
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. SCI. COMPUT. © 2022 Society for Industrial and Applied Mathematics
Vol. 44, No. 2, pp. C99--C123

PARTITIONING AND REORDERING FOR SPIKE-BASED
DISTRIBUTED-MEMORY PARALLEL GAUSS--SEIDEL\ast 

TUGBA TORUN\dagger , F. SUKRU TORUN\ddagger , MURAT MANGUOGLU\S , AND

CEVDET AYKANAT\dagger 

Abstract. Gauss--Seidel (GS) is a widely used iterative method for solving sparse linear sys-
tems of equations and also known to be effective as a smoother in algebraic multigrid methods.
Parallelization of GS is a challenging task since solving the sparse lower triangular system in GS
constitutes a sequential bottleneck at each iteration. We propose a distributed-memory parallel GS
(dmpGS) by implementing a parallel sparse triangular solver (stSpike) based on the Spike algorithm.
stSpike decouples the global triangular system into smaller systems that can be solved concurrently
and requires the solution of a much smaller reduced sparse lower triangular system which constitutes
a sequential bottleneck. In order to alleviate this bottleneck and to reduce the communication over-
head of dmpGS, we propose a partitioning and reordering model consisting of two phases. The first
phase is a novel hypergraph partitioning model whose partitioning objective simultaneously encodes
minimizing the reduced system size and the communication volume. The second phase is an in-block
row reordering method for decreasing the nonzero count of the reduced system. Extensive experi-
ments on a dataset consisting of 359 sparse linear systems verify the effectiveness of the proposed
partitioning and reordering model in terms of reducing the communication and the sequential com-
putational overheads. Parallel experiments on 12 large systems using up to 320 cores demonstrate
that the proposed model significantly improves the scalability of dmpGS.

Key words. parallel Gauss--Seidel, distributed-memory, Spike algorithm, parallel sparse trian-
gular solve, hypergraph partitioning, sparse matrix reordering
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1. Introduction. A wide range of applications in science and engineering re-
quire the solution of a sparse linear system of equations

Ax = f,(1.1)

where A \in \BbbR m\times m is a general large sparse invertible matrix and x and f \in \BbbR m are the
unknown and right-hand-side vectors, respectively. Depending on the numerical and
structural properties of the coefficient matrix, various solvers have been proposed.

Direct solvers require a sequence of operations: reordering and partitioning, sym-
bolic factorization, numerical factorization, and finally obtaining the solution, typ-
ically via forward and backward sweeps. The reordering and partitioning schemes
are used both to reduce the amount of fill-in and to enhance the parallel scalability.
Symbolic factorization is used to determine the sparsity structure of the factors, and
finally the numerical factorization (such as sparse LU [23], QR [34], SVD [13], and
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WZ [17]) is computed. Direct solvers are robust and, in general, are known to be very
scalable during the factorization phase [5, 43] but not so much during the triangular
solution phase [45].

Iterative solvers, on the other hand, are known to be more scalable but not as
robust as direct solvers. Nevertheless, they are still preferred for large sparse systems
due to their lower memory requirements. Starting with an initial guess for the solution
vector, these methods improve the solution at each iteration. There are two main
types of iterative solvers: stationary and nonstationary methods. Stationary methods
have the general form x(k+1) = \phi (x(k)), where x(k) is the solution vector at the kth
iteration and \phi (\cdot ) is a function which does not change during the iterations. Some
examples are Jacobi, Gauss--Seidel, successive overrelaxation (SOR), and symmetric
SOR [34, 58]. Nonstationary methods have the form x(k+1)=\phi (k)(x(k)) in which the
function \phi (k)(\cdot ) changes at each iteration. Some examples are projection methods,
Krylov subspace methods, and Chebyshev iterations [9, 35, 58].

In practice, linear systems are preconditioned to reduce the required number of
iterations of the iterative solvers and to improve their robustness. There could be a
variety of choices of preconditioners; some are problem specific and others are more
general. General classical preconditioners include incomplete factorization--based pre-
conditoners (such as incomplete LU [57, 58]), sparse approximate inverse [11], alge-
braic multigrid (AMG) [51, 56], and others. We refer the reader to [10] for a detailed
survey of preconditioners. Among these preconditioners, AMG has been widely used
recently in many applications [12, 30, 53] and is a generalization of geometric multi-
grid (GMG) [69]. GMG requires some knowledge of the physical problem and/or its
geometry, while there is no such requirement for AMG. AMG can be also used as a
direct solver [36, 70]. Furthermore, AMG typically uses another iterative method as
a ``smoother"" which is required to reduce the error at each level, and the smoother
itself can also be preconditioned. More recently a preferred smoother for AMG is
Gauss--Seidel [3, 16, 66], as in BoomerAMG [36] and Trilinos-ML [32].

Gauss--Seidel (GS) is a well-known stationary iterative method which solves the
linear system (1.1) by splitting the coefficient matrix into its lower and strictly upper
triangular parts, A=L+U . Then the solution is obtained iteratively by

x(k+1) = L - 1(f  - Ux(k)).

At each iteration of GS, both a lower triangular system is required to be solved
and an upper triangular sparse matrix-vector multiplication (SpMV) is performed.
GS is guaranteed to converge if A is strictly or irreducibly diagonal dominant [7]
or symmetric positive definite [34]. It is known to be effective and preferred as a
smoother for a wide variety of problems [3, 71]. However, a true distributed-memory
parallelization of GS is considered to be a challenging task [3].

In the literature, parallel GS implementations are proposed either to solve the
original problem (1.1) [6, 42, 61] or to use it as a smoother in multigrid schemes
[38, 63, 72]. A commonly used method to parallelize GS by finding independent
subtasks is the red-black coloring strategy [2, 31, 41], which has been extended to
multicoloring [33, 52, 4] to attain more parallelism for complicated regular problems.
However, multicolored GS is not feasible for some cases such as unstructured finite
element applications since the number of colors becomes too large [42]. Another
approach is to use a processor-localized GS in which each processor performs GS as a
subdomain solver, but its convergence rate is low and may diverge for a large number
of processors [3].
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The main difficulty in parallelizing GS arises from the sequential nature of trian-
gular solves included in GS [71]. Along with its importance in several applications,
solving triangular systems often constitutes a sequential bottleneck because of the
dependencies between unknowns in forward or backward substitutions. In [59], a
parallel banded triangular solver is proposed. This algorithm is extended for solv-
ing banded linear systems [21, 28] and further improved by implementing various
alternatives in each step of the factorization including the solution of the reduced
system in [55, 54, 62]. At this point, the algorithm is called the Spike algorithm. For
sparse linear systems, Spike is also proposed as a solver for a banded preconditioner
that is sparse within the band [49, 60], and it is generalized for sparse linear systems
[15, 47, 48]. In [68], a Spike-based parallel solver for general tridiagonal systems is
implemented for graphics processing unit architectures. A recent study [22] proposes
a multithreaded parallel solver for sparse triangular systems by extending the Spike
algorithm [59].

We propose a distributed-memory parallel GS (dmpGS) by implementing and
using a distributed-memory version of the sparse triangular Spike (stSpike) algorithm.
stSpike enables obtaining the solution of the system by solving independent sparse
triangular subsystems and a smaller reduced triangular system. Solving this reduced
system constitutes a sequential computational bottleneck in dmpGS. The size of this
reduced system is equal to the number of nonzero columns in the lower off-diagonal
blocks of the coefficient matrix. The computational cost of solving the reduced system
is proportional to its nonzero count. The communication volume of dmpGS is equal
to the number of nonzero column segments in the off-diagonal blocks plus the reduced
system size. Both of these communication and computational overheads highly depend
on the sparsity structure of the coefficient matrix.

We note that solving the reduced system is embarrassingly parallel if the coef-
ficient matrix is banded and diagonally dominant [50, 54]. In case the coefficient
matrix is not diagonally dominant, another way to alleviate the cost of solving the
reduced system is to further parallelize the solution of the reduced system, which has
been done iteratively [55] or recursively [15, 54]. Instead, we propose to minimize the
size and the nonzero count of the reduced system, together with the communication
volume, and show that the resulting reduced system is so small that further paral-
lelization of the solution of the reduced system is often no longer needed. For attaining
these minimization objectives, we propose a partitioning and reordering model that
exploits the sparsity of the coefficient matrix. The proposed model consists of two
phases. The first phase is a row-wise partitioning of the coefficient matrix, whereas
the second phase is a row reordering within the row blocks induced by the partition
obtained in the first phase.

