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Partitioning Models for Scaling Parallel Sparse
Matrix-Matrix Multiplication

KADIR AKBUDAK, OGUZ SELVITOPI, and CEVDET AYKANAT, Bilkent University

We investigate outer-product–parallel, inner-product–parallel, and row-by-row-product–parallel formula-
tions of sparse matrix-matrix multiplication (SpGEMM) on distributed memory architectures. For each of
these three formulations, we propose a hypergraph model and a bipartite graph model for distributing
SpGEMM computations based on one-dimensional (1D) partitioning of input matrices. We also propose a
communication hypergraph model for each formulation for distributing communication operations. The
computational graph and hypergraph models adopted in the first phase aim at minimizing the total mes-
sage volume and balancing the computational loads of processors, whereas the communication hypergraph
models adopted in the second phase aim at minimizing the total message count and balancing the message
volume loads of processors. That is, the computational partitioning models reduce the bandwidth cost and the
communication hypergraph models reduce the latency cost. Our extensive parallel experiments on up to 2048
processors for a wide range of realistic SpGEMM instances show that although the outer-product–parallel
formulation scales better, the row-by-row-product–parallel formulation is more viable due to its significantly
lower partitioning overhead and competitive scalability. For computational partitioning models, our exper-
imental findings indicate that the proposed bipartite graph models are attractive alternatives to their hy-
pergraph counterparts because of their lower partitioning overhead. Finally, we show that by reducing the
latency cost besides the bandwidth cost through using the communication hypergraph models, the parallel
SpGEMM time can be further improved up to 32%.
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1 INTRODUCTION

We consider the parallelization of sparse matrix-matrix multiplication (SpGEMM) of the formC=
AB in a distributed setting. Based on one-dimensional (1D) partitioning of the input matrices A
and B, four parallel algorithms can be devised:
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Table 1. Partitioning Dimensions and Data Access Requirements of Parallel SpGEMM Algorithms

Partitioning Dimension Data Access Requirement

Parallel SpGEMM Algorithm A B C A B C

OP Outer-Product Parallel colwise rowwise nz-based single single multiple

IP Inner-Product Parallel rowwise colwise
rowwise A-resident single multiple single

colwise B-resident multiple single single

RRP Row-by-Row-Product Parallel rowwise rowwise rowwise single multiple single

CCP Column-by-Column-Product Parallel colwise colwise colwise multiple single single

colwise: columnwise; nz-based: nonzero based.

—Columnwise partitioning of A and row-wise partitioning of B, which induce an outer-
product–parallel algorithm (OP)

—Rowwise partitioning of A and column-wise partitioning of B, which induce an inner-
product–parallel algorithm (IP),

—Rowwise partitioning of both A and B, which induces a row-by-row-product–parallel algo-
rithm (RRP)

—Columnwise partitioning of both A and B, which induces a column-by-column-product–
parallel algorithm (CCP)

OP is based on conformable columnwise partitioning of A and rowwise partitioning of B. A
processor is held responsible for computing the outer product of a column slice of A with the
respective row slice ofB. In this scheme, the elements ofA andB are accessed once and the elements
of the output matrix C are accessed multiple times as the partial results produced for the same
nonzeros of C need to be accumulated.

IP is based on rowwise partitioning of A and columnwise partitioning of B. A processor is held
responsible for computing the inner product of a row slice of A with a column slice of B. IP has
two variants: A-resident and B-resident. In the former, the elements of A and C are accessed once
and the elements of B are accessed multiple times, whereas in the latter, the elements of B and C
are accessed once and the elements of A are accessed multiple times. Since these two variants are
dual, we only consider the former.

RRP is based on rowwise partitioning of both A and B. A processor is held responsible for com-
puting the premultiply of a row slice of A with B. In this scheme, the elements of A and C are
accessed once and the elements of B are accessed multiple times.

CCP is based on columnwise partitioning of both A and B. A processor is held responsible for
computing the postmultiply of A with a column slice of B. In this scheme, the elements of B andC
are accessed once and the elements of A are accessed multiple times. Since RRP and CCP display
similar performance in most of our test cases, we only consider RRP.

Whenever we refer to OP, IP, or RRP, we refer to either the partitioning scheme or the paral-
lel SpGEMM algorithm induced by this partitioning, which should be clear from the context. We
assume the owner computes rule; i.e., the computations related to a portion of the matrix in a dis-
tributed setting are assigned to the processor that owns that portion. Hence, the matrix partitions
also determine the ownership of the computations.

Table 1 compares the described algorithms in terms of their partitioning dimensions and data
access requirements. Observe that all algorithms necessitate multiple accesses to the elements
of a single matrix, whereas the elements of the other two matrices are accessed only once. In a
distributed setting, single accesses do not necessitate communication as the elements of the respec-
tive matrix are processed by a single processor. Multiple accesses, on the other hand, necessitate
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communication on the elements of the respective matrix if these accesses are performed by more
than one processor. The partitioning of the input matricesA and B may or may not induce a natural
partitioning of the output matrix C . We describe how to obtain a partition of C later in detail.

Our main goal in this work is to efficiently parallelize the SpGEMM kernel for large-scale dis-
tributed systems. For this purpose, we propose partitioning models that encode communication-
related objectives. Our contributions are twofold:

—We propose and compare graph and hypergraph partitioning models for OP, IP, and RRP, a
total of six models. These are computational partitioning models as they obtain a partitioning
of the computations on matrices. The aim of all these models is to reduce the total message
volume while maintaining the computational load balance. The hypergraph models cor-
rectly encode the message volume incurred in parallel SpGEMM, while the graph models
approximate it. However, the graph models prove themselves to be worthy alternatives to
the hypergraph models due to their significantly lower partitioning overhead. Among the
computational partitioning models, the hypergraph model for OP is previously investigated
in a distributed setting in Akbudak and Aykanat (2014). Also, the hypergraph and bipartite
graph models for RRP are proposed and utilized in a shared-memory setting (Akbudak and
Aykanat 2017). Nonetheless, we describe them as they are evaluated in our experiments.
The remaining three models are new and belong to this work.

—We further address the communication overheads with the proposed communication hy-
pergraph models for the SpGEMM algorithms. These are different from the computational
partitioning models as they obtain a distribution of the communication operations among
processors. The aim is to reduce the total message count while maintaining a balance on
the message volume loads of processors. The computational partitioning models aim at re-
ducing the message volume, i.e., the bandwidth cost, while the communication hypergraph
models aim at reducing the latency cost. By using the communication hypergraph models
after the computational partitioning models, we are able to address both the bandwidth and
the latency cost, both of which are important for scalability.

We conduct a thorough comparison of the aforementioned models (a total of 12 models) for
three realistic SpGEMM categories of the forms C = AAT (Bisseling et al. 1993; Boman et al. 2005;
Karypis et al. 1994), C = AA (Borštnik et al. 2014; VandeVondele et al. 2012), and C = AB (Linden
et al. 2003) and perform realistic experiments on a large-scale system up to 2048 processors
with the instances in these categories. Considering only the computational partitioning models
(six models), compared to the recent work that uses a hypergraph model for OP (Akbudak and
Aykanat 2014), we improve the parallel SpGEMM time up to 16% on average for the SpGEMM
of the form C = AA. By using the graph models for the SpGEMM algorithms, we decrease the
partitioning overhead about 15× to 35× compared to Akbudak and Aykanat (2014) while
achieving close parallel SpGEMM performance with the hypergraph models. With the further
utilization of the communication hypergraph models (six models), the parallel SpGEMM time is
improved by up to 32%, 13%, and 6% for theC = AAT ,C = AA, andC = AB categories, respectively.

The rest of the article is organized as follows. Section 2 gives the related work on parallelization
of the SpGEMM kernel. The computational graph and hypergraph partitioning models are de-
scribed in Section 3. Section 4 describes the communication hypergraph models. The experiments
are presented in Section 5. Section 6 concludes.

2 RELATED WORK

SpGEMM is a kernel operation in many applications such as molecular dynamics (Challacombe
2000; VandeVondele et al. 2012; Challacombe 1999; Itoh et al. 1995; Schlegel et al. 2001; Li et al. 1993;
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Millam and Scuseria 1997; Daniels et al. 1997; CP2K 2016), linear programming (LP) (Karypis et al.
1994; Bisseling et al. 1993; Boman et al. 2005), domain decomposition-based finite element simu-
lations (Total-FETI 2016; Hapla et al. 2013), multigrid interpolation and restriction (Briggs et al.
2000), breadth-first search from multiple source vertices (Buluç and Gilbert 2011), triangle count-
ing in graphs (Azad et al. 2015), data summarization (Ordonez et al. 2016), similarity join (Ordonez
2010), and item-to-item collaborative filtering in recommendation systems (Linden et al. 2003), all
of which benefit from parallel processing to reduce execution times.

Parallelization of SpGEMM is well studied for shared–memory architectures (MKL 2015;
Patwary et al. 2015), GPUs (Gremse et al. 2015; Bell et al. 2012; Dalton et al. 2013; Liu and Vinter
2014), and distributed memory architectures. Among the works on parallelization for distributed
memory architectures, there are publicly available libraries such as Trilinos (Heroux et al. 2003)
and Combinatorial BLAS (CombBLAS) (Buluç and Gilbert 2011).

The SpGEMM algorithm in the Tpetra (Nusbaum 2011) package of Trilinos uses 1D rowwise par-
titioning of the input and output matrices. It uses theA-resident algorithm so that only the rows of
B are replicated via shift operations on a virtual ring of processors inK stages,K being the number
of processors. CombBLAS (Buluç and Gilbert 2012) uses the SUMMA algorithm (van de Geijn and
Watts 1997) for parallelization and an algorithm based on Doubly Compressed Sparse Column for-
mat (Buluç and Gilbert 2008) as a sequential kernel. In Akbudak and Aykanat (2014), three hyper-
graph models are proposed for outer-product–parallel SpGEMM in order to reduce the message
volume and balance the computational loads of processors. The Distributed Block-Compressed
Sparse Row library (Borštnik et al. 2014), which is developed for linear-scaling quantum simula-
tions performed by CP2K (2016) and VandeVondele et al. (2012) use Cannon’s algorithm (Cannon
1969) and tune SpGEMM kernels for dense blocks.

Theoretical lower bounds on the expected cost of communication in multiplication of sparse
random matrices are studied by Ballard et al. (2013). In order to match these lower bounds,
they propose 3D algorithms that are adaptations of existing dense algorithms (Demmel et al.
2013; Solomonik et al. 2011). Recently, a fine-grained hypergraph model for SpGEMM was
proposed (Ballard et al. 2015). This model encodes the data requirements of each scalar multi-
plication operation, which makes the size of the hypergraph impractical to partition with the
state-of-the-art hypergraph partitioners in case of big SpGEMM instances.

These works except Ballard et al. (2015) do not utilize the sparsity structure of the matrices
in order to reduce the parallelization overheads. The main motivation of the models proposed in
this work is to reduce the parallelization overheads via exploiting the sparsity structures of the
matrices in the SpGEMM kernel. We investigate both graph and hypergraph models in our work
to serve this purpose.

All of the applications mentioned at the beginning of this section may easily benefit from the
proposed partitioning models. However, since our models necessitate partitioning as a prepro-
cessing step, the applications repeatedly performing the SpGEMM operation are better suited for
the proposed models so as to amortize the preprocessing overhead. There are several different
applications that perform SpGEMM in a repeated manner in which the sparsity patterns of the
matrices in the SpGEMM remain the same throughout the iterations while their numerical val-
ues are updated in each iteration. Examples of such applications include similarity join (Ordonez
2010) and collaborative filtering (Linden et al. 2003), both of which may be expressed as SpGEMM
of the formsC = AWA orC = AWB. In similarity join, matrixW is used for relative ranking of the
features, whereas in item-to-item collaborative filtering, it is used for adjusting the importance of
items in the filtering. Repeated SpGEMM also occurs in numerical algebra in the solution of LP
problems (Karypis et al. 1994; Bisseling et al. 1993; Boman et al. 2005) through interior point meth-
ods, in which the positive-definite linear system (AD2AT )x = b is solved in each iteration. Here, A
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is the constraint matrix and D is a positive diagonal matrix that keeps changing. In each iteration,
the coefficient matrix is formed with SpGEMM operationC = AB, with B = D2AT , which changes
the numerical values of the matrices while keeping their sparsity patterns unchanged.

