Table 1 (i.e.,
matrices with more than 10 million nonzeros). All matrices are
from SuiteSparse Matrix Collection [8]. The coefficient of variation
(cv) in the table captures how irregular the matrix is. The maximum
degree (max) and the ratio of the maximum row/column degree to
the total row/column count (maxdr) indicate how likely the matrix
has a dense row/column.

6.2 Analysis of Performance Metrics
We analyze the behavior of the proposed algorithm in terms of six
performance metrics in Table 2: maximum message count (mmax),
average message count (mavg), average volume (vavg), the com-
munication time, parallel SpMV time, and buffer size. The values
reported for a metric in the table are the geometric averages of
the values obtained in that metric for all 15 test matrices. The first
two metrics are particularly addressed by STFW, and it is crucial to
achieve improvements in both compared to BL to reduce the total
latency cost. The third metric, average volume, is also important as
STFW causes an increase in it compared to BL. The unit of volume
is a word. The maximum message count is in terms of number of
messages sent by individual processes. The communication and
parallel SpMV time metrics (both taken on BlueGene/Q) reflect
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Figure 6: Values in various performance metrics of differ-
ent VPT dimensions for STFW normalized with respect to the
values obtained by BL at K = 256. A value y > 1 in the figure
indicates BL isy times better than STFW, whereas a valuey < 1
indicates STFW is 1/y times better than BL.

whether the proposed algorithm works in practice. We also illus-
trate these metrics for K = 256 in Figure 6. The values obtained
by STFW schemes are normalized with respect to those of BL in the
figure and they are plotted for each different VPT dimension. The
last metric in Table 2 is the buffer size in kilobytes and it includes
the sizes of the buffers used to send and receive original messages.

Our algorithm attains drastic improvements in two latency met-
rics as seen in Table 2. For K = 64, 128, 256, and 512, STFW respec-
tively achieves 3.3×–7.4×, 3.6×–10.6×, 4.6×–15.1×, and 4.5×–20.9×
smaller maximum message counts compared to BL. STFW also im-
proves the average message count. Although improvements in this
metric are not as high as they are in the maximum message count,
it still achieves 3×–8× smaller average message counts in the high-
est VPT dimension at each process count compared to BL. As the
VPT dimension gets higher for a specific K , the improvements in
these two metrics get higher as STFW tackles the latency overhead
more aggressively with increasing VPT dimension. Observe that the
difference between the maximum and the average message count
decreases with VPT dimension. This is because spreading the com-
municated messages into more dimensions increases the chances of
a message to be forwarded in more stages by reducing the number
of directly communicating processes. For example at K = 64, while
a process can directly communicate with 2(8−1) = 14 processes
for T2(8, 8), it can only directly communicate with 6(2−1)=6 pro-
cesses for T6(2, 2, 2, 2, 2, 2). Recall that for a VPT dimension of n,
the maximum message count is bounded by

∑
d kd − 1, which is

also verified in the table.
The improvements of STFW in latency metrics come at the ex-

pense of larger volume values. This is expected as favoring the
latency cost metrics at the expense of the bandwidth cost met-
rics is the gist of our approach. STFW incurs 1.5×–2.4×, 1.5×–2.7×,
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Figure 7: Detailed comparison of the schemes in two matri-
ces GaAsH6 and coAuthorsDBLP at K = 256.

1.6×–3.0×, and 1.6×–3.3× more average volume than BL for K =
64, 128, 256, and 512, respectively. It is important to note that the
rate of improvements achieved by STFW in average message count is
higher than the rate of increases caused by STFW in average volume.
This can be seen in Figure 6 by comparing the first and the third
bar of every dimension: for example for T5, STFW incurs 2.4× the
average volume of BL, while it improves the average message count
by a factor of 5.3.