For the first phase, we propose a novel hypergraph model that extends and en-
hances the conventional column-net model for simultaneously decreasing the reduced
system size and the communication volume. We introduce vertex fixing, net anchor-
ing, and net splitting schemes within the recursive bipartitioning framework to encode
the minimization of the number of nonzero column segments in the lower triangular
part of the resulting partition.

For the second phase, we propose an intelligent in-block row reordering method
with the aim of decreasing the computational costs of both forming the coefficient
matrix of the reduced system once and solving the reduced system at each iteration.

The rest of the paper is organized as follows. Section 2 provides the background
information on hypergraph and sparse matrix partitioning and stSpike. In section 3,
we discuss the dmpGS algorithm along with its communication and computational
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costs. The proposed partitioning and reordering model for dmpGS is introduced in
section 4. We provide the experimental results in section 5 and conclude in section 6.

2. Background.

2.1. Hypergraph partitioning. A hypergraph \scrH =(\scrV ,\scrN ) consists of a set of
vertices \scrV = \{ vi\} 1\leq i\leq n and a set of nets \scrN = \{ nj\} 1\leq j\leq m. Each net nj \in \scrN connects
a subset of vertices in \scrV , which is referred to as the pins of nj and denoted by
Pins(nj ,\scrH ). Each vertex vi is assigned a weight w(vi), and each net nj is assigned a
cost cost(nj). \Pi = \{ \scrV 1,\scrV 2, . . . ,\scrV k\} denotes a K-way partition of \scrH , where parts are
mutually disjoint and exhaustive. The weight of a part is the sum of the weights of
vertices in that part. For a given partition, if a net connects at least one vertex in
a part, it is said to connect that part. Connectivity \lambda (nj) of net nj is the number
of parts connected by nj . If a net nj connects multiple parts (i.e., \lambda (nj)> 1), it is
called cut; and otherwise internal (i.e., \lambda (nj)=1). The set of cut nets is denoted by
\scrN cut. The cutsize of \Pi is defined in various ways. Two most commonly used cutsize
definitions are the cut-net and the connectivity metrics [18], which are, respectively,
defined as

cscutn(\Pi ) =
\sum 

n\in \scrN cut

cost(n) and csconn(\Pi ) =
\sum 

n\in \scrN cut

(\lambda (n) - 1)cost(n).(2.1)

Hypergraph partitioning (HP) is the problem of finding a K-way partition which
minimizes the cutsize and satisfies the balance criterion Wmax\leq Wavg(1+\epsilon ). Here, \epsilon 
is the given maximum allowable imbalance ratio, and Wmax and Wavg, respectively,
denote the maximum and average part weights. HP with fixed vertices ensures the
assignment of some preassigned vertices which are called fixed vertices to the respective
parts.

The recursive bipartitioning (RB) is a widely used paradigm to obtain a K-way
HP. It first partitions the hypergraph into two, and then each part is further biparti-
tioned recursively until reaching the desired number of parts K. In order to encode
the cut-net and connectivity metrics, cut-net removal and cut-net splitting methods
are utilized in the RB-based HP, respectively [18].

2.2. Sparse matrix partitioning with HP. Several HP models and methods
have been proposed and successfully utilized for obtaining matrix partitioning [8, 14,
19, 20, 25, 39, 64, 67]. Among these, the most relevant one is the column-net model
[18] that represents a given sparse matrix A as a hypergraph \scrH CN (A) in which nets
and vertices, respectively, represent columns and rows. In this model, vertex vi is
added to the pin list of net nj for each nonzero A(i, j) in A. Throughout the paper,
ri and cj , respectively, denote row i and column j.

AK-way ordered partition \Pi =\langle \scrV 1,\scrV 2, . . . ,\scrV K\rangle of the column-net model\scrH CN (A)
is decoded as a partial reordering of the rows of A in such a way that the rows
corresponding to vertices in \scrV k are ordered before the rows corresponding to the
vertices in \scrV \ell for k<\ell . This is a partial reordering since the rows corresponding to the
vertices in the same part can be ordered arbitrarily. Let \scrB rk denote the kth row block
which contains the rows corresponding to the vertices in \scrV k. We consider a symmetric
row-column reordering that yields a 2D grid structure of A. The submatrix consisting
of the rows of \scrB rk and columns of \ell th column block \scrB c\ell is referred as block-(k, \ell ) of
A. A column is said to connect a row block \scrB rk if it contains at least one nonzero in
\scrB rk. A column is called cut if it connects more than one row block. For a matrix with
nonzero diagonal entries, each column connects a diagonal block and becomes a cut
column if it connects at least one off-diagonal block.
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In the column-net model with unit net cost, the partitioning objective using the
connectivity and cut-net metrics (2.1), respectively, encode the minimization of the
number of nonzero column segments in off-diagonal blocks and the number of cut
columns. The former partitioning objective is successfully utilized in encoding the
minimization of the row parallel SpMV operations [18].

2.3. stSpike algorithm. We describe stSpike for lower triangular systems since
the algorithm for the upper triangular case is similar. Given a lower triangular linear
system of equations

Ly = b,(2.2)

a DS factorization of sparse lower triangular matrix L is computed as L=DS, where
D is the lower block diagonal of L and S is the spike matrix. These blocks are assumed
to be obtained by matrix partitioning. Multiplying both sides of (2.2) from the left
by D - 1, we obtain a modified system

Sy = g,(2.3)

where g=D - 1b and S=D - 1L. By splitting L=D+R, we obtain S= I+G, where
G=D - 1R and R is the block off-diagonal part of L. The sparse triangular system
DG=R with multiple right-hand-side vectors can be solved for the block rows of G
independently with perfect parallelism.

The nonzero column segments of R constitute dense column segments (called
spikes) in the off-diagonal blocks of S. The block diagonal of S is identity. Ad-
ditional nonzeros (fill-in) are introduced within the off-diagonal blocks of S only in
the locations below the top nonzero (having the smallest row index) for each nonzero
column segment of R. The submatrix consisting of rows and columns \scrC of S, namely,\widehat S=S(\scrC , \scrC ), constitutes an independent reduced system where \scrC is the set of nonzero
columns of R, i.e., cut columns of L. Then the reduced system is of the form

\widehat S\widehat y = \widehat g,(2.4)

where \widehat g=g(\scrC ) and \widehat y=y(\scrC ), which can be solved independently from the rest of the
unknowns in y. After solving the reduced system, the only remaining computation
for retrieving the solution of the original system is

y = g  - D - 1( \widehat R\widehat y),(2.5)

which can be obtained in perfect parallelism where \widehat R=R(:, \scrC ) (in MATLAB notation).

We only partially compute S just to form \widehat S, since forming S explicitly is expensive
and requires a large amount of memory. Partial computation of S constitutes the
factorization phase, whereas computation of \widehat g, solving (2.4) and (2.5) constitutes the
solution phase of stSpike.

An example L matrix and the corresponding S and \widehat S matrices are shown in
Figure 1. The reduced system indices \scrC = \{ 1, 3, 4, 6, 7, 9, 11\} are colored in red and
circled. The nonzeros that constitute the reduced system are bold and colored in red.
The background colors of the original nonzeros and possible fill-in are green and blue,
respectively. Depending on the sparsity structure of the corresponding column and
block diagonal, spikes may not fill the entire column segment. For example, nonzero
L(4, 1) in block-(2,1) of L leads to the spike consisting of three nonzeros in the first
column of block-(2,1) of S.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
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2  

3  

4  

5   

6 

7   

8  

9   

10   

11   

12   

13    

14    

(a) Matrix L.

① 2 ③④ 5 ⑥⑦ 8 ⑨ 10 ⑪ 12 13 14

① 1

2 1

③ 1

④  1

5   1

⑥ 1

⑦   1

8  1

⑨   1

10    1

⑪   1

12   1

13    1

14     1

(b) Matrix S.

①③④⑥⑦⑨⑪

① 1

③ 1

④  1

⑥ 1

⑦   1

⑨   1

⑪   1

(c) Matrix \widehat S.
Fig. 1. Sparsity structure of L and resulting S and \widehat S matrices derived from stSpike.

