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Abstract—The focus of this article is efficient parallelization of the canonical polyadic decomposition algorithm utilizing the alternating

least squares method for sparse tensors on distributed-memory architectures. We propose a hypergraph model for general medium-

grain partitioning which does not enforce any topological constraint on the partitioning. The proposed model is based on splitting the

given tensor into nonzero-disjoint component tensors. Then a mode-dependent coarse-grain hypergraph is constructed for each

component tensor. A net amalgamation operation is proposed to form a composite medium-grain hypergraph from these mode-

dependent coarse-grain hypergraphs to correctly encapsulate the minimization of the communication volume. We propose a heuristic

which splits the nonzeros of dense slices to obtain sparse slices in component tensors. So we partially attain slice coherency at

(sub)slice level since partitioning is performed on (sub)slices instead of individual nonzeros. We also utilize the well-known recursive-

bipartitioning framework to improve the quality of the splitting heuristic. Finally, we propose a medium-grain tripartite graph model with

the aim of a faster partitioning at the expense of increasing the total communication volume. Parallel experiments conducted on 10 real-

world tensors on up to 1024 processors confirm the validity of the proposed hypergraph and graph models.

Index Terms—sparse tensor, tensor decomposition, canonical polyadic decomposition, communication cost, communication volume,

medium-grain partitioning,recursive bipartitioning, hypergraph partitioning,graph partitioning
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1 INTRODUCTION

THE canonical polyadic decomposition (CPD) is a common
tensor decomposition method [1], [2]. It decomposes a

given tensor into a sum of vector outer-products. Many appli-
cations from different domains utilize CPD such as machine
learning [2], [3], [4], recommender systems [5], [6], among
many others. The alternating least squares (ALS) method [7]
is a commonmethod to compute the CPD.We refer the reader
to [2] for the details of tensor decomposition methods and
their applications.

The bottleneck operation in CPD-ALS is the Matricized
Tensor Times Khatri-Rao Product (MTTKRP) operation
performed for each mode. In distributed-memory parallel
CPD-ALS, each MTTKRP operation incurs a high volume
of irregular communication for sparse tensors. The com-
munication requirement of MTTKRP scales with both ten-
sor size and decomposition rank. That is, CPD-ALS
becomes bandwidth bound as rank increases, and reduc-
ing the communication volume is crucial to attain high
performance.

1.1 Related Work

There are many shared- and distributed-memory parallel
CPD-ALS algorithms and partitioning methods [8], [9], [10],

[11], [12], [13], [14], [15], [16]. Here we focus on MPI-based
distributed-memory parallel models and methods.

Kaya and Uçar [10] propose parallel CPD-ALS algorithms
based on coarse- and fine-grain partitioning of sparse tensors.
In the coarse-grain algorithm, an atomic task is defined as the
MTTKRP operation associatedwith all nonzeroswithin a slice
to compute the respective factor-matrix row. In the fine-grain
algorithm, an atomic task is defined as the operation associ-
atedwith a nonzero of the tensor.

Smith and Karypis [11] propose a parallel CPD-ALS algo-
rithm based on cartesian partitioning of sparse tensors. Car-
tesian partitioning is obtained through applying block
partitioning on each mode, which is randomly permuted
beforehand to maintain balance on the number of tensor
nonzeros assigned to processors, hence their computational
loads. Cartesian partitioning has the nice property of attain-
ing a natural upper-bound on the number of messages.

There are two recent works [10], [12] which propose intelli-
gent partitioning models for improving the performance of
the CPD-ALS algorithm. These models exploit the sparsity
pattern of the tensor for reducing communication overhead
while maintaining computational load balance during the
MTTKRP operations.

Kaya and Uçar [10] propose two distinct hypergraphmod-
els for coarse-grain and fine-grain tensor partitioning. The
coarse-grain hypergraph model contains one vertex and one
net for each slice in each mode. Vertices are assigned M
weights for an M-mode tensor. The mth weight of a vertex
representing a slice alongmodem is set to the number of non-
zeros in that slice, whereas all other weights are set to zero.
AnM-constraint formulation is required to achieve computa-
tional balance during the MTTKRP operations along each
mode. Partitioning of this model may incur nonzero replica-
tion, where a nonzero is replicated at most M times. The
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fine-grain hypergraph model contains one vertex for each
nonzero and one net for each slice and it can be considered as
an extension of fine-grain hypergraph model for 2D nonzero-
based sparse matrix partitioning [17], [18], [19] to multi-
dimensional tensor partitioning. Since individual nonzeros
are partitioned, vertices are assigned unit weight, so a single-
constraint formulation suffices to achieve computational bal-
ance during MTTKRP operations along all modes. In both
models, nets are assigned a cost of the rank of the decomposi-
tion. In this way, the partitioning objective of minimizing the
cutsize encodes the minimization of total communication vol-
ume. The fine-grainmodel is reported to performmuch better
than the coarse-grainmodel in [10].

Acer et al. [12] propose a hypergraph model for cartesian
partitioning of sparse tensors. This model consists of M
phases for partitioning an M-mode tensor. In each partition-
ing phase, the corresponding hypergraph contains one vertex
for each slice of the current mode, and one net for each slice of
each other mode. Slices partitioned in earlier phases incur dif-
ferent nets for their subslices in the following phases. Those
slices also incur multiple vertex weights, asmany as the prod-
uct of the number of parts in the earlier phases. In each phase,
multiple weights of a vertex represent the distribution of the
nonzeros of the respective slice among the partitioned slices
in earlier phases. So this model necessitates multi-constraint
partitioning at each phase except the first phase in order to
balance the number of nonzeros in the parts of the resulting
cartesian partition. Nets are assigned a cost of the rank of the
decomposition. This model is derived from the hypergraph
model proposed earlier for 2D cartesian (known as checker-
board) partitioning of sparsematrix [19], [20]. The hypergraph
model for tensor partitioningmainlydiffers frommatrix parti-
tioning by nets incurred by subslices which is not the case in
2Dmatrix partitioning.

1.2 Contributions

We propose a medium-grain hypergraph model to address
the following drawbacks of the hypergraph models pro-
posed for coarse-grain [10], fine-grain [10] and cartesian [12]
partitioning methods.

� Although the coarse-grain method attains slice coher-
ency in each mode, it suffers from the restriction of
assigning all nonzeros in possibly dense slices to the
same processor.

� Although the fine-grain model attains very good per-
formance in reducing total communication volume,
it may incur a large number of messages.

� The fine-grain model incurs large hypergraphs which
constitute hard partitioning instances for current
hypergraph partitioning (HP) tools as also reported
in [10].

� Although the cartesian partitioning method utilizes
an upper bound on the number of messages, it suf-
fers from a large number of constraints during parti-
tioning which may limit the solution space.

The proposed model is based on splitting the given ten-
sor into nonzero-disjoint component tensors. Then a mode-
dependent coarse-grain hypergraph is constructed for each
component tensor. This coarse-grain hypergraph model is
different than the one in [10] since in each of these

hypergraphs, each slice along one of the modes is repre-
sented with both a vertex and a net, whereas each slice
along the other modes is represented with only a net. Thus
this model avoids the nonzero replication problem of the
original model. A net amalgamation operation is proposed
to form a composite medium-grain hypergraph from these
mode-dependent coarse-grain hypergraphs. This operation
enables the hypergraph model to correctly encapsulate the
minimization of total communication volume.