3 PARTITIONING MODELS FOR REDUCING BANDWIDTH COST

We first describe the notation used to represent the hypergraph and bipartite graph models. In the
vertex, net, or edge sets, the superscripts “A,” “B,” and “C” show the association between the ver-
tex/net/edge sets and the matrices, whereas the subscripts “r,” “c,” and “z” respectively imply that
these sets represent rows, columns, and nonzeros of the matrices in the superscripts. For example,
the vertices in the vertex set VC

z represent the nonzeros of matrix C; i.e., VC
z contains a vertex

for each nonzero of C . Two matrix names in a superscript indicate a conformable representation
of rows and/or columns of the respective matrices. That is, for example,VAB

cr contains a vertex vi

for each column i of A and row i of B.
The row i and column i of a matrix, say, A, are respectively denoted with ai,∗ and a∗,i . The

function cols (·) is used to denote the column indices of nonzeros in a row and the function rows (·)
is used to denote the row indices of nonzeros in a column. For example, cols (ai,∗) denotes the
column indices of the nonzeros in row i of A. The function nnz (·) is used to denote the number
of nonzeros in a row, column, or matrix. The functions nrows (·) and ncols (·) are used to denote
the number of rows and columns in a matrix, respectively. To indicate a nonzero element, we use
ai, j ∈ A.

The inner product of two vectors is denoted with “·” (e.g., ai,∗ · b∗, j ) and the outer product of two
vectors is denoted with “⊗” (e.g., a∗,i ⊗ bi,∗). We do not use any symbol for scalar multiplication
(e.g., multiplying a vector with a scalar, ai, jbj,∗), vector-matrix multiply (e.g., premultiplying a ma-
trix with a vector, ai,∗B), and matrix-matrix multiply (e.g., AB). Note that the scalar multiplication
ai, jbj,∗ refers to multiplying the scalar ai, j by the row-vector bj,∗.

We assume there areK processors in the parallel system. The following sections use the concept
of an atomic task, which is defined to be the largest computation that cannot further be divided
among processors; i.e., an atomic task can be executed by only one processor. The partitioning
models assume that the reader is familiar with the notation for graph and hypergraph partitioning.
For details, see Appendix A.

3.1 Outer-Product–Parallel (OP) SpGEMM

In OP, there are two types of atomic tasks: the outer product a∗,x ⊗ bx,∗ and the reduction of partial
results for nonzero ci, j ∈ C . Here, A is partitioned columnwise and B is partitioned rowwise:

Â = AQ = [A1 . . . AK ] and B̂ = QB =

⎡⎢⎢⎢⎢⎢⎢⎣

B1

...
BK

⎤⎥⎥⎥⎥⎥⎥⎦
,

where Q is the permutation matrix obtained via partitioning. Each processor Pk owns the kth
column slice of A and the respective kth row slice of B. A conformable partition of A and B is
desired in order to avoid redundant communication in local outer products. For this reason, the
processor responsible for column x of A is held responsible for row x of B as well.

The partition of A and B does not yield a natural partition of C . Partitioning C corresponds to
determining the processor that will be responsible for accumulating the partial results for each

nonzero ci, j , where ci, j =
∑

k c
(k )
i, j . Here, c (k )

i, j is the partial result produced by Pk for ci, j . We only

focus on obtaining a two-dimensional (2D) partition of C , as it is shown to be more efficient than
the 1D partitions of C (Akbudak and Aykanat 2014).
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The multiplication phase containing the outer products can be performed without any commu-

nication. On the other hand, the computation of ci, j requires partial results c (k )
i, j and may incur

communication since the partial result produced by each such Pk must be sent to the processor re-
sponsible for computing the final value of ci, j . Hence, the computational load balance in the outer
products and reduction operations and the communication costs in communicating nonzeros ofC
are two main performance issues that should be taken into account for scalability of OP.

Note that the hypergraph model described in Section 3.1.1 is already proposed in Akbudak and
Aykanat (2014), while the bipartite graph model in Section 3.1.2 is new and proposed in this work.

3.1.1 Hypergraph Model. The outer-product–parallel SpGEMM is modeled with the hyper-
graph HOP = {VAB

cr ∪VC
z ,NC

z }. There are (ncols (A) = nrows (B)) + nnz (C ) vertices and nnz (C )
nets inHOP .VAB

cr contains a vertexvx for each outer product a∗,x ⊗ bx,∗ andVC
z contains a vertex

vi, j for the reduction of each ci, j . Vertex vx also represents column x of A and row x of B, and vi, j

also represents ci, j . NC
z contains a net ni, j for each ci, j ∈ C , where ni, j captures the dependency

of ci, j to the outer products that produce a partial result for ci, j . Hence, the vertices connected by
ni, j are given by

Pins (ni, j ) = {vx : x ∈ cols (ai,∗) ∧ x ∈ rows (b∗, j )} ∪ {vi, j }.

The weight of vx is the computational load of the respective outer product, i.e., nnz (a∗,x ) ×
nnz (bx,∗). The weight of vi, j is the computational load of the respective reduction operation, i.e.,
the number of partial results produced for ci, j . With a two-constraint weight formulation used to
capture the computational loads of the outer products and reduction operations, the vertex weights
are assigned as

w1 (vx ) = nnz (a∗,x ) × nnz (bx,∗) w2 (vx ) = 0
w1 (vi, j ) = 0 w2 (vi, j ) = |Pins (ni, j ) | − 1.

The nets are assigned unit costs:

c (ni, j ) = 1.

The left of Figure 1 illustrates how a hypergraph models three outer products contributing to two
nonzeros.

3.1.2 Bipartite Graph Model. The outer-product–parallel SpGEMM is also modeled with the bi-
partite graphGOP = {VAB

cr ∪VC
z ,EC

z′ }. There are (ncols (A) = nrows (B)) + nnz (C ) vertices inGOP .

The semantics of the vertices in the vertex setsVAB
cr andVC

z are the same with those inHOP . The
dependency of ci, j to the outer products, however, is captured with edges instead of a net. EC

z′ con-

tains an edge between vx ∈ VAB
cr and vi, j ∈ VC

z if the outer product a∗,x ⊗ bx,∗ produces a partial
result for ci, j . Formally, (vx ,vi, j ) ∈ EC

z′ if ai,x ∈ A and bx, j ∈ B. Thus, an edge represents a partial
result (hence the subscript z ′ rather than z). The number of edges in GOP is equal to the number of
all partial results. The adjacency list of vx is given by the vertices corresponding to the ci, j values
for which the outer product represented by vx produces a partial result, whereas the adjacency
list ofvi, j is given by the vertices corresponding to the outer products that produce a partial result
for ci, j :

Adj (vx ) = {vi, j : i ∈ rows (a∗,x ), j ∈ cols (bx,∗)},
Adj (vi, j ) = {vx : x ∈ cols (ai,∗) ∧ x ∈ rows (b∗, j )}.

In weighting the vertices, the same multiconstraint formulation in HOP is used. The edges are
assigned unit costs as they represent a single partial result:

c ((vx ,vi, j )) = 1.
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Fig. 1. Hypergraph model (left) (Akbudak and Aykanat 2014) and bipartite graph model (right) for outer-
product–parallel SpGEMM with three outer products contributing to two nonzeros. cx

i, j reads as the partial

result produced by the outer product a∗,x ⊗ bx,∗ for ci, j .

The right of Figure 1 illustrates how a bipartite graph models three outer products contributing to
two nonzeros.

3.2 Inner-Product–Parallel (IP) SpGEMM

In IP, an atomic task is defined as the multiplication of row x of A with each column j of B such
that the result of ax,∗ · b∗, j is nonzero, i.e., cx, j ∈ C . The inner products that involve row x of A
are given by the set {ax,∗ · b∗, j : j ∈ cols (cx,∗)}, which we denote with the vector-matrix multiply
ax,∗B. Defining each individual inner product as an atomic task would result in more degrees of
freedom due to finer granularity, which may at first seem to lead to more scalable partitioning.
Doing so, however, requires multiple accesses to elements of both A and B; hence, in a distributed
setting, the elements of both A and B would need to be communicated. For this reason, we prefer
the former, which results in multiple accesses to the elements of only B. In this scheme, A and C
are partitioned rowwise and B is partitioned columnwise:

Â = PA =

⎡⎢⎢⎢⎢⎢⎢⎣

A1

...
AK

⎤⎥⎥⎥⎥⎥⎥⎦
, B̂ = BQ = [B1 · · · BK ] and Ĉ = PCQ =

⎡⎢⎢⎢⎢⎢⎢⎣

C1

...
CK

⎤⎥⎥⎥⎥⎥⎥⎦
,

where P and Q are the permutation matrices obtained via partitioning. Each processor Pk hence
owns the kth row slice of A and C , and the kth column slice of B.

The rowwise partition of A naturally yields a rowwise partition of C since no task other than
ax,∗B contributes to cx,∗ and ax,∗B contributes only to cx,∗. In other words, cx,∗ = ax,∗B. For this
reason, the processor responsible for row x of A naturally becomes responsible for row x of C as
well.

For Pk to perform ax,∗B, it needs to receive the nonzeros in respective columns of B via commu-
nication. Specifically, for a nonzero ax,i in row x of A, Pk needs to receive bi, j from the processor
that owns column j ofB. After processors receive specific nonzeros needed for their inner products,
the computation of C can be performed without any communication. Hence, the computational
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load balance in the inner products and the communication costs in communicating nonzeros of B
are two main performance issues that should be taken into account for scalability of IP.

3.2.1 Hypergraph Model. The inner-product–parallel SpGEMM is modeled with the hyper-
graphHI P = {VAC

rr ∪VB
c ,N B

z }. There are (nrows (A) = nrows (C )) + ncols (B) vertices and nnz (B)
nets inHI P .VAC

rr contains a vertexvx for each vector-matrix multiply cx,∗ = ax,∗B. Vertexvx also
represents both row x of A and row x of C . VB

c contains a vertex vj for each column of B. This
vertex does not signify computation and its sole purpose is to enable the columnwise partition-
ing of B. N B

z contains a net ni, j for each bi, j ∈ B, where ni, j captures the dependency of ax,∗B
computations to bi, j . Hence, the vertices connected by ni, j are given by

Pins (ni, j ) = {vx : x ∈ rows (a∗,i )} ∪ {vj }.

The weight of vx is the computational load of the respective vector-matrix multiply ax,∗B:

w (vx ) =
∑

i ∈cols (ax,∗ )

nnz (bi,∗),

whereas the weight of vj is zero as it does not signify computation. The nets are assigned unit
costs since they indicate the dependency on a single nonzero:

c (ni, j ) = 1.

The left of Figure 2 illustrates how a hypergraph models the relations for three vector-matrix
multiplies needing a total of three nonzeros from two columns of B.

3.2.2 Bipartite Graph Model. The inner-product–parallel SpGEMM is also modeled with the
bipartite graphGI P = {VAC

rr ∪VB
c ,EC

z }. There are (nrows (A) = nrows (C )) + ncols (B) vertices and
nnz (C ) edges in GI P . The semantics of the vertices in the vertex setsVAC

rr andVB
c are the same as

those ofHI P . EC
z contains an edge between vx ∈ VAC

rr and vj ∈ VB
c if the vector-matrix multiply

ax,∗B needs at least one nonzero in column j of B, or in short, if cx, j ∈ C . Formally, EC
z = {(vx ,vj ) :

cx, j ∈ C}. The adjacency list of vx is given by the vertices corresponding to the columns of B
that contain at least one nonzero required for the multiplication represented by vx , whereas the
adjacency list of vj is given by the vertices corresponding to the multiplications that need at least
one nonzero in the column represented by vj :

Adj (vx ) = {vj : j ∈ cols (cx,∗)},
Adj (vj ) = {vx : x ∈ rows (c∗, j )}.

The weights of the vertices in GI P are the same as those of HI P . The edge costs are assigned the
number of nonzeros needed by a vector-matrix multiply:

c ((vx ,vj )) = |{i : i ∈ cols (ax,∗) ∧ i ∈ rows (b∗, j )}|.