3. dmpGS algorithm. The pseudo-code of dmpGS is given in Algorithm 3.1
for processor Pk in a K-processor system. Matrix A is assumed to be partitioned
into K row blocks, where mk denotes the number of rows in the kth row block.
In the algorithm, Rk, Dk, and Uk, respectively, denote the kth row block of the
strictly block lower triangular, lower triangular part of the block diagonal, and strictly
upper triangular parts of A as shown in Figure 2. The number of columns in Rk,
Dk, and Uk are, respectively,

\sum k - 1
i=1 mi, mk, and

\sum K
i=k mi. fk, gk, xk, hk, wk, and zk

denote the local subvectors of size mk that are computed by Pk. These subvectors are
partitioned conformably with row-wise partitioning of A as shown in Figure 2. \widehat S, \widehat x,
and \widehat g, respectively, denote the | \scrC | \times | \scrC | coefficient matrix, | \scrC | \times 1 unknown, and | \scrC | \times 1
right-hand-side vectors of the reduced system in stSpike. \scrC k denotes the subset of \scrC 
corresponding to the row indices in Rk.

In Algorithm 3.1, lines 2--7 denote the factorization phase of stSpike which com-
putes \widehat S. This phase is done only once after which we proceed with the GS iterations
in lines 8--22. Each dmpGS iteration involves two SpMVs at lines 11 and 20, two vec-
tor subtraction operations at lines 12 and 22, an independent sparse triangular solve
at line 13, and a reduced system solution at line 17, which enables independent sparse
triangular solves at line 21. The upper and lower triangular SpMV operations are
incurred by the GS and stSpike algorithms, respectively. These two SpMV operations
incur communication of x-vector entries depending on the sparsity structures of the
upper triangular U and lower triangular L matrices, respectively. Conformable par-
titioning of the vectors avoids communication during vector subtraction operations.

At lines 9--10, communication operations are performed for local SpMV (line 11).
After Pk receives all necessary nonlocal x-vector entries, it forms its augmented vector
\u x. Each processor sends the selected entries of its gk vector to P1 (line 14) to form

Fig. 2. Four-way row-wise partition of matrix A and vectors x and f .
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Algorithm 3.1 dmpGS for processor Pk.

Input: Submatrices Rk, Dk, Uk, and right-hand-side subvector fk
Output: Subvector xk

1: Choose an initial guess for xk

2: if 2\leq k\leq K - 1 then
3: Gk \leftarrow D - 1

k Rk \vartriangleright local partial sparse triangular solve with multiple right-
hand sides

4: Form and send \widehat Gk to processor P1

5: if k = 1 then
6: Receive \widehat G\ell from P\ell for 2\leq \ell \leq K - 1 to form \widehat G
7: \widehat S \leftarrow \widehat G+ I

8: while not converged do
9: Send required local xk entries to respective processors in \{ P1, . . . , Pk - 1\} 

10: Receive nonlocal x\ell entries from processors in \{ Pk+1, . . . , PK\} to form \u xk

11: hk \leftarrow Uk\u xk \vartriangleright local SpMV
12: hk \leftarrow fk  - hk

13: gk \leftarrow D - 1
k hk \vartriangleright local sparse triangular solve

14: if 2\leq k\leq K - 1 then Send \{ gk(i)\} i\in \scrC k
to processor P1

15: if k = 1 then
16: Receive \{ g\ell (i)\} i\in \scrC k

from P\ell for 2\leq \ell \leq K  - 1 to form \widehat g
17: \widehat x\leftarrow \widehat S - 1\widehat g \vartriangleright solve reduced system
18: Send \widehat x entries to requiring processors

19: if k \not = 1 then Receive required \widehat x-entries to form \=xk

20: zk \leftarrow Rk\=xk \vartriangleright local SpMV
21: wk \leftarrow D - 1

k zk \vartriangleright local sparse triangular solve
22: xk \leftarrow gk  - wk

the right-hand-side vector \widehat g (line 16) for the sequential solution of the reduced system
to obtain \widehat x (line 17). Here \widehat x corresponds to those unknowns in x which are at the
interface of the partitioning of L, and obtaining them decouples the global lower
triangular system into independent much smaller systems. P1 sends only those x-
vector entries that are required by other processors (line 18) so that each processor
Pk forms its \=x vector (line 19) to perform local SpMV (line 20).

The communication overhead in each iteration of dmpGS is as follows. The
communication volumes incurred by h=Ux (line 11) and z=Rx (line 20) are equal
to the number of nonzero column segments in the off-diagonal blocks of U and L,
respectively. Thus the communication volume required by these two SpMVs is equal to
the total number of off-diagonal nonzero column segments in A (offD nzCol seg(A)).
The volume of communication incurred at line 16 is equal to the size of the reduced
system, | \scrC | . Therefore, the total communication volume of dmpGS is

commVol = offD nzCol seg(A) + | \scrC | .(3.1)

Note that the different row blocks (Rk) seem to vary in the number of columns
because of the triangular structure of the problem. On the other hand, the compu-
tational load imbalance is alleviated by the proposed partitioning model which also
gathers most of the nonzeros to the diagonal blocks.
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4. The proposed partitioning and reordering model. We propose a two-
phase model for reducing the communication overhead of dmpGS while maintaining
computational balance as well as reducing the sequential computational overhead in-
curred by solving the reduced system at each iteration. This computational overhead
is proportional to the number of nonzeros in the off-diagonals of \widehat S. In subsection 4.1,
we propose a novel HP model as the first phase which simultaneously encodes the
minimization of the reduced system size | \scrC | and the communication volume. De-
creasing | \scrC | is important because it not only directly contributes to reducing the
communication volume but also relates to decreasing the computational overhead. In
subsection 4.2, we propose an in-block reordering method as the second phase which
refines the improvement further by decreasing the number of nonzeros in \widehat S. We pro-
vide the illustrations showing the effect of the proposed partitioning and reordering
model on a sample matrix in subsection 4.3.

4.1. HP model. The partitioning objective in this phase is minimizing the sum
of communication volume overhead (3.1) and sequential overhead costs with proper
scaling:

PartObj = commV ol + (\alpha  - 1)| \scrC | 
= (offD nzCol segs(A) + | \scrC | ) + (\alpha  - 1)| \scrC | 
= offD nzCol segs(A) + \alpha | \scrC | .(4.1)

Here \alpha denotes the scaling factor between the effect of the reduced system size and
the number of off-diagonal nonzero column segments on the overall overhead.

4.1.1. Definitions and layout. We define a column as L-cut if it connects at
least one off-diagonal block in the lower triangular part. That is, a column ci in kth
column block \scrB ck is L-cut if it connects a row block \scrB r\ell with \ell >k. Since L-cut columns
of A are the nonzero columns of R, the number of L-cut columns (L-cut cols(A)) is
equal to the reduced system size, | \scrC | . Therefore, the partitioning objective (4.1) can
be rewritten as

PartObj = offD nzCol segs(A) + \alpha (L-cut cols(A)).(4.2)

Let \scrH CN (A)=(\scrV ,\scrN ) be the column-net hypergraph of an m\times m sparse matrix A
with nonzero diagonal entries. An ordered partition \Pi K=\langle \scrV 1,\scrV 2, . . . ,\scrV K\rangle of\scrH CN (A)
is decoded as a partial symmetric row and column reordering of A as explained in
section 2.2. Each net ni of \scrH CN (A) connects vertex vi since A(i, i) \not = 0 for each
1\leq i\leq m. A net ni with vi\in \scrV k is called L-cut if it connects at least one vertex part
\scrV \ell such that \ell >k. The set of L-cut nets is denoted as \scrN Lcut. We define a new type
of cutsize, which we call the L-cut-net metric, as

csLcut(\Pi K) =
\sum 

n\in \scrN Lcut

cost(n).(4.3)

Finally, the cost of partition \Pi K is defined as the sum of connectivity metric with
unit net cost and L-cut-net metric with net cost \alpha , i.e.,

costconn+Lcut(\Pi K) =
\sum 

n\in \scrN cut

(\lambda (n) - 1) + \alpha | \scrN Lcut| .(4.4)

Here, each cut net n incurs \lambda (n) - 1, and each L-cut net incurs \alpha to the cutsize.
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Lemma 4.1. A column ci of A is L-cut iff net ni of \scrH CN (A) is L-cut.

Proof. Due to symmetric row-column ordering, ci is in \scrB ck iff ri is in \scrB rk, which
corresponds to vi\in \scrV k. Furthermore, ci connects \scrB r\ell iff ni connects \scrV \ell . Therefore, ci
in \scrB ck connects \scrB r\ell iff ni with vi\in \scrV k connects \scrV \ell , where \ell >k.

Proposition 4.2. Minimizing costconn+Lcut(\Pi K) for a K-way partition \Pi K of
\scrH CN (A) corresponds to minimizing the partitioning objective (4.2).

Proof. By Lemma 4.1, the number of L-cut nets in \scrH CN (A) is equal to the
number of L-cut columns in A. Thus \alpha | \scrN Lcut| =\alpha (L-cut cols(A)). Furthermore,
it is known by [18] that

\sum 
n\in \scrN cut

(\lambda (n) - 1)=offD nzCol segs(A).