As the instances in our experiments are generally bound by la-
tency, reducing the related cost metrics with STFW greatly helps in
reducing both the communication time and the parallel runtime as
seen in Table 2. STFW achieves up to 50%, 55%, 61%, and 72% improve-
ment in communication time compared to BL for K = 64, 128, 256,
and 512, respectively. This is reflected in parallel SpMV runtime as
STFW achieves up to 12%, 22%, 44%, and 65% improvement.

It can be said that for a communication time in which the portion
of the total latency cost is higher, STFW would be more effective in
improving the parallel performance. Figure 7 compares the perfor-
mance of BL and STFW in two different matrices, for which BL and
STFW attain comparable volume statistics (top left figure). However,
the matrix coAuthorsDBLP has a higher latency overhead than the
matrix GaAsH6 for BL. The improvements of STFW over BL in latency
cost metrics are reflected in the parallel SpMV time more promi-
nently in the matrix that is more latency-bound: coAuthorsDBLP.
STFW effectively turns the irregular communication patterns into
regular patterns, and in doing so makes the total latency cost much
more predictable and uniform. As the VPT dimension gets higher,
the message communication pattern becomes more regular and the
variation between the number of messages communicated by the
processes gets close to disappearing.

Table 2 also presents the maximum sizes of the buffers used by
the BL and STFW schemes. For BL, the buffer size for a process is

the summation of the sizes of the original messages it sends and re-
ceives. For STFW, it includes the sizes of the buffers for these original
messages as well as the sizes of store and forward buffers in Algo-
rithm 1. The sizes of the buffers utilized by the STFW schemes are
always less than twice the sizes of the buffers used by BL. Observe
that the sizes of buffers used for communication decrease as VPT
dimension gets higher for a specific process count. This is because
in low-dimensional VPTs a process is likely to store and forward
messages from more processes compared to the high-dimensional
VPTs. Also observe that for a specific VPT dimension, as the num-
ber of processes get larger, the buffer sizes decrease. This is due
to the strong scaling of these instances, which results in message
sizes to get smaller with increasing number of processes.

6.3 Effect on Scalability
We investigate how STFW affects scalability by comparing it to BL
in Figure 8. In order to make the plots in the figure less crowded,
we only focus on even VPT dimensions used for STFW. The parallel
SpMV runtime is plotted against five different values of processes
K = 32, 64, 128, 256, and 512. The figure presents runtime plots of 12
of the 15 test matrices. Note that the smallest number of processes
for running STFW6 and STFW8 are 64 and 256, respectively. For this
reason, there are no points in the plots for these two schemes for
the process counts smaller than those values.

As seen in Figure 8, STFW succeeds in scaling instances that are
otherwise unscalable with BL. These instances include matrices
such as coAuthorsDBLP, GaAsH6, gupta2, human_gene2, net125,
pattern1, sparsine, TSOPF_FS_b300_c2, which are characterized
by very high latency overhead. They have a large maximum mes-
sage count that is close to the process count. For instances that are
not as latency-bound as those mentioned, still the latency costs
are manifested at large process counts. These instances include
matrices such as coPapersCiteseer, fe_rotor, nd3k, pkustk04.
They scale somewhat similarly with both BL and STFW up to a cer-
tain point. However, then the benefit of using STFW becomes more
apparent and they scale better with STFW.

It can be observed from Figure 8 that a low-dimensional VPT
(i.e., STFW2) often leads to worse scalability compared to a high-
dimensional VPT in instances that have very high latency overhead.
However, another important factor in scalability is the increase
of volume caused by STFW. If the volume is high, being aggressive
in reducing the total latency cost can hurt the scalability. Trying
to save a couple of messages per process by increasing the VPT
dimension may increase the average message size significantly
while leading to minor reductions in the total latency cost. This
is best seen in the plot for the matrix TSOPF_FS_b300_c2. This
matrix has the largest volume among the matrices in the figure,
and is also a latency-bound instance. In this matrix, STFW2 attains
better scalability than STFW4, STFW6, and STFW8. Reducing latency
together with keeping the increase in volume small leads to a better
scalability in this instance.