The right of Figure 2 illustrates how a bipartite graph models the relations for three vector-matrix
multiplies needing a total of three nonzeros from two columns of B.

3.3 Row-by-Row-Product–Parallel (RRP) SpGEMM

In RRP, an atomic task is defined as the multiplication of row x of A with each row i of B, where a
nonzero ax,i is multiplied with bi,∗. This atomic task is denoted with ax,∗B. Although the atomic
task notation is the same as the one used for IP, this is a different atomic task, as the rows, instead
of columns, of B are multiplied with the rows of A. The set of scalar multiplications necessitated
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Fig. 2. The matrices at top illustrate an SpGEMM instance of the form C = AB. Hypergraph model (left)
and bipartite graph model (right) for inner-product–parallel SpGEMM with three vector-matrix multiplies
needing a total of three nonzeros from two columns of B. Note that the computation of cz,k is not shown
for the sake of clarity of the model drawings.

by row x of A is given by {ax,ibi,∗ : i ∈ cols (ax,∗)}. In this scheme, A, B, and C are all partitioned
rowwise:

Â = PAQ =

⎡⎢⎢⎢⎢⎢⎢⎣

A1

...
AK

⎤⎥⎥⎥⎥⎥⎥⎦
, B̂ = QB =

⎡⎢⎢⎢⎢⎢⎢⎣

B1

...
BK

⎤⎥⎥⎥⎥⎥⎥⎦
and Ĉ = PC =

⎡⎢⎢⎢⎢⎢⎢⎣

C1

...
CK

⎤⎥⎥⎥⎥⎥⎥⎦
,

where P and Q are the permutation matrices obtained via partitioning. Each processor Pk hence
owns the kth row slice of A, B, and C .

The partition of A yields a natural partition of C since no task other than ax,∗B contributes to
cx,∗ and ax,∗B contributes only to cx,∗. In other words, cx,∗ = ax,∗B. For this reason, the processor
responsible for row x of A naturally becomes responsible for row x of C as well.

For Pk to perform ax,∗B, it needs to receive the respective rows of B via communication. Specif-
ically, for a nonzero ax,i in row x of A, Pk needs to receive row i of B from the processor that
owns it. After processors receive needed rows for their scalar multiplications, the computation of
C can be performed without any communication. Hence, the computational load balance in the
scalar multiplications and the communication costs in communicating rows of B are two main
performance issues that should be taken into account for scalability of RRP.
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Note that the models in Sections 3.3.1 and 3.3.2 are utilized in Akbudak and Aykanat (2017) for
improving the performance of SpGEMM on many-core architectures. This work evaluates them in
a distributed setting. The main difference is that partitioning methods proposed in Akbudak and
Aykanat (2017) aim at exploiting cache locality via using a larger number of partitions and looser
allowed imbalance thresholds.

3.3.1 Hypergraph Model. The row-by-row-product–parallel SpGEMM is modeled with the hy-
pergraph HRRP = {VAC

rr ,N B
r }. There are nrows (A) = nrows (C ) vertices and nrows (B) nets in

HRRP .VAC
rr contains a vertex vx for each vector-matrix multiply cx,∗ = ax,∗B. Vertex vx also rep-

resents both row x ofA and row x ofC .N B
r contains a net ni for each row i of B, where ni captures

the dependency of ax,∗B computations to bi,∗. Hence, the vertices connected by ni are given by

Pins (ni ) = {vx : x ∈ rows (a∗,i )}.

The weight of vx is the computational load of the respective vector-matrix multiply:

w (vx ) =
∑

i ∈cols (ax,∗ )

nnz (bi,∗).

Note that a single weight is enough here since there exists a single computational phase and the
rows are needed by tasks as a whole (not specific nonzeros as in IP). The nets are assigned the
costs of number of nonzeros in the respective rows of B in order to indicate the dependency to
rows as a whole:

c (ni ) = nnz (bi,∗).

The left of Figure 3 illustrates how a hypergraph models the relations for three vector-matrix
multiplies needing two rows of B.

3.3.2 Bipartite Graph Model. The row-by-row-product–parallel SpGEMM is also modeled with
the bipartite graph GRRP = {VAC

rr ∪VB
r ,EA

z }. There are (nrows (A) = nrows (C )) + nrows (B) ver-
tices and nnz (A) edges in GRRP . The semantics of the vertex setVAC

rr in bothHRRP and GRRP are
the same. However, there is an additional vertex setVB

r in the bipartite graph model, whereVB
r

contains a vertexvi for each row of B. These vertices do not signify computation; rather, they exist
to help capture computational dependencies and partitioning of B (inHRRP the nets are used for
this purpose). EA

z contains an edge between vx ∈ VAC
rr and vi ∈ VB

r if the vector-matrix multi-
plies ax,∗B needs row i of B for the computation of cx,∗. Formally, (vx ,vi ) ∈ EA

z if i ∈ cols (ax,∗).
Row i of B is actually needed for each nonzero in a∗,i ; hence, there are nnz (A) number of edges.
The adjacency list of vx is given by the vertices corresponding to the rows of B that are required
by the multiplication represented by vx , whereas the adjacency list of vi is given by the vertices
corresponding to multiplications that need the row represented by vi :

Adj (vx ) = {vi : i ∈ cols (ax,∗)},
Adj (vi ) = {vx : x ∈ rows (a∗,i )}.

The weight of vx is the same as that of in HRRP , whereas the weight of vi is zero as it does not
signify computation. The edge costs are assigned the number of nonzeros in the respective rows
of B whose corresponding vertices they are adjacent to:

c ((vx ,vi )) = nnz (bi,∗).

The right of Figure 3 illustrates how a bipartite graph models the relations for three vector-matrix
multiplies needing two rows of B.
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Fig. 3. The matrices at top illustrate an SpGEMM instance of the formC = AB. Hypergraph model (left) and
bipartite graph model (right) for row-by-row-product–parallel SpGEMM with three vector-matrix multiplies
needing two rows of B.

3.4 Decoding Partitions

We now describe how to decode the partitions for OP, IP, and RRP in order to obtain a distribution
of the matrices and the computations on them. Without loss of generality, we assume that proces-
sor Pk is associated with the computational tasks corresponding to the vertices in part Vk of the
partition obtained.

OP. Consider a K-way vertex partition ΠOP = {V1, . . . ,VK } onHOP or GOP . We use the same
partition notation for bothHOP and GOP as they have the same vertex sets. A partVk may contain
vertices from both VAB

cr (e.g., vx ) and VC
z (e.g., vi, j ). A vertex vx ∈ Vk is decoded by assigning

column x of A, row x of B, and the outer product a∗,x ⊗ bx,∗ to Pk . Similarly, a vertex vi, j ∈ Vk is
decoded by assigning ci, j , the reduction of partial results for ci, j , and the possible communication
operation on ci, j to Pk .

IP. Consider a K-way vertex partition ΠI P = {V1, . . . ,VK } on HI P or GI P . Again, we use the
same partition notation for both as their vertex sets are the same. A partVk may contain vertices
from bothVAC

rr (e.g., vx ) andVB
c (e.g., vj ). A vertex vx ∈ Vk is decoded by assigning row x of A,

row x ofC , and the vector-matrix multiply cx,∗ = ax,∗B to Pk . Similarly, a vertexvj ∈ Vk is decoded
by assigning column j of B and the possible communication operation on this column to Pk .
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Table 2. Comparison of Partitioning Models

Requires Hypergraph Bipartite Graph
Symbolic Number of Number of

Multiplication Vertices Nets Pins Vertices Edges
OP Yes ncols (A) + nnz (C ) nnz (C ) #f lops/2 + nnz (C ) ncols (A) + nnz (C ) #f lops/2

IP Yes nrows (A) + ncols (B ) nnz (B ) #f lops/2 + ncols (B ) nrows (A) + ncols (B ) nnz (C )

RRP No nrows (A) nrows (B ) nnz (A) nrows (A) + nrows (B ) nnz (A)

RRP. We consider the partitions on the hypergraph and bipartite graph models separately as
their vertex sets are different. Consider aK-way partition ΠRRP = {V1, . . . ,VK } onHRRP . A vertex
vx ∈ Vk is decoded by assigning row x ofA, row x ofC , and the vector-matrix multiply cx,∗ = ax,∗B
to Pk . Observe that this partition does not directly induce a partition of the rows of B. However,
B can easily be partitioned by associating row i of B corresponding to net ni with one of the
processors corresponding to one of the parts in the connectivity set of this net. Doing otherwise,
i.e., assigning row i to a part that is not in the connectivity set of the respective net, incurs extra
communication.

A K-way vertex partition ΠRRP = {V1, . . . ,VK } on GRRP is decoded in a similar manner. A part
Vk may contain vertices from bothVAC

rr (e.g.,vx ) andVB
r (e.g.,vi ) in the bipartite graph model. A

vertex vx ∈ Vk is decoded in the same way as is done inHRRP . A partition of the bipartite graph,
however, also contains the partitioning information of B within as the rows of B are represented
by the vertices inVB

r . Simply, a vertex vi ∈ Vk is decoded by assigning row i of B to Pk .

Partitioning Constraint and Objective. The partitioning constraint of balancing part weights in
bothHOP and GOP corresponds to maintaining computational load balance in outer product com-
putations and reduction of partial results for nonzeros of C , while in HI P , GI P , HRRP , and GRRP ,
it solely corresponds to maintaining computational load balance in the respective vector-matrix
multiply. The partitioning objective of minimizing cutsize in HOP , HI P , HRRP and in GOP , GI P ,
GRRP differs as the hypergraph models correctly encapsulate the message volume incurred dur-
ing parallel SpGEMM, while the bipartite graph models encapsulate an approximation of the same
metric. In O, the bipartite graph model encodes the data dependencies as if a processor Pk will send

multiple partial results (say ck1
i, j , c

k2
i, j , c

k3
i, j , all produced by Pk ) for the same nonzero ci, j to Pl that is

responsible for reducing this nonzero (i.e., ci, j = c
k1
i, j + c

k2
i, j + c

k3
i, j ) without first summing them itself.

This overestimates the message volume incurred in parallel SpGEMM (here, the bipartite graph
model encodes it as three elements being sent; however, it is only one as Pk first sums them). In
a similar manner, in IP or RRP, the bipartite graph model encodes the data dependencies as if a
processor Pk expands (sends) the same column b∗, j or row bi,∗ to Pl multiple times, where in real-
ity it will be sent only once as they are the same values, which again overestimates the message
volume. Note that the bandwidth requirements of the bipartite graph models are equal to #f lops/2
in the worst case, which occurs when all edges are on the cut. The respective hypergraph models
refrain from these issues by correctly encoding the multiway directed relations with nets instead
of edges.

3.5 Comparison of Partitioning Models

We compare the models described so far in Table 2. The models are compared with respect to
their sizes and symbolic multiplication requirements. In the table, #f lops refers to the number
of multiply-and-add operations performed for C = AB under the assumption that each scalar
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multiplication requires an addition. Hence, #f lops/2 ≥ nnz (C ), and in general #f lops 	 nnz (C ).
Note that #f lops/2 is equal to the number of partial results produced for nonzeros of C .

A symbolic multiplication for an SpGEMM algorithm is required when the computation pattern
of the output matrix C is needed to determine the topology of the respective model. OP and IP
require a symbolic multiplication since the partitioning models for both require full access to the
actual computation that forms C . RRP, on the other hand, does not require a symbolic multiplica-
tion as the topology can be directly obtained from the sparsity patterns of A and B. This can be
apparently seen in Table 2 as the number of pins in the hypergraph models and number of edges
in the bipartite graph models for OP and IP involve nnz (C ) and/or #f lops , both of which can only
be determined by performing a symbolic multiplication. In this regard, it can be said that RRP has
an inherent advantage over OP and IP.