We propose a heuristic which splits the nonzeros of dense
slices to obtain sparse slices in component tensors thus avoid-
ing the above-mentioned drawback of the coarse-grain
model. So we partially attain slice coherency at (sub)slice
level since partitioning is performed on (sub)slices instead of
individual nonzeros of the fine-grain model. In this way, the
proposed model avoids the above-mentioned drawbacks of
the fine-grain model incurring a large number of messages
and incurring large hypergraphs.

We also utilize the well-known recursive-bipartitioning
(RB) framework to improve the quality of the splitting heu-
ristic. Finally, we propose a medium-grain tripartite graph
model with the aim of a faster partitioning at the expense of
increasing the total communication volume. Parallel experi-
ments conducted on 10 real-world tensors on up to 1024
processors confirm the validity of the proposed hypergraph
and graph models.

We should mention here that parallelization based on
random cartesian partitioning [11] as well as the one based
on HP [12] utilize the phrase “medium-grain” partitioning
for their methods, since they remain between the coarse-
and fine-grain methods. On the other hand, the medium-
grain method proposed in this work introduces a much
more general framework between the coarse- and fine-grain
methods as it does not enforce any topological constraint on
the partitioning. The medium-grain method proposed in
this work is an extension of the medium-grain matrix parti-
tioning proposed for parallel sparse matrix-vector multiply
(SpMV) by Pelt and Bisseling [21].

The rest of the paper is organized as follows: Section 2
provides background information. In Sections 3 and 4, we
propose medium-grain hypergraph and graph models for
tensor partitioning, respectively. Section 5 discusses experi-
mental results. Finally, Section 6 concludes the paper.

2 BACKGROUND INFORMATION

2.1 Tensor Notation

We denote tensors and matrices respectively by calligraphic
(X ) and bold uppercase (A) letters. To refer to a varying
index, we use a colon as in Matlab notation, e.g., Aði; :Þ
denotes the ith row ofA.

A tensor with M dimensions is called an M-mode tensor
and modem refers to themth dimension. Without loss of gen-
erality we assume X is a 3-mode tensor of size I�J�K.
Xði; j; kÞ denotes the tensor element with indices i, j, and k.
Subtensors obtained by keeping one and two indices constant
are called slices and fibers, respectively. Slices are called mode-
m slice wherem denotes the constant mode, i.e., Xði; :; :Þ is the
ith mode-1 slice, Xð:; j; :Þ is the jth mode-2 slice, and Xð:; :; kÞ
is the kth mode-3 slice. These are also called horizontal, lateral,
and frontal slices, respectively.
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2.2 Canonical Polyadic Decomposition

Algorithm 1 displays the CPD-ALS algorithm that finds a
rank-R decomposition of a 3-mode tensor as a sum of R
outer-products of three vectors. These R column-vectors
constitute factor matrices. Then, the CPD of X is written in
short as X � ½½�;A;B;C��.

Generally, MTTKRP operations in lines 3, 5, and 7, are the
bottleneck steps of the CPD-ALS algorithmdue to largematri-
ces Xð1Þ, Xð2Þ, and Xð3Þ, respectively. Here “�” denotes the
Hadamard product which is element-wise multiplication of
twomatrices, whereas “�” denotes the Khatri–Rao product.

2.3 Parallel Medium-Grain CPD-ALS Algorithm

The parallel CPD-ALS algorithm utilizes a nonzero-based
tensor partitioning and the rowwise partitioning of the fac-
tor matrices in a distributed-memory setting. Let Xk denote
the local nonzeros assigned to processor pk. Let Ak, Bk, and
Ck denote the local factor-matrix rows assigned to processor
pk. A factor-matrix row is said to be shared if more than one
processor produce a partial result for it. A shared matrix
row is said to be local for the sharing processor it is assigned
to, whereas it is said to be nonlocal for the other sharing
processors. The number of processors that share a matrix
row is said to be the connectivity of that row.

Algorithm 2 displays the parallel CPD-ALS algorithm uti-
lizing the above mentioned partitioning scheme. Lines 3, 8,
and 13 correspond to local MTTKRP operations. The
MTTKRP operation for the ith row of factor matrix Â can be
rewritten as Âði; :Þ ¼P

Xði;j;kÞ6¼0 Xði; j; kÞðBðj; :Þ �Cðk; :ÞÞ. In
these lines, Âk, B̂k, and Ĉk denote intermediate results of the
corresponding local factor matrices. A0k, which appears as an
input in a local MTTKRP, refers to Ak augmented with the
nonlocal rows that are needed by the local MTTKRP. Â0k,
which appears as an output in a local MTTKRP, refers to Âk

augmented with the nonlocal rows for which the local
MTTKRP produces partial results. The same notation applies
toB0k andC0k matrices.

As seen in Algorithm 2, nonzero-partitioning-based par-
allel CPD-ALS requires communication both before and
after the local MTTKRP operation in each mode. After the
distributed MTTKRP operation along each mode, reduce
operations (i.e., lines 4, 9, and 14) are performed on the local
partial results to compute Âk, B̂k, and Ĉk. Then, local pseu-
doinverse operations and column normalization operations
are performed on the local factor-matrices. Then, expand
operations (i.e., lines 7, 12, and 17) are performed on the
normalized shared factor matrices for the sake of the
MTTKRP operations along the other modes.

Reduce and expand operations before and after each dis-
tributedMTTKRPare the dual of each other. Consider a shared
factor-matrix row Aði; :Þ assigned to a sharing processor pk.
For the reduce operation, all processors except pk in the connec-
tivity set ofAði; :Þ send their partial results for nonlocal Â0ði; :Þ
to pk. For the expand operation, pk sends its local normalized
Akði; :Þ to all processors in the connectivity set ofAði; :Þ. Since
each shared factor-matrix row is assigned to one of the sharing
processors, the total volume of communication along each
mode is equal to 2R times the sumof the “connectivity�1’ val-
ues of the shared factor-matrix rows along thatmode.

Algorithm 2. Parallel CPD-ALS (X )
1: Randomly initialize factor matricesA,B, andC
2: while not converged do
3: Â0kði; :Þ 

P
Xkði;j;kÞ6¼0 X kði; j; kÞðB0kðj; :Þ �C0kðk; :ÞÞ

4: Sparse REDUCE on shared Â-matrix rows
" SEND nonlocal Â0k rows, RECV local-shared Âk rows to
form Âk

5: Ak ÂkðCTC�BTBÞ�1 and norm. cols. ofA into �
6: ALL-REDUCE to computeATA
7: Sparse EXPAND on sharedA-matrix rows

" SEND local-sharedAk rows, RECV nonlocalA0k rows

8: B̂0kðj; :Þ 
P
Xkði;j;kÞ6¼0 Xkði; j; kÞðA0kði; :Þ �C0kðk; :ÞÞ

9: Sparse REDUCE on shared B̂-matrix rows
" SEND nonlocal B̂0k rows, RECV local-shared B̂k rows to
form B̂k

10: Bk B̂kðCTC�ATAÞ�1 and norm. cols. ofB into �
11: ALL-REDUCE to computeBTB
12: Sparse EXPAND on sharedB-matrix rows