Each vertex is associated with a weight equal to the number of nonzeros in the re-
spective row of the matrix, i.e., w(vi)=nnz(A(i, :)). Thus, the partitioning constraint
of maintaining balance on part weights approximately encodes the computational load
balance during aggregate two triangular SpMVs (lines 11 and 20) and two triangular
solves (lines 13 and 21).

The cut-net splitting technique has been successfully used within the RB frame-
work to encode the minimization of the connectivity metric [18]. However, to the
best of our knowledge, there exists no tool or model for encoding the minimization
of the L-cut-net metric in the literature. We propose to use the RB framework with
novel net anchoring and splitting schemes to encode the minimization of the L-cut-net
metric.

4.1.2. RB model. At each RB step, an ordered bipartition \Pi 2= \langle \scrV U ,\scrV L\rangle of \scrV 
is decoded as ordering the vertices of \scrV L after those of \scrV U . Here \scrV U and \scrV L denote
the upper and lower vertex parts, respectively. In RB, the concept of L-cut net takes
a special form. In a bipartition \Pi 2=\langle \scrV U ,\scrV L\rangle , a net ni is L-cut if vi is assigned to \scrV U
and ni connects at least one vertex vj such that vj \in \scrV L. The partitioning objective
at each RB step is to minimize

costRB(\Pi 2) = | \scrN cut| + \alpha | \scrN Lcut| .(4.5)

For encapsulating the connectivity and L-cut-net metrics simultaneously, each
net ni in \scrH CN (A) is replicated as two different kinds of nets, namely, conn-net nc

i

and lcn-net n\ell 
i . Here, conn-nets encapsulate the connectivity metric, whereas lcn-

nets encapsulate the L-cut-net metric. The motivation for net replication is the
requirement of different net splitting and net removal procedures for encoding the
connectivity and L-cut-net metrics at each RB step. In order to encapsulate the RB
objective (4.5), we assign unit cost to the conn-nets and cost \alpha to the lcn-nets. We
refer to the hypergraph formed by these replicated nets as \scrH .

We extend \scrH = (\scrV ,\scrN ) into a hypergraph \scrH \prime = (\scrV \prime ,\scrN \prime ) so that minimizing the
number of conventional cut nets in \scrH \prime encodes minimizing (4.5). We introduce new
fixed vertices vU \in \scrV U and vL\in \scrV L to form the extended vertex set \scrV \prime =\scrV \cup \{ vU , vL\} .
We represent each lcn-net n\ell 

i in \scrH as a pair of nets \^n\ell 
i and \v n\ell 

i in \scrH \prime . \^n\ell 
i is the same as

n\ell 
i except it is U -anchored (connects vU ). \v n\ell 

i is a 2-pin L-anchored net which connects
vL and vi. That is, for each net ni in \scrH CN (A), \scrH \prime contains nets nc

i , \^n
\ell 
i , and \v n\ell 

i , where

Pins(nc
i ,\scrH \prime ) = Pins(ni,\scrH CN (A)),

P ins(\^n\ell 
i ,\scrH \prime ) = Pins(ni,\scrH CN (A)) \cup \{ vU\} , and

Pins(\v n\ell 
i ,\scrH \prime ) = \{ vi, vL\} .

The nets in the extended hypergraph for a sample 3-pin net are shown in Figure 3.
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Fig. 3. Net ni in \scrH CN (A) is replicated as conn-net nc
i and lcn-net n\ell 

i to form \scrH . Net n\ell 
i in

\scrH is represented by a pair of nets \^n\ell 
i and \v n\ell 

i in \scrH \prime .

We form \scrH \prime at the beginning and apply RB steps until reaching the desired part
count, K. The resulting K-way partition \Pi \prime 

K of \scrH \prime induces a K-way partition \Pi K

of \scrH CN (A). \scrH is an in-between hypergraph introduced for the sake of clarity of
presentation and is not constructed during implementation. We explain the proposed
net splitting and removal methods on \scrH and show the correspondence on \scrH \prime . We
consider that each bipartition \Pi \prime 

2=\langle \scrV \prime 
U ,\scrV \prime 

L\rangle of \scrH \prime induces a bipartition \Pi 2=\langle \scrV U ,\scrV L\rangle 
of \scrH . Here \scrH and \scrH \prime refer to the respective hypergraphs just before the current RB
step. New hypergraphs \scrH U and \scrH L are constructed according to \Pi 2 = \langle \scrV U ,\scrV L\rangle as
follows. For both conn- and lcn-nets, each internal net in \scrV L and \scrV U is, respectively,
included in \scrN L and \scrN U as is. In the net splittings, a new conn- or lcn-net is added
to the net list of \scrH U or \scrH L only if it has more than one pin. The single-pin nets are
discarded since they cannot contribute to the cutsize in the following RB steps.

For cut conn-nets, we apply the conventional cut-net splitting procedure [18] to
encapsulate the connectivity metric. If a conn-net nc

i is cut, then nc
i is split into two

pinwise disjoint nets in \scrH U and \scrH L such that

Pins(nc
i ,\scrH U )=Pins(nc

i ,\scrH ) \cap \scrV U and Pins(nc
i ,\scrH L)=Pins(nc

i ,\scrH ) \cap \scrV L.

For lcn-nets, we introduce a hybrid cut-net splitting/removal method in order
to correctly encapsulate the L-cut-net metric. At each RB step, for each net pair
(\^n\ell 

i , \v n
\ell 
i) in a bipartition \Pi \prime , we consider the state of n\ell 

i in \Pi where Pins(n\ell 
i ,\scrH ) =

Pins(\^n\ell 
i ,\scrH \prime ) - \{ vU\} for ease of understanding. If an lcn-net n\ell 

i is not internal, then it
can be L-cut or ``cut but not L-cut.""

If n\ell 
i is L-cut, then we apply cut-net removal for ni. This is because when ni is

L-cut in an RB step, it also becomes L-cut in the final K-way partition. Hence there
is no need to track this net anymore, and we do not include it in further bipartitions.

If n\ell 
i is cut but not L-cut, then we apply net removal towards \scrH U and net-L-

splitting towards \scrH L. That is, n
\ell 
i is added to \scrH L as Pins(n\ell 

i ,\scrH L)=Pins(n\ell 
i ,\scrH )\cap \scrV L.

This is because n\ell 
i cannot be L-cut in further bipartitionings of \scrH U but it has the

potential of becoming L-cut in further bipartitionings of \scrH L. In the extended hyper-
graph context, this corresponds to adding lcn-net pair (\^n\ell 

i , \v n
\ell 
i) to \scrH \prime 

L such that

Pins(\^n\ell 
i ,\scrH \prime 

L) = (Pins(n\ell 
i ,\scrH \prime ) \cap \scrV \prime 

L) \cup \{ vU\} and Pins(\v n\ell 
i ,\scrH \prime 

L) = \{ vi, vL\} .

Figure 4 shows all possible cases for a sample lcn-net. The first, second, third, and
last horizontal layers, respectively, show the bipartition \Pi \prime 

2 of \scrH \prime , the corresponding
bipartition \Pi 2 of \scrH , \scrH U and \scrH L induced by \Pi 2, and the corresponding \scrH \prime 

U and \scrH \prime 
L

induced by \Pi \prime 
2. If n

\ell 
i is L-cut in \scrH as in Figure 4(a), both \^n\ell 

i and \v n\ell 
i are cut in \Pi \prime 

2. If
n\ell 
i is cut but not L-cut as in Figure 4(b), or if n\ell 

i is internal to \scrV L as in Figure 4(c),
then only \^n\ell 

i is cut. Otherwise, if n\ell 
i is internal to \scrV U as in Figure 4(d), then only \v n\ell 

i

is cut.
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(a) n\ell 
i is L-cut. (b) n\ell 

i is cut, not L-cut. (c) n\ell 
i is internal to

\scrV L.
(d) n\ell 

i is internal to
\scrV U .

Fig. 4. All cases for n\ell 
i and corresponding net pair (\^n\ell 

i , \v n
\ell 
i) after bipartition \langle \scrV \prime 

U ,\scrV \prime 
L\rangle .