When the hypergraph models are compared among themselves, it can be said that the hyper-
graph model for OP has the highest number of vertices, whereas the hypergraph model for RRP
has the smallest. The hypergraph model for RRP among them again has the smallest number of
nets and pins. Hence, it is expected that the hypergraph model for RRP will have a lower partition-
ing overhead compared to the other two. Among the bipartite graph models, the one for OP has
the highest number of vertices and edges, and hence it is expected to have the highest partitioning
overhead among the models. When a hypergraph model and a bipartite graph model are compared
for a specific SpGEMM algorithm, although their sizes seem comparable, in practice the bipartite
graph model is likely to have a considerably lower partitioning overhead as the graph partitioners
are usually faster than the hypergraph partitioners due to the inherent complexity of dealing with
hypergraphs (Çatalyürek and Aykanat 1999a).

4 PARTITIONING MODELS FOR REDUCING LATENCY COST

In this section, we propose new models to reduce the latency cost of parallel SpGEMM. All models
described up to this section aim at reducing the total message volume. In order to address the
latency cost, we make use of a model called communication hypergraph. This model is successfully
used to improve the performance of 1D- and 2D-parallel sparse matrix-vector multiplication on
distributed systems (Uçar and Aykanat 2004). Here, we describe three such novel models for OP,
IP, and RRP.

4.1 Basics

The main goal of the communication hypergraph model is to obtain a distribution of commu-
nication operations among processors. The hypergraph and bipartite graph models described in
Section 3 are computational partitioning models as the vertices of these models represent compu-
tational tasks. In the communication hypergraph model, however, the vertices represent communi-
cation operations and the nets represent the processors in the system. A communication operation
in an SpGEMM algorithm is determined according to the adopted partitioning and can be of two
types: (i) sending matrix elements possibly to multiple processors or (ii) receiving matrix elements
possibly from multiple processors. The former is referred to as an expand type of operation and
the latter is referred to as a reduce type of operation.

If a processor participates in a communication operation, the net corresponding to that proces-
sor connects the vertex representing the respective communication operation. Since the commu-
nication operations are to be distributed among K processors, a K-way partitioning is performed,
and as a result of this partitioning, the communication operations corresponding to the vertices in
the kth part are, without loss of generality, associated with processor Pk . The partitioning objec-
tive of minimizing cutsize (2) minimizes the total message count, while the partitioning constraint
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of maintaining balance on part weights (1) preserves a balance on the message volume loads of
processors. For more details, see Uçar and Aykanat (2004) and Selvitopi and Aykanat (2016).

To denote the communication operations in parallel SpGEMM, we use the sets X and R for
parallelizations that contain the eXpand type and Reduce type of communication operations, re-
spectively. Each element of these sets is a two-tuple in which the first entry of the tuple is the data
being communicated and the second entry is the set of processors that communicate this data. The
elements of X and R are used to form the communication hypergraphs.

The communication hypergraph models rely on the partitioning information obtained with the
computational partitioning models and they differ in their formation with respect to the computa-
tional model utilized. In order to avoid confusion between the computational partitioning models
and the communication hypergraph models, we respectively use “nodes” and “processor nets” to
refer to the vertices and the nets of the communication hypergraphs.

4.2 Outer-Product–Parallel (OP) SpGEMM

The responsibility of a communication operation on ci, j in OP is originally assigned to processor
Pk if the vertex representing ci, j is in partVk as the result of partitioning the computational model
HOP orGOP (Section 3.4). The proposed communication hypergraph model presents an alternative
way for the assignment of communication operations on nonzeros of C with the reduction of the
latency cost being the primary objective.

In OP, the communication operations are denoted with ROP and they are reduce-type opera-
tions that are performed on nonzeros of C . Hence, |ROP | ≤ nnz (C ), as not all nonzeros of C may
necessitate communication. An element in ROP is given by the tuple (ci, j ,Pi, j ), where Pi, j is the
set of processors that participate in communicating ci, j , and |Pi, j | > 1 since otherwise no commu-
nication is needed.

In the computational hypergraph model for OP, the set of communication operations is de-
termined from the set of external nets; hence, |ROP | is equal to the number of external nets in
a partition of HOP . Utilizing the partition ΠOP = {V1, . . . ,VK } of HOP = {VAB

cr ∪VC
z ,NC

z }, the
communication operations and the processors that participate in reducing ci, j are formed as fol-
lows:

Pi, j =
{
Pk : vx ∈ Pins (ni, j ) ∧vx ∈ VAB

cr ∧vx ∈ Vk

}
.

Recall that vx represents column x of A and row x of B and the outer product of them, a∗,x ⊗ bx,∗,
and ni, j is the net that captures the dependency on ci, j .

In the computational bipartite graph model, the set of communication operations is given by
the set of boundary vertices belonging to VC

z ; hence, |ROP | is equal to the number of boundary
vertices of this set in a partition of GOP . For the partition ΠOP on GOP = {VAB

cr ∪VC
z ,EC

z′ },

Pi, j =
{
Pk : vx ∈ Adj (vi, j ) ∧vx ∈ VAB

cr ∧vx ∈ Vk

}
.

That is, to compute the final value of ci, j , the processor responsible for ci, j receives a partial result
from each Pk ∈ Pi, j .
ROP is then used to form the communication hypergraph HCOM

OP
= {U ,N} for the outer-

product–parallel SpGEMM. U contains a node ui, j for each (ci, j ,Pi, j ) ∈ ROP and N contains a
processor net pk for each processor Pk . pk connects ui, j if Pk produces a partial result for ci, j :

Pins (pk ) = {ui, j : ui, j ∈ U ∧ Pk ∈ Pi, j } ∪ {ufk
}.

This processor net also connects another nodeufk
, which is referred to as a fixed node. Fixed nodes

are included to later decode the assignment of communication operations to processors and ufk

is fixed to partUk in the partitioning, for k = 1, . . . ,K . All nodes have unit weights, which is the
preferred case when the communication operations are of reduce type (Uçar and Aykanat 2004).
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Note that if we had utilized nonunit weights, we would have balanced the load on received matrix
elements, not sent, which would not be very useful. Processor nets are assigned unit costs.

4.3 Inner-Product–Parallel (IP) SpGEMM

The responsibility of a communication operation onb∗, j in IP is originally assigned to processor Pk

if the vertex representing b∗, j is in partVk as the result of partitioning the computational models
HI P or GI P (Section 3.4). As in OP, the purpose of the proposed communication hypergraph model
for IP is to reduce the latency cost.

In IP, the communication operations are denoted with XI P and they are expand type of oper-
ations that are performed on columns of B (specific nonzeros of these columns). Hence, |XI P | ≤
ncols (B), as not all columns of B may necessitate communication. An element in XI P is given by
the tuple (b∗, j ,Pj ), where Pj is the set of processors that participate in communicating nonzeros
of b∗, j , and |Pj | > 1.

In the computational hypergraph model for IP, |XI P | is smaller than or equal to the number
of external nets in a partition of HI P as the nets in HI P represent the nonzeros of B and the
communication operations are defined on columns ofB. Utilizing the partition ΠI P = {V1, . . . ,VK }
ofHI P = {VAC

rr ∪VB
c ,N B

z }, the communication operations and the processors that participate in
expanding nonzeros of b∗, j are formed as follows:

Pj =
{
Pk : ni, j ∈ Nets (vj ),vx ∈ Pins (ni, j ) ∧vx ∈ VAC

rr ∧vx ∈ Vk

}
.

Recall that vx represents row x of A and its multiplication with B, ax,∗B, vj represents column j of
B, and ni, j is the net that captures the dependency on bi, j .

In the computational bipartite graph model, |XI P | is equal to the number of boundary vertices
belonging toVB

c in a partition of GI P . For the partition ΠI P of GI P = {VAC
rr ∪VB

c ,EC
z },

Pj =
{
Pk : vx ∈ Adj (vj ) ∧vx ∈ VAC

rr ∧vx ∈ Vk

}
.

That is, the processor responsible for b∗, j sends certain or all nonzeros of this column to each
Pk ∈ Pj for the inner-product computations.
XI P is then used to form the communication hypergraph HCOM

I P
= {U ,N} for the inner-

product–parallel SpGEMM.U contains a node uj for each (b∗, j ,Pj ) ∈ XI P and N contains a pro-
cessor net pk for each processor Pk . pk connects uj if Pk needs at least one nonzero from b∗, j :

Pins (pk ) = {uj : uj ∈ U ∧ Pk ∈ Pj } ∪ {ufk
}.

This processor net also connects another node ufk
(fixed node), which is included to later decode

the assignment of communication operations and is fixed to partUk in the partitioning. The weight
of uj is equal to the volume incurred in communicating b∗, j and it is given from the partition on
HI P ,

w (uj ) =
∑

ni, j ∈N ets (vj )

λ(ni, j ) − 1.

It is not possible to directly form the vertex weights using the partition on GI P . For this reason, the
matrices in SpGEMM are used to form the vertex weights. Processor nets are assigned unit costs.

4.4 Row-by-Row-Product–Parallel (RRP) SpGEMM

Originally, for the computational model HRRP , the responsibility of a communication operation
on bi,∗ is assigned to a processor corresponding to one of the parts connected by ni (note that ni

represents bi,∗), i.e., a processor corresponding to one of the parts in Λ(ni ) (Section 3.4). For the
computational modelGRRP , the responsibility is assigned to processor Pk if the vertex representing
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bi,∗ is in partVk (Section 3.4). As in the two previous communication hypergraph models, the pur-
pose of the proposed communication hypergraph model for RRP is also to reduce the latency cost.

In RRP, the communication operations are denoted with XRRP and they are expand-type op-
erations that are performed on rows of B. Hence, |XRRP | ≤ nrows (B), as not all rows of B may
necessitate communication. An element in XRRP is given by the tuple (bi,∗,Pi ), where Pi is the
set of processors that participate in communicating bi,∗, and |Pi | > 1.

In the computational hypergraph model for RRP, |XRRP | is equal to the number of external nets
in a partition of HRRP . Utilizing the partition ΠRRP = {V1, . . . ,VK } of HRRP = {VAC

rr ,N B
r }, the

communication operations and the processors that participate in expanding bi,∗ are formed as
follows:

Pi = {Pk : vx ∈ Pins (ni ) ∧vx ∈ Vk }.
Recall that vx represents row x of A and its multiplication with B, ax,∗B, and ni is the net that
captures the dependency on row i of B.

In the computational bipartite graph model, |XRRP | is equal to the number of boundary vertices
belonging toVB

r in a partition of GRRP . For the partition ΠRRP of GRRP = {VAC
rr ∪VB

r ,EA
z },

Pi = {Pk : vx ∈ Adj (vi ) ∧vx ∈ Vk }.

That is, the processor responsible for bi,∗ sends this row to each Pk ∈ Pi to be multiplied with a
nonzero in a specific row of A.
XRRP is then used to form the communication hypergraph HCOM

RRP
= {U ,N} for the row-by-

row-product–parallel SpGEMM.U contains a nodeui for each tuple (bi,∗,Pi ) ∈ XRRP andN con-
tains a processor net pk for each processor Pk . pk connects ui if Pk needs row bi,∗:

Pins (pk ) = {ui : ui ∈ U ∧ Pk ∈ Pi } ∪ {ufk
}.

This processor net also connects another node ufk
(fixed node), which is included to later decode

the assignment of communication operations and is fixed to partUk in the partitioning. The weight
ofui is equal to the volume incurred in communicating bi,∗ and it is determined from the partitions
onHRRP and GRRP as

w (ui ) = c (ni ) (λ(ni ) − 1) and w (ui ) = nnz (bi,∗) × ( |{Pk : vx ∈ Adj (vi ) ∧vx ∈ Vk }| − 1),

respectively. Processor nets are assigned unit costs.

4.5 Decoding Partitions

We now describe how to decode the partitions obtained as a result of partitioning the communi-
cation hypergraphs for OP, IP, and RRP in order to determine the assignment of communication
operations.

OP. Obtaining a K-way partition ΠCOM
OP

= {U1, . . . ,UK } of HCOM
OP

induces a distribution of
communication operations, where the responsibilities of reduce operations corresponding to the
nodes inUk are assigned to processor Pk . A processor net pk signifies that Pk receives a message
that contains partial results for nonzeros of C from the processors corresponding to the parts in
Λ(pk ) − {Uk }. Note thatUk ∈ Λ(pk ) because of the fixed node ufk

included in the partitioning.