" SEND local-shared Bk rows, RECV nonlocal B0k rows

13: Ĉ0kðk; :Þ 
P
Xkði;j;kÞ6¼0 Xkði; j; kÞðA0kði; :Þ �B0kðj; :ÞÞ

14: Sparse REDUCE on shared Ĉ-matrix rows
" SEND nonlocal Ĉ0k rows, RECV local-shared Ĉk rows to
form Ĉk

15: Ck ĈkðBTB�ATAÞ�1 and norm. cols. ofC into �
16: ALL-REDUCE to computeCTC
17: Sparse EXPAND on sharedC-matrix rows

" SEND local-sharedCk rows, RECV nonlocalC0k rows
18: return ½½�;A;B;C��

With the above-mentioned parallelization scheme, factor-
matrix-transpose and factor-matrix multiplication operations
(i.e.,ATA,BTB, andCTC) can easily and efficiently be paral-
lelized so that they incur all-reduce type global communication
onR�R local densematrix results. Similarly, column normali-
zation operations can also be parallelized through performing
all-reduce type operations on R local matrix normalization
results. Note that in the current parallelization, Hadamard
products as well as pseudoinverse operations associated with
these resulting R�R matrices (e.g., ðCTC �BTBÞ�1) are
performed sequentially and redundantly by each processor.

The communication volume incurred by dense matrix-
matrix multiplication and column normalization operations
scale only with R2 and R, respectively, whereas they do not
scale with tensor size (i.e., I, J , K, and nnzðXÞ). However,
communication volumes incurred by the reduce and expand
operations scale with both the tensor size and rank R. So
reducing the communication volume overhead incurred by
sparse communication operations is crucial for scaling paral-
lel CPD-ALS algorithm.

Algorithm 1. CPD-ALS(X )
1: Randomly initialize factor matricesA,B, andC
2: while not converged do
3: A Xð1ÞðC�BÞðCTC �BTBÞ�1
4: Normalize columns ofA into �
5: B Xð2ÞðC�AÞðCTC �ATAÞ�1
6: Normalize columns ofB into �
7: C Xð3ÞðA�BÞðATA �BTBÞ�1
8: Normalize columns ofC into �
9: return ½½�;A;B;C��

KARSAVURAN ETAL.: PARTITIONING MODELS FOR GENERAL MEDIUM-GRAIN PARALLEL SPARSE TENSOR DECOMPOSITION 149

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on August 13,2020 at 21:08:25 UTC from IEEE Xplore.  Restrictions apply. 



2.4 Hypergraph Partitioning (HP) Problem

A hypergraph H¼ðV;NÞ is defined as the set V of vertices
and the setN of nets. Each net n connects a subset of vertices
denoted by PinsðnÞ. The set of nets that connect vertex v is
denoted by NetsðvÞ. Each vertex v is assigned a weight wðvÞ
and each net n is assigned a cost cðnÞ.

LetP¼fV1;V2; . . . ;VPg denote aP -way vertex partition of
H. In P, the weight of part Vk is defined as WðVkÞ ¼P

v2Vk wðvÞ: P is said to satisfy the partitioning constraint if
W ðVkÞ 	Wavgð1þ �Þ for each part Vk in P, for a given
maximum allowed imbalance ratio �. Here Wavg ¼Wtot=P ,
whereWtot ¼

PP
k¼1 WðVkÞ:

In a given partition P, net n is said to connect part Vk if it
connects at least one vertex in Vk. The connectivity set of n
is defined as the set of parts connected by n. The connectiv-
ity of n, conðnÞ, denotes the number of parts connected by
n. n is said to be cut if it connects more than one part, i.e.,
conðnÞ > 1, and uncut otherwise. Then the connectivity cut-
size is defined as cutsizeðPÞ ¼P

n2N ðconðnÞ � 1ÞcðnÞ. In the
HP problem, the partitioning objective is to minimize the
cutsize while maintaining the partitioning constraint.

3 MEDIUM-GRAIN HYPERGRAPH MODEL

3.1 Splitting Framework

The given sparse tensor X is split into three nonzero-disjoint
component tensors as follows:

X¼XHþXLþXF : (1)

In Eq. (1), all three component tensors XH , XL, and XF have
the same size of I�J�K as the original tensor X . Here, XH ,
XL, and XF are considered as composed of horizontal, lat-
eral, and frontal slices, respectively. In this splitting, we
enforce each nonzero to be assigned to the respective slice
of one of the component tensors according to the selection
of one of the three slices that contains it. That is, nonzero
Xði; j; kÞ is placed in either the ith horizontal slice of XH or
the jth lateral slice of XL or the kth frontal slice of XF . This
placement ensures Eq. (1).

Then a mode-dependent coarse-grain hypergraph (CGH)
is constructed for each component tensor as follows: In each
of these hypergraphs, slices along one of the modes are repre-
sented as vertices and nets, whereas the slices along the other
two modes are represented as nets. Vertices are assigned
weights equal to the number of nonzeros in the respective sli-
ces, whereas nets are assigned a cost of R. The topology of
each component hypergraph is described below.

For mode-1, CGH H1
CGðXHÞ¼ðVH;NH[N L[N F Þ con-

tains one vertex vHi for each horizontal slice XHði; :; :Þ. It con-
tains nets nH

i , n
L
j , and nF

k for each horizontal slice XHði; :; :Þ,
lateral slice XHð:; j; :Þ, and frontal slice XHð:; :; kÞ, respec-
tively. Net nL

j connects vertex vHi if intersection of XHði; :; :Þ
and XHð:; j; :Þ is a nonzero fiber. Similarly, net nF

k connects
vertex vHi if intersection of XHði; :; :Þ and XHð:; :; kÞ is a non-
zero fiber. That is,

PinsðnH
i Þ¼fvHi g;

PinsðnL
j Þ¼fvHi :9XHði; j; kÞ2XHði; :; :Þ\XHð:; j; :Þg;

PinsðnF
k Þ¼fvHi :9XHði; j; kÞ2XHði; :; :Þ\XHð:; :; kÞg:

For mode-2, CGH H2
CGðXLÞ¼ðVL;NH[N L[N F Þ con-

tains vertex vLj for each lateral slice XLð:; j; :Þ. It contains
nets nH

i , n
L
j , and nF

k for slices XLði; :; :Þ, XLð:; j; :Þ, and XLð:; :
; kÞ, respectively, where

PinsðnH
i Þ ¼ fvLj : 9XLði; j; kÞ 2 XLð:; j; :Þ \ XLði; :; :Þg;

PinsðnL
j Þ ¼ fvLj g;

PinsðnF
k Þ ¼ fvLj : 9XLði; j; kÞ 2 XLð:; j; :Þ \ XLð:; :; kÞg:

For mode-3, CGH H3
CGðXF Þ¼ðVF ;NH[N L[N F Þ con-

tains one vertex vFk for each frontal slice XF ð:; :; kÞ. It con-
tains nets nH

i , n
L
j , and nF

k for slices XF ði; :; :Þ, XF ð:; j; :Þ, and
XF ð:; :; kÞ, respectively.