Lemma 4.3. Consider the bipartition \Pi 2=\langle \scrV U ,\scrV L\rangle of \scrH induced by a bipartition
\Pi \prime 

2=\langle \scrV \prime 
U ,\scrV \prime 

L\rangle of \scrH \prime in an RB step. If a net is L-cut in \Pi 2, then it incurs 2 cut nets
in \Pi \prime 

2. Conversely, if a net is not L-cut in \Pi 2, then it incurs 1 cut net in \Pi \prime 
2.

Proof. If n\ell 
i is L-cut in \Pi 2 of \scrH , then vi \in \scrV U and n\ell 

i connects a vertex vj such
that vj \in \scrV L. In \Pi \prime 

2 of \scrH \prime , \^n\ell 
i is cut since it connects vi \in \scrV \prime 

U and vj \in \scrV \prime 
L, and \v n\ell 

i is
also cut since it connects vi\in \scrV \prime 

U and vL\in \scrV \prime 
L.

If n\ell 
i is not L-cut and vi \in \scrV L in \Pi 2, then \^n\ell 

i is cut in \Pi \prime 
2 because it connects

vU \in \scrV \prime 
U and vi\in \scrV \prime 

L, but \v n\ell 
i is not cut since both vi and vL are in \scrV \prime 

L.
If n\ell 

i is not L-cut and vi \in \scrV U in \Pi 2, then n\ell 
i should be internal to \scrV U , because

otherwise any pin in \scrV L would make n\ell 
i to be L-cut. In \Pi \prime 

2, net \^n\ell 
i is internal to \scrV \prime 

U

since both vi and vU are in \scrV \prime 
U , but \v n\ell 

i is cut since it connects vi\in \scrV \prime 
U and vL\in \scrV \prime 

L.

Proposition 4.4. Minimizing the conventional cut-net metric for the bipartition
\Pi \prime 

2 of \scrH \prime encodes minimizing costRB(\Pi 2) defined in (4.5).

Proof. By Lemma 4.3, each L-cut net in \Pi 2 incurs 2 cut nets in \Pi \prime 
2, whereas

all remaining nets in \Pi 2 incur 1 cut net in \Pi \prime 
2. Since the cost of lcn-nets is \alpha ,

the cutsize incurred by lcn-nets in \Pi \prime 
2 is \alpha (| \scrN Lcut| + | \scrN | ). Since conn-nets are of

unit cost, they incur | \scrN cut| to the cutsize of \Pi \prime 
2. Hence the total cutsize of \Pi \prime 

2 is
| \scrN cut| +\alpha | \scrN Lcut| +\alpha | \scrN | . Since \alpha | \scrN | is constant, minimizing the cutsize of \Pi \prime 

2 is
equivalent to minimizing | \scrN cut| +\alpha | \scrN Lcut| , which is costRB(\Pi 2).
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Fig. 5. Sample 2-level RB showing lcn-nets and corresponding matrix partitioning.

Figure 5 shows an example 2-level RB in terms of lcn-nets in \scrH and the corre-
sponding 4-way matrix partitioning. The L-cut nets n\ell 

1, n
\ell 
2, and n\ell 

6 and the corre-
sponding L-cut columns c1, c2, and c6 of A are colored in red background. n\ell 

2 is L-cut
in the first level RB and discarded in the future bipartitions. This is because column
c2 is already counted as L-cut due to nonzero A(6, 2) and should not be counted as
L-cut again due to nonzero A(4, 2) in further bipartitions.

Note that the L-cut net definition can be considered to be similar to the left-cut
net defined in [1] for encapsulating the profile minimization, but the net splitting and
removal strategies are quite different for encapsulating the objective of our problem.

Theorem 4.5. Recursively bipartitioning \scrH \prime by minimizing the cutsize according
to the cut-net metric and applying the proposed net splitting and removal strategies
until reaching K parts encode minimizing the partitioning objective (4.2).

Proof. By Proposition 4.4, recursively bipartitioning \scrH \prime by minimizing the con-
ventional cut-net metric encodes minimizing costRB(\Pi 2) at each RB step. We show
that this encodes minimizing costconn+Lcut(\Pi K). Proposed net splitting and removal
strategies ensure that an L-cut net in \Pi K is also L-cut in \Pi 2 in exactly one RB step.
Since an L-cut net contributes \alpha to both costRB(\Pi 2) and costconn+Lcut(\Pi K), minimiz-
ing \alpha | \scrN Lcut| in each bipartition \Pi 2 encodes minimizing \alpha | \scrN Lcut| in \Pi K . Furthermore,
minimizing the number of cut nets | \scrN cut| at each RB step and applying the cut-net
splitting procedure encodes minimizing the connectivity metric

\sum 
n\in \scrN cut

(\lambda (n) - 1) [18].
Therefore, minimizing the cutsize for each bipartition \Pi \prime 

2 of \scrH \prime encodes minimizing
costconn+Lcut(\Pi K); hence by Proposition 4.2, this corresponds to the partitioning
objective (4.2).

4.2. Reordering within row blocks. Consider the K-way block structure
(e.g., Figure 2) of A induced by the partial symmetric row-column permutation ob-
tained by the HP model (section 4.1). We perform row reordering within the kth
row block of A by considering nonzeros of the kth row block Rk of R. The resulting
row reordering within the kth row block of A is symmetrically applied to the columns
of the kth column block of A. Rk is an mk\times zk matrix, where zk =

\sum k - 1
i=1 mi. For

simplicity, we assume a local indexing for the rows of Rk so that Rk consists of rows
ri with 1\leq i\leq mk.

Recall that in stSpike, fill-in may arise below the top nonzero of each spike in Rk.
The top nonzero of a spike cj in Rk is the nonzero with the minimum row index, i.e.,
top(cj , Rk)=min\{ i : Rk(i, j) \not =0, 1\leq i\leq mk\} . We define the height of a spike cj in Rk
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as the number of reduced system row indices between top(cj , Rk) and mk inclusively,
i.e.,

height(cj , Rk) = | \{ i : top(cj , Rk)\leq i\leq mk, i\in \scrC k\} | ,(4.6)

since only the rows with indices in \scrC k may contribute to the nonzero count of \widehat S. The
height of a spike in Rk constitutes an upper bound on the nonzero count (including the

fill-in) of the corresponding column in \widehat S. In Figure 1(b), the heights of the spikes are
as follows: height(c1, R2)=3, height(c3, R2)=2; height(c1, R3)=1, height(c4, R3)=2,
height(c6, R3)=1, and height(c7, R3)=2. The height of a nonspike column is assumed
to be zero. The objective of in-block reordering is to minimize the total height

K - 1\sum 
k=2

zk\sum 
j=1

height(cj , Rk),(4.7)

which constitutes an upper bound on the nonzero count in off-diagonal blocks of \widehat S.
The last block RK does not contribute nonzeros to \widehat S since \scrC K is empty. Reorderings
within different blocks are completely independent and can be done concurrently.

One straightforward approach is placing the rows whose indices are not among
\scrC k to the bottom of Rk to avoid the nonzeros of the rows that are not in \scrC k to
contribute to (4.7). Let Rk=Rk(\scrC k, :) be the | \scrC k| \times zk submatrix of Rk consisting of
the rows with indices in \scrC k. Then the problem is reduced to reordering only those
rows of Rk since the rest of the rows at the bottom of Rk do not have an impact on
(4.7). The reordering objective for each Rk is to minimize

\sum zk
j=1 height(cj , Rk) with

a simplified height definition, height(cj , Rk) = | \scrC k| +1 - top(cj , Rk). Then the total
height minimization problem is formulated in general as follows: Given any sparse
matrix H\in \BbbR \ell \times n, find a row reordering P that minimizes

\sum n
j=1(\ell +1 - top(cj , PH)).

Theorem 4.6. The total height minimization problem (THMP) is NP-hard.

Proof. We reduce the profile minimization problem (PMP) [1, 46], which is known
to be NP-hard [26, 44], to THMP as follows. Given a symmetric matrix V \in \BbbR n\times n

with nonzero diagonal entries, the objective of PMP is finding a symmetric row-
column reordering P that minimizes

\sum n
j=1(j - top(cj , PV PT )). This minimization

objective is equivalent to maximizing
\sum n

j=1top(cj , PV PT ), since
\sum n

j=1 j is constant.

Any instance PV PT of PMP can be mapped to an instance PV of THMP by simply
removing the column reordering as (PV PT )P = PV . Note that the minimization
objective of THMP, which is

\sum n
j=1(n+1 - top(cj , PV )), is equivalent to maximizing\sum n

j=1top(cj , PV ), since
\sum n

j=1(n+1) is constant. Thus, PV PT is a solution of PMP
iff PV is a solution of THMP since the column reordering itself has no effect on\sum n

j=1top(cj , PV PT )=
\sum n

j=1top(cj , PV ). If there were a polynomial-time solution
to THMP, then one could solve PMP in polynomial time by just applying the row
reordering obtained by THMP on the columns as well. Therefore, PMP can be reduced
to THMP in polynomial time, and since PMP is NP-hard, then so is THMP.

