Spatiotemporal Graph and Hypergraph
Partitioning Models for Sparse Matrix-Vector
Multiplication on Many-Core Architectures

Nabil Abubaker, Kadir Akbudak, and Cevdet Aykanat

Abstract—There exist graph/hypergraph partitioning-based row/column reordering methods for encoding either spatial or temporal
locality separately for sparse matrix-vector multiplication (SpMV) operations. Spatial and temporal hypergraph models in these
methods are extended to encapsulate both spatial and temporal localities based on cut/uncut net categorization obtained from vertex
partitioning. These extensions of spatial and temporal hypergraph models encode the spatial locality primarily and the temporal locality
secondarily, and vice-versa, respectively. However, the literature lacks models that simultaneously encode both spatial and temporal
localities utilizing only vertex partitioning for further improving the performance of SpMV on shared-memory architectures. In order to fill
this gap, we propose a novel spatiotemporal hypergraph model that leads to a one-phase spatiotemporal reordering method which
encodes both types of locality simultaneously. We also propose a framework for spatiotemporal methods which encodes both types of
locality in two dependent phases and two separate phases. The validity of the proposed spatiotemporal models and methods are
tested on a wide range of sparse matrices and the experiments are performed on both a 60-core Intel Xeon Phi processor and a Xeon
processor. Results show the validity of the methods via almost doubling the Gflop/s performance through enhancing data locality in

parallel SpMV operations.

Index Terms—Sparse matrix, sparse matrix-vector multiplication, data locality, spatial locality, temporal locality, hypergraph model,
bipartite graph model, graph model, hypergraph partitioning, graph partitioning, Intel Many Integrated Core Architecture, Intel Xeon Phi.

1 INTRODUCTION

PARSE matrix-vector multiplication (SpMV) is a

building-block for many applications. In this work, we
focus on repeated SpMV operation of the form y = Az,
where the sparsity pattern of matrix A does not change.
Thread-level parallelization of SpMV on today’s many-core
cache-coherent architectures highly necessitates utilizing
both spatial locality and temporal locality in order to effi-
ciently use the cache hierarchy. Here, spatial locality refers
to the use of data elements within relatively close storage lo-
cations. That is, if a particular storage location is referenced
at a particular time, then it is likely that nearby memory
locations will be referenced in the near future. Temporal
locality refers to the reuse of specific data within a relatively
small time duration. That is, if at one point a particular
memory location is referenced, then it is likely that the same
location will be referenced in the near future. In terms of
cache hierarchy, per-core cache sizes of today’s processors
vary from tens of kilobytes [1] to several megabytes. In this
work, we focus on reordering-based methods for accelerat-
ing SpMV for any kind of cache hierarchy with any capacity.

1.1 Data Locality in Parallel SpMV

Here, we present data locality issues in SpMV. For the sake
of clarity of the presentation, we assume that one or more
rows are processed at a time and some kind of compression

o Nabil Abubaker and Cevdet Aykanat are with the Department of Computer
Engineering, Bilkent University, Ankara, Turkey. Kadir Akbudak is with
Department of Applied Mathematics and Computational Science, Extreme
Computing Research Center, KAUST, KSA
E-mail: nabil.abubaker@bilkent.edu.tr, kadir.akbudak@kaust.edu.sa,
aykanat@cs.bilkent.edu.tr. 27/07/2018 17:03:57

is used for indexing the nonzeros in such a way that indirect
accesses are performed on z-vector entries. In other words,
we assume that the sparse matrix is stored and processed
using the CRS (Compressed Row Storage) scheme.

Temporal locality is not feasible in accessing nonzeros
of the input matrix, because these nonzeros together with
their indices are accessed only once, whereas spatial locality
is already achieved because the nonzeros are stored and
accessed consecutively.

Temporal locality in accessing y-vector entries is
achieved on the highest level of memory, because partial
results for the same y-vector entries are summed consecu-
tively since nonzeros are accessed rowwise. Spatial locality
is already achieved because y-vector entries are accessed
consecutively.

Temporal locality is feasible in accessing z-vector entries,
because these entries are accessed multiple times while
processing nonzeros in different rows. Spatial locality is
also feasible, because these entries are accessed irregularly
depending on the index arrays. These two types of localities
constitute the main bottleneck of rowwise SpMV.

Regarding the above-mentioned data locality character-
istics, the possibility of exploiting spatial locality in ac-
cessing x-vector entries is increased by ordering columns
with similar sparsity patterns nearby. The possibility of
exploiting temporal locality in accessing x-vector entries is
increased by ordering rows with similar sparsity pattern
nearby. Simultaneously reordering the columns and rows
with similar sparsity patterns nearby increases the possi-
bility of exploiting both spatial and temporal localities in
accessing x-vector entries.

Method’s .

Objective Spatlfll S) Tempolral (T)
Partitioning One phase One phase
Framework l l
Model’s Primary S T
Objective : Secondary - -
Reordering SG SH TG TH
Method §3.1.1 §3.1.2 §3.2.1 §3.2.2

' ' ' '
Partitioning col-sim. row-net row-sim. col-net
Model graph hypg. graph hypg.

Separately

SpatioTemporal (ST)

I
' 1 ¥

Two phases One phase

| ! '
\ L4
S+T S(61)—T(42) S
- T

R

n -
92]
et

SH-THiine SBD sHPcen STBG STH
SH+TH 54 13 (4 851 §5.2
§7.3.2 . .
. f f row-col row-col
line-net row-net col-net . .
h hyps. hypg bipartite - vertex-net
ype: ’ graph hypg.

Fig. 1: A taxonomy for reordering methods used to exploit data locality in SpMV operations. Shaded leaves denote

proposed methods.

1.2 Contributions

In this work, we mainly focus on reordering models that
exploit spatiotemporal locality for parallel SpMV operations
on many-core architectures. Here, spatiotemporal locality
refers to exploiting both spatial and temporal localities.
We present Fig. 1 which contains a taxonomy of reordering
methods for exploiting spatial, temporal and spatiotemporal
localities in CRS-based SpMV. We should note here that the
fine-grain hypergraph models are out of scope of this paper
due to their high partitioning overheads [14] so the existing
works [14], [23] are not included in this taxonomy. Table 1
shows the list of notations and abbreviations used in this
figure, as well as throughout the paper.

In Section 3, we discuss methods that aim at exploit-
ing only one type of locality. We summarize the existing
Spatial Hypergraph (SH) and Temporal Hypergraph (TH)
methods. Moreover, we propose to use similarity graphs
in graph partitioning (GP) based methods to exploit spatial
and temporal localities separately, which are referred to here
as Spatial Graph (SG) and Temporal Graph (TG), respec-
tively. To our knowledge, similarity graph models are not
used for improving SpMV performance through reordering
columns/rows of a sparse matrix, although various similar-
ity graph models have been proposed in different contexts
such as sparse matrix-matrix multiplication [2], declustering
for distributed databases [3] and parallel text retrieval [4].

In Section 4, we propose a new two-phase framework for
exploiting both spatial and temporal localities. In the first
phase, we use a column reordering method for encoding
spatial locality in order to find an assignment of x-vector
entries into lines (blocks). In the second phase, we use a row
reordering method for encoding temporal locality among
the lines identified in the first phase in order to exploit local-
ity on the access of lines instead of single words. According
to this framework, we propose and implement the Temporal
Hypergraph on lines of data entries (SH=THjise or THiine
shortly) method that uses the SH method in the first phase
and uses the TH method in the second phase.

In Section 5, we propose two new one-phase methods
that simultaneously encode spatial and temporal localities
in accessing x-vector entries. The first method is based on
bipartite graph partitioning and will be referred to as Spa-
tioTemporal Bipartite Graph (STBG). The second method is

based on hypergraph partitioning (HP) and will be referred
to as SpatioTemporal Hypergraph (STH).

In Sections 3 and 5, after presenting each method, we
also provide a brief insight on how the method works so
that the partitioning objective of minimizing the cutsize in
the graph and hypergraph models relate to reducing the
number of z-vector entries that are not reused due to loss of
spatial and/or temporal localities.

In order to empirically verify the validity of the proposed
methods, we use Sparse Library (SL) [5], [6], [7], which is
highly optimized for performing SpMV on shared-memory
architectures. We conduct experiments on both 60-core Xeon
Phi and Xeon processors using a wide-range of sparse
matrices arising in different applications. The results given
in Section 7 show that the proposed spatiotemporal methods
that aim at simultaneously exploiting both types of locali-
ties substantially perform better than the non-simultaneous
methods. The results also show the superiority of the
HP-based methods over the GP-based methods.

TABLE 1: List of notations and abbreviations

Concept Meaning

G Graph model

H Hypergraph model

S* Spatial; used with graph or hypergraph models

T Temporal; used with graph or hypergraph models

1% Set of Vertices

£ Set of Edges (for a graph model)

N Set of Nets (for a hypergraph model)

d* Data; used with a vertex or a net, or with sets V and N

t* Task; used with a vertex or a net, or with sets V and A/

GP Graph Partitioning

HP Hypergraph Partitioning

SG Spatial Graph

TG Temporal Graph

SH Spatial Hypergraph

TH Temporal Hypergraph

SH-THjjne Temporal Hypergraph on Lines (blocks) of data entries
(THline)

STBG SpatioTemporal Bipartite Graph

STH SpatioTemporal Hypergraph

* used as a superscript

2 PRELIMINARIES

Graph and hypergraph partitioning approaches have been
used in the literature to attain row/column reordering
for exploiting spatial and/or temporal locality in the

SpMV operation [13], [14], [27], [28]. Here, we briefly

explain how the methods presented in this work utilize

the graph/hypergraph partitioning framework to obtain
row/column reordering for SpMV on many-core architec-
tures.

A K-way partition II(V) = {V1, Vs, ..., Vi } on vertices
of the graph and hypergraph models presented in this
paper is decoded as a partial reordering on the corre-
sponding matrix dimension(s) as described as follows. For
k=1,2,...,K-1:

(i) In spatial methods, the columns corresponding to the
vertices in Vi1 are reordered after the columns corre-
sponding to the vertices in V.