The three component hypergraphs H1
CGðXHÞ, H2

CGðXLÞ,
andH3

CGðXF Þ are both vertex and pin disjoint, whereas they
share nets. From these three component hypergraphs, we
form a composite hypergraph

HMGðXÞ¼ðVH[VL[VF ;NH[N L[N F Þ;
through a net amalgamation operation which is defined as
combining disjoint pin sets of the nets corresponding to the
same slice in three component hypergraphs. That is,

PinsðnH
i ðXÞÞ ¼ fvHi g [ PinsðnH

i ðXLÞÞ [ PinsðnH
i ðXF ÞÞ;

PinsðnL
j ðXÞÞ ¼ PinsðnL

j ðXHÞÞ [ fvLj g [ PinsðnL
j ðXF ÞÞ;

PinsðnF
k ðXÞÞ ¼ PinsðnF

k ðXHÞÞ [ PinsðnF
k ðXLÞÞ [ fvFk g:

The motivation behind the net amalgamation operation is the
fact that the sum of connectivities of the nets that represent
the same slice in three component hypergraphs overestimates
the communication volume due to the respective factor-
matrix row, whereas the connectivity of the amalgamated net
exactly encodes the total communication volume as discussed
below.

Net nH
i represents the same factor-matrix row Aði; :Þ in

each of the mode-dependent coarse-grain hypergraphs
H1

CGðXHÞ, H2
CGðXLÞ, and H3

CGðXF Þ. Each vertex connected
by nH

i in each of these hypergraphs denotes a distinct
atomic task that contributes to Aði; :Þ. Consider an atomic
task represented by vertex vLj of mode-2 coarse-grain hyper-
graph H2

CGðXLÞ, where vLj 2PinsðnH
i ðXLÞÞ. This means that

at least one nonzero of the mode-3 fiber Xði; j; :Þ is assigned
to slice XLð:; j; :Þ during the splitting process (Eq. (1)). So,
the atomic task represented by vertex vLj contributes to the
factor-matrix row Aði; :Þ. Assume that atomic tasks repre-
sented by vertices vHi and vLj are assigned to different pro-
cessors pq and pr, respectively, during the partitioning of
composite hypergraph. This will incur reduce (fold) type of
communication on the partial results computed by process-
ors pq and pr for factor-matrix row Aði; :Þ during the
MTTKRP operation along mode-1. This will also incur a
dual expand type of communication during the MTTKRP
operation along mode-2 because of pq sending Aði; :Þ to pr.
A similar discussion holds for an atomic task represented
by vertex vFk of mode-3 coarse-grain hypergraph H3

CGðXF Þ,
where vFk 2PinsðnH

i ðXF ÞÞ. So, the parts in the connectivity
set of amalgamated net nH

i denote the set of distinct process-
ors that contribute to Aði; :Þ. This explains the validity of
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pin-wise amalgamation of nets nH
i ðXHÞ, nH

i ðXLÞ, and
nH
i ðXF Þ into nH

i ðXÞ, where 2RðconðnH
i ðXÞÞ � 1Þ will cor-

rectly encode the volume of communication due to factor-
matrix rowAði; :Þ.

The medium-grain hypergraph model presented above
can also be viewed as a nonzero-to-slice assignment for pro-
ducing the medium-grain model from the fine-grain model.
Each tensor nonzero belongs to three slices, one along each
mode. We assign each nonzero to one of those slices utilizing
a greedy splitting heuristic. We then construct the medium-
grain hypergraph by representing each slice in eachmode as a
vertex as well as a net connecting that vertex along that mode.
These one-to-one net-to-vertex connections constitute the pins
of those nets along the same mode. Then we construct pins of
these nets along other modes as follows: Let u represent slice i
along the first mode and v represent slice j along the second
mode. Then, if there exists a nonzero in fiberXði; j; :Þ assigned
to v, u is added to the pin list of the net corresponding to the
slice represented by vertex v. Pin additions for all pairs of
modes are defined similarly.

3.2 Splitting Heuristic

The motivation behind the splitting given in Eq. (1) is to
address the drawback of the coarse-grain model [10] incur-
ring high communication volume due to dense slices. For
this purpose, splitting should be performed in such a way
to attain sparse mode slices in the respective component
tensors as much as possible. In particular, the objective
should be to attain sparse horizontal, lateral, frontal slices in
component tensors XH , XL, XF , respectively.

The proposed splitting heuristic works as follows: Each
nonzero is assigned to a component tensor according to the
sparsest slice containing that nonzero. That is, for Xði; j; kÞ
we look for the sparsest slice among the three slices Xði; :; :Þ,
Xð:; j; :Þ, and Xð:; :; kÞ. For example, if nnzðXði; :; :ÞÞ is
smaller than both nnzðXð:; j; :ÞÞ and nnzðXð:; :; kÞÞ, then we
assign Xði; j; kÞ to the ith slice of XH .

The special case, which occurs when a slice contains a
single nonzero, is handled as follows: For example, if the ith
horizontal slice of X contains a single nonzero Xði; j; kÞ,
then the splitting heuristic assigns Xði; j; kÞ to the ith slice of
XH . However, this will create a single-pin net nH

i in both
HCGðXHÞ and HMGðXÞ. Since a single-pin net cannot be cut,
we assign nonzero Xði; j; kÞ to either XLð:; j; :Þ or XF ð:; :; kÞ
according to number of nonzeros in Xð:; j; :Þ and Xð:; :; kÞ.
Tie cases occur when more than one slice having the same
number of nonzeros constitute the most sparse slice for a
nonzero. Such tie cases are resolved by assigning the non-
zero to the slice of the longer mode. The algorithm for this
splitting heuristic is given in Algorithm 3.

The leftmost part of Fig. 1 displays a sample 4�3�2 ten-
sor X with 10 nonzeros. The second part of the figure dis-
plays the component tensors XH , XL, XF obtained after
running the splitting heuristic. In the figure, each nonzero is
displayed with a different empty/filled symbol for a better
understanding of the splitting heuristic. The third part of
the figure displays the component hypergraphs H1

CGðXHÞ,
H2

CGðXLÞ, H3
CGðXF Þ. Finally, the rightmost part displays the

medium-grain composite hypergraph HMGðXÞ. As seen in
the figure, the heuristic splits eight nonzeros of the dense
frontal slice Xð:; :; 1Þ to sparse slices XHð2; :; :Þ, XHð3; :; :Þ,

XHð4; :; :Þ, XLð:; 1; :Þ, XLð:; 2; :Þ, and XLð:; 3; :Þ so that the
component-frontal slice XF ð:; :; 1Þ becomes empty.