Algorithm 4.1 presents the pseudocode of the proposed heuristic for reordering
the rows of Rk. The efficient implementation of this algorithm requires accessing the
nonzeros of both rows and columns of Rk, so it is stored in both compressed sparse row
and compressed sparse column formats. Cols(ri) denotes the set of columns in row
ri, whereas Rows(cj) denotes the set of rows in column cj . Degree of a row or column
is defined as the number of nonzeros in that row or column, i.e., deg(ri)= | Cols(ri)| 
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Algorithm 4.1 Proposed in-block reordering for Rk where 2\leq k\leq K - 1.
Input: Rk \in \BbbR mk\times zk and set of reduced system row indices \scrC k of Rk.
Output: the permutation vector perm of Rk.

1: Place the rows ri with i /\in \scrC k to the last mk - | \scrC k| indices in any order
2: Consider submatrix Rk=Rk(\scrC k, :) of Rk consisting of rows ri with i\in \scrC k
3: for each row ri of Rk do
4: load(ri)\leftarrow 0
5: for each column cj \in Cols(ri) do load(ri)\leftarrow load(ri)+deg(cj)

6: for d\leftarrow 0 to max row deg do \scrS (d)\leftarrow \{ ri : deg(ri) = d\} 
7: indx\leftarrow 0
8: while indx < | \scrC k| do
9: d\ast \leftarrow min\{ d : \scrS (d) \not = \varnothing \} 

10: ri\ast \leftarrow argmaxri\in \scrS (d\ast ) load(ri) \vartriangleright Select ri\ast \in \scrS (d\ast ) with maximum load
11: indx\leftarrow indx+1
12: perm(indx)\leftarrow ri\ast 

13: \scrS (d\ast )\leftarrow \scrS (d\ast ) - \{ ri\ast \} 
14: for each column cj \in Cols(ri\ast ) do
15: Rows(cj)\leftarrow Rows(cj) - \{ ri\ast \} 
16: Cols(ri\ast )\leftarrow Cols(ri\ast ) - \{ cj\} 
17: for each row ri\prime \in Rows(cj) do
18: Cols(ri\prime )\leftarrow Cols(ri\prime ) - \{ cj\} 
19: load(ri\prime )\leftarrow load(ri\prime ) - deg(cj)
20: \scrS (deg(ri\prime ))\leftarrow \scrS (deg(ri\prime )) - \{ ri\prime \} 
21: deg(ri\prime )\leftarrow deg(ri\prime ) - 1
22: \scrS (deg(ri\prime ))\leftarrow \scrS (deg(ri\prime )) \cup \{ ri\prime \} 

and deg(cj)= | Rows(cj)| . In lines 3--5, we define the load of each row ri as the sum
of degrees of columns cj such that Rk(i, j) \not =0.

The greedy choice utilized in the proposed heuristic is to order the rows with
smaller degrees to upper positions of Rk since placing denser rows to upper positions
incurs more height in (4.7). We further improve our greedy approach by using dynamic
row degrees during the row selection process. When a row is selected, the degree
of each unselected row is decremented by the number of its nonzeros having the
same column index with the nonzeros in the selected row. Since the nonzeros in a
selected row already determine the heights of the respective columns, we do not need
to consider the rest of the nonzeros of these columns in future row selections. When
selecting a row among rows with the same degree, load values of the rows are used as
a tie-breaking strategy. A row with a higher load is preferred to be selected since it
will lead to a larger amount of decrease on the degrees of unselected rows.

In Algorithm 4.1, \scrS (d) denotes the set of rows with degree d. Due to dynamic row
degrees, at each iteration we find the minimum degree d\ast (line 9). Then we choose the
row ri\ast in \scrS (d\ast ) with the maximum load (line 10). After ri\ast is selected, all remaining
nonzeros in each column cj with Rk(i

\ast , j) \not =0 are deleted as in lines 15--18. For each
unselected row ri\prime with Rk(i

\prime , j) \not =0, we dynamically update the load and degree of
ri\prime and the respective degree sets (lines 19--22).

Recall that forming \widehat S in dmpGS requires the computation of nonzeros up to the
largest reduced system row index and any entry beyond that is not required to be
computed for each row block. Hence the total height (4.7) also gives the computational

cost of forming \widehat S since we place Rk at the top of Rk for each 1<k<K.
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PARTITIONING AND REORDERING FOR PARALLEL GS C113

4.3. Illustration. Figure 6 illustrates the effect of applying the proposed par-
titioning and reordering model for K=8 on a sample matrix (msc23052) from the
SuiteSparse Matrix Collection [24]. The nonzero structure of the original matrix, the
structure obtained after applying the proposed HP model, and the final structure after
the proposed in-block reordering are shown in order. Below each ordering of A, the
resulting spike matrix (S) is shown, including the nonzeros of the reduced system (\widehat S)
which are highlighted with red circles. As seen in the figure, the proposed partitioning
and reordering model significantly reduces the nonzero count of the reduced system.
For example, the number of nonzeros in \widehat S - I in Figure 6(d), (e), and (f) are 277,113,
3,593, and 811, respectively. Note that these numbers may seem to be much larger
than the ones appearing in the figures because of the overlapping red circles.

Notice that the proposed HP model gathers most of the nonzeros to the diagonal
blocks so that the off-diagonal blocks become very sparse. Then, the proposed in-block
reordering method gathers the reduced system nonzeros to the upper left corner of
the respective off-diagonal block (Figure 6(f)). This is because we agglomerate the
reduced system row indices to the top within each block, and we apply the resulting
row reordering to the columns symmetrically. Within each off-diagonal block, gather-
ing the rows with reduced system indices to the top corresponds to agglomerating the
columns with these indices, which are actually all the columns having nonzeros, to
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(a) A: original.
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(b) A: HP ordering.
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(c) A: HP\&in-block ordering.
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(d) S: original.
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(f) S: HP\&final ordering.

Fig. 6. Nonzero structure of msc23052: (a) before ordering, (b) after HP for K = 8, (c) after

HP and in-block reordering; (d), (e), (f) the respective spike (S) matrices (the reduced system (\widehat S)
nonzeros are circled in red color).
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C114 T. TORUN, F. TORUN, M. MANGUOGLU, C. AYKANAT

the left. An exception is the first column block since no row reordering is performed
for the first row block.

5. Experiments. We use the HSL software package MC64 [29] for scaling and
permuting the coefficient matrices to avoid a singular L. We select the MC64 option
that maximizes the product of the diagonal entries and then scales to make the ab-
solute value of diagonal entries one and the off-diagonal entries less than or equal to
one. For symmetric matrices, in order not to destroy the symmetry, we apply the
symmetric MC64 if the main diagonal is already zero-free. Otherwise, we apply the
nonsymmetric MC64 to obtain a zero-free main diagonal. For unsymmetric matrices,
we just apply the nonsymmetric MC64.

The experiments are conducted on an extensive dataset obtained from the Suite-
Sparse Matrix Collection [24]. For sufficiently coarse-grained parallel processing, we
select real square matrices that have more than 20,000 rows and between 100,000
and 20,000,000 nonzeros. There are 199 symmetric and 208 unsymmetric matrices in
SuiteSparse satisfying these properties at the time of experimentation. 44 symmetric
and 4 unsymmetric matrices are eliminated because they are singular. The remaining
are 155 symmetric and 204 unsymmetric, a total of 359 sparse matrices on which we
conduct experiments. Table 1 shows the number of instances for each matrix kind.
Kinds are sorted in decreasing order of instance count. The kinds having fewer than
5 instances in our dataset (acoustics, chemical oceanography, counter-example, and
data analytics) are grouped as one kind.

5.1. Partitioning quality. We tested the performance of the proposed parti-
tioning algorithm described in subsection 4.1 against the partitioning quality of the
conventional column-net HP with connectivity metric (cnHP) and graph partitioning
(GP) models. For both cnHP and GP, vertex weights are set as the number of nonze-
ros in the respective rows, whereas nets and edges are assigned unit cost. In cnHP,
the objective is to minimize the number of nonzero off-diagonal column segments. In
GP, the objective is to minimize the number of nonzeros in the off-diagonal blocks.
For unsymmetric matrices, GP is applied on | A| + | AT | . The well-known partitioning
tools METIS [40] and PaToH [19] are used for GP and cnHP models, respectively.

Table 1
Number of instances among different matrix kinds in the dataset.