(ii) In temporal methods, the rows corresponding to the
vertices in Vj4; are reordered after the rows corre-
sponding to the vertices in Vj.

(iii) In spatiotemporal methods, both row and column re-
orderings described in (i) and (ii) are applied.

The row/column orderings obtained by these methods are

referred to as partial orderings because the rows/columns

corresponding to vertices in a part are reordered arbitrarily.

On the other hand, by keeping the number of vertices per

part sufficiently small, the rows/columns corresponding to

the vertices in a part are considered to be reordered nearby.

In a given partition of a graph, an edge e; ; that connects
a pair of vertices in two different parts is said to be cut, and
uncut otherwise. In a given partition of a hypergraph, a net
n; that connects vertices in more than one part is said to be
cut, and uncut otherwise. In graph and hypergraph models,
the relevant cutsize definitions are as follows respectively:

Graph: edgecut(II(V)) = Z w(e; i), 1)
Vi EVE AV EVp2)
Hypergraph : cutsize(II(V)) = Z w(n;)|con(n;)]. (2)

n, €N

In (2), con(n;) denotes the connectivity set of n;, that is, the
set of parts that have at least one vertex connected by n;. In
(1) and (2), w(e; ;) and w(n;) denote the weight of edge e; ;
and net n;, respectively.

In Fig. 2, we present a sample 6-by-8 sparse matrix for
the purpose of illustrating the main features of the graph
and hypergraph models. As seen in the figure, letters a,
b, ¢,... are used to denote columns of matrix A, whereas
numbers 1, 2, 3,... are used to denote rows of matrix A.
We also include the z-vector entries to better show the cor-
respondence between them and the columns of the matrix
when discussing column reordering methods.

Algorithm 1 The thread-level rowwise parallelization of
SpMYV operation based on CRS

Require: A matrix stored in ¢row, icol and val arrays, x and
y vectors.

1: //Each iteration performs < r;,x > as a task

2: for i =1 to # of rows of A in parallel do

3: sum = 0.0

4 for k = irowli] to irow[i + 1] — 1 do
5: sum = sum + val[k] x[icol [k]]
6

yli] = sum

[LalTo[T[TdlTelZ (T g[Tn]
abcdefgh

X X

OO W -
X
X

Fig. 2: Sample matrix A.

Algorithm 1 is presented to better relate the entities in
the proposed graph-theoretic models with the data accesses
and computations in the CRS-based SpMV operation. For
the sake of clarity of presentation, the following assump-
tions are used in Algorithm 1 and in the insights given to
show the correctness of the methods: The memory align-
ment of A, x and y arrays are ignored. Fully associative
cache is assumed since the scope of this work is to decrease
only capacity misses due to accessing x-vector entries.

In Algorithm 1, the inner-product tasks of the SpMV
operation are represented by the iterations of the outer
for-loop (lines 2-6), whereas the irregular accesses to the
x-vector entries are represented by the indirect indexing
in line 5. In the spatial methods presented in this work,
the vertices of the graph or hypergraph models represent
z-vector entries. These methods aim at reducing the latency
due to irregular accesses to the x-vector entries by reorder-
ing the different x-vector entries used by the same and/or
consecutive inner-products (iterations) nearby. In the tem-
poral methods presented in this work, the vertices of the
graph or hypergraph model represent inner-product tasks.
These methods aim at reusing the x-vector entries brought
to the cache during the previous iteration by reordering the
inner-products so that those using similar xz-vector entries
are executed consecutively. In the proposed spatiotemporal
methods, both graph and hypergraph models contain ver-
tices that represent inner-product tasks and x-vector entries
separately. So these methods combine the aims of the spatial
and temporal methods.

The methods presented in this work produce reorderings
for the rows and/or columns of matrix A as well as the z-
and/or y-vector entries involved in the y = Ax operation
given in Algorithm 1. The spatial methods presented in
Section 3.1 produce conformal reorderings for the columns
of A and the entries of the z vector. The temporal methods
presented in Section 3.2 produce conformal reorderings for
the rows of A and the entries of the output y vector. The
spatiotemporal methods presented in Sections 4, 5 and 7.3.2
produce reorderings for both rows and columns of A which
respectively induce conformal reorderings for the entries of
the y and x vectors.

3 EXPLOITING SPATIAL AND TEMPORAL LOCALI-
TIES SEPARATELY

In this section, we discuss graph and hypergraph models
that encode either spatial or temporal locality in accessing
z-vector entries.

Data vertices Task vertices

(a) Spatial graph G (A). (b) Temporal graph GT'(A).
Data Task Task Data
vertices nets vertices nets
JUf

s
7

b

a

d

(c) Spatial hypergraph H°(A).

Fig. 3: Graph and hypergraph models (of the sample matrix
given in Fig. 2) for exploiting spatial and temporal localities
separately.

3.1 Spatial Locality

Here, we present two reordering methods based on GP and
HP that encode spatial locality.

3.1.1 Similarity Graph Model G° (SG Model)

For a given matrix A=(a;;), the similarities between the
use of z-vector entries by the inner product tasks are
represented—in terms of the number of shared rows between
columns-as a similarity graph G%(A4) = (V4,&). A row is
said to be shared between two columns if both of these
two columns have a nonzero on that row. Here, calligraphic
letters are used to denote sets, e.g., V and £ denote the sets
of vertices and edges, respectively.

In G%(A), there exists a data vertex v{ € V¢ for each
column ¢; of A. There exists an edge e;; € £ if columns
¢; and c; share at least one row. We associate vertices with
unit weights. We associate an edge e; ; with a weight w(e; ;)
equal to the number of shared rows between columns ¢; and
c;. That is,

w(e; ;) = [{h:an; #0Aap; # 0}

An edge e; ; with weight w(e; ;) means that x; and z;
will be accessed together during each of the w(e; ;) inner-

products of rows shared between columns ¢; and c;.
Fig. 3a shows the SG model G° of the sample matrix
given in Fig. 2. As seen in the figure, there are 8 data vertices

(d) Temporal hypergraph HT (A).

T T g[T e[fITaTd]To[Th]

G G G Gy
cgefadbh
X X
X X

X| X X
X X

(b) Reordered matrix A.

(a) 4-way partitioning of H5 (A).

Fig. 4: Four-way partition I{(Vd) of the spatial hypergraph
given in Fig. 3c and matrix A, which is obtained via reorder-
ing matrix A according to this partition.

and 7 edges. The edge e, ; has a weight w(e,, r) = 2 because
columns ¢, and c; share both rows 75 and 7¢.

A brief insight on how the method works can be given
as follows: Assume that a cache line contains L words and
each part in II(V?) of G¥ contains exactly L vertices. Since
the columns corresponding to the L words in a part are
reordered consecutively, the corresponding z-vector entries
are located consecutively, possibly on the same line. So we
can assume that an uncut edge e; ; corresponds to assigning
z; and x; to the same line, whereas a cut edge e; ; induces
the allocation of x; and z; to two different lines.

Consider an uncut edge ey, ¢. During each of the w(ey, ¢)
inner-products of rows shared between columns ¢, and
c¢, the line that contains both x; and x, will be reused.
Consider a cut edge e; ;. During each of the w(e; ;) inner-
products of rows shared between columns ¢; and c;, the
line that contains x; or the line that contains z; may not
be reused. So, a cut edge e; ; will incur at most w(e; ;) extra
cache misses due to loss of spatial locality. Thus, minimizing
the edgecut according to (1) relates to reducing the number
of cache misses due to loss of spatial locality.

3.1.2 Hypergraph Model H° (SH Model)

For a given matrix A, the requirement of z-vector entries
by the inner-product tasks are represented as a hypergraph
HS(A) = (VI N?). For each column c; of A, there exists a
data vertex ’U;j € V®. For each row r; of A, there exists a task
net n! € N''. Net n! connects vertices corresponding to the
columns that share row r;, that is,

Pins(nt) = {v}i ta;; # 0} ©)]

Net n! encodes the fact that |Pins(n!)| xz-vector entries
corresponding to the vertices in Pins(n}) will be accessed
together during the inner-product < r;,xz >. We associate
vertices and nets with unit weights. HS (A)is topologically
equivalent to the row-net model [8] of matrix A.

Fig. 3c shows the H° model of the sample matrix given
in Fig. 2. In the figure, the task net n{ connects data vertices
ve, U}i and v_g because the inner product task associated with
row 15 requires the x-vector entries z., Ty and Tg.

A brief insight on how the method works can be given
as follows: Assume that a cache line contains L words and
each part in II(V?) of H¥ contains exactly L vertices. Since
the columns corresponding to the L words in a part are
reordered consecutively, the corresponding z-vector entries

are located consecutively in the memory, possibly on the
same line. A net n! with connectivity set con(n}) means
that inner-product < r;,z > requires the z-vector entries
corresponding to the columns represented by the vertices
in con(n!). These z-vector entries are stored in |con(n;)|
different lines. Hence, at most |con(n})| cache misses occur
during the inner product <r;,z >. So, minimizing the cut-
size according to (2) corresponds to minimizing the number
of cache misses due to loss of spatial locality.

Fig. 4 shows a four-way partition IT(V?) of % (A) model
of the sample matrix given in Fig. 2 and the permuted
matrix A. The row order of {Al is the same as that of A.
The partial column order of A is obtained from I1(V%) as
described in the beginning of Section 2. Hence, in Fig. 4a,
column sets Ci,...,Cy are obtained via decoding the re-
spective parts Vi, ..., Vy in Fig. 4b and the z-vector entries
are reordered accordingly.

3.2 Temporal Locality

Here, we present two reordering methods based on GP and
HP that encode temporal locality.

3.2.1 Similarity Graph Model GT (TG Model)

For a given matrix A, the similarities between inner product
tasks associated with each row are represented-in terms
of the number of shared columns-as a similarity graph
GT(A)=(Vt,). In GT(A), there exists a task vertex vf € V*
for each row ; of A. There exists an edge ¢; ; € & if rows r;
and r; share at least one column. We associate vertices with
unit weights. We associate an edge e; ; with a weight w(e; ;)
equal to the number of shared columns between rows r; and
r;. That is,

w(ei’j) = |{h DA h Z0A Qj.h #+ O}I

An edge e; j with weight w(e; ;) means that w(e; ;) z-vector
entries corresponding to the columns shared between rows
r; and r; will be accessed during each of the inner products
<r;,x>and <rj,r>.