Algorithm 3. SPLIT-TENSOR(X )
1: XH  0, XL  0, XF  0,
2: for each nonzero Xði; j; kÞ 2 X do
3: nzH  nnzðXði; :; :ÞÞ
4: nzL nnzðXð:; j; :ÞÞ
5: nzF  nnzðXð:; :; kÞÞ
6: if nnzðXði; :; :ÞÞ ¼ 1 then
7: nzH  1
8: if nnzðXð:; j; :ÞÞ ¼ 1 then
9: nzL 1
10: if nnzðXð:; :; kÞÞ ¼ 1 then
11: nzF  1
12: nzM  0
13: if nzH 	 nzL then
14: if nzH ¼ nzL then
15: m argmaxðI; JÞ
16: else
17: m H
18: nzM  nzH
19: else
20: m L
21: nzM  nzL
22: if nzF 	 nzM then
23: if nzF ¼ nzM then
24: m argmaxðK; dimðmÞÞ
25: else
26: m F
27: assign Xði; j; kÞ to Xm

3.3 Discussion

The proposed medium-grain model can be considered as an
in-between model that tries to attain merits of both coarse-
and fine-grain models while trying to avoid their drawbacks.
The medium-grain model applies mode-dependent coarse-
grain models on the component tensors obtained by splitting
in Eq. (1). In this way, it partially exploits the computational
coherence of nonzeros in the same slice while avoiding the
drawbacks of the coarse-grain model on nonzero replication
and assignment of dense slices as a whole to individual pro-
cessors. The medium-grain model can also be considered as
clustering individual nonzeros in the slices of the component
tensors via the splitting heuristic. In this way, it partially
exploits the flexibility of assigning individual nonzeros to dif-
ferent processors while avoiding the drawbacks of the fine-
grainmodel on partitioning very large hypergraphs aswell as
disturbingmessage coherence.

We introduce Table 1 on the size of the hypergraphs uti-
lized by coarse-grain (CG), fine-grain (FG), andmedium-grain
(MG) models. nfðXÞ denotes the sum of the numbers of non-
zero fibers along all modes and dðXÞ denotes the number of
slices that contain a single nonzero. “	IþJþK�dðXÞ” refers
to the possibility of vanishing vertices and/or nets because of
the following cases.

Although the original tensor does not contain empty slices,
component tensors may contain empty slices because of the
following two cases. The first case occurs when the original
tensor contains a relatively dense slice along one mode in
such a way that each nonzero of that slice belongs to a sparser
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slice along another mode. The second case occurs because of
the special case handling of tensor slices which contain a sin-
gle nonzero by the splitting heuristic as mentioned earlier. In
such cases, a vertex aswell as a net corresponding to an empty
slice of a component tensor vanish in the respective compo-
nent hypergraph. In the rightmost part of Fig. 1, vertex vF1
exemplifies the first case, whereas vertex vH1 and net nH

1 exem-
plify the second casewith crossed out vertices and nets.

Consider another case where the original tensor contains a
relatively sparse slice along onemode (say mode-m) in such a
way that each nonzero of that slice belongs to a denser slice
along another mode. In such a case, the splitting heuristic
assigns all nonzeros of that mode-m slice to the mode-m com-
ponent tensor so that the net corresponding to that mode-m
slice becomes a single-pin net in the component hypergraph.
These single-pin nets vanish as they cannot become cut. In the

rightmost part of Fig. 1, crossed out nets nH
2 and nL

2 exemplify
such nets.

As seen in top part of Table 1, CG incurs a smaller number
of vertices than FG because of fine-grain atomic task definition
of FG, whereas MG incurs a smaller number of vertices than
CG because of the vanishing vertices. FG incurs a smaller
number of nets thanCGbecause of the slices that contain a sin-
gle nonzero,whereasMG incurs a smaller number of nets than
FG because of the vanishing nets. Size comparison of CG and
FG, in terms of pins, depends on topological properties of the
original tensor. On the other hand, MG incurs a smaller num-
ber of pins than FG because of the vanishing vertices and nets.

The bottom part of Table 1 shows the comparison of
hypergraph sizes of these three methods normalized with
respect to those of FG model averaged over 10 test tensors.
Size comparison of MG against FG is as follows: MG incurs
a significantly smaller number of vertices, nets, and pins
than FG as expected. On average, MG incurs 90, 88, and
64 percent smaller number of vertices, nets, and pins than
FG, respectively. Size comparison of MG against CG is as
follows: MG incurs a significantly smaller number of nets
and pins than CG as also expected, whereas MG incurs a
considerably smaller number of vertices than CG. On aver-
age, MG incurs 36, 93, and 68 percent smaller number of
vertices, nets, and pins than CG, respectively. Relatively
smaller percentage of decrease in the number of vertices
than those of nets can be explained by a larger number of
vanishing nets than the number of vanishing vertices.

Here, we discuss similarities and differences between
medium-grain tensor partitioning with the medium-grain

Fig. 1. Split tensor, coarse-grain mode-dependent hypergraphs and medium-grain hypergraph. “�” denotes the vanishing vertices and nets.

TABLE 1
Size Comparison of Coarse-, Fine-, and Medium-Grain Models

Number of

vertices nets pins

CG IþJþK IþJþK IþJþKþ2nfðXÞ
FG nnzðXÞ IþJþK�dðXÞ 3nnzðXÞ�dðXÞ
MG 	IþJþK�dðXÞ 	IþJþK�dðXÞ 	3nnzðXÞ�2dðXÞ
CG 0.15 1.64 1.12
FG 1.00 1.00 1.00
MG 0.10 0.12 0.36

Here the numbers are empirical values averaged over the tensors used in the
experiments and normalized with respect to those of FG.
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matrix partitioning proposed by Pelt and Bisseling [21] for
parallel SpMV. Tensor splitting framework given in Eq. (1)
is the generalization of the composite model given in [21]
for matrices. The proposed net amalgamation operation is
established by the identity matrices of [21, Eq. (4)]. The ten-
sor splitting heuristic utilized in this work is an extension of
the matrix splitting heuristic utilized in [21]. The vanishing
vertices and nets discussed here generalize the missing
entries of the identity matrices in [21]. The RB scheme we
utilized here is also similarly utilized in [21]. The main dif-
ference of [21] is that iterative refinement for matrix biparti-
tioning cannot be directly applied for tensors, whereas the
outcome of a matrix bipartitioning can be used as a new
split to feed back into the refinement part of a bipartitioning.
Obviously with tensors being split into three parts this is not
directly possible.

3.4 Recursive-Bipartitioning Scheme

A naive implementation of the proposed splitting framework
is to apply a splitting heuristic to the original tensor at the top-
most level to form medium-grain hypergraph HMGðXÞ and
then invoke a P -way HP tool to obtain P subtensors to be
assigned toP processors.

Here we try to improve the quality of the splitting heuristic
by utilizing the RB paradigm which is commonly used by
hypergraph/graph partitioning tools for obtainingmulti-way
partitions. Applying the splitting heuristic to each of the P�2
intermediate subtensors in addition to the original tensor at
the topmost level is expected to improve the quality of the par-
titioning. This is because the subtensors obtained after each
RB step are likely to havedifferent sparsity patternswhich jus-
tifies the possible benefit of using the splitting heuristic on
subtensors individually.

In the proposed RB paradigm, the given tensor is biparti-
tioned into two subtensors, which are further bipartitioned
recursively until P subtensors are obtained, where each sub-
tensor at the last level is assigned to a different processor.
Here, without loss of generality, we assume that the number
P of processors is an exact power of 2. This procedure produ-
ces a complete binary tree with log 2P levels which is referred
as the RB tree. 2‘ tensors in the ‘th level are denoted by
X ‘

1; . . . ;X ‘
2‘
from left to right for 0	‘	 log 2P .