Kind ID Kind name Sym Unsym Total
1 structural 48 4 52
2 circuit simulation 2 46 48
3 economic 1 33 34
4 semiconductor device 0 33 33
5 computational fluid dynamics 6 27 33
6 2D/3D 19 9 28
7 power network 14 13 27
8 optimization 20 3 23
9 model reduction 13 3 16

10 chemical process simulation 0 15 15
11 theoretical/quantum chemistry 14 0 14
12 electromagnetics 6 4 10
13 thermal 5 4 9
14 materials 2 4 6
15 weighted graph 1 5 6
16 acoustics, oceanography, counter-ex., analytics 4 1 5

All 155 204 359
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PARTITIONING AND REORDERING FOR PARALLEL GS C115

In the proposed model, we use PaToH as the HP tool in each bipartitioning step.
Experiments are conducted with different scaling factors \alpha =1, 2, 5, and 10 for lcn-net
cost assignment. We set the maximum allowable imbalance ratio in each bipartitioning
as \epsilon =0.05. As both METIS and PaToH involve randomized algorithms in the coarsen-
ing phase, five partitioning runs are performed for each instance with different seeds,
and the averages are reported. We conduct experiments for K=8, 16, 32, 64, 128, and
256 parts (processors).

Table 2 shows the results of the comparison experiments in terms of the communi-
cation volume and the reduced system size metrics for dmpGS utilizing the partitions
generated by GP, cnHP, and the proposed model. For each test instance, these metrics
are normalized with respect to the number of rows, and the average for all matrices
are given for each K. Here and hereafter, all averages are given as geometric means.

As seen in Table 2, cnHP achieves considerably lower communication volume and
reduced system size compared with GP, as expected. The average improvement of
cnHP over GP is approximately 10\% for both metrics on K =256. In fact, cnHP is
equivalent to the proposed HP model for \alpha =0. As seen in the table, there is a trade-off
between the reduced system size and the communication volume for varying values of
\alpha for the proposed HP model. Yet the rate of increase in the communication volume
is observed to be larger than the rate of decrease in the reduced system size with
increasing \alpha . For example, for K =64, compared to the cnHP model, the proposed
model slightly increases the communication volume by 0.4\%, 0.5\%, 2.9\%, and 5.9\%,
whereas it significantly decreases the reduced system size by 21.5\%, 25.2\%, 30.7\%, and
32.0\% for \alpha =1, 2, 5, and 10, respectively. Here, \alpha =2 seems to be a balanced choice
since it significantly decreases the reduced system size while it slightly increases the
communication volume. This is reflected in the parallel scalability of the proposed
algorithm, as will be shown in subsection 5.3; thus we set \alpha = 2 in the upcoming
results.

In Figure 7, we provide the performance profiles comparing GP, cnHP, and the
proposed model in terms of the reduced system size. We present the performance
profiles only for K=16, 64, and 256 due to lack of space. A performance profile [27]
shows the comparison of different models relative to the best performing one for each
data instance. On a profile, a point (x, y) means that the respective model is within x
factor of the best result for a fraction y of the instances. For example, the point (1.20,

Table 2
Averages of total communication volume and the reduced system size in dmpGS, both normalized

with respect to the number of rows.

Proposed HP model (sec. 4.1)

K GP cnHP \alpha = 1 \alpha = 2 \alpha = 5 \alpha = 10

C
o
m
m
.
v
o
l.

8 0.158 0.132 0.140 0.139 0.139 0.145
16 0.253 0.217 0.223 0.224 0.224 0.232
32 0.380 0.329 0.332 0.332 0.337 0.347
64 0.547 0.477 0.479 0.479 0.491 0.505

128 0.767 0.681 0.679 0.680 0.697 0.719
256 1.062 0.955 0.948 0.953 0.977 1.012

R
ed

.
sy
s.

si
ze 8 0.048 0.041 0.033 0.032 0.029 0.029

16 0.075 0.066 0.051 0.049 0.045 0.045
32 0.109 0.094 0.074 0.070 0.065 0.064
64 0.149 0.129 0.102 0.097 0.090 0.088

128 0.197 0.174 0.136 0.129 0.119 0.116
256 0.252 0.227 0.177 0.168 0.154 0.149
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Fig. 7. Performance profiles comparing GP, cnHP, and the proposed HP model.

0.60) on the curve of cnHP means that cnHP yields 20\% more reduced system size
than the smallest reduced system size achieved for 60\% of the dataset. Therefore, the
model closest to the top left corner is interpreted as the model with best performance.

As seen in Figure 7, the proposed model outperforms the baseline algorithms in
terms of the reduced system size in the majority of the test instances. As K increases,
the performance gap between GP and cnHP decreases, whereas the performance gap
between the proposed model and both of the baseline models increases significantly.
The proposed model yields the best performance for 69\%, 71\%, 75\%, 82\%, 85\%, and
86\% of the dataset for K=8, 16, 32, 64, 128, and 256, respectively.

The proposed HP model yields very sparse off-diagonal blocks. The number of
nonzeros in any lower off-diagonal block Rk is at most 0.51\%, 0.44\%, 0.35\%, 0.26\%,
0.19\%, and 0.13\% of the total nonzero count of A for K=8, 16, 32, 64, 128, and 256
parts on the average, respectively. As the HP model maintains balance on the nonzero
counts of the whole row blocks, these low nonzero counts in off-diagonal blocks do not
disturb the computational load balance among processors considerably.

5.2. In-block reordering quality. To our knowledge, no in-block reordering
method has been proposed or tested for stSpike in the literature. Therefore, we
compare the improvement gained by applying the proposed in-block ordering method
against a baseline algorithm which does not apply an in-block reordering. In this com-
parison, both the proposed and the baseline reordering methods utilize the partitions
obtained by the HP model (section 4.1). Two quality metrics used in this comparison

are total height and nonzero count in the off-diagonal blocks of \widehat S.
Table 3 shows the ratios of these quality metrics of the in-block reorderings gen-

erated by the baseline to those of the proposed method. For each K value, the results
are given as averages grouped by different matrix kinds, and the last row shows the
average of all instances in the dataset.

As seen in Table 3, the proposed reordering method achieves significant improve-
ment in terms of both quality metrics against the baseline reordering. For example,
for K=64, on overall average, the proposed method achieves 39\times and 18.7\times improve-
ment against the baseline ordering in terms of height and nonzero counts, respectively.
The improvement rate attained in height does not always directly reflect to the im-
provement rate in the nonzero counts since height is an upper bound for fill-in and
the fill-in also depends on the sparsity of the diagonal blocks.

Although the improvement of the proposed reordering against the baseline order-
ing tends to degrade with increasing K, this is expected since there are fewer rows
per block and there is less room for improvement. For example, on overall average,
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Table 3
Total height and nonzero count averages in the off-diagonal blocks of \widehat S.

Kind
ID

K = 8 K = 16 K = 32 K = 64 K = 128 K = 256

Height nnz Height nnz Height nnz Height nnz Height nnz Height nnz
1 1,470.1 518.5 554.1 233.6 263.6 143.1 115.9 67.6 65.9 41.1 37.2 25.4
2 71.9 125.2 63.1 100.6 30.5 61.6 15.8 35.0 8.8 18.7 5.5 11.6
3 1,219.2 331.4 321.2 271.5 296.8 197.2 167.8 152.7 88.2 82.9 46.1 47.8
4 27.7 3.8 16.8 5.3 9.9 5.7 8.8 6.2 6.5 4.5 4.6 3.1
5 260.0 10.0 142.6 9.1 90.3 7.6 63.5 6.3 37.6 4.7 24.5 4.0
6 600.0 123.2 298.3 101.5 148.6 61.3 73.5 37.0 38.7 22.3 22.0 13.6
7 131.8 10.1 67.3 7.4 36.7 5.7 22.8 4.7 14.0 3.8 8.5 3.2
8 513.5 97.3 260.4 59.4 92.2 30.9 48.9 18.5 23.8 11.3 17.0 8.2
9 1,547.9 1,101.3 1,010.9 1,221.2 556.7 641.8 248.6 315.4 102.0 141.6 50.7 70.0

10 29.0 4.8 32.9 10.9 15.0 5.6 12.8 5.2 8.6 3.6 6.0 2.7
11 375.3 619.3 213.3 213.3 112.8 136.6 68.8 89.0 43.2 54.1 25.6 32.0
12 241.2 170.7 121.4 109.1 59.9 66.8 31.8 41.2 18.1 25.2 10.6 14.7
13 18.2 2.7 17.7 3.1 12.7 2.7 13.4 2.6 10.1 2.6 8.2 2.8
14 217.7 231.1 116.5 149.6 59.2 94.0 33.0 54.4 19.1 30.6 12.2 17.7
15 610.4 228.9 277.9 164.6 122.0 91.6 61.8 50.9 31.5 28.3 18.0 16.4
16 15.8 62.2 8.5 31.5 6.0 18.9 4.4 11.9 3.4 7.8 2.7 5.3
All 238.1 57.2 127.1 43.0 65.0 27.8 39.0 18.7 22.7 12.1 14.3 8.3

*The values are the ratios of the results attained by the baseline over the proposed in-block reordering.

the proposed in-block reordering method achieves 57.2\times , 43.0\times , 27.8\times , 18.7\times , 12.1\times ,
and 8.3\times decrease in the nonzero count for K=8, 16, 32, 64, 128, and 256, respectively.