Fig. 3b shows the GT model of the sample matrix given
in Fig. 2. As seen in the figure, there are 6 task vertices and 4
edges. Edge e5 ¢ has a weight w(es ¢) = 2 because the rows
r5 and r¢ have nonzeros in the common columns c. and c;y.

A brief insight on how the method works can be given
as follows under the assumption that each line stores one
word: Since the rows corresponding to the vertices in a part
are reordered consecutively, the respective inner product
operations can reuse the required z-vector entries. So we
can assume that an uncut edge e; ; induces the processing
of inner product tasks <r;, x> and <r;, x> consecutively,
whereas a cut edge ¢; ; means that the inner-product tasks
<ri, x> and <rj, x> are not processed consecutively.

Consider an uncut edge ey, ¢. During the inner products
< rp,x > and < rg,x >, w(epe) r-vector entries corre-
sponding to the columns shared between rows 7, and 7y
will possibly be reused due to exploiting temporal locality.
Consider a cut edge ¢; ;. During the inner-products <r;, z >
and <rj;, x>, w(e; ;) z-vector entries corresponding to the
columns shared between rows 7; and r; may not be reused.
So, a cut edge e; ; will incur at most w(e; ;) extra cache
misses due to loss of temporal locality. So, minimizing the
edgecut according to (1) relates to minimizing the number
of cache misses.

cgefadbh -

1 x (2)

2 x| [x Joh

3 % Task @ Data

4 vertices @ 9 nets
X

5| x| x @ o

P @

(a) Compressed matrix Aline. (b) Hgne model.

Fig. 5: Compressed matrix Aj,, and its temporal hyper-
graph model H[. for exploiting spatial and temporal lo-
calities in two partitioning phases.

3.2.2 Hypergraph Model H™ (TH Model)

For a given matrix A, the dependencies of the inner-product
tasks on the z-vector entries are represented as a hypergraph
HT(A) = (VE,NY). In HT(A), there exists a task vertex
vl € V' for each row r; of A. For each column ¢; of A,
there exists a data net n¢ € N'%. Net n? connects the vertices

j J
representing the rows that share column c;, that is,
Pins(n;l) = {vt: a; ; # 0}. 4)

We associate vertices and nets with unit weights. HT (A)
is topologically equivalent to the column-net model [8] of
matrix A.

Fig. 3d shows the #T model of the sample matrix given
in Fig. 2. In Fig. 3d, data net n; connects task vertices vs and
vg because the inner product tasks < 75,z > and < g,z >
both require the z-vector entry x.

A brief insight on how the method works can be given
as follows under the assumption that each line stores one
word: Since the rows corresponding to the vertices in a
part are reordered consecutively, the corresponding inner-
product operations can reuse the required x-vector entries.
A net n? with connectivity set con(n?) means that z-vector
entry x; is required by the inner-products consisting of
the rows represented by the vertices in con(n?). Assuming
that z-vector entries are reused only in processing the rows
belonging to the same part and each line can store one
word, |con(n‘j)| cache misses occur due to accessing x;.
So, minimizing the cutsize according to (2) corresponds
to minimizing the number of cache misses due to loss of

temporal locality.

4 EXPLOITING SPATIAL AND TEMPORAL LOCALI-
TIES IN TWO PHASES

The correctness of the temporal methods TG and TH dis-
cussed in Section 3.2 is based on the assumption that each
cache line stores only one word. In order to exploit both
spatial and temporal localities and avoid this assumption,
we propose to utilize the spatial and temporal methods
respectively proposed in Sections 3.1 and 3.2 in a two-phase
approach. In the first phase, a spatial method is applied
to find a reordering on the x-vector entries and then this
reordering is utilized to determine an allocation of z-vector
entries to blocks (cache lines). That is, for a cache line of
size L words, the first L x-vector entries are assigned to the
first line, the second L z-vector entries are assigned to the
second line, etc. In the second phase, a temporal method is

applied by utilizing this information about the assignment
of z-vector entries to lines.

Although all of the four combinations of spatial and tem-
poral methods are valid, we only consider the hypergraph
models and we propose a new spatiotemporal method
SH-THjine which exploits temporal locality on the access
of lines instead of single words.

For a given matrix A, consider H°(A) = (V¢, N'*) and
its K-way vertex-partition II(V?). When K is large enough,
we obtain an order I'(V9) from II(V¢) on data vertices V¢
of H(A). The reordering I'(V) is used to assign z-vector
entries to cache lines, possibly in a cache-oblivious manner
since K is large enough. Consider applying the same re-
ordering T'(V?) to the columns of the A matrix to obtain
reordered matrix A (e.g., as shown in Fig. 4b). That is,
column reordering and z-vector reordering are conformal to
each other so that the k" column stripe of A corresponds to
the k'" line of the z-vector. Then we perform a column-wise
compression of the pxgq A matrix to construct a PXqr, matrix
Aine (as shown in Fig. 5a), where q7, = [] is the number of
lines required to store the xz-vector. For each k = 1,2, ..., L,
we compress the k' column stripe into a single column
with sparsity pattern being equal to the union of sparsities
of all columns that lie in the k' column stripe. Note that
the compression of A is performed for only building the
hypergraph model, and it has no effect on the CRS data
structure utilized during the local SpMV operations.

In /Line, there exists a nonzero a; j, if at least one column
in the k' column stripe of A has a nonzero in row i.
Aline summarizes the requirement of z-vector lines by the
inner product tasks. Hence, we can easily construct a tem-
poral hypergraph model HI (A)=HT (Ajine) =V, NE).
In H{ .(A), there exists a task vertex v} € V' for each row
r; of A. For each consecutive L data vertices in T'(V?), there
exists a data line net nf € N .. We associate vertices and
nets with unit weights.

Fig. 5b shows the H{, . model of the sample matrix given
in Fig. 2. In Fig. 5b, the data net n.4, connects task vertices vo,
v4 and vs because the inner product tasks associated with
rows rg, r4 and 75 require the line containing x. and z,.

In a partition II(V') of vertices of H{ , minimizing
the cutsize according to (2) corresponds to minimizing the
number of cache misses due to loss of temporal locality. The
correctness of H[. . can be derived from the explanation
given for H” in Section 3.2.2 with omitting the assumption
that each line stores only one word.

5 EXPLOITING SPATIAL AND TEMPORAL LOCALI-
TIES SIMULTANEOUSLY

In the GP- and HP-based spatiotemporal methods proposed
in this section, the dependencies of the inner-product tasks
on the z-vector entries and the requirements of z-vector
entries by the tasks are represented as a bipartite graph and
a hypergraph, respectively.

5.1 Bipartite Graph Model G°” (STBG Model)

In G5T(A) = (V = VI U VL, E), there exists a data vertex
’U;l € V4 for each column c;j of A. For each row r; of A, there
exists a task vertex vf € V. There exists an edge ¢, ; € &
if there is a nonzero a; ;. We associate vertices and edges

Data
vertices

Fig. 6: STBG: Bipartite Graph model G°7(A) for exploiting
Spatial and Temporal localities simultaneously.

STH
SH TH

Data Task Data
vertices nets nets

Task
vertices:

Fig. 7: STH: Hypergraph model H°T(A) (of the sample
matrix given in Fig. 2) for exploiting Spatial and Temporal
localities simultaneously.

with unit weights. Fig. 6 shows the G°T model of the sample
matrix given in Fig. 2. In Fig. 6, the data vertex v, is adjacent
to the task vertices v; and vy because the inner product tasks
associated with rows r; and r; require the x-vector entry z,.
In Fig. 6, the task vertex vs is adjacent to data vertices v, v
and v, because the inner product task associated with row
r5 depends on the z-vector entries x., x5 and z,.

A brief insight on how the method works can be given as
follows: Consider a task vertex v} that is adjacent to D data
vertices. Among the D edges connecting v} to the data ver-
tices, C' cut edges mean that the inner-product task <r;, z >
will not access at most C' z-vector entries consecutively. On
the other hand, D — C uncut edges mean that < r;,x >
will access D — C' z-vector entries consecutively. Similarly,
consider a data vertex vf that is adjacent to 7' task vertices.
Among the T' edges connecting U? to task vertices, C' cut
edges mean that z-vector entry x; will not be reused by at
most C' tasks due to loss of temporal locality. On the other
hand, T'— C uncut edges mean that z-vector entry z; will be
reused by 1" — C tasks since the rows corresponding to tasks
in the same part are reordered consecutively. So, minimizing
the edgecut according to (1) relates to reducing the number
of cache misses due to loss of both spatial and temporal
localities.

In G5T, an edge ¢;; can be interpreted as encoding
spatial and temporal localities simultaneously. However, the
G5T model overestimates the number of cache misses due

to the deficiency of the graph model in encoding multi-way
relations as also discussed in a different context in [8].

5.2 Hypergraph Model %57 (STH Model)

In H5T (A)=(V=VIUV!, N =NtUN?), there exists a data
vertex vf € V* and a data net n € N for each column
¢; of A. For each row 7; of A, there exists a task vertex
vl € V' and a task net n} € N*. Task net n! connects the
data vertices corresponding to columns that share row r;, as
well as task vertex v!. Data net n? connects the task vertices
corresponding to rows that have a nonzero at column c;, as
well as data vertex v?. That is,

<.
{Ul-t L Qg 7& 0} @] {'U;l},
{v;-i ta;; #0H U {vf}. (5)

We associate vertices and nets with unit weights. Fig. 7
shows the H57 model of the sample matrix given in Fig. 2.
In the figure, task net ns connects data vertices v, vy and
vy because the inner product task associated with row rs
requires the x-vector entries z., vy and z,. Net ns also
connects vs. Data net ny connects task vertices vs and vg
because the inner product tasks associated with rows 75 and
r6 require the z-vector entry zy. Net ns also connects vy.

Comparison of (5) with (3) and (4) as well as comparison
of Fig. 7 with Figs. 3c and 3d show that the STH model can
be considered to be obtained by combining the SH and TH
models into a composite hypergraph model whose parti-
tioning will encode both spatial and temporal localities. The
STH model contains both SH and TH hypergraphs, where
these two hypergraphs are combined through making each
data net n¢ also connect the respective data vertex v as
well as making each task net n! also connect the respective
task vertex v!. Fig. 7 clearly shows how the composite
hypergraph model STH is obtained from the constituent
hypergraph models SH and TH. As seen in the figure,
the left part contains SH, the right part contains TH and
the middle part shows the data-net—to-vertex connections
and task-net-to—vertex connections performed to realize the
composition. In this way, the STH model encodes simulta-
neous clustering of rows and columns with similar sparsity
patterns to the same part.

A task net n! connecting vertices in Pins(n!)
encodes the requirement of z-vector entries in
{zy, : v € Pins(nt) \ {vl}} by the inner product < r;, z >.
Hence, assigning the vertices in Pins(n!) \ {v!} into the
same part increases the possibility of exploiting spatial
locality in accessing z-vector entries during the inner
product < 7;,z >. Similarly, a data net nj-l connecting
vertices in Pins(n?) encodes the access of the inner
products consisting of rows in {ry, : v}, € Pins(n) \ {vi}}
to x-vector entry x;. Hence, assigning the vertices in
Pins(n;l) \ {v}i} into the same part increases the possibility
of exploiting temporal locality in accessing x;. The STH
method can simultaneously achieve these two aims while
obtaining a single TI(V) of H°7.

A brief insight on how the method works can be given
as follows: A cut data-net n? that connects one data vertex
and |Pms(n§l)| — 1 task vertices means that z-vector entry
x; will not be re-used by at most \con(n?)\ — 1 tasks. An

uncut net nff means that =; will be re-used by \Pms(n‘fﬂ -1

Pins(n?) =

Pins(nl) =

7

TABLE 2: Sizes of graph and hypergraph models for an
nr X nc matrix that contains nnz nonzeros

Graphs

Method model #vertices # edges

SG gs ne o)

G g’ nr o(=>

STBG gsT nr + nc nnz

Hypergraphs

Method model # vertices # nets # pins
SH HS nc nr nnz
TH HT nr nec nnz
STH HST nr 4+ nc nr + nc nr 4+ nc+ 2nnz
THjine 61 HS nce nr nnz
THline ¢2 Hlj;ne nr % [nzz 7””'2]

inner-product tasks. Similarly, a task cut net n! that connects
one task vertex and |Pins(nf)| — 1 data vertices means
that inner-product task < r;, > will not access, at most,
|con(nt)| — 1 z-vector entries consecutively. An uncut net n!
means that task i will access |Pins(n})| — 1 z-vector entries
consecutively, hence exploiting spatial locality. So, minimiz-
ing the cutsize according to (2) corresponds to minimizing
the number of cache misses due to loss of both spatial and
temporal localities.

6 COMPARISON OF THE REORDERING MODELS

Table 2 compares the sizes of the graph and hypergraph
models in terms of the number of rows (nr), columns (nc)
and nonzeros (nnz) of a given matrix A. The similarity
graph models for SG and TG may be quite dense when A
contains dense columns and rows, respectively, as shown by
the square upper-bound on their number of edges.

As seen in Table 2, the number of vertices and nets
in SH and TH are determined by nr and nc in a dual
manner, whereas the number of pins in both methods is
determined by mnz. The number of vertices and nets of
STH is determined by nr + nc, whereas its number of
pins is determined by nr + nc + 2nnz. This is because the
hypergraph model of STH is a composite model obtained
from the hypergraph models of SH and TH.

In THjine, phase one (¢1) uses the HS model, so the
number of vertices, nets and pins are identical to those of
SH. In ¢2, the number of nets is reduced to the number
of columns of the resulting matrix of ¢1, which is nc/L,
where L is the line size. The number of pins is reduced to
the number of nonzeros of the new matrix, which lies in the
range [nnz/L,nnz|.

As seen in Table 2, the hypergraph models for SH and
TH as well as the bipartite graph model for STBG are of the
same size, whereas the size of the hypergraph model of STH
is slightly more than twice the size of those models.

7 EXPERIMENTS
7.1 Dataset

The empirical verifications of the proposed methods are
performed on 60 irregular sparse matrices arising in a va-
riety of applications. These matrices are obtained from the
University of Florida Sparse Matrix Collection [9]. Table 3
shows the properties of these matrices, which are grouped

into three categories: symmetric, square nonsymmetric and
rectangular. In each category, matrices are sorted in alpha-
betical order of their names. In the table, “avg” and “max”
respectively denote the average and maximum number of
nonzeros per row/column. “cov” denotes the coefficient of
variation of the number of nonzeros per row/column and
is defined as the ratio of standard deviation to average.
A “cov” value may be used to quantify the amount of
irregularity in the sparsity pattern of a matrix. That is, larger
“cov” values might refer to higher irregularity.

7.2 Experimental Framework

We evaluate the performances of the proposed methods on
a single 60-core Xeon Phi 5110 co-processor in native mode.
Each core of the Xeon Phi supports running up to four
hardware threads, is clocked at 1.053 GHz and has a private
32 KB L1 cache. The Xeon Phi has 30 MB L2 cache.

We also experiment on a two-socket Xeon system, which
has two E5-2643 processors having 8 cores in total. Each core
supports running up to two hardware threads, is clocked at
3.30 GHz and has a private 32 KB L1 cache and a 256 KB L2
cache. Each Xeon processor has a 10 MB L3 cache.

For performing parallel SpMV operations, we use the
Sparse Library (SL) [5], [6], [7], which is highly optimized for
today’s processors. For evaluations on the Xeon Phi, we use
SL’s row-parallel scheme based on vectorized Bidirectional
Incremental CRS (vecBICRS), which is reported to perform
the best in [5] for the Xeon Phi architecture. For evaluations
on the Xeon processor, we use the SL’s row-parallel scheme
based on Incremental CRS (ICRS), which proceeds similar to
CRS (Algorithm 1). The original row-parallel scheme of the
SL library uses Hilbert-curve ordering, however we remove
this ordering (for results on both Xeon Phi an Xeon) so that
we can evaluate our reordering methods properly.

We use 240 threads for the Xeon Phi as suggested in [5],
[7]. On the Xeon Phi, we test with non-vectorized code
(referred to as 1x 1), as well as all provided vectorization
options, ie., 1 x8, 2x4, 4x2 and 8 x 1. We report the
result of the best-performing vectorization option in all
Xeon Phi related tables and figures except Table 5, in which
results of all blocking options are reported separately. The
SL library without using any reordering is selected as a
baseline method, which is referred to as BaseLine (BL). The
performance results are obtained by averaging 5000 SpMVs.

Construction of hypergraph and graph models takes
linear time in the number of nonzeros of matrix A. However,
construction of similarity graphs takes O(|V|?) time, which
is unacceptably high. The construction of similarity graphs
corresponds to the construction of clique-net graph model of
the respective hypergraph model. So we use the randomized
clique-net graph model [8].

For partitioning the graph models, we use MeTiS [10]
with the partitioning objective of minimizing the edge-cut
metric given in (1). For partitioning the hypergraph models,
we use PaToH [8], [11] with the partitioning objective of
minimizing the “connectivity-1” cutsize metric. Note that
minimizing the connectivity metric given in (2) directly
corresponds to minimizing the “connectivity-1” metric be-
cause there is always a constant difference between them.
MeTiS and PaToH are used with default parameters with
the exception of the allowed imbalance ratio, which is set

8

to 30%. Since these partitioning tools contain randomized
algorithms, we repeat each partitioning instance three times
and report the average results.

For each matrix, the K value given to MeTiS or PaToH
is determined through dividing the storage size (in KB)
reported by the SL library by the L1 cache size of 32 KB.

In the following figures, the performance results are
displayed utilizing performance profiles [12] which is a generic
tool for better comparing many methods over large test
instances. In a performance profile, each method is plotted
as the fraction of test cases that are z-magnitude worse than
the best performing instance of the best performing method.
For example, a point (abscissa = 1.10, ordinate = 0.40) on the
performance plot of a given method means that for 40% of
the test instances, the method performs within a factor of
1.10 of the best result. Hence, the method closest to the top-
left corner is the best method.

7.3 Performance Evaluation on Xeon Phi
7.3.1 Comparison of GP- and HP-based Methods

We compare the performances of the GP-based and
HP-based methods in each locality type of spatial, temporal
and spatiotemporal. In Fig. 8, we present the performance
profiles of the parallel SpMV times for spatial, temporal and
spatiotemporal methods. As seen in Figs. 8a, 8b and 8c,
the HP-based methods perform significantly better than
their GP-based counterparts in each locality type of spa-
tial, temporal and spatiotemporal. These findings can be
attributed to the better capability of hypergraph models in
representing data localities during SpMV operations.

7.3.2 Comparison of HP-based Spatiotemporal Methods

We compare the proposed spatiotemporal methods STH and
THiine against three HP-based spatiotemporal methods. The
first two methods, which are described in [13] and [14],
encode the spatial locality primarily and the temporal lo-
cality secondarily, and vice-versa, respectively. The former
and latter methods are referred to as SBD and sHP¢y. The
SBD and sHPcn methods can be respectively considered
as the extensions of SH and TH methods, where the nets
are considered as inducing partial orderings on the other
dimension of the matrix (based on uncut- and cut-net
categorization) to secondarily encode temporal and spatial
locality respectively.

The reasoning behind the classification of exploiting
spatial/temporal locality as primary and secondary can be
explained as follows: In hypergraph models, the objective
of minimizing the cutsize directly and closely relates to
clustering vertices with similar net connectivity to the same
parts. However, the partitioning objective of minimizing the
cutsize relates indirectly and hence loosely to clustering nets
with similar vertex connectivity to the same parts as uncut
nets. A similar observation was reported in a different con-
text in [2]. So, partial row or column reordering respectively
induced by the net reordering of SBD or sHPcn loosely
relates to clustering columns or rows with similar sparsity
pattern thus failing to address the secondary objective of
exploiting spatial or temporal locality successfully.

The third method, referred to here as SH+TH, is de-
veloped for the sake of comparison. The SH+TH method
consists of using SH for reordering columns and TH for

TABLE 3: Properties of test matrices

Number of Nnz’s in a row Nnz’s in a column
MID Matrix Name rows columns nonzeros avg max cov avg max cov
Symmetric matrices
01 144 144,649 144,649 2,148,786 14.86 26 018 14.86 26 0.18
02 adaptive 6,815,744 6,815,744 27,248,640 4.00 4 001 4.00 4 0.01
03 AS365 3,799,275 3,799,275 22,736,152 5.98 14 014 5.98 14 0.14
04 bmw7st_1 141,347 141,347 7,339,667 5193 435 025 51.93 435 0.25
05 ca2010 710,145 710,145 3,489,366 491 141 0.59 491 141 0.59
06 citationCiteseer 268,495 268495 2,313,294 8.62 1318 1.89 8.62 1318 1.89
07 coAuthorsCiteseer 227,320 227,320 1,628,268 7.16 1372 148 7.16 1372 1.48
08 darcy003 389,874 389,874 2,101,242 5.39 7 036 5.39 7 0.36
09 delaunay_n18 262,144 262,144 1,572,792 6.00 21 022 6.00 21 0.22
10 delaunay_n19 524,288 524,288 3,145,646 6.00 21 022 6.00 21 0.22
11 F2 71,505 71,505 5,294,285 74.04 345 0.51 74.04 345 0.51
12 G3_circuit 1,585,478 1585478 7,660,826 483 6 013 4.83 6 0.13
13 gupta2 62,064 62,064 4,248286 68.45 8413 5.20 68.45 8413 5.20
14 hugetrace-00020 16,002,413 16,002,413 47,997,626 3.00 3 001 3.00 3 0.01
15 hugetric-00020 7,122,792 7,122,792 21,361,554 3.00 3 001 3.00 3 0.01
16 mldb 214,765 214,765 3,358,036 15.64 40 020 15.64 40 0.20
17 NACA0015 1,039,183 1,039,183 6,229,636 5.99 10 0.14 5.99 10 0.14
18 netherlands_osm 2,216,688 2,216,688 4,882,476 220 7 026 2.20 7 0.26
19 NLR 4,163,763 4,163,763 24,975,952 6.00 20 0.14 6.00 20 0.14
20 ny2010 350,169 350,169 1,709,544 4.88 61 0.52 4.88 61 0.52
21 patternl 19,242 19,242 9,323,432 484.54 6028 0.78 484.54 6028 0.78
22 pkustkl2 94,653 94,653 7,512,317 79.37 4146 1.87 79.37 4146 1.87
23 vsp_bcesstk30_500sep_10in_1Kout 58,348 58,348 4,033,156 69.12 219 047 69.12 219 0.47
24 vsp_msc10848_300sep_100in_1Kout 21,996 21,996 2,442,056 111.02 722 044 111.02 722 0.44
Square nonsymmetric matrices
25 amazon0312 400,727 400,727 3,200,440 7.99 10 0.38 7.99 2747 1.89
26 amazon0505 410,236 410,236 3,356,824 8.18 10 0.38 8.18 2760 1.87
27 amazon0601 403,394 403,394 3,387,388 8.40 10 0.33 8.40 2751 1.82
28 av41092 41,092 41,092 1,683,902 4098 2135 4.08 40.98 664 2.37
29 circuitsM_dc 3,523,317 3,523,317 19,194,193 5.45 27 038 5.45 25 0.23
30 flickr 820,878 820,878 9,837,214 1198 10272 7.32 11.98 8549 5.97
31 heartl 3,557 3,557 1,387,773 390.15 1120 0.32 390.15 1120 0.32
32 laminar_duct3D 67,173 67,173 3,833,077 57.06 89 0.66 57.06 89 0.52
33 soc-Slashdot0811 77,360 77,360 905,468 11.70 2508 3.15 11.70 2540 3.18
34 soc-Slashdot0902 82,168 82,168 948,464 11.54 2511 3.20 11.54 2553 3.25
35 TSOPF_RS_b300_cl 14,538 14,538 1,474,325 101.41 209 1.01 101.41 6902 4.68
36 TSOPF_RS_b300_c3 42,138 42,138 4,413,449 104.74 209 098 104.74 20702 7.99
37 twotone 120,750 120,750 1,224,224 10.14 185 148 10.14 188 1.86
38 web-NotreDame 325,729 325,729 1,497,134 4.60 3445 4.67 4.60 10721 8.50
39 web-Stanford 281,903 281,903 2,312,497 8.20 255 1.38 8.20 38606 20.28
40 webbase-1M 1,000,005 1,000,005 3,105,536 3.11 4700 8.16 3.11 28685 11.88
41 wiki-Talk 2,394,385 2,394,385 5,021,410 2.10 100022 47.64 2.10 3311 5.82
Rectangular matrices
42 contl_l 1,918,399 1,921,596 7,031,999 3.67 5 026 3.66 1279998 252.33
43 contll_l 1,468,599 1,961,394 5,382,999 3.67 5 026 2.74 7 0.90
44 dbir2 18,906 45,877 1,158,159 61.26 4950 3.86 25.24 233 1.49
45 GL7d14 171,375 47271 1,831,183 10.69 24 024 38.74 160 0.44
46 GL7d15 460,261 171,375 6,080,381 13.21 38 0.18 35.48 137 0.40
47 GL7d24 21,074 105,054 593,892 28.18 751 0.72 5.65 13 0.22
48 IMDB 428,440 896,308 3,782,463 8.83 1334 173 422 1590 3.09
49 mesh_deform 234,023 9,393 853,829 3.65 4 018 90.90 166 0.20
50 neos 479,119 515905 1,526,794 3.19 29 0.16 2.96 16220 1557
51 NotreDame_actors 392,400 127,823 1,470,404 3.75 646 2.75 11.50 294 1.02
52 nsct 23,003 37,563 697,738 30.33 848 2.54 18.58 628 3.32
53 pds-100 156,243 514,577 1,096,002 7.01 101 1.03 2.13 3 0.18
54 pds-80 129,181 434,580 927,826 7.18 96 0.99 2.13 3 0.18
55 pds-90 142,823 475,448 1,014,136 7.10 96 1.01 2.13 3 0.18
56 rel8 345,688 12,347 821,839 2.38 4 082 66.56 121 0.26
57 route 20,894 43,019 206,782 9.90 2781 7.06 4.81 44 1.01
58 sgpfSy6 246,077 312,540 831,976 3.38 61 221 2.66 12 0.74
59 Trecl4 3,159 15905 2,872,265 909.23 1837 0.39 180.59 2500 1.71
60 watson_1 201,155 386,992 1,055,093 5.25 93 245 2.73 9 0.47

reordering rows. The “+” notation in SH+TH refers to the
fact that the partitioning in each of these two methods
are performed independently so that they do not use the
partitioning results of each other.

Fig. 9 shows the performance profiles that compare
all HP-based spatiotemporal methods, where the detailed
results are presented in Table A.1 in the supplemental
material. As seen in the figure, STH is the clear winner,
followed by THjine and SH+TH which display comparable
performance. The significantly better performance obtained
by THijine and SH+TH compared to SBD and sHPcy is

expected since both SBD and sHPcn encode one type of
locality primarily while encoding the other type of locality
secondarily. This experimental finding also supports our
claim for reordering based on vertex partitions encode much
better locality than that on cut/uncut net categorization.

7.3.3 Comparison of All Methods

Table 4 displays the averages of parallel SpMV perfor-
mances of the methods in terms of Gflop/s for 60 test
matrices in three categories. Here, SG+TG refers to the graph
counterpart of SH+TH. For each method, the table also

Fraction of test cases

10

1.0 1.0
0.9 0.9
0.8 0.8
07 07
0.6 0.6
05 & 0.5
04t f 0.4
0.3 0.3

© 9o 9 o o o
M W R o N

0.2 0.2

o

Fraction of test cases
°

0.1 0.1 ™ 0.1 STH STH —=
a TG —o— STBG —e— 0.2 98 THline —e— 4
00 0.0 0.0 -
10 105 11 115 12 10 105 11 115 12 10 105 14 12 SH4+TH
Parallel SpMV time relative to the best ~ Parallel SpMV time relative to the best Parallel SpMV time relative to the best 01 SBD [13] —e—
. sHPcn [14] +
(a) Spatial (b) Temporal (c) Spatiotemporal 000 11 12 13 14 15 16 T8 19 20 21 22 23 24 25

Fig. 8: Performance profiles for comparing hyper-
graph and graph models on Xeon Phi.

contains the number of best results for per-category matrices
and for all matrices in the bottom of the table. Table 4
shows that we obtain 13 instances that have more than
20 Gflop/s performance through the proposed reordering
methods, whereas there are only 4 instances for the baseline
method that have more than 20 Gflop/s. As also seen in Ta-
bles 4, the proposed SG+TG, STBG, SH+TH, THj;,. and STH
respectively perform the best in 1, 4, 10, 12, and 33 instances.
These results show the superior performance of STH, which
encodes spatial and temporal localities simultaneously.

Table 4 also displays SpMV performances of the methods
averaged over matrices in each category. As seen in the
table, the SH+TH method performs close to STH in the
category of symmetric matrices. This is due to the nature of
symmetric matrices, where SH and TH are exactly the same.
On the other hand, in case of nonsymmetric square matrices
and rectangular matrices, STH performs significantly better
than other methods.

As seen in Table 4, the two-phase method THjine does
not outperform SH+TH in case of symmetric matrices. On
the other hand, it performs slightly better in case of non-
symmetric square matrices and rectangular matrices.

Table 4 also shows the importance of using reordering
methods as the STH method achieved 3.4x improvement
for symmetric matrices and 1.6x improvement for other
categories. The importance of simultaneous methods also
arises from the fact that some matrices benefit more from
exploiting spatial locality while other matrices benefit more
from exploiting temporal locality. The simultaneous meth-
ods can benefit from exploiting both localities which leads
to a better performance.

Fig. 10 shows the performance profiles of the SpMV
times for all methods. As seen in the figure, STH, THjine
and STBG significantly outperform other methods. In the
figure, STH is a clear winner, while THj;,. is close to, but
slightly outperforms the STBG method.

As seen in Table 4 as well as in Fig. 10, the STH method
is the best method in terms of geometric means (overall and
per-category) and the number of best instances.

7.3.4 Benefit of Exploiting Spatial and Temporal Localities

Exploiting locality in matrices with highly irregular sparsity
patterns might have a huge impact on SpMV performance.
To show this, three matrices are selected from the data set,
where the improvement in performance after reordering

Parallel SpMV ume relatlve to the best
Fig. 9: Performance profiles for comparing HP-
based spatiotemporal methods on Xeon Phi.

o
=)

Fraction of test cases
o o
= o

BL+

0.0
10 11 12 13 14 15 15 17 18 19 20 21 22 23 24 25
Parallel SpMV time relative to the best

Fig. 10: Performance profiles of SpMV times on Xeon Phi.

with respect to the baseline is high. Fig. 11a shows the plot
of the sparse matrix 144 which has a very irregular sparsity
pattern. Table 4 shows that the performance on the matrix
(MID=01) improves from 3.09 (by BL) to 5.09 Gflop/s by
exploiting only spatial locality using the SH method, to 7.58
Gflop/s by exploiting only temporal locality using the TH
method, and to 16.78 Gflop/s by exploiting both spatial and
temporal localities using the STH method. Fig. 11b shows
the reordered matrix after applying the STH method.

Fig.11c shows the plot of the second matrix
delaunay_n18 (MID=09) which is experimentally found
to have good spatial locality properties, but suffers from
poor temporal locality. As seen in Table 4, trying to im-
prove spatial locality alone using the SH method does not
improve the performance. However, exploiting temporal
locality alone has a high effectiveness on the performance,
as it is increased from 3.48 Gflop/s to 12.54 Gflop/s after
reordering the rows with the TH method. When targeting
both localities, the performance increases to 16.34 by the
STH method. Fig. 11d shows the reordered matrix after
applying the STH method.

Fig. 11e shows the plot of the last selected matrix pds-80
(MID=54) which is experimentally found to suffer from
poor spatial locality. As seen in Table 4, reordering us-
ing a temporal method will not improve the performance.
However, reordering the columns to exploit spatial locality
with the SH method improves the performance significantly
from 4.30 Gflop/s to 10.04 Gflop/s. On the other hand,
targeting both localities improves the performance further
to 12.35 Gflop/s when using THji,e method.

nnnnnnnnnnnnnnnnnn

nnnnn

100000)

(e) pds-80

11

(c) delaunay_n18 (d) delaunay after STH

(f) pds-80 after STH

Fig. 11: Plots of sample matrices before and after applying the STH reordering method.

Table 5 shows the geometric means of the Gflop/s
performances obtained by all methods and all vectoriza-
tion options for all matrices in the dataset. In the table,
column ”Best” means the per-instance result of best per-
formed option among all vectorization options as well as no-
vectorization option, while V-Avg. means the per-instance
average of all vectorization options, not including 1x1.
As seen in the table, STH outperforms other methods in
all vectorization options. An important observation we can
retrieve from Table 5 is the importance of the one-phase spa-
tiotemporal methods in utilizing vectorization. As the table
shows, with no reordering or reordering for only one type
of locality (either spatial or temporal), non-vectorized runs
might outperform other vectorization options. However, in
one-phase spatiotemporal methods, vectorized runs always
outperform non-vectorized runs. The impact of reordering
on vectorization is discussed further in Section 7.3.5.

7.3.5 The Impact of Reordering on Vectorization

Vectorization might be very beneficial in improving the
performance of SpMV on the Xeon Phi co-processor. How-
ever, it is highly dependent on the sparsity pattern of the
input matrix, meaning that if the sparsity pattern is not
favoured by any of the vectorization options or the matrix
has a very irregular sparsity pattern, the vectorization might
not improve or even degrade the performance of SpMV.
Our findings show that the reordering methods have an
important role in utilizing the vectorized SpMV algorithm.

We use Table 5 to show the importance of reordering
for utilizing vectorization. In the table, the baseline method
performs worse in case of 1x8 option compared to no-
vectorization option, i.e., 1x1. If we look at the vectorization
performances obtained by methods that target only one
type of locality, i.e., SG, TG, SH and TH, we can see that
some vectorization options might perform worse than the
no-vectorization option as follows: If the method exploits
spatial locality, then the blocking option that prefers extreme
temporal locality (8x1 in this case) might perform worse
than the 1x1 option. On the other hand, if the method
exploits temporal locality, then the blocking option that
prefers extreme spatial locality (1x8 in this case) might
perform worse than the 1x1 option.

Regarding the spatiotemporal methods that target both

localities (e.g., STBG, STH and THjiy), Table 5 shows that
using any blocking option always performs better than the
1x1 option. It also shows that the spatiotemporal methods
perform the best in terms of the average of all vectorization
options (V-Avg. column).

7.4 Performance Evaluation on Xeon Processor

Fig. 12a displays the performance profiles of SpMV times
of all methods on the Xeon processor. Table A.2 in the sup-
plemental material shows the detailed performances results
of all methods on the Xeon processor in terms of Gflop/s.
Both Fig. 12a and Table A.2 show the superiority of STH
and STBG methods over the others. Recall that the THj;,e
performs better than the STBG method on the Xeon Phi.
However, as no vectorization is used on the Xeon, THj;,e
performs worse because it mostly utilizes vectorization to
perform well as discussed in Section 7.3.5.

We also use 1ikwid [15], which enables counting data
transfers in a multi-threaded shared memory system, to
measure L2 cache misses on the Xeon server during SpMV
operation using all methods. Fig. 12b shows the perfor-
mance profiles for cache misses. Table A.3 in the supple-
mental material contains detailed results of the number of
cache misses normalized with respect to those of the BL
method averaged over each category and at the bottom,
for all matrices in the dataset. The comparison of Figs. 12b
and 12a shows that the methods aiming at reducing cache
misses effectively reduce the SpMV runtime.

7.5

Iterative symmetric linear solvers (e.g., CG) contain re-
peated SpMV operations that involve the same symmetric
matrix. In such solvers, the input vector (z-vector) of the
next iteration is obtained from the output vector (y-vector)
of the current iteration via linear vector operations. Efficient
implementation of these linear vector operations necessi-
tates conformal partitioning/ordering of z- and y-vector
entries. So for such solvers, after each SpMV operation, the
y-vector entries should be reordered to the same order of
the z-vector entries to establish conformal z-y ordering.
Iterative nonsymmetric linear solvers (e.g.,, CGNE,
CGNR and QMR [16], [17], [18]) contain repeated SpMV
and SpMTV (matrix-transpose-vector multiply) operations
that involve the same nonsymmetric square matrix. In these

Integration into Iterative Methods

TABLE 4: Performance results (in Gflop/s) on Xeon Phi

Graphs Hypergraphs
MID BL SG TG SG+TG STBG SH TH SH+TH THjy,. STH
Symmetric matrices
01 309 504 747 1562 1615 509 758 16.93 16.09 16.78
02 489 220 497 1277 1312 219 495 12.89 13.28 13.73
03 1.22 181 325 13.62 1329 1.84 3.26 13.54 13.87 13.69
04 21.17 18.89 1472 7.68 24.46 22.66 2337 24.83 2521 25.24
05 333 442 598 10.10 1050 4.53 598 10.52 10.47 10.44
06 227 3.64 302 456 566 3.56 3.27 549 508 5.73
07 310 3.04 520 676 798 3.06 5.15 738 671 838
08 282 280 831 17.07 1846 276 844 18.05 17.40 18.10
09 348 349 1275 1610 16.17 3.47 1254 16.08 16.27 16.34
10 256 280 1098 13.20 1349 2.78 1098 13.55 13.45 1347
11 14.70 13.31 10.62 829 24.10 19.23 20.83 24.60 24.71 24.82
12 554 547 1030 1294 1293 544 1006 12.77 13.18 13.04
13 1537 829 1147 7.89 10.27 13.24 1253 1598 15.28 15.98
14 142 184 270 9.03 1046 185 273 9.59 10.33 10.64
15 1.39 169 272 1043 1079 1.69 270 10.57 10.95 11.02
16 298 490 747 1578 1523 494 755 1567 15.33 15.67
17 197 272 511 13.01 12.86 274 504 1312 13.26 13.13
18 373 340 633 882 926 340 623 9.09 337 96
19 1.25 1.88 320 1354 1322 1.89 3.24 1346 13.8 13.67
20 529 646 802 1156 1191 636 821 12.03 11.68 11.87
21 12.69 13.61 13.04 13.78 19.44 14.68 1659 18.64 15.09 20.29
22 19.35 11.38 13.62 517 21.30 21.43 20.94 2240 22.93 23.63
23 6.70 12.11 5.14 10.70 23.64 1537 10.78 23.52 24.73 24.61
24 10.99 12.05 11.01 12.01 28.88 22.40 16.53 30.3¢ 29.83 30.96
Avg. 429 467 684 1068 1410 521 780 1433 13.60 14.75
bests 0 0 0 1 1 0 0 5 5 13
Square nonsymmetric matrices
25 270 3.64 4.40 6.57 7.17 3.61 4.17 630 555 7.31
26 284 379 453 670 7.01 356 454 705 552 727
27 281 393 459 645 630 3.83 440 671 536 713
28 15.59 19.25 1557 20.76 15.66 21.72 17.35 ~ 20.01 20.99 21.23
29 563 243 7.77 1256 1424 248 732 1210 14.26 14.62
30 1.82 202 248 242 334 201 227 2.80 432 401
31 36.17 34.31 35.74 33.50 32.07 36.64 36.38 3637 37.09 36.72
32 21.58 14.34 1435 1242 23.69 14.73 23.16 2512 24.62 24.86
33 442 423 5.05 477 539 453 4.51 522 580 6.14
34 482 416 568 555 519 445 425 480 572 6.58
35 27.04 19.37 30.93 2349 26.71 24.03 33.67 3274 30.06 34.44
36 19.98 12.05 22.17 1544 24.61 16.73 26.69 27.04 26.16 26.71
37 15.16 1546 14.40 14.12 1525 15.34 16.15 1555 16.32 16.7
38 681 624 675 611 927 685 531 620 836 926
39 290 478 370 799 1055 4.93 3.38 9.87 10.57 10.65
40 456 435 270 248 644 449 489 522 6.62 6.96
41 1.17 0.86 1.15 079 125 154 1.04 150 1.62 1.97
Avg. 639 602 712 761 947 659 733 9.33 9.86 10.79
bests 0 0 0 0 1 1 0 2 2 1
Rectangular matrices
42 947 588 858 951 1003 6.81 842 1073 10.84 11.71
43 9.11 598 737 1098 1248 6.16 729 1094 11.51 12.79
44 835 636 667 788 914 7.84 647 9.75 1047 14.14
45 479 493 535 571 593 529 533 626 581 625
46 246 278 276 351 341 282 326 436 351 376
47 314 373 407 469 512 3.68 3.84 510 3.67 5.65
48 203 237 160 222 325 271 114 2,63 350 3.91
49 14.95 14.79 1513 1529 23.74 14.92 22.58 23.61 23.41 23.56
50 1254 664 610 523 1250 8.01 7.97 9.98 12.56 14.56
51 358 3.72 4.16 425 497 405 3.92 474 531 5.10
52 11.44 1156 11.04 1327 14.33 13.12 821 1226 17.27 17.83
53 356 9.40 3.68 1047 10.68 9.82 333 1057 11.82 11.20
54 430 10.73 342 10.66 11.52 10.04 328 11.15 12.35 11.33
55 396 10.11 3.53 1046 11.31 10.17 338 11.29 12.02 11.27
56 15.61 16.21 13.66 13.65 1526 16.27 1584 16.91 16.03 17.23
57 486 981 474 896 7.80 1012 4.18 1014 987 947
58 890 809 776 740 10.10 9.02 8.60 9.86 11.15 11.25
59 19.08 14.67 1895 14.70 15.46 20.00 1847 19.68 20.36 20.34
60 10.82 10.21 1123 1152 14.82 11.43 11.04 13.88 13.92 14.69
Avg. 658 726 6.09 798 941 787 6.07 947 9.89 10.54
bests 0 0 0 0 2 0 0 3 5 9
Overall
Avg. 550 5.77 6.67 885 11.08 635 7.08 11.13 11.22 12.13
bests 0 0 0 1 4 1 0 10 12 33

12

TABLE 5: Average performance results (in Gflop/s) for all
methods and all possible blocking sizes on Xeon Phi

Method Ix1 1x8 2x4 4x2 8xl Best Vec-Avg
BL 412 370 457 470 436 550 4.38
Graph Methods
5G 455 469 516 501 446 577 4.88
TG 511 482 574 586 537 6.67 5.50
SG+TG 626 710 815 790 709 885 7.63
STG 6.85 845 992 967 836 11.08 9.26
Hypergraph Methods
SH 479 514 562 542 475 635 5.30
TH 506 477 6.02 641 601 7.08 5.85
SH+TH 6.84 861 10.02 995 873 1113 9.46
SH+THline 6.85 8.61 1028 998 858 11.22 9.57
STH 711 930 11.00 1085 9.14 1213 10.19

(%]

b

8

g

S

&

.g

w

0010 37 12 15 14 15 15 17 18 18 20 21 22 23 24 25

Parallel SpMV time relative to the best

(a) SpMV times.

o
N

o
o

o
o

STH —a— |

STBG —e—

THline —=— 4
TH —e—
SH —&— 1
TG ——
8G —o— 1
BL —e—

090 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of cache misses relative to the best

Fraction of test cases

0.

(b) Cache misses.

Fig. 12: Performance profiles for the Xeon processor.

methods, there is no computational dependency between
the input and output vectors of the individual SpMV opera-
tions. This feature naturally holds for repeated SpMV opera-
tions that involve the same rectangular matrix in several ap-
plications (e.g., LSOR method [19] used for solving the least
squares problem and interior point method used for the LP
problems via iterative solution of normal equations) since
input and output vectors are of different dimensions. So, for
the methods that involve repeated SpMV of nonsymmetric
and rectangular matrices, there is no need for reordering the
y-vector entries after the SpMV.

In accordance with the above discussion, we consider the
y-to-z-vector reordering only for the symmetric matrices.
All our methods require y-to-x reordering for conformal z-y

ordering except SG+TG and SH+TH. This is because, for
symmetric matrices, the similarity graph models in the SG
and TG are exactly the same and the hypergraph models in
SH and TH are also exactly the same. So, we can easily apply
the conformal z-y (row-column) reordering by utilizing the
partition obtained by either SG or TG in SG+TG and by
either SH or TH in SH+TH. Here, we propose and develop
a scheme for reducing the y-to-z reordering overhead in
the powerful STH method, whereas the same scheme can
easily be utilized in STBG. Recall that in the row/column
reorderings obtained by the discussed partitioning methods,
the rows/columns corresponding to vertices in a part are
reordered arbitrarily. In the proposed scheme, in each part
of a partition, for each pair of vertices that represent the
row and column with the same index, the respective y-
and x-vector entries are ordered conformably, so only non-
conformal y-vector entries need to be reordered.

Experimental results on the symmetric matrix dataset
show that, the STH method that utilizes the proposed y-to-z
reordering scheme performs much better (22% on average)
than the STH method that utilizes the arbitrary y-to-x re-
ordering scheme. Despite this performance improvement,
STH utilizing the proposed reordering scheme performs
worse than SH+TH (13.28 vs 15.48 Gflop/s on average),
whereas it performs better than SH+TH only for very sparse
matrices (e.g., ca2010, delaunay_18, and ny2010). We
refer the reader to the supplemental material for more
detailed discussion and results.

8 RELATED WORK

Reordering is used in the literature to improve data locality
for irregular applications such as molecular dynamics [20],
[21], [22] and sparse linear algebra [13], [14], [23], [27],
[28], [29], [31]. Al-Furaih and Ranka [20] use MeTiS and
a breadth-first-search (BFS) based reordering algorithm to
reorder data elements for unstructured iterative applica-
tions. Han and Tseng [21] propose a low-overhead graph
partitioning algorithm (Gpart) for data reordering (spatial
locality).

For irregular applications, Strout and Hovland [22] pro-
pose graph and hypergraph models for data and itera-
tion reordering. They use different reordering heuristics to
traverse the graph or hypergraph models including Con-
secutive Packing (CPACK) [24] and Breadth-First Search.
They also use Gpart [25] to partition the graph models and
PaToH [11] to partition the hypergraph models.

On exploiting locality in sequential SpMV, Temam and
Jalby [26] investigate effects of metrics based on matrix
properties, cache size and line size on the number of cache
misses. They propose a probabilistic model to estimate the
number of cache misses and hits. They conclude that data
hit ratio is the lowest while accessing z-vector entries and
can be increased via reordering techniques. In our work, we
also target reducing misses due to accessing z-vector entries
and we report the actual number of cache misses (Table A.3
in the supplemental material) instead of estimations.

For sequential SpMV, Toledo [27] uses several band-
width reduction techniques including Cuthill McKee (CM),
Reversed CM (RCM) and top-down graph partitioning for
reordering matrices to reduce cache misses. White and Sa-
dayappan [28] also use the top-down graph partitioning tool

13

MeTiS [10] to reorder sparse matrices. Pinar and Heath [29]
use a spatial graph model and a formulation of traveling
salesperson problem (TSP) for obtaining 1x2 blocks to halve
the indexing overhead. Yzelman and Bisseling [13] propose
a row-net hypergraph model to exploit spatial locality pri-
marily and temporal locality secondarily. Akbudak et al. [14]
propose a column-net hypergraph model to exploit tempo-
ral locality primarily and spatial locality secondarily. One-
dimensional matrix partitioning is used in all of the above-
mentioned reordering methods that are based on graph
and hypergraph partitioning. Yzelman and Bisseling [23]
and Akbudak et al. [14] propose reordering methods based
on two-dimensional matrix partitioning. The DSBD method
proposed in [23] permutes the matrix into doubly sepa-
rated block diagonal form, whereas the sHP.grcn method
proposed in [14] permutes the matrix into doubly-bordered
block diagonal (DB) form, both through partitioning a fine-
grain hypergraph model of which size is significantly larger
than our proposed models.

On exploiting locality in parallel SpMV on
shared-memory architectures, Williams et al. [30] propose
17 different optimizations in three categories (i.e., code,
data structure and parallelism) for three different CPU
architectures. These optimizations include but are not
limited to cache blocking, using SIMD instructions,
software prefetching, auto-tuning and exploiting process &
memory affinity.

Yzelman and Roose in [6] combine several matrix re-
ordering methods based on hypergraph partitioning and
space filling curves to improve locality on shared memory
architectures. RCM is used in [31] for bandwidth reduc-
tion of sparse matrix A on the Xeon Phi coprocessor. For
sparse matrix-vector and matrix-transpose-vector multipli-
cation (SpMMTV), which contains two consecutive SpMVs,
Karsavuran et al. [32] utilize hypergraph models for exploit-
ing temporal locality on Xeon Phi.

9 CONCLUSION

We proposed bipartite and hypergraph partitioning based
methods that aim at exploiting spatial and temporal local-
ities simultaneously for efficient parallelization of SpMV
operations on many-core architectures. The experimental
results on the Xeon Phi and Xeon processors showed that
the proposed spatiotemporal methods for simultaneous row
and column reordering significantly performed better than
the methods that exploit either spatial or temporal locality.
The experimental results also showed that the proposed
spatiotemporal methods significantly benefit more from
vectorization compared to the other methods. Among the
proposed methods, hypergraph-based methods were found
to produce better SpMV performance with respect to their
bipartite graph counterparts.

ACKNOWLEDGMENT

This work was partially supported by the Scientific and
Technological Research Council of Turkey (TUBITAK) under
Grant EEEAG-115E212.

REFERENCES

[1] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang,
W. Xue, E Liu, E Qiao et al., “The Sunway Taihulight supercom-

(2]

(3]

(4]

(5]

6]

(71

(8]

(9]

(10]

(1]

(12]

(13]

[14]

(15]

[16]
(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

puter: system and applications,” Science China Information Sciences,
vol. 59, no. 7, p. 072001, 2016.

K. Akbudak and C. Aykanat, “Exploiting locality in sparse matrix-
matrix multiplication on many-core architectures,” IEEE Trans.
Parallel Distrib. Syst., vol. 28, no. 8, pp. 2258-2271, 2017.

D. R. Liu and S. Shekhar, “Partitioning similarity graphs: A frame-
work for declustering problems,” Information Systems, vol. 21,
no. 6, pp. 475 — 496, 1996.

C. Konstantopoulos, B. Mamalis, G. Pantziou, and D. Gavalas,
“Efficient parallel text retrieval techniques on bulk synchronous
parallel (BSP)/coarse grained multicomputers (CGM),” The Jour-
nal of Supercomputing, vol. 48, no. 3, pp. 286-318, 2009.

A.N. Yzelman, D. Roose, and K. Meerbergen, “Chapter 27 - Sparse
Matrix-Vector Multiplication: Parallelization and Vectorization,”
in High Performance Parallelism Pearls, J. Reinders and J. Jeffers,
Eds. Morgan Kaufmann, 2015, pp. 457-476.

A. N. Yzelman and D. Roose, “High-level strategies for parallel
shared-memory sparse matrix-vector multiplication,” IEEE Trans.
Parallel Distributed Systems, vol. 25, no. 1, pp. 116-125, 2014.

A. N. Yzelman, “Generalised vectorization for sparse matrix-
vector multiplication,” in Proceedings of the 5th Workshop on Irregu-
lar Applications: Architectures and Algorithms, ser. 1A3 '15, 2015, pp.
6:1-6:8.

U. V. Catalyurek and C. Aykanat, “Hypergraph-partitioning-based
decomposition for parallel sparse-matrix vector multiplication,”
IEEE Trans. Parallel Distributed Systems, vol. 10, no. 7, pp. 673-693,
1999.

T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1-1:25,
Dec. 2011.

G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM Journal on scien-
tific Computing, vol. 20, no. 1, pp. 359-392, 1998.

U. V. Catalyiirek and C. Aykanat, “PaToH: a multilevel hyper-
graph partitioning tool, version 3.0,” Bilkent University, Department
of Computer Engineering, Ankara, vol. 6533, 1999.

E. D. Dolan and J. J. Moré, “Benchmarking optimization software
with performance profiles,” Mathematical Programming, vol. 91,
no. 2, pp. 201-213, 2002.

A. N. Yzelman and R. H. Bisseling, “Cache-oblivious sparse
matrix-vector multiplication by using sparse matrix partitioning
methods,” SIAM Journal on Scientific Computing, vol. 31, no. 4, pp.
3128-3154, 2009.

K. Akbudak, E. Kayaaslan, and C. Aykanat, “Hypergraph parti-
tioning based models and methods for exploiting cache locality
in sparse matrix-vector multiplication,” SIAM Journal on Scientific
Computing, vol. 35, no. 3, pp. C237-C262, 2013.

J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments,”
in Proceedings of PSTI2010, the First International Workshop on Paral-
lel Software Tools and Tool Infrastructures, San Diego CA, 2010.

G. H. Golub and C. E. Van Loan, Matrix computations. JHU Press,
2012, vol. 3.

Y. Saad, Iterative methods for sparse linear systems.
vol. 82.

R. W. Freund and N. M. Nachtigal, “OMR: a quasi-minimal
residual method for non-hermitian linear systems,” Numerische
Mathematik, vol. 60, no. 1, pp. 315-339, Dec 1991.

C. C. Paige and M. A. Saunders, “LSQR: An algorithm for sparse
linear equations and sparse least squares,” ACM transactions on
mathematical software, vol. 8, no. 1, pp. 43-71, 1982.

I. Al-Furaih and S. Ranka, “Memory hierarchy management
for iterative graph structures,” in Parallel Processing Symposium,
IPPS/SPDP, Mar 1998, pp. 298-302.

H. Han and C.-W. Tseng, “Exploiting locality for irregular scien-
tific codes,” IEEE Trans. Parallel Distributed Systems, vol. 17, no. 7,
pp- 606-618, 2006.

M. M. Strout and P. D. Hovland, “Metrics and models for reorder-
ing transformations,” in Proceedings of the 2004 workshop on Memory
system performance. ACM, 2004, pp. 23-34.

A. N. Yzelman and R. H. Bisseling, “Two-dimensional cache-
oblivious sparse matrix-vector multiplication,” Parallel Computing,
vol. 37, no. 12, pp. 806 — 819, 2011, 6th International Workshop on
Parallel Matrix Algorithms and Applications (PMAA'10).

C. Ding and K. Kennedy, “Improving cache performance in dy-
namic applications through data and computation reorganization
at run time,” in Proceedings of the ACM SIGPLAN 1999 Conference

SIAM, 2003,

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

14

on Programming Language Design and Implementation, ser. PLDI '99,
1999, pp. 229-241.

H. Han and C.-W. Tseng, Languages, Compilers, and Run-Time
Systems for Scalable Computers: 5th International Workshop, LCR 2000
Rochester, NY, USA, May 25-27, 2000 Selected Papers. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2000, ch. A Comparison
of Locality Transformations for Irregular Codes, pp. 70-84.

O. Temam and W. Jalby, “Characterizing the behavior of sparse
algorithms on caches,” in Proceedings Supercomputing’92. Minn.,
MN: IEEE, Nov. 1992, pp. 578-587.

S. Toledo, “Improving the memory-system performance of sparse-
matrix vector multiplication,” IBM Journal of Research and Develop-
ment, vol. 41, no. 6, pp. 711-725, Nov 1997.

J. B. White and P. Sadayappan, “On improving the performance
of sparse matrix-vector multiplication,” in Proc. Int. Conf. High
Perform. Comput., Dec 1997, pp. 66-71.

A. Pinar and M. T. Heath, “Improving performance of sparse
matrix-vector multiplication,” in Proceedings of the 1999 ACM/IEEE
Conference on Supercomputing, ser. SC '99, 1999.

S. Williams, L. Oliker, R. Vudug, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of sparse matrix-vector multiplication on emerging
multicore platforms,” Parallel Computing, vol. 35, no. 3, pp. 178 —
194, 2009, revolutionary Technologies for Acceleration of Emerg-
ing Petascale Applications.

E. Saule, K. Kaya, and U. V. Catalytirek, Performance Evaluation
of Sparse Matrix Multiplication Kernels on Intel Xeon Phi. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 559-570.

M. O. Karsavuran, K. Akbudak, and C. Aykanat, “Locality-aware
parallel sparse matrix-vector and matrix-transpose-vector multi-
plication on many-core processors,” IEEE Trans. on Parallel and
Distributed Systems, vol. 27, no. 6, pp. 1713-1726, June 2016.

Nabil Abubaker received the BS degree in com-
puter engineering from An-Najah National Uni-
versity, Nablus, Palestine, and the MS degree
from Bilkent University, Ankara, Turkey where
he is currently pursuing his PhD degree, both
in computer engineering. His research interests
include parallel computing, high-performance
computing and locality exploiting methods for
scientific irregular applications.

Kadir Akbudak received the BS degree from
Hacettepe University, Ankara, Turkey, and the
MS and PhD degrees from Bilkent University,
Ankara, Turkey, all in computer science. He is
currently working as a postdoctoral researcher
in the Extreme Computing Research Center at
KAUST.

Cevdet Aykanat received the BS and MS de-
grees from Middle East Technical University,
Turkey, both in electrical engineering, and the
PhD degree from Ohio State University, Colum-
bus, in electrical and computer engineering. He
worked at the Intel Supercomputer Systems Di-
vision, Beaverton, Oregon, as a research asso-
ciate. Since 1989, he has been affiliated with the
Department of Computer Engineering, Bilkent
University, Turkey, where he is currently a pro-
fessor. He has served as an Associate Editor of

IEEE Transactions of Parallel and Distributed Systems between 2009

and 2013.

	1 Introduction
	1.1 Data Locality in Parallel SpMV
	1.2 Contributions

	2 Preliminaries
	3 Exploiting Spatial and Temporal Localities Separately
	3.1 Spatial Locality
	3.1.1 Similarity Graph Model GS (SG Model)
	3.1.2 Hypergraph Model HS (SH Model)

	3.2 Temporal Locality
	3.2.1 Similarity Graph Model GT (TG Model)
	3.2.2 Hypergraph Model HT (TH Model)

	4 Exploiting Spatial and Temporal Localities in Two Phases
	5 Exploiting Spatial and Temporal Localities Simultaneously
	5.1 Bipartite Graph Model GST (STBG Model)
	5.2 Hypergraph Model HST (STH Model)

	6 Comparison of The Reordering Models
	7 Experiments
	7.1 Dataset
	7.2 Experimental Framework
	7.3 Performance Evaluation on Xeon Phi
	7.3.1 Comparison of GP- and HP-based Methods
	7.3.2 Comparison of HP-based Spatiotemporal Methods
	7.3.3 Comparison of All Methods
	7.3.4 Benefit of Exploiting Spatial and Temporal Localities
	7.3.5 The Impact of Reordering on Vectorization

	7.4 Performance Evaluation on Xeon Processor
	7.5 Integration into Iterative Methods

	8 Related work
	9 Conclusion
	References
	Biographies
	Nabil Abubaker
	Kadir Akbudak
	Cevdet Aykanat