A vertex bipartition P2¼fVL;VRg of the medium-grain
hypergraph HMGðX ‘

kÞ of the ‘th level tensor X ‘
k is utilized to

form two newvertex-induced subtensorsX ‘þ1
2k�1 andX ‘þ1

2k , both
in level ‘þ 1. Here, VL and VR respectively refer to the left and
right parts of the vertex bipartition ofHMGðX ‘

kÞ. Because of the
nature of the splitting heuristic applied to X ‘

k, any vertex vmi in
VL incurs the assignment of the respective mode-m (sub)slice
of X ‘

k as a whole mode-m slice to left subtensor XL ¼ X ‘þ1
2k�1,

for any mode-m. The right subtensor XR ¼ X ‘þ1
2k is formed

in a dual manner. Then the splitting heuristic is applied to
the left and the right subtensors separately to construct the
left and right medium-grain hypergraphs HMGðX ‘þ1

2k�1Þ and
HMGðX ‘þ1

2k Þ, respectively, for further bipartitioning. Algo-
rithm 4 shows the steps of the proposed RB scheme.

4 MEDIUM-GRAIN TRIPARTITE GRAPH MODEL

We derive the medium-grain tripartite graph from the
medium-grain hypergraph: Each vertex and net pair ðvHi ; nH

i Þ

in HMGðXÞ that represents the same slice is replaced by a
node uH

i in GMGðXÞwith the adjacency list defined as follows:

djðuH
i Þ ¼ fuL

j :v
L
j 2PinsðnH

i Þg[fuF
k :v

F
k 2PinsðnH

i Þg[
fuL

x :n
L
x 2NetsðvHi Þg[fuF

y :n
F
y 2NetsðvHi Þg:

The two sets in the upper line come from the vertices con-
nected by nH

i , whereas the two sets in the lower line come
from the nets that connect vHi .

Fig. 2 displays medium-grain tripartite graph GMGðXÞ
derived from the HMGðXÞ displayed in Fig. 1. For example,
vL1 and nL

1 in Fig. 1 is replaced by node uL
1 with adjacency

list AdjðuL
1 Þ¼fuH

2 ; u
H
3 ; u

H
4 ; u

F
1 g. AdjðuL

1 Þ contains: uH
2 and uH

4

because of nL
1 connecting vH2 and vH4 ; u

H
3 because of nH

3 con-
necting vL1 ; u

F
1 beacuse of nF

1 connecting vL1 .
The topology of the tripartite graph resembles that of the

tripartite graph model proposed in [8] for mode-indepen-
dent slice reorderings for shared-memory parallelism. The
topology of the medium-grain tripartite graph model uti-
lized in this work differs because of the vanishing nodes
incurred by the special case handling of the splitting heuris-
tic. The two graph models also differ in terms of the weights
associated with the nodes and edges. In the graph model
of [8], nodes are assigned unit weights, whereas each edge
is assigned a weight equal to the number of nonzeros in the
fiber constituting the respective edge. In the medium-grain
graph model, edges are assigned a weight of R, whereas
each node is assigned a weight equal to the number of non-
zeros in the respective slice of the split tensor.

The two tripartite graph models also differ because of the
RB framework proposed in this work. The work in [8] per-
forms P -way partitioning on their tripartite graph model
for a predetermined sufficiently large P value to find a top-
down partial slice ordering. We utilize the same RB frame-
work used in Algorithm 4 for the tripartite graph model. In

Fig. 2. Medium-grain tripartite graph obtained fromHMGðXÞ in Fig. 1.

Algorithm 4. RB-BasedMedium-Grain Partitioning(X ; P )

1: X0
1 ¼ X

2: for ‘ 0 to log 2P � 1 do
3: for k 1 to 2‘ do
4: fXH;XL;XFg  SPLIT-TENSOR(X ‘

k)
5: FormHMGðX ‘

kÞ from XH;XL;XF

6: P2  BIPARTITION(HMGðX ‘
kÞ) " P2 ¼ fVL;VRg

7: Form XL ¼ X ‘þ1
2k�1 induced by VL

8: Form XR ¼ X ‘þ1
2k induced by VR

9: for k 1 to P do
10: assign subtensor X log 2P

k to processor k
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this way, by applying the splitting heuristic at each RB step,
we try to maximize its improvement.

The partitioning objective of minimizing the cutsize in
HMGðXÞ and in GMGðXÞ differs as the hypergraph model cor-
rectly encapsulates the volume of communication incurred
during parallel MTTKRP operations, while the tripartite
graphmodel encapsulates an approximation of the samemet-
ric. Consider a case where a processor pq produces multiple
partial results for the same factor-matrix row Aði; :Þ which is
assigned to another processor pr. The hypergraph model cor-
rectly encodes communication volume considering the fact
that pq will sum these partial results and send only one partial
result for Aði; :Þ to pr. The tripartite graph model overesti-
mates the communication volume as if processor pq will
sendmultiple partial results forAði; :Þ to pr without any local
summation. The tripartite graph model displays a dual
communication volume overestimation in expand type of
communications where processor pr should send Aði; :Þ only
once to pq.

5 EXPERIMENTS

We evaluate the performance of the proposed medium-
grain (MG) tensor partitioning method against the fine-
grain (FG) tensor partitioning method [10] as well as the
state-of-the-art cartesian methods [11], [12].

5.1 Setup

We use PaToH [22], [23] for partitioning hypergraph models
in Cart [12], FG [10] and MG methods, which will be
referred to as CartHP, FGHP and MGHP, respectively. For
CartHP, we used the same parameters described in [12]. For
MGHP and FGHP, we use PaToH [22] with SPEED parame-
ters and maximum imbalance ratio set to �¼0:10. We use
METIS [24] with the default parameters and maximum
imbalance ratio set to �¼0:10 for partitioning the tripartite
graph model in the MG method, which will be referred to
as MGTGP. Since PaToH and METIS use randomized algo-
rithms, we partition each instance three times and report
average results.

Recall that correctness of encapsulating the total communi-
cation volume depends on the consistency condition of
assigning each factor-matrix row to one of the processors that
contributes to that row. Here we adopt the best-fit increasing
heuristic used for solving the P -feasible bin-packing prob-
lem [25]. We assign factor-matrix rows to processors indepen-
dently for each mode. First, we sort the factor-matrix rows in
thatmode in increasing order of their connectivities. Then, we
assign them to the processors according to the best-fit criterion
which corresponds to assigning a row to a processor that cur-
rently has the minimum communication volume among the
processors that own a nonzero in the corresponding slice.
Here communication volume refers to total send-volume of
communication in fold and expand steps. After assigning a
row to a processor, the volumes of the respective processors
are increased accordingly.

For parallel CPD-ALS experiments, we used the parallel
CPD-ALS code developed and used in [12]. The source code
is implemented in C using MPI for interprocess communi-
cation and compiled with gcc version 8.3.0 using O3 opti-
mization flag and ParaStation MPI (version 5.2.2, based on

MPICH v3). Compressed fiber-based multiplication and
storage scheme is used for MTTKRP as proposed in [8] to
reduce the number of FLOPs and memory footprint. CBLAS
routines from Intel MKL library (version 2019) are used for
the rest of the computations on factor-matrix rows.

We conducted our parallel experiments on the JUWELS
cluster from J€ulich Supercomputing Centre. A node of this
cluster has 48 cores (two Intel Xeon Platinum 8168 CPUs)
running at 2.70 GHz clock frequency and 96 GB memory.
The interconnection network of this cluster is EDR-Infini-
band (Connect-X4).