6.4 Communication on Different Networks
We compare the communication performance of BL and STFW for
128 and 512 processes on two different networks in Figure 9. The
communication times are the geometric averages of the values
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Figure 8: Parallel SpMV runtime comparison on BlueGene/Q for 12 matrices (both axes in logscale).

obtained by running SpMV on 15 test matrices. The communication
times obtained for the BlueGene/Q system can also be seen in
Table 2. Even though STFW still obtains better parallel SpMV runtime
than BL on Cray XC40, we do not report these runtimes as the
matrices were too small to scale beyond 64 or 128 processes. Yet,
we present the obtained communication times as they illustrate
how our method can substantially benefit the communication time
on a different network.

In Figure 9, the STFW schemes are able to improve the commu-
nication time substantially on both networks. For example on 128
processes, STFW4 achieves 45% and 70% improvement over BL on
BlueGene/Q and Cray XC40 systems, respectively. On 512 processes,
these improvements increase to 69% and 85%, respectively. The bet-
ter improvements on Cray XC40 system can be attributed to this
network having a larger message start-up time to per-word transfer
time ratio, which makes it more latency-bound compared to Blue-
Gene/Q, and hence renders our method’s ability to bound message
count more effective.

Although our method can effectively offer a trade-off indepen-
dent of the underlying physical network, the best VPT dimension
still depends on the characteristics of the physical network. For a
latency-bound network, higher-dimensional VPTs would be more
preferable since they reduce the total latency cost more aggres-
sively. On the other hand, for bandwidth-bound networks, lower-
dimensional VPTs would be a better choice since they cause less
forwarding, and hence less increase in volume.
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Figure 9: Communication times of BL and STFW on Torus and
Dragonfly networks for 128 and 512 processes.
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Table 3: Average communication statistics and times on a Cray XK7 system with a 3D Torus network and a Cray XC40 system
with a Dragonfly network. The communication times (usec) are presented in the “comm” column.

Cray XK7 (3D Torus) Cray XC40 (Dragonfly)

8K processes 16K processes 4K processes

Scheme mmax mavg vavg comm Scheme mmax mavg vavg comm Scheme mmax mavg vavg comm

BL 695.8 123.2 598 4420 BL 1054.9 137.6 425 8220 BL 486.6 105.5 819 1419
STFW2 136.5 58.1 914 590 STFW2 160.6 61.0 683 1109 STFW2 86.1 43.7 1271 294
STFW3 55.2 33.7 1215 361 STFW3 65.1 34.4 887 498 STFW3 39.0 25.0 1682 221
STFW4 34.0 23.4 1473 260 STFW4 41.8 24.3 1064 391 STFW4 26.1 18.1 2024 238
STFW7 18.9 13.9 2037 300 STFW8 20.0 13.9 1568 510 STFW7 17.0 13.0 2594 199
STFW8 18.0 13.7 2081 397 STFW9 19.0 13.9 1601 491 STFW8 16.0 12.8 2663 270
STFW12 14.0 11.4 2494 374 STFW13 15.0 11.4 1917 694 STFW11 13.0 10.9 3098 289
STFW13 13.0 10.4 2644 511 STFW14 14.0 10.5 2017 696 STFW12 12.0 9.8 3312 387

mmax: maximum message count. mavg: average message count. vavg: average volume (words).