IP and RRP. Obtaining a K-way partition ΠCOM
I P

= {U1, . . . ,UK } of HCOM
I P

and ΠCOM
RRP

=

{U1, . . . ,UK } of HCOM
RRP

induces a distribution of communication operations, where the respon-
sibilities of expand operations corresponding to the nodes in Uk are assigned to processor Pk in
both schemes. In IP, a processor net pk signifies that Pk sends a message that contains nonzeros of
columns of B to the processors corresponding to the parts in Λ(pk ) − {Uk }. In RRP, it is the same
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except this message contains the rows of B. Again, note thatUk ∈ Λ(pk ) because of the fixed node
ufk

included in the partitioning.

Partitioning Constraint and Objective. In partitioning all three communication hypergraph mod-
els, the partitioning objective of minimizing cutsize corresponds to minimizing the total message
count, whereas the partitioning constraint of maintaining balance relates to balancing the message
volume loads of processors.

5 EXPERIMENTS

5.1 Setup

The hypergraph models described in Sections 3.1.1, 3.2.1, and 3.3.1 are partitioned using PaToH
(Çatalyürek and Aykanat 1999b) and the bipartite graph models described in Sections 3.1.2, 3.2.2,
and 3.3.2 are partitioned using MeTiS (Karypis and Kumar 1999). We also used parallel graph
partitioner ParMeTiS (Karypis and Kumar 1998) to further reduce the partitioning overhead of
the bipartite graph models. The maximum allowed imbalance threshold for all partitioners is set
to 10%. Since the partitioners contain randomization, we partition the graphs and hypergraphs
three times with different seeds and report the averages.

The communication hypergraphs described in Section 4 are partitioned using the direct K-way
hypergraph partitioner kPaToH (Aykanat et al. 2008). We preferred kPaToH instead of PaToH
for partitioning the communication hypergraphs as these hypergraphs contain fixed vertices and
kPaToH utilizes a matching algorithm for assigning fixed nodes to parts in the initial partitioning
phase, while PaToH performs the same task in a random manner.

All parallel SpGEMM algorithms are implemented in C and they utilize MPI for communication.
Local SpGEMM computations are implemented using Gustavson’s SpGEMM algorithm (Gustavson
1978). The sequential SpGEMM implementation uses Gustavson’s algorithm as well. The sequen-
tial times are used to obtain the speedups of the parallel algorithms. We used our own sequential
implementation of SpGEMM rather than the sequential implementation of CSparse (Davis 2006)
since we found ours to be faster. The runtimes of SpGEMM algorithms are the averages of 10 runs
performed after a warmup phase of three runs.

The experiments are performed on a BlueGene/Q system. A node in this system consists of 16
PowerPC A2 cores and 16GB RAM. Cores are clocked at 1.6GHz. The nodes are connected with
a 5D torus network with a bandwidth capacity of 40GBps. BlueGene/Q’s MPI implementation is
based on MPICH2.

5.2 Datasets

We evaluate three categories of SpGEMM:C=AAT ,C=AA, andC=AB. Table 3 displays the prop-
erties of the input and output matrices in these categories.

For C=AAT , we test 10 LP constraint matrices from the UFL sparse matrix collection (Davis
and Hu 2011). For C=AA, we test 25 instances, 23 of which are again from the UFL sparse matrix
collection. The remaining two instances cp2k-h2o-e6 and cp2k-h2o-.5e7 are obtained from H2O
simulations performed by CP2K (2016), which involve parallel SpGEMM in order to calculate the
sign of a given sparse matrix.

ForC=AB, we test 10 instances from the UFL sparse matrix collection. Two instances involving
amazon0302 and amazon0312 matrices are used for item-to-item collaborative filtering in recom-
mendation systems (Linden et al. 2003). Here, A represents the similarity between items and B
represents the users’ preferences. To generate B, we utilize a Zipf distribution (with exponent set
to 3.0) to determine the item preferences and a uniform distribution to determine the users that
prefer a specific item. The multiplication of these two matrices gives the candidate items to be
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Table 3. Properties of Input and Output Matrices

Input Matrices

Output MatrixNumber of Nnz in Row Nnz in Column

Matrix Rows Columns Nonzeros Avg Max Avg Max Nnz

C = AAT

cont11_l 1,468,599 1,961,394 5,382,999 4 5 3 7 18,064,261

fome13 48,568 97,840 285,056 6 228 3 14 658,136

fome21 67,748 216,350 465,294 7 96 2 3 640,240

fxm3_16 41,340 85,575 392,252 9 57 5 36 765,526

fxm4_6 22,400 47,185 265,442 12 57 6 24 526,536

pds-30 49,944 158,489 340,635 7 96 2 3 468,266

pds-40 66,844 217,531 466,800 7 96 2 3 637,867

sgpf5y6 246,077 312,540 831,976 3 61 3 12 2,776,645

watson_1 201,155 386,992 1,055,093 5 93 3 9 1,937,163

watson_2 352,013 677,224 1,846,391 5 93 3 15 3,390,279

C = AA

2cubes_sphere 101,492 101,492 1,647,264 16 31 16 31 8,974,526

598a 110,971 110,971 1,483,868 13 26 13 26 7,104,683

bcsstk32 44,609 44,609 2,014,701 45 216 45 216 6,819,653

bfly 49,152 49,152 196,608 4 4 4 4 540,672

brack2 62,631 62,631 733,118 12 32 12 32 3,944,481

cca 49,152 49,152 139,264 3 3 3 3 311,296

cp2k-h2o-.5e7 279,936 279,936 3,816,315 14 24 14 27 17,052,039

cp2k-h2o-e6 279,936 279,936 2,349,567 8 20 8 20 7,846,956

cvxbqp1 50,000 50,000 349,968 7 9 7 9 1,099,432

fe_rotor 99,617 99,617 1,324,862 13 125 13 125 7,175,441

fe_tooth 78,136 78,136 905,182 12 39 12 39 4,914,718

finance256 37,376 37,376 298,496 8 55 8 55 2,297,728

majorbasis 160,000 160,000 1,750,416 11 11 11 18 8,243,392

mario002 389,874 389,874 2,101,242 5 7 5 7 6,449,598

mark3jac140 64,089 64,089 399,735 6 44 6 47 1,817,705

oilpan 73,752 73,752 3,597,188 49 70 49 70 11,609,864

onera_dual 85,567 85,567 419,201 5 5 5 5 1,279,793

pkustk03 63,336 63,336 3,130,416 49 90 49 90 8,924,832

poisson3Da 13,514 13,514 352,762 26 110 26 110 2,957,530

raefsky3 21,200 21,200 1,488,768 70 80 70 80 4,053,376

srb1 54,924 54,924 2,962,152 54 270 54 270 8,388,936

tandem_dual 94,069 94,069 460,493 5 5 5 5 1,420,681

tmt_sym 726,713 726,713 5,080,961 7 9 7 9 14,503,181

torso2 115,967 115,967 1,033,473 9 10 9 10 2,858,293

wave 156,317 156,317 2,118,662 14 44 14 44 10,973,239

C = AB

amazon0302 (A) 262,111 262,111 1,234,877 5 5 5 420
2,717,029

amazon0302-user (B) 262,111 50,000 576,413 2 302 12 27

amazon0312 (A) 400,727 400,727 3,200,440 8 10 8 2,747
7,031,743

amazon0312-user (B) 400,727 50,000 882,813 2 1,675 18 38

(Continued)
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Table 3. Continued

boneS01 (A) 127,224 127,224 6,715,152 53 81 53 81
1,161,045

boneS01.P (B) 127,224 2,394 470,235 4 10 196 513

cfd2 (A) 123,440 123,440 3,087,898 25 30 25 30
1,374,012

cfd2.P (B) 123,440 4,825 528,769 4 10 110 181

denormal (A) 89,400 89,400 1,156,224 13 13 13 13
560,020

denormal.P (B) 89,400 6,000 278,565 3 4 46 55

finance256 (A) 37,376 37,376 298,496 8 55 8 55
487,583

finance256.P (B) 37,376 2,432 120,831 3 20 50 128

offshore (A) 259,789 259,789 4,242,673 16 31 16 31
3,558,234

offshore.P (B) 259,789 9,893 1,159,999 4 13 117 221

s3dkq4m2 (A) 90,449 90,449 4,820,891 53 54 53 54
486,853

s3dkq4m2.P (B) 90,449 1,734 249,749 3 4 144 150

shipsec5 (A) 179,860 179,860 10,113,096 56 126 56 126
1,273,553

shipsec5.P (B) 179,860 2,959 541,099 3 13 183 456

thermomech_dK (A) 204,316 204,316 2,846,228 14 20 14 20
7,874,148

thermomech_dM (B) 204,316 204,316 1,423,116 7 10 7 10

Nnz: number of nonzeros.

recommended to each user. Another application that utilizes SpGEMM form C=AB is the setup
phase of Algebraic Multigrid (AMG) (Bell et al. 2012). The Galerkin product RAP in the setup
phase is a costly operation that necessitates two SpGEMM sof type C=AB. For our experiments,
we only consider the parallelization of interpolation, i.e., AP . Using the tool† provided by the
authors of that work, we generated the interpolation operators for seven matrices (boneS01, cfd2,
denormal, finance256, offshore, s3dkq4m2, shipsec5). A suffix “.P” in the table indicates the
operator matrix. The last instance in this category contains thermomech_dK and thermomech_dM,
which are conformable for multiplication.

5.3 Performance Comparison of Parallel SpGEMM Algorithms

In Table 4, we compare the performance of parallel SpGEMM algorithms OP, IP, and RRP in terms
of communication cost metrics and obtained speedups for K = 512 and 1024. The two measured
cost metrics are total message volume in terms of kilo words and average number of messages sent
by a processor (or average message count). The results are grouped separately for three categories
of SpGEMM. We present the detailed results for each matrix as well as the averages (geometric
means) over the three categories. A bold value indicates the best value attained in the respective
performance metric for a given matrix and K value. The results in the table are obtained with the
hypergraph models. The average values obtained by the algorithms on 1024 processors are also
illustrated with bar charts in Figure 4 to provide a visual comparison. We compare the performance
of bipartite graph and hypergraph models in the following section as the focus of this section is
the comparison of the parallel SpGEMM algorithms among themselves.

In theC=AAT category, OP attains significantly less message volume, achieving 76% to 77% less
message volume than IP and RRP on average for allK . This can be attributed to the fact that fat and
short LP constraint matrices are amenable to better partitioning along the longer dimension, which
is the case for OP. In terms of average message count, OP and RRP achieve close performance,
while IP incurs 37% to 49% more messages than these two on average. In this category, OP obtains
the highest speedups in all test instances due to its significantly lower message volume. However,

†https://github.com/pyamg/pyamg.
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Table 4. Performance Comparison of OP, IP, and RRP Using Hypergraph Models

K=512 K=1024

Msg. vol. (103) Avg. msg. count Speedup Msg. vol. (103) Avg. msg. count Speedup

Matrix OP IP RRP OP IP RRP OP IP RRP OP IP RRP OP IP RRP OP IP RRP

C = AAT

cont11_l 247 414 412 5.8 6.4 5.6 436 409 410 350 578 586 5.8 6.4 5.6 813 735 749

fome13 59 261 264 27.8 44.2 32.1 196 135 140 73 315 316 27.6 52.2 31.5 210 140 175

fome21 38 152 152 14.3 26.7 17.3 217 123 136 50 203 201 14.0 26.6 16.3 220 148 191

fxm3_16 61 208 200 6.2 7.9 4.7 179 100 139 179 406 383 6.1 7.6 4.7 206 116 177

fxm4_6 86 221 227 4.6 8.0 5.2 140 100 111 190 416 416 5.2 9.1 5.8 172 106 141

pds-30 31 126 128 14.8 27.4 17.7 177 107 118 41 169 168 13.6 25.5 15.8 182 107 154

pds-40 39 153 153 15.6 27.6 18.8 204 132 134 50 205 204 14.4 26.6 16.5 236 143 181

sgpf5y6 27 341 330 9.0 14.3 7.7 228 113 150 43 521 518 8.9 17.0 8.5 279 103 170

watson_1 28 214 220 4.3 2.8 2.6 311 236 224 43 325 327 5.1 3.8 3.3 395 312 298

watson_2 32 174 192 3.9 3.6 3.3 386 282 253 51 424 417 4.6 4.0 3.6 532 397 375

Average 49 212 214 8.6 11.8 8.4 232 153 166 78 330 328 8.8 12.7 8.5 284 181 225

C = AA

2cubes_sphere 2,580 2,223 2,234 16.1 20.5 15.6 380 336 355 3,353 2,964 2,970 17.1 23.5 16.5 345 536 588