5.2 Dataset

The dataset given in Table 2 contains 10 sparse tensors which
arise from real-world applications. The density of each tensor
X is computed as nnzðXÞ=ðI � J �K � LÞ. delicious,
flickr, enron, lbnl-network, and nell-1 are acquired
from the FROSTT tensor library [26]. The details of these five
tensors are already given in [26], whereas we summarize the
remaining five tensors as follows: 1988DARPA consists of
time–IP address–IP address triplets from the network of MIT
Lincoln laboratory [27]. brightkite consists of user–date–
location triplets of check-in information shared to location
based social networks [28]. facebook consists of owner–
poster–date triplets extracted from the wall posts of Facebook
New Orleans networks [29]. freebase_music consists
of subject–object–relation triplets from freebase.com [27].
movies-amazon consists of user–movie–word triplets
extracted from the user reviews inAmazon [30].

5.3 Parallel Performance Comparison

We compare the proposed methods in terms of communica-
tion cost metrics and parallel CPD-ALS runtimes on
10 tensors on P ¼512 processors. The communication cost
metrics consist of maximum and average send volume han-
dled by a processor and maximum and average number of
messages sent by a processor. Average volume and average
message count values refer to the total communication vol-
ume and total number of messages divided by P . We prefer
to report average values instead of total values, because
average values give a better view on the amount of devia-
tion of maximum values from the average values.

In all experiments,MGHP andMGTGP are run through uti-
lizing the RB scheme (see Section 3.4). On average, RB-based
implementation achieves about 4 and 12 percent decrease in

TABLE 2
Properties of the Test Tensors

tensor
size of dimensions

nnz density
I J K L

1998DARPA 23.7M 13.5K 17.9K – 28.4M 4.92e-09
brightkite 772.9K 942 51.4K – 2.6M 7.16e-08
delicious 17.2M 532.9K 2.5M 1.4K 140.1M 4.27e-15
enron 244.2K 5.7K 6.0K 1.1K 54.2M 5.46e-09
facebook 42.4K 1.5K 39.9K – 738.0K 2.89e-07
flickr 28.1M 319.6K 1.6M 731 112.9M 1.07e-14
freebase_music 22.6M 166 23.3M – 99.5M 1.14e-09
lbnl-network 868.1K 4.2K 4.2K – 1.7M 1.11e-07
movies-amazon 226.5K 4.4K 87.8K – 15.0M 1.72e-07
nell-1 25.4M 2.1M 2.9M – 143.6M 9.05e-13
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the total communication volume compared to the naive
implementation forMGHP andMGTGP, respectively.

We first discuss the results of the experiments performed
for comparing MG against FG. We restrict the performance
comparison on hypergraph models since the graph model on
FGperforms significantlyworse than onMG. For example, on
average, FG partitioning using the graphmodel decreases the
partitioning time by 17 percent at the expense of 3.74� total
communication volume, compared to using the hypergraph
model. We do not include the coarse-grain model in the
experiments since the fine-grain model is reported to perform
much better [10].

Table 3 shows the performance improvement attained by
MGHP against FGHP on P ¼512 processor with R¼64. The
left part of the table displays the actual values for FGHP,
whereas the right part displays the values of MGHP normal-
ized with respect to those of FGHP. The last row shows the
geometric averages.

As seen in Table 3, MGHP and FGHP display comparable
performance in computational load balance (“max nnz”).
Note that FGHP has a large number of vertices with unit
weights thus enabling good load balance. Thus, the compa-
rable performance of MGHP and FGHP in load balancing
shows the success of the splitting heuristic in reducing the
variance on vertex weights.

MGHP achieves considerably better performance than
FGHP in both average communication volume and average
message count metrics, whereas it displays slightly worse
performance inmaximum communication volume andmax-
imummessage countsmetrics. These findings in the commu-
nication cost metrics lead to 4.2 percent reduction in parallel
CPD-ALS time.MGHP achieves this improvementwith about
two times less preprocessing overhead.

Table 4 compares the performance of MGHP and MGTGP

against the state-of-the-art CartHP algorithm for P ¼512 and
R¼64. In the table, a block of three rows displays the values
for three different methods for the respective tensor, whereas
the bottom block shows the average values. The left part of
the table displays the actual values, whereas the right part dis-
plays the values of MGHP and MGTGP normalized with
respect to those ofCartHP.

As seen in Table 4, MGHP achieves considerably better
computational load balance than CartHP. On average, MGHP

reduces themaximum computational load by 13 percent com-
pared to CartHP. This experimental finding is because of the
following reasons: As discussed above, MGHP performs as
good as FGHP in load balancing. However, in CartHP, vertices
representingwhole slices in the first partitioning phase aswell
as multi-constraint partitioning in the second and third parti-
tioning phases bring difficulty in attaining good load balance.
MGHP achieves significantly better performance in both band-
width metrics as expected. However, CartHP achieves better
performance in both latencymetrics because of the nice upper
bounds provided by the cartesian partitioning in the maxi-
mum and average number of messages. The improvements
attained by MGHP against CartHP in computational load bal-
ance and communication bandwidth metrics lead to an aver-
age of 22 percent improvement in parallel CPD-ALS time.

As seen in Table 4, MGTGP and MGHP display compara-
ble performance in load balance, whereas MGTGP displays
significantly worse performance in all communication cost
metrics. The performance degradation of the graph model
compared to the hypergraph model in communication cost
metrics leads to an average of 9 percent increase in the par-
allel CPD-ALS time. Despite this, MGTGP still performs bet-
ter than CartHP by an amount of 14 percent on average in
terms of parallel CPD-ALS time.

In Fig. 3, we provide performance profiles for the parallel
CPD-ALS and partitioning times of CartHP, MGHP, and
MGTGP as well as FGHP for a more detailed comparison.
Performance profiles capture the relative performance of
the compared methods more accurately, thus provide a bet-
ter understanding of the characteristics of the methods [31].
A point (x; y) in a profile means that the respective model is
within an x factor of the best result in a fraction y of
the dataset. For example, the point (x¼1:04, y¼0:90) on the
profile for MGHP means that MGHP incurs 4 percent
more parallel CPD-ALS time than the smallest running time
achieved in 90 percent of the dataset. Hence, the method
closest to the top left corner is the best method.

As seen in Fig. 3a, in terms of parallel runtime,MGHP is the
clear winner, where FGHP,MGTGP display close performance

TABLE 3
Comparison of Communication Metrics and Parallel CPD-ALS Time of FGHP andMGHP for P ¼ 512 and R ¼ 64

Communication volume values are given in terms of the number of the factor-matrix rows sent by processors.
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for the 40 and 30 percent of the dataset respectively, and
CartHP displays significantly worse performance. As seen in
Fig. 3b, in terms of partitioning time,MGTGP is the clear win-
ner, where FGHP perfoms significantly worse. These experi-
mental findings conform to the expectations.

Fig. 4 displays the strong scaling results for CartHP,
MGHP, and MGTGP as speedup curves for eight out of 10
tensors up to P ¼1024 processors. Speedup curves for the
smallest tensors facebook and brightkite are not given.
As seen in the figure, both MG models scale better than
CartHP in all instances, whereas MGHP scales better than
MGTGP in six out of eight instances.