The proposed partitioning and reordering model yields very small reduced systems
whose nonzero counts are significantly low relative to the original system. The average
ratios of the nonzero count of the reduced system over the nonzero count of the original
coefficient matrix, i.e., nnz(\widehat S)/nnz(A), are 0.05\%, 0.12\%, 0.26\%, 0.49\%, 0.87\%, and
1.48\% for K=8, 16, 32, 64, 128, and 256 parts, respectively. These low nonzero
counts of the reduced systems verify the effectiveness of the proposed partitioning
and reordering model in terms of alleviating the sequential computational overhead
of dmpGS.

5.3. Parallel scalability. Parallel experiments are performed on the Sariyer
cluster of UHEM [65] using up to 320 cores over 8 distributed nodes, each containing
40 cores (two Intel Xeon Gold 6148 CPUs) and 192GB memory. The nodes are
connected by an InfiniBand EDR 100 Gbps network.

We implement an MPI+OpenMP hybrid parallel dmpGS to demonstrate the ef-
fectiveness of using stSpike and the proposed model. Throughout this section, the
proposed model refers to the proposed partitioning and in-block reordering model (sec-
tion 4) applied to dmpGS. The number of MPI processes is the same as the number of
parts (K) in a partition. For dmpGS, we experimented with different configurations of
number of processes and threads. We found that the best configuration is 8 processes
per node and 5 threads per process. Therefore, we conduct parallel experiments for
dmpGS using 1, 2, 4, and 8 nodes corresponding to 40, 80, 160, and 320 cores and
K=8, 16, 32, and 64 parts (processes), respectively.

To the best of our knowledge, there is no publicly available true distributed-
memory parallel GS implementation. For comparing the performance of dmpGS,
we also implemented a multithreaded GS (mtGS) by using the multithreaded sparse
triangular system solver (mkl sparse d trsm) and sparse matrix-vector multiplicator
(mkl sparse d mv) of the Intel Math Kernel Library (MKL) [37]. As a baseline, we
obtain the results of mtGS on 40 threads/cores (1 node) by using the GP reordering
since it is shown in [22] that the triangular solution with MKL benefits most from GP.

We tested the parallel scalability of dmpGS for a subset of the dataset since
we have limited core hours on the high performance computing platform. From the
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dataset, we considered the matrices with at least 100,000 rows and 10,000,000 nonze-
ros, for which GS converges with a relative residual of less than 10 - 3 in 500 iterations
with initial guess x=[0, . . . , 0]T and right-hand-side vector f = [1/m, 2/m, . . . , 1]T .
Then we select only those instances with different sparsity structures from each ma-
trix group. There were exactly 12 such matrices in our dataset satisfying these criteria.
The properties of those matrices are shown in Table 4, sorted in decreasing order of
nonzero counts. The sixth and the last column, respectively, show the relative residual
and runtime of mtGS after 500 iterations.

Table 5 shows the average speedup values obtained by dmpGS with GP, cnHP,
and the proposed model over mtGS. We run dmpGS with the proposed model for
\alpha =1, 2, 5, and 10 to observe the effect of scaling factor (\alpha ) on the parallel performance.
As seen in the table, the proposed model achieves significantly higher speedup for
dmpGS over the baseline models for all \alpha . The speedup performance gap between
the proposed and baseline models increases with increasing K, thus confirming the
effectiveness of the proposed model.

We also provide Figure 8 which depicts the performance profiles for comparing
the dmpGS runtime using the proposed model for varying \alpha and K values. We choose
\alpha =2 for better scalability of dmpGS since it yields the best performance for larger
part counts (K = 32 and 64) as seen in both Table 5 and Figure 8. As seen in
Table 5, the proposed model with \alpha =2 yields an average of 1.5\times , 1.9\times , 2.7\times , and
3.2\times higher speedup relative to the best of the baseline models for K=8, 16, 32, and
64, respectively.

Figure 9 shows the results of the strong scaling experiments as speedup curves of
dmpGS with GP, cnHP, and the proposed model. The proposed model significantly

Table 4
The properties of matrices to run dmpGS.

Matrix
Kind

ID
Sym Size Nnz

Relative
residual*

mtGS*
time (s)

msdoor 1 \checkmark 415,863 19,173,163 1.9\times 10 - 4 23.1
af shell1 1 \checkmark 504,855 17,562,051 8.2\times 10 - 4 23.4
af 1 k101 1 \checkmark 503,625 17,550,675 1.1\times 10 - 4 23.4
CoupCons3D 1 416,800 17,277,420 4.0\times 10 - 9 21.8
Freescale1 2 3,428,755 17,052,626 3.0\times 10 - 4 72.7
circuit5M dc 2 3,523,317 14,865,409 1.9\times 10 - 12 72.7
CurlCurl 3 9 \checkmark 1,219,574 13,544,618 2.8\times 10 - 4 35.4
memchip 2 2,707,524 13,343,948 5.4\times 10 - 5 57.5
BenElechi1 6 \checkmark 245,874 13,150,496 6.5\times 10 - 5 15.2
pwtk 1 \checkmark 217,918 11,524,432 1.5\times 10 - 4 13.6
bmw3 2 1 \checkmark 227,362 11,288,630 1.9\times 10 - 4 13.6
bmwcra 1 1 \checkmark 148,770 10,641,602 6.0\times 10 - 4 11.9

*Relative residual and runtime results of mtGS on 40 cores for 500 iterations.

Table 5
Average speedup obtained by dmpGS over mtGS on 40 cores.

K
Number of

GP cnHP
Proposed model

nodes cores \alpha = 1 \alpha = 2 \alpha = 5 \alpha = 10

8 1 40 9.87 8.71 14.85 14.71 14.77 14.51
16 2 80 14.65 13.58 29.07 28.51 28.47 28.25
32 4 160 17.41 16.11 47.28 47.86 47.24 45.89
64 8 320 15.79 17.60 54.96 55.54 50.21 50.65

*The best speedup value obtained for each K is shown in bold.
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Fig. 8. Performance profiles in terms of the dmpGS runtime using the proposed model.
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Fig. 9. Speedup curves of dmpGS with GP, cnHP, and the proposed model (for
K=8, 16, 32, and 64) relative to mtGS on 1 node (40 cores).
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enhances the scalability of dmpGS so that dmpGS scales up to 320 cores on all in-
stances. As seen in the figure, the proposed model outperforms GP and cnHP models
for all of the test instances, significantly so in 9 out of 12. In Figure 9 for memchip,
dmpGS using the proposed model achieves up to 122.2 speedup on 320 cores over
mtGS on 40 cores.

6. Conclusion. We proposed and implemented an stSpike-based dmpGS algo-
rithm. For improving the scalability of dmpGS, we propose an HP-based partitioning
model and an in-block row reordering method. Extensive experiments show that
the proposed HP model significantly decreases the reduced system size with respect
to the baseline models while attaining comparable communication volume. The pro-
posed in-block reordering method leads to a substantial decrease in the computational
cost of both forming and solving the reduced system. Parallel experiments up to 320
cores demonstrate that using the proposed reordering model significantly improves
the scalability of dmpGS.

As a future work, we will consider the parallel solution of the reduced system
to further alleviate the sequential bottleneck. We will also consider an in-block row
reordering which takes the nonzeros of the diagonal blocks into account for further
reducing the nonzero count in the reduced system. Finally, the future work will
include extending the dmpGS algorithm for multiple right-hand-side vectors as it
is very common in modern applications. Using multiple right-hand-side vectors is
expected to further enhance the performance of dmpGS since it enables using higher
level basic linear algebra subprograms (BLAS) compared to the single right-hand-
side case. Moreover, the parallel solution time per right-hand-side vector will further
decrease since the parallel factorization is done only once.
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