598a 1,996 1,498 1,510 12.6 14.7 11.9 335 348 358 2,675 2,082 2,089 13.9 16.9 12.8 572 573 598

bcsstk32 3,676 3,673 3,681 8.4 12.1 7.1 254 307 313 5,973 5,795 5,745 9.3 14.7 7.6 270 487 509

bfly 28 111 112 31.5 51.7 31.9 105 86 109 32 137 137 21.0 38.6 21.2 130 108 138

brack2 1,096 844 847 11.9 15.8 10.1 208 206 235 1,552 1,223 1,232 13.7 18.0 11.2 251 231 297

cca 18 55 55 19.8 32.4 19.9 81 74 88 24 70 70 14.1 24.5 14.4 88 79 108

cp2k-h2o-.5e7 1,607 2,282 2,237 14.3 17.1 14.3 374 355 362 2,092 2,954 2,903 13.5 17.4 13.6 410 622 648

cp2k-h2o-e6 367 704 695 15.5 15.0 12.4 373 357 360 478 919 919 14.4 14.5 11.6 545 588 606

cvxbqp1 176 197 198 9.2 11.4 8.1 172 157 172 249 273 277 8.4 10.6 7.2 235 206 223

fe_rotor 1,871 1,470 1,478 15.3 20.7 13.6 286 257 290 2,566 2,084 2,098 16.6 23.8 14.5 441 349 433

fe_tooth 1,267 987 992 12.6 15.9 11.1 226 221 250 1,764 1,391 1,406 14.4 18.3 11.9 297 296 346

finance256 425 474 475 15.2 12.8 9.9 153 178 190 541 674 678 17.7 20.7 13.0 174 189 221

majorbasis 881 572 465 5.9 6.2 3.6 335 343 348 1,283 868 733 6.2 6.8 3.9 554 536 567

mario002 187 266 264 4.7 5.7 5.1 409 396 391 269 380 379 4.7 5.8 5.3 727 680 672

mark3jac140 185 398 348 21.3 30.4 19.5 153 130 157 262 525 461 20.9 35.6 19.8 202 156 185

oilpan 3,596 4,393 4,307 6.1 8.1 5.6 382 362 374 5,514 6,670 6,515 6.7 9.9 5.9 695 666 688

onera_dual 101 204 205 10.5 12.1 9.9 193 173 184 136 274 275 10.5 12.6 9.9 232 215 225

pkustk03 3,912 4,328 4,321 7.5 10.7 6.4 365 351 365 6,128 6,654 6,607 8.4 12.6 6.6 642 608 652

poisson3Da 2,452 1,774 1,744 23.0 39.9 20.5 232 160 230 3,304 2,606 2,514 24.5 42.0 21.7 274 180 292

raefsky3 4,233 4,694 4,587 7.5 10.2 6.1 306 323 338 7,251 7,782 7,564 9.4 12.4 6.9 488 470 526

srb1 4,182 4,463 4,400 7.0 8.8 5.6 249 360 370 6,216 6,744 6,655 7.6 10.7 5.8 256 636 666

tandem_dual 104 220 220 10.7 12.1 9.8 200 179 190 138 293 295 10.7 12.7 9.9 262 225 246

tmt_sym 548 559 557 5.4 5.7 5.0 445 442 443 782 802 798 5.6 5.9 5.0 827 809 803

torso2 342 300 318 5.4 5.6 4.7 299 313 327 501 447 465 5.6 6.0 5.0 487 479 482

wave 2,830 2,112 2,120 14.9 18.9 14.1 290 271 299 3,719 2,870 2,881 15.8 20.4 14.6 354 417 476

Average 696 829 818 11.0 13.9 9.7 252 243 264 971 1,172 1,156 11.3 15.0 9.8 340 351 394

C = AB

amazon0302 0 812 216 0.0 461.0 70.9 359 30 133 0 841 250 0.0 517.4 55.5 684 19 213

amazon0312 0 1564 662 0.0 488.9 124.9 310 63 128 0 1,681 784 0.0 692.5 114.3 668 26 149

boneS01 562 639 581 8.9 12.4 9.1 365 352 354 921 951 865 10.1 13.9 9.6 562 548 589

cfd2 643 645 552 10.6 12.3 10.4 301 296 299 891 926 795 11.7 14.6 11.9 447 412 427

denormal 131 168 149 5.4 6.1 5.3 252 276 272 192 246 216 5.7 6.5 5.5 384 376 362

finance256 250 211 184 13.7 14.0 10.6 104 99 119 330 295 259 18.0 20.1 13.3 112 87 117

offshore 1,152 1,147 1,013 14.2 19.9 13.8 462 374 386 1,544 1,571 1,376 15.6 22.3 14.6 755 584 651

s3dkq4m2 210 280 239 3.9 6.7 6.0 360 366 357 327 437 374 4.0 7.7 6.5 576 569 574

shipsec5 474 583 498 7.8 10.0 7.6 382 373 377 732 851 739 8.2 11.2 7.8 616 651 674

thermomech_dK 550 404 406 5.3 5.7 5.3 347 420 415 806 591 595 5.5 5.9 5.4 654 756 750

Average 406 519 379 8.0 21.6 13.2 305 202 257 594 707 529 8.7 25.3 13.6 494 239 381

bold value: the best value attained in the respective performance metric for a given matrix and a K value.
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Fig. 4. Comparison of parallel SpGEMM algorithms for 1024 processors. The graphs accompany the values
in Table 4. For message volume and count, the lower the better, whereas for speedup, the higher the better.

with increasing K , the speedup performance of RRP gets closer to that of OP due to the increased
importance of latency. For example, at K = 512, OP achieves 40% better speedup than RRP on
average, while at K = 1024, this performance gap reduces to 26%. For a visual comparison of OP,
IP, and RRP on 1024 processors in these metrics of interest, see Figure 4.

In theC=AA category, IP and RRP obtain very close total message volumes, where OP performs
better than these two by obtaining 15% to 17% less message volume on average. RRP achieves the
lowest message count, obtaining 12% to 13% and 30% to 35% fewer messages on average than OP
and IP, respectively. In this category, RRP obtains the highest speedups, which is closely trailed by
OP: out of 50 test instances, RRP obtains the highest speedups in 30 of them and OP in 20 of them,
while IP in none of them. The better performance of OP and RRP in this category can be attributed
to their lower message counts compared to IP. Again, the gap in speedup performances increases
in favor of RRP when K is increased from 512 to 1024. Observe that the message volumes of the
SpGEMM algorithms in the C=AA category are significantly higher than those in the C=AAT

category. This can partially be attributed to the fact that the matrices in theC=AAT category have
relatively fewer nonzeros than the matrices in the C=AA category as seen in Table 3.

In theC=AB category, in both amazon instances, OP has the best performance in both commu-
nication cost metrics, whereas IP has the worst. The inferior performance of IP is because there
are more rows than columns in B (see Table 3), causing the columns of B to be denser compared
to the rows of B, and thus making the partitioning process more difficult for IP. This consequently
incurs a high message count. OP incurs no communication in these two instances (zero message
volume and count) as the large number of rows in B have a very small number of nonzeros, which
reduces the probability of multiple processors contributing to the same nonzero of C . The better
performance of OP in these two metrics is reflected in the speedups for amazon instances. In seven
AMG instances, OP and RRP perform close in terms of parallel SpGEMM time and IP performs
the worst. For the thermomech instance, IP and RRP obtain better speedups than OP due to their
relatively lower message volume. Overall, the best speedup values are obtained by OP, followed
by RRP. If the extraordinary performance of OP in amazon instances is put aside, it can be said that
OP and RRP are equally preferable to IP in this category.

5.4 Performance Comparison of Hypergraph and Bipartite Graph Models

We compare the hypergraph and bipartite graph models in terms of communication cost metrics,
parallel SpGEMM times obtained using these models, and partitioning overhead. The point of
this section is to justify the claim that although the bipartite graph models may perform slightly
worse in communication cost metrics compared to their hypergraph counterparts, they achieve
comparable speedup performance with a significantly lower partitioning overhead. The results
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Fig. 5. The communication statistics, parallel SpGEMM times, and partitioning times of the bipartite graph
models normalized with respect to those of the hypergraph models, for K=1024.

Fig. 6. Performance profiles for the parallel SpGEMM times obtained by the hypergraph (indicated by “HY”)
and the bipartite graph (indicated by “BG”) models for OP, IP, and RRP.

obtained by the bipartite graph models are normalized with respect to those by the hypergraph
models, and they are displayed in Figure 5 for categoriesC = AAT ,C = AA, andC = AB. We present
the results for only K=1024 as the results for other K values are similar. In each bar chart in
Figure 5, there is a separate bar group for each of OP, IP, and RRP. The four bars in each bar group
respectively represent the total message volume, total message count, parallel SpGEMM time, and
partitioning time of the respective bipartite graph model, all of which are normalized with respect
to those of the hypergraph model; i.e., the values obtained by the bipartite graph model for OP are
normalized with respect to those of the hypergraph model for OP, and so forth.

For the instances in all categories, the bipartite graph models usually yield a slightly higher mes-
sage volume than their hypergraph counterparts (see first bar of each bar group), the exceptions
being RRP in the C = AAT category and OP in the C = AB category. The bipartite graph models
usually perform worse in this metric since the hypergraph models correctly encapsulate the parti-
tioning objective of minimizing the total message volume. The bipartite graph models also obtain
higher message counts compared to the hypergraph models: 0% to 5%, 2% to 17%, and 0% to 13%
higher in OP, IP, and RRP, respectively, on average. Figure 5 shows that although generally per-
forming slightly worse in both cost metrics, the bipartite graph models often attain comparable
speedup performance (especially for the instances in theC=AA andC=AB category) with respect
to their hypergraph counterparts in significantly less partitioning time. The bipartite graph models
obtain partitions in 60% to 75%, 77% to 93%, and 48% to 75% less time than the hypergraph models
for OP, IP, and RRP, respectively. A more detailed analysis of the parallel SpGEMM times follows.

In Figure 6, we present the performance profiles for the parallel SpGEMM times obtained by
the hypergraph and bipartite graph models for OP, IP, and RRP to provide a better comparison.

ACM Transactions on Parallel Computing, Vol. 4, No. 3, Article 13. Publication date: January 2018.



Partitioning Models for Scaling Parallel Sparse Matrix-Matrix Multiplication 13:23

The performance profiles are proposed in Dolan and Moré (2002) and they are especially useful
when the number of compared schemes and/or test instances is high. A point (x ,y) in the figure
reads as the respective scheme being within the x factor of the best results in y fraction of the test
cases. In other words, the closer the performance profile of a scheme to the y-axis, the better it
is. In the figure, “HY” stands for the hypergraph model and “BG” stands for the bipartite graph
model. A test instance is the parallel SpGEMM time obtained by a partitioning model for a given
matrix and a K value. Considering three values of K = 256, 512, and 1024, there are a total of 30,
75, and 30 instances in theC=AAT ,C=AA, andC=AB categories, respectively. These profiles are
in agreement with the arguments in Section 5.3. For the C=AAT category, the hypergraph model
for OP performs the best, followed by the bipartite graph model for OP. For the C=AA category,
the hypergraph model for RRP performs the best, followed by the hypergraph model for OP. For
the C=AB category, the hypergraph model for OP performs the best.

Figures 5 and 6 show that the bipartite graph models are viable alternatives to their hypergraph
counterparts, staying generally within 10% of the hypergraph models’ parallel SpGEMM times for
the C = AA and C = AB categories, while this value is higher in the C = AAT category. They are
further justified with their lower partitioning overhead.