We provide Table 5 to compare the relative parallel run-
time performance of both MG models against those of
CartHP with decreasing R values. The application becomes
latency bound with decreasing R values, whereas it
becomes bandwidth bound with increasing R values.

As seen in Table 5, relative performance of the both
MG models against CartHP decreases as R decreases, as
expected. For example, 22 percent better performance of
MGHP for R¼64 reduces to 20, 17, and 15 percent for R¼32,
16, and 8, respectively. For R¼64, whileMGHP achieves bet-
ter runtime performance than CartHP for all of the 10 instan-
ces, for R¼8, CartHP achieves better runtime performance

TABLE 4
Comparison of Communication Metrics and Parallel CPD-ALS time of CartHP,MGHP, andMGTGP for P ¼512 and R¼64

Communication volume values are given in terms of the number of the factor-matrix rows sent by processors.

Fig. 3. Performance profile for parallel CPD-ALS and partitioning times.
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for three of the 10 instances. A similar relative parallel run-
time performance variation for MGTGP against those of
CartHP can be observed in the table.

5.4 Preprocessing Overhead

Tables 6 and 7 display the partitioning times ofCartHP,MGHP,
and MGTGP normalized with respect to those of sequential
CPD-ALS times. Table 6 displays partitioning times for each
tensor for R¼64, whereas Table 7 displays average partition-
ing times for R¼f64; 32; 16g. We report the time of one itera-
tion of CPD-ALS and average number of iterations to
complete a factorizationwith 10�5 tolerance [8].

As seen in Table 7, on average, forR¼64 partitioning time
ofCartHP is 63 percent of the factorization time,whereas parti-
tioning times ofMGHP andMGTGP are 54 percent and 12 per-
cent of the factorization time, respectively. Since CPD-ALS
time depends on the R value, while partitioning time does

not, normalized partitioning times increase with decreasing
R. For example, partitioning times of MGTGP are 12, 40 and
121 percent of the factorization times for R¼64; 32 and 16,
respectively. Note that in many real-world applications users
use constraints (e.g., non-negativity) that result in more itera-
tions of CPD-ALS. Thus, these preprocessing overheads may
be pessimistic in those scenarios.

We introduce Fig. 5 in order to better visualize the parti-
tioning overhead for P¼512. Each bar shows the breakdown

Fig. 4. Strong scaling curves for CPD-ALS obtained by CartHP,MGHP, andMGTGP up to P ¼1024 processors and R¼64.

TABLE 5
Comparison of Parallel CPD-ALS time of CartHP,MGHP, and

MGTGP for R¼f64; 32; 16; 8g for P ¼512

tensor R ¼ 64 R ¼ 32 R ¼ 16 R ¼ 8

HP TGP HP TGP HP TGP HP TGP

1998DARPA 0.95 0.97 0.89 0.95 0.84 0.90 0.68 0.73
brightkite 0.69 0.89 0.79 1.05 0.77 1.07 0.76 1.01
delicious 0.63 0.60 0.75 0.70 0.97 0.95 0.90 0.93
enron 0.93 0.90 0.77 0.86 0.82 0.98 0.85 1.01
facebook 0.77 0.98 0.92 1.11 0.96 1.11 0.95 1.08
flickr 0.75 0.78 0.84 0.89 0.91 0.94 0.91 0.97
freebase_music 0.93 1.34 0.94 1.41 0.97 1.54 1.05 1.62
lbnl-network 0.61 0.68 0.54 0.54 0.46 0.47 0.44 0.47
movies-amazon 0.73 0.80 0.77 0.86 0.84 0.92 1.05 1.17
nell-1 0.89 0.82 0.91 0.89 0.96 1.00 1.15 1.32
geo mean 0.78 0.86 0.80 0.90 0.83 0.95 0.85 0.98

HP and TGP values are given in terms of parallel CPD-ALS times normalized
with respect to those of CartHP.

TABLE 6
Sequential 512-Way Partitioning Overhead in Terms of
Sequential CPD-ALS Factorization Time forR ¼64

tensor iteration
time (s)

# of
iters.

CartHP MGHP MGTGP

1998DARPA 77.443 11 0.17 0.34 0.11
brightkite 2.790 37 0.21 0.39 0.07
delicious 115.719 9 5.02 4.27 0.56
enron 12.005 71 0.06 0.37 0.18
facebook 0.349 33 0.74 1.03 0.23
flickr 181.528 8 1.28 1.08 0.22
freebase_music 151.535 10 3.46 1.52 0.25
lbnl-network 2.297 169 1.94 0.02 0.01
movies-amazon 3.412 98 0.19 0.51 0.14
nell-1 233.521 44 0.73 0.75 0.06

TABLE 7
Average Sequential 512-Way Partitioning Overhead in Terms of
Sequential CPD-ALS Factorization Time for R¼f64; 32; 16g

R # of iters. CartHP MGHP MGTGP

64 30 0.63 0.54 0.12
32 21 2.05 1.77 0.40
16 14 6.18 5.34 1.21
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of the overall parallel runtime into partitioning and CPD-
ALS solution times with blue and green colors, respectively.
Here, parallel partitioning times are computed assuming a
20 percent efficiency. A CPD-ALS solution refers to factoriz-
ing the tensor with three different sets of initial factor matri-
ces [32] and three different R values [33].

Fig. 5a compares proposed MGHP and MGTGP models
against CartHP and FGHP, all of which utilize intelligent par-
titioning methods. Fig. 5b compares MGHP and MGTGP

against CartRP [11], which utilizes random cartesian parti-
tioning and hence involves negligible preprocessing over-
head. For CartRP [11], we used the same parallel code as
in [12] for a fair comparison. Fig. 5a displays the comparison
for each tensor and for R¼64, whereas Fig. 5b displays the
comparison for R¼f64; 32; 16g on flickr and facebook,
which have quite different partitioning overheads.

As seen in Fig. 5a, the proposed methods amortize the
preprocessing overhead against other intelligent partition-
ing methods for R¼64. As seen in Fig. 5b, the proposed
intelligent partitioning methods amortize the preprocessing
overhead even against CartRP [11], for which no partition-
ing overhead was considered, while the performance gap
between the proposed methods and CartRP [11] closes with
decreasing R value.

6 CONCLUSION

We introduced a general medium-grain partitioning frame-
work for sparse tensor decomposition on distributed-mem-
ory architectures. The proposed framework avoids the
drawbacks of the fine-grain model incurring a large number
of messages and large hypergraphs. It also avoids the draw-
back of the cartesian partitioning method incurring a large
number of constraints during partitioning which may limit
the solution space. On average, the proposed medium-grain
hypergraph and graph models respectively achieve 22 and
14 percent better parallel runtime on 512 processors with

significantly less partitioning overhead compared to the
state-of-the-art cartesian partitioning model.

Recent contributions in the literature towards improving
MTTKRP computations such as CSF [9], HiCOO [13], dimen-
sion trees [14] and reordering methods [16], as well as
increasing level of parallelism by distributing factor matrices
in the dimension of rank [15] are orthogonal to the proposed
method here and can be adopted for further performance
improvement.
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