6.5 Large-scale Communication Analysis
We analyze the large-scale communication performance of the com-
pared schemes on two systems with different network types in
order to assess the viability of running the proposed algorithm on
thousands of processes. In the larger system, a Cray XK7 machine
with a 3D Torus network and Gemini interconnect, we evaluate our
method for 8192 and 16384 processes. In the smaller system, a Cray
XC40 machine with Dragonfly network and Aries interconnect,
we evaluate our method for 4096 processes. The evaluation is con-
ducted on 10matrices that havemore than 10million nonzeros in Ta-
ble 1. For our scheme, we evaluate a total of seven VPT dimensions
for each process count: the lowest three VPT dimensions (2, 3, 4),
the middle two VPT dimensions (⌊lg2 K/2⌋ + 1, ⌊lg2 K/2⌋ + 2), and
the highest two VPT dimensions (lg2 K − 1, lg2 K). This choice of
selection of VPT dimensions aims to keep the discussions in this
section simple while trying to cover the different spectra offered
by our methodology. We present the geometric averages of the
metrics related to communication in Table 3. The overall parallel
SpMV time and buffer sizes are not reported as the sole purpose of
this section is to analyze communication and the tested instances
are almost always dominated by the communication time (more
than 90% of the overall parallel SpMV time is spent in performing
communication).

As seen in Table 3, our methodology improves the time spent
in communication drastically on both systems. On Cray XK7, the
communication time is improved by 94% and 95% compared to BL
on 8K and 16K processes, respectively, both obtained by STFW4. On
Cray XC40, the communication time is improved by 86% compared
to BL on 4K processes, obtained STFW7. For BL, the communication
time increases by a factor of 1.9 on Cray XK7 when the number of
processes increases from 8K to 16K, while it increases by a factor
of 1.5 for STFW4. This can be attributed to the better control of
the increase in communication statistics by the STFW schemes: for
example when the number of processes is increased from 8K to 16K,
the maximum message count of BL increases by a factor of 1.52,
whereas the maximum message count of STFW4 increases only by
a factor of 1.23. If we compare these values to the communication
time improvements reported in Table 2 of Section 6.2, it is safe to say
that our method becomes more beneficial as the instances get more

communication-bound, despite the fact the tested set of matrices
are different. Even though these matrices are different, they exhibit
similar communication characteristics as they are all irregular and
generally latency-bound, whose corresponding properties in Table 1
attest to this fact.

We provide a detailed comparison of all schemes for all of 10
matrices in Figure 10 on the largest tested number of processes,
i.e., 16K. In general, the middle VPT dimensions (STFW4, STFW8,
STFW9) tend to perform better than the low (STFW2, STFW3) and
high (STFW13, STFW14) VPT dimensions. This is because the low
VPT dimensions are still often bound by latency and the high VPT
dimensions simply cause too many forwarding steps and hence
increase the volume significantly.

7 RELATEDWORK
We investigate algorithmic techniques on the software level to
improve the latency costs by reducing the message counts between
processes. MPI collectives contain a rich history in this aspect [3,
4, 10, 14, 17, 21]. It is possible to attain logarithmic bounds on
the latency costs using algorithms like bidirectional exchange for
collective communication operations such as broadcast, scatter,
etc [6]. Furthermore, the popular MPI implementations such as
MPICH [1] switch between multiple algorithms depending on the
message size to optimize latency or bandwidth costs.

Somewhat related to our work are the sparse neighborhood
collectives [11–13, 15] inMPI, withwhich one can define a restricted
set of neighbor processes and perform collectives on them. In our
methodology, the neighboring processes in distinct communication
stages may or may not communicate with each other depending on
what submessages they forward. In other words, our VPT indicates
which processes may communicate. Hence, it may not be feasible
to perform sparse collectives in the case where there are no or only
a few communicating neighbor processes.

In MPI, one can define a virtual topology to indicate how pro-
cesses communicate. The two types of virtual topologies supported
by MPI are Cartesian and graph topologies. The provided virtual
topology and additional information such as edge weights can ef-
fectively be used for the ordering of process ranks in mapping to
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physical topology. In our work, we assume that the proposed VPT
is completely independent of the physical topology.

It is also possible to reduce the latency costs with a careful
distribution of data that will be communicated throughout the
application. These often involve a preprocessing phase where the
application is modeled with graphs/hypergraphs that are able to
capture the communication requirements of the application. There
are several works in this direction [2, 9, 18, 19, 22] and they often
strive for better modeling of communication costs in the application.