5.5 Effect of Matrix Density in Partitioning

In this section, we investigate the partitioning performance of bipartite graph and hypergraph
models with the matrices that are denser than the ones in Table 3. We only consider the SpGEMM
of the form C = AA as this category contains more matrices than the others. Two metrics are of
interest: sparseness of A and sparseness of C . Regarding the 25 matrices in Table 3 in category
C = AA, the average sparseness of A is 0.014% and the average sparseness of C is 0.055%. The
sparseness ratios of the tested 20 denser matrices are given in Table 5. The average sparseness of
A and C in these denser matrices are respectively 0.235% and 0.852%, amounting to an increase of
15× to 16× in matrix density compared to the matrices in Table 3. Table 5 presents the message
volumes obtained by the partitioning models (the target metric that these models aim to reduce)
for three SpGEMM algorithms and K = 1024 parts.

The results indicate that the quality of the partitions obtained by the bipartite graph models
worsens compared to the hypergraph models for SpGEMM algorithms IP and RRP, while it does
not change for OP. For the matrices in Table 3, BG respectively obtains 1%, 2%, and 9% higher
volume than HY for OP, IP, and RRP (see Figure 5), whereas for denser matrices in Table 5, these
values are 0%, 22%, and 24%. The degradations in RRP and IP are explained by the fact that the
flaws of the graph models compared to the hypergraph models increase with increasing granu-
larity of the communicated elements. In RRP, whole B matrix rows are communicated; in IP, the
subcolumns of B matrix are communicated; and in OP, only individual partial results for theC ma-
trix elements are communicated. In other words, the highest communication granularity belongs
to RRP, followed by IP, and then OP—which is unit. This also explains why the difference between
graph and hypergraph models for OP does not change with changing sparseness of the matrices.

5.6 Partitioning Overhead and Amortization

In this section, we first compare the partitioning overheads of SpGEMM algorithms with both hy-
pergraph and bipartite graph models. This comparison is performed on a local system with sequen-
tial partitioning. Then, we analyze the amortization of the partitioning overhead. This analysis is
performed on the BlueGene/Q system with parallel partitioning and parallel SpGEMM.

Table 6 compares the partitioning times of the hypergraph and bipartite graph models for dif-
ferent numbers of partitions and SpGEMM algorithms. The partitioning is performed sequen-
tially on a local system. We used PaToH for partitioning hypergraphs and MeTiS for partitioning
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Table 5. Message Volume Obtained by the Bipartite Graph (BG) and Hypergraph (HY) Models
on Denser Matrices for C = AA and 1024 Parts

Message Volume (103)
Sparsity (%) OP IP RRP

Matrix A C HY BG HY BG HY BG
bcsstk29 0.316 1.004 3,556 3,507 3,770 4,729 3,672 5,288
bcsstk35 0.159 0.501 5,122 4,505 5,051 5,243 5,008 5,599
bcsstk36 0.215 0.684 4,828 4,343 4,909 4,920 4,797 5,246
crplat2 0.296 0.839 4,420 4,201 4,806 5,183 4,661 5,941
crystk02 0.497 2.013 10,946 11,441 10,111 17,148 9,988 18,193
FEM_3D_thermal1 0.135 0.565 2,422 2,469 1,929 1,982 1,894 1,973
gyro_m 0.113 0.639 1,984 1,977 1,399 1,542 1,372 1,512
igbt3 0.196 0.534 766 703 872 910 816 986
inlet 0.239 0.980 1,890 1,933 1,523 1,964 1,458 1,636
k3plates 0.307 0.843 1,696 1,466 1,826 2,219 1,759 2,333
lhr10 0.204 1.097 1,804 1,795 1,644 2,265 1,551 1,621
lhr14 0.151 0.813 1,797 1,835 1,715 2,637 1,580 1,684
msc23052 0.217 0.686 4,934 4,415 4,938 4,914 4,866 5,230
nmos3 0.112 0.309 770 735 965 837 883 828
olafu 0.389 1.300 7,396 7,855 7,107 10,707 7,032 10,871
pkustk01 0.202 0.769 5,342 5,264 5,495 6,834 5,313 8,492
pkustk02 0.694 2.138 12,673 21,463 10,931 16,960 10,730 15,204
rim 0.199 0.810 6,603 6,339 5,806 9,119 5,690 9,034
ted_AB 0.464 2.491 10,023 10,609 7,401 11,011 7,278 10,339
tube1 0.194 0.543 2,688 2,492 3,090 3,016 2,971 3,098
Average 0.235 0.852 3,444 3,431 3,294 4,020 3,186 3,961
BG/HY – – – 1.00 – 1.22 – 1.24

Table 6. Sequential Partitioning Overheads of the Parallel
Algorithms in Seconds

OP IP RRP
K HY BG HY BG HY BG

256 42.50 9.52 33.97 1.60 7.40 1.22
512 46.80 12.01 38.47 2.67 8.65 1.99

1024 49.90 17.28 42.67 4.84 9.94 3.50

The hypergraph models are indicated by “HY” and the bipartite graph

models are indicated by “BG.”

bipartite graphs. The obtained times are averaged over all matrices, regardless of the category.
Among the compared models, the hypergraph model for OP is the most expensive one, costing
around 42 to 50 seconds. Note that this hypergraph model was proposed in Akbudak and Aykanat
(2014). The bipartite graph model proposed in this work for OP improves this partitioning time
by 65% to 78%. The hypergraph and bipartite graph models for IP and RRP further improve the
partitioning time drastically compared to those for OP. Especially the bipartite graph models for
IP and RRP are noteworthy, which respectively cost 1.6 to 4.8 and 1.2 to 3.5 seconds. This is about a
15× to 35× improvement in the partitioning time over the recent work by Akbudak and Aykanat
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Table 7. Amortization of
Parallel Bipartite Graph
Partitioning Overheads

with Respect to CombBLAS
in Terms of Number

SpGEMMs

K OP IP RRP
256 322.7 7.4 7.7

1024 397.1 7.3 8.0

(2014). Partitioning the hypergraph model for RRP is faster than partitioning the hypergraph mod-
els for OP and IP since the number of nets in RRP is nrows (B), while it is nnz (C ) in OP and nnz (B)
in IP. Partitioning the bipartite graph model for RRP is faster than partitioning the bipartite graph
models for OP and IP as well since the number of edges in RRP is nnz (A), while it is #f lops/2 in
OP and nnz (C ) in IP. RRP is slightly faster than IP since A is generally more sparse than C .

Table 7 displays the number of SpGEMMs required to amortize the partitioning overhead
by comparing the bipartite graph models to CombBLAS (Buluç and Gilbert 2011). Note that
CombBLAS does not rely on an intelligent partitioning model based on sparsity patterns of
matrices. Instead, it uses 2D block distribution of matrices for parallelization. We used ParMeTiS
to partition the bipartite graph models in parallel on BlueGene/Q. Then we compared the parallel
SpGEMM times obtained by using the partitions produced by the bipartite graph models and
those obtained by CombBLAS. The SpGEMM counts in the table are computed according to the
formulaTParMeTiS/(TCombBLAS −Tscheme), whereTParMeTiS is the parallel partitioning time,TCombBLAS

is the parallel SpGEMM time attained by CombBLAS, and Tscheme is the parallel SpGEMM time
attained by using one of the OP, IP, or RRP schemes. CombBLAS works for processor counts that
are perfect squares, so there are no results for 512 processors regarding amortization. The results
are averaged over all matrices. On 256 processors, OP, IP, and RRP respectively necessitate 322.7,
7.4, and 7.7 SpGEMMs to amortize the cost of partitioning, while on 1024 processors these values
are 397.1, 7.3, and 8.0. These values show that parallel SpGEMM can greatly benefit from the
proposed partitioning models.

5.7 Effect of Reducing Latency Cost

Table 8 presents the communication statistics and parallel SpGEMM times obtained by further
reducing the latency costs of the models via utilizing the communication hypergraphs. Recall
that the communication hypergraphs utilize the partitions obtained with the computational
partitioning models. In other words, after obtaining a partition with a computational model,
we utilize the communication hypergraph on this partition to further reduce the latency cost.
The communication statistics include three metrics: total message volume, message volume
imbalance on sent matrix elements, and average message count. The values in the table are the
normalized values and the normalization is performed as follows: for each partitioning model and
the SpGEMM algorithm, the results obtained by further applying the communication hypergraph
are normalized with respect to the results obtained by its baseline counterpart in which only the
message volume is reduced. In the table, the average normalized values are presented separately
for three different categories, for K = 256, 512, and 1024. In the C = AB category for OP, we did
not utilize the communication hypergraphs for amazon matrices as these matrices had already
very low communication overhead when partitioned with the computational hypergraph and
bipartite graph models (see Table 4).
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Table 8. Communication Statistics for the Communication Hypergraphs

C = AAT C = AA C = AB
K=256 512 1024 256 512 1024 256 512 1024

OP

Total message
volume

HY 1.44 1.42 1.38 1.62 1.59 1.52 1.55 1.53 1.48
BG 1.48 1.45 1.41 1.62 1.59 1.56 1.54 1.52 1.48

Message volume
imbalance

HY 0.94 0.95 0.91 0.91 0.88 0.74 0.84 0.80 0.80
BG 1.03 1.01 0.99 0.98 0.94 0.90 1.00 0.96 0.89

Average message
count

HY 0.70 0.69 0.70 0.75 0.74 0.74 0.85 0.82 0.81
BG 0.64 0.66 0.70 0.76 0.75 0.74 0.80 0.78 0.76

Parallel SpGEMM
time

HY 0.93 0.89 0.87 0.98 0.95 0.87 1.01 0.99 0.97
BG 0.87 0.78 0.84 0.98 0.96 0.91 1.02 1.00 0.97

IP

Total message
volume

HY 2.16 2.05 1.98 2.05 1.87 1.71 1.86 1.63 1.45
BG 2.93 2.46 2.15 2.03 1.87 1.72 1.83 1.63 1.47

Message volume
imbalance

HY 0.90 0.92 0.93 0.78 0.71 0.58 0.72 0.72 0.66
BG 0.78 0.86 0.89 0.83 0.80 0.70 0.78 0.81 0.85

Average message
count

HY 0.72 0.66 0.65 0.76 0.78 0.82 0.78 0.79 0.84
BG 0.65 0.64 0.65 0.77 0.77 0.81 0.82 0.82 0.87

Parallel SpGEMM
time

HY 1.01 0.89 0.87 1.05 1.00 0.94 1.03 0.99 0.95
BG 0.88 0.75 0.68 1.00 0.96 0.92 1.01 0.98 0.95

RRP

Total message
volume

HY 1.10 1.24 1.30 1.52 1.46 1.39 1.48 1.43 1.35
BG 1.53 1.50 1.48 1.47 1.42 1.36 1.47 1.41 1.34

Message volume
imbalance

HY 0.46 0.44 0.39 0.55 0.48 0.38 0.62 0.52 0.46
BG 0.57 0.58 0.54 0.79 0.73 0.66 0.79 0.75 0.70

Average message
count

HY 0.71 0.68 0.67 0.70 0.71 0.72 0.76 0.75 0.73
BG 0.67 0.65 0.67 0.70 0.70 0.70 0.76 0.74 0.73

Parallel SpGEMM
time

HY 0.93 0.83 0.82 0.99 0.97 0.89 1.02 1.00 0.94
BG 0.92 0.87 0.81 0.97 0.94 0.91 1.01 0.99 0.95

The results obtained by utilizing the communication hypergraph are normalized with respect to the results for the

respective hypergraph/bipartite graph model.

The two communication cost metrics considered in the communication hypergraphs are the
total message count and the message volume imbalance, in which the former is reduced and a
constraint on the latter is enforced. Accordingly, using the communication hypergraphs after
the hypergraph and bipartite graph models leads to improvements in these two metrics. For the
computational hypergraph models, the total message count is reduced by 28% to 35%, 18% to
30%, and 10% to 43% for the C=AAT , C=AA, and C=AB categories, respectively, by using the
communication hypergraphs. These improvements are 30% to 36%, 19% to 30%, and 15% to 29% for
the computational bipartite graph models. The communication hypergraphs often improve the
message volume imbalance as well. The best improvements in this metric are usually obtained by
RRP, followed by IP, and then OP. Notice that the improvements in OP are limited. This is because
of the utilization of unit weights for the vertices in the communication hypergraph for OP, which
does not capture, but approximates the send volume. The communication hypergraphs offer a
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Fig. 7. Performance profiles for the parallel SpGEMM times obtained by the computational bipartite graph
models (indicated by “BG”) and further using the communication hypergraphs (indicated by “L”) for OP, IP,
and RRP.

tradeoff between the message count and the message volume, favoring the former at the expense
of the latter (Uçar and Aykanat 2004). The volume is usually increased by the communication
hypergraphs since, in order to reduce latency, they may assign the communication tasks to the
processors that do not depend on those tasks. In other words, the responsibility of a communicated
entity may be given to a processor even though that processor does not need that entity in its
computations. This is seen in the table as the message volumes of all SpGEMM algorithms are
increased when the communication hypergraphs are utilized. The degradations in the message
volume are relatively higher in IP for theC=AAT category due to the existence of coarser vertices
in the respective communication hypergraph.

The matrices in the C=AAT category benefit from reducing the latency cost as the parallel
SpGEMM time is reduced by up to 13% for K =256, 25% for K =512, and 32% for K =1024. The
improvements in the parallel SpGEMM runtimes for the matrices in theC=AA category are lower.
The reason for this is that the message volumes of the matrices in this category are higher than
those of the matrices in theC=AAT category (see Table 4), which makes the latency cost relatively
less critical for the parallel performance, so reducing it does not pay off as much as it does in the
C=AAT category. In Table 8, a common trend observed in all categories is that with increasing K ,
the parallel SpGEMM times get better with the utilization of the communication hypergraphs. This
is because the latency cost becomes more important at higher processor counts (as the message
count usually increases more sharply than the message volume in the case of strong scaling). For
this reason, it can be said that using communication hypergraphs is beneficial for improving the
scalability of any of the SpGEMM algorithms.

In Figure 7, for a more detailed analysis, we present the performance profiles for the par-
allel SpGEMM times obtained by the bipartite graph models for OP, IP, and RRP and the
communication hypergraphs further utilized to improve the latency cost of their baseline coun-
terparts. We do not present the profiles for the hypergraph models as they resemble those for the
bipartite graph models. In the figure, “BG” indicates the bipartite graph model and “L” indicates the
models that further utilize the respective communication hypergraph. For theC=AAT andC=AA
categories, further reducing the latency cost usually pays off as the communication hypergraphs
for OP, IP, and RRP improve the parallel SpGEMM time (compare OP-BG with OP-BG-L, IP-BG
with IP-BG-L, etc.). In theC = AAT category, OP-BG-L clearly attains the best performance, while
in the C = AA category, RRP-BG-L attains the best performance. Both of these schemes make use
of the communication hypergraph. In the C=AB category, while OP-BG is better than OP-BG-L,
RRP-BG and RRP-BG-L, as well as IP-BG and IP-BG-L, exhibit close performance.

As a final comparison, we present the performance profiles of the partitioning models that uti-
lize the communication hypergraphs in Figure 8 separately for the C=AAT , C=AA, and C=AB
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Fig. 8. Performance profiles for the parallel SpGEMM times obtained by the schemes that utilize the com-
munication hypergraphs. The hypergraph and bipartite graph models are respectively indicated by “HY”
and “BG.” “L” indicates that the communication hypergraph is utilized in the respective scheme.

categories. This comparison determines the best partitioning model, as the models that utilize the
communication hypergraphs are usually better than their counterparts that do not.

In theC=AAT category, the best-performing models clearly belong to OP, followed by RRP, and
IP performs the worst. The two best-performing models are OP-HY-L and OP-BG-L. For a specific
SpGEMM algorithm, the performance of the bipartite graph model is usually close to that of the
hypergraph model (compare RRP-HY-L with RRP-BG-L, IP-HY-L with IP-BG-L, etc.), OP being the
exception. Note that the arguments of Sections 5.3 and 5.4 are in agreement with the performances
of the partitioning models in the figure.

In theC=AA category, the best-performing models can be said to belong to RRP, closely followed
by OP. The best-performing models are RRP-HY-L, RRP-BG-L, and OP-HY-L, where the former two
exhibit more stable performance. Again, the performance of a bipartite graph model for a specific
SpGEMM algorithm is usually close to the performance of its hypergraph counterpart.

In the C=AB category, the best-performing model is clearly RRP-HY-L, followed by IP-HY-L
and OP-HY-L.

5.8 Scalability Analysis

In Figure 9, we compare OP, IP, and RRP in terms of their strong scaling performance for K = 256,
512, 1024, and 2048. For a specific SpGEMM algorithm, the best-performing partitioning model
among four alternatives at K = 2048 is selected for comparison. For example, for OP, the best
partitioning model among the hypergraph model, the bipartite graph model, and the two respective
communication hypergraphs is selected for comparison (e.g., the best of OP-HY, OP-BG, OP-HY-L,
and OP-BG-L, etc.). We include five matrices for the C=AAT category and seven matrices for the
C=AA category.

As seen in Figure 9, for the matrices in the C=AAT category, OP usually exhibits the best scal-
ability, followed by RRP. Yet in matrices such as fome21, fxm4_6, and sgpf5y6, RRP slowly closes
the performance gap with OP as K increases. For the matrices in the C=AA category, RRP scales
better than OP and IP. Again, observe that RRP’s performance gets better with increasingK , where
the gap between RRP and the other schemes gets wider for most of the matrices in this category.

In Figure 10, we investigate the effect of reducing latency cost on scalability. The dashed lines
in the figure indicate the models in which only the bandwidth cost is reduced (i.e., without the
communication hypergraph), while the solid lines indicate the models in which both the bandwidth
and latency costs are reduced (i.e., with the communication hypergraph). For a specific SpGEMM
algorithm, again, the best-performing model (either hypergraph or bipartite graph) at K = 2048 is
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Fig. 9. Speedup curves comparing the SpGEMM algorithms.

selected for display. For example, for OP, the best of the hypergraph and bipartite graph models
(e.g., the best of OP-HY and OP-BG) is compared with the best of the respective communication
hypergraphs for these two models (e.g., the best of OP-HY-L and OP-BG-L).

Figure 10 shows that reducing latency cost often pays off as better scalability due to the reasons
discussed in Section 5.7. In general, the performance gap increases in favor of the models that
utilize the communication hypergraphs with increasing K .
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Fig. 10. Speedup curves showing merits of using the communication hypergraphs.

5.9 Overall Assessment

Among all partitioning models, it can be said that the partitioning models for RRP that further
utilize the communication hypergraphs (i.e., RRP-HY-L and RRP-BG-L) are the most appealing
models because:
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(1) They perform the best in the C = AA category. Although not performing the best in the
C = AAT category, they still exhibit average performance, ranking second after OP. In the
C=AB category, RRP-HY-L leads other schemes.

(2) They perform better with increasing K , meaning they exhibit better scalability (Sec-
tion 5.8).

(3) Partitioning the graphs/hypergraphs for RRP is faster than partitioning them for OP and
IP; for example, partitioning the bipartite graph model for RRP is 15× to 35× faster than
partitioning the hypergraph model for OP, where this factor is 5× to 8× for the bipartite
graph model for OP (Section 5.4).

(4) Finally, RRP does not require a symbolic multiplication, whereas the other two schemes
require it in the formation of the models (Section 3.5).

(5) We can go further and prefer RRP-BG-L over RRP-HY-L due to faster partitioning of
graphs, as partitioning the graphs for RRP is 3× to 6× faster than partitioning the hy-
pergraphs for RRP.

To sum up, although the partitioning models based on OP show stronger speedup performance
(especially in the C=AAT category), they suffer from high partitioning overhead and symbolic
multiplication requirements, thus leaving RRP as a better alternative to OP. Another important
finding is that the performance of the bipartite graph models for RRP and IP in message volume is
negatively affected with increasing density of matrices.

6 CONCLUSION

We proposed bipartite graph and hypergraph partitioning models for efficient parallelization of
the SpGEMM kernel on distributed memory architectures. These models enable different 1D par-
titionings of the input matrices in the kernel. Our models consider both the bandwidth and the
latency components of the communication costs in a two-phase methodology in order to improve
scalability. The extensive experiments on different categories of SpGEMM operations show that
the 1D rowwise partitioning of both input matrices is the best alternative due to its good parallel
performance, better scalability, and very low partitioning overhead. The experiments also show
that although the bipartite graph models perform slightly worse than the hypergraph models in
parallel performance, their significantly low partitioning overhead makes them very attractive.

A APPENDIX: HYPERGRAPH AND BIPARTITE GRAPH PARTITIONING

A hypergraph H = (V,N ) is defined as a set of vertices V and a set of nets (hyperedges) N .
Every net n ∈ N connects a subset of vertices. The vertices connected by a net n are called its
pins and denoted as Pins (n). The nets that connect a vertex v are called its nets and denoted as
Nets (v ). The size of a given hypergraph is defined in terms of three attributes: the number of
vertices |V |, the number of nets |N |, and the number of pins, which is equal to

∑
n∈N |Pins (n) | =∑

v ∈V |Nets (v ) |. Each net n is associated with cost c (n). In case of multiconstraint partitioning, a
vertex v is associated with T weights, where T is the number of constraints.

A bipartite graph G = (VA ∪VB ,E) is defined as two disjoint sets of verticesVA andVB , and
a set of edges E. Each edge (v,u) connects a vertex v ∈ VA and another vertex u ∈ VB . Adj (v ) is
used to denote the set of vertices adjacent to vertex v ∈ G. The size of a bipartite graph is defined
in terms of two attributes: the number of vertices |VA ∪VB | and the number of edges |E |. An
edge (v,u) has a cost c ((v,u)). In case of multiconstraint partitioning, a vertexv is associated with
T weights.

Given a hypergraph H or a bipartite graph G, Π(V )= {V1, . . . ,VK } is called a K-way vertex
partition ofH or G if the K parts are mutually exclusive and exhaustive. A K-way vertex partition
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ofH or G is said to satisfy the partitioning constraint if

Wt (Vk ) ≤W avд
t (1 + ε ), for k = 1, . . . ,K ; and for t = 1, . . . ,T . (1)

Here, for constraint t , the weightWt (Vk ) of a partVk is defined as the sum of the weights wt (v )
of the vertices in that part (i.e., Wt (Vk )=

∑
v ∈Vk

wt (v )), W
avд

t is the average part weight (i.e.,

W
avд

t = (
∑

v ∈V wt (v ))/K ), and ε is the predetermined, maximum allowable imbalance ratio.
In a partition Π(V ) ofH , a net that has at least one pin (vertex) in a part is said to connect that

part. Connectivity set Λ(n) of a net n is defined as the set of parts connected by n. Connectivity

λ(n)= |Λ(n) | of a net n denotes the number of parts connected by n. A net n is said to be external

if it connects more than one part (i.e., λ(n) > 1), and internal otherwise (i.e., λ(n) = 1). The set
of cut nets in a partition is denoted as Ncut. The partitioning objective is to minimize the cutsize
defined over the cut nets. There are various cutsize definitions. The relevant one utilized in this
work is Çatalyürek and Aykanat (1999a):

cutsize (Π(V )) =
∑

n∈Ncut

c (n) (λ(n) − 1). (2)

Here, each cut net n incurs a cost of c (n) (λ(n) − 1) to the cutsize. The hypergraph partitioning
problem is known to be NP-hard (Lengauer 1990).

In a partition Π(V ) of G, an edge is said to be cut if it is adjacent to two vertices that reside in
different parts and uncut otherwise. The set of cut edges in a partition is denoted as Ecut. A vertex
v is said to be a boundary vertex if it is connected by at least one cut edge. Otherwise, v is said
to be an internal vertex. The partitioning objective is to minimize the cutsize defined over the cut
edges. There are various cutsize definitions. The relevant one utilized in this work is

cutsize (Π(V )) =
∑

(v,u )∈Ecut

c ((v,u)). (3)

Here, each cut edge (v,u) incurs a cost of c ((v,u)) to the cutsize.
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