The proposed VPT harbors similarities with the k-ary n-cube
networks. The two common switching techniques in networks are
the store-and-forward and wormhole switching [7, 16]. Our VPT
borrows ideas from store-and-forward switching in the sense that
there is no message fragmentation and multiple submessages may
need to be stored in and forwarded by multiple processes in their
buffers before reaching their destination. The submessages in our
VPT refer to the original data the processes want to send, and they
are contained in direct larger messages between processes. The
important difference between the store-and-forward routing and
the proposed store-and-forward scheme for our VPT is that multiple
submessages received by a process in earlier communication stages
are gathered into a single message to be forwarded in later stages.
That is, at any stage of our algorithm, a message communicated
between a pair of processes contains multiple submessages, where
these submessages possibly differ in their source and destinations.

8 CONCLUSIONS
We proposed an efficient algorithm to perform sparse and irregular
communication operations in a distributed setting. We organized
the processes into a virtual process topology and this enabled us
to control the trade-off between the latency and bandwidth costs.
The communication operations under this topology are realized
with the proposed store-and-forward algorithm. We further pro-
posed an effective way of forming the virtual process topology.
Our experiments on a set of latency-bound instances showed that
the proposed methodology can offer significant improvements in
the performance of parallel sparse matrix-vector multiplication by
reducing its runtime up to 65% on 512 processes.

As future work, we plan on trying out different strategies for
mapping processes onto both the virtual process topology and the

physical topology. There are two approaches in order to benefit from
process and rank ordering. In the first, we can map processes to the
VPT with the aim of reducing the communication volume and/or
the message count. For the reduction of volume, the basic idea
would be to reduce the Hamming distance of the pair of processes
that have a large amount of data to send to each other. Although
more involved, one can also reduce the message count with a careful
mapping of process to the VPT. However, this is more involved
because the messages in the VPT are split/joined throughout the
communication. In the second, we can benefit from mapping of the
processes to the physical topology by trying to keep the processes
that communicate large amount of data “close” to each other in
terms of physical topology. Closeness can be defined by themapping
of processes where the communication is cheaper, such as on-node
communication. Observe that in the first approach, we aim to reduce
the communication volume and message count in the VPT, while in
the second approach, these two quantities stay fixed and we aim to
reduce the time to realize them by exploiting the physical topology.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We ran the proposed store-and-forward-based communication al-
gorithm on a BlueGene/Q parallel system. We tested our algorithm
within sparse matrix-vector multiplication. We used the MPICH 2.2
for MPI communications.We also used a Cray XC40 system for com-
munication performance evaluation of the store-and-forward-based
scheme. On Cray, MPICH 3.0 was used.

ARTIFACT AVAILABILITY
Software Artifact Availability: All author-created software arti-

facts are maintained in a public repository under an OSI-approved
license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: All author-created data artifacts are
maintained in a public repository under an OSI-approved license.

Proprietary Artifacts: No author-created artifacts are proprietary.

List of URLs and/or DOIs where artifacts are available:
code: https://bitbucket.org/roguzsel/stfw/src/master/
matrices used in the experiments can be accessed at

https://sparse.tamu.edu/↪→

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: IBM BlueGene/Q system with 1.6 GHz
PowerPC A2 processors. Cray XC40 system with Intel Haswell 2.3
GHz processors. Cray XK7 system with 2.2 GHz AMD Opteron
Interlagos processors.

Operating systems and versions: CNK, lightweight proprietary
kernel

Compilers and versions: gcc 4.9.0, icc 18.0.1

Libraries and versions: MPICH 2.2, MPICH 3.0

Key algorithms: Sparse matrix-vector multiplication

Input datasets and versions: Sparse matrices from SuiteSparse
Collection (https://sparse.tamu.edu/